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Abstract— Robustly estimating the orientations of people is a
crucial precondition for a wide range of applications. Especially
for autonomous systems operating in populated environments,
the orientation of a person can give valuable information to
increase their acceptance. Given people’s orientations, mobile
systems can apply navigation strategies which take people’s
proxemics into account or approach them in a human like
manner to perform human robot interaction (HRI) tasks. In
this paper, we present an approach for person orientation
estimation based on performant features extracted from colored
point clouds, formerly used for a two class person attribute
classification. The classification approach has been extended to
the continuous domain while treating the problem of orientation
estimation in real time. We compare the performance of
orientation estimation treated as a multi-class as well as a
regression problem. The proposed approach achieves a mean
angular error (MAE) of 15.4° at 14.3ms execution time and
can be further tuned to 12.2° MAE with 79.8ms execution
time. This can compete with accuracies from state-of-the-art
and even deep learning based skeleton estimation approaches
while retaining the real-time capability on a standard CPU.

I. INTRODUCTION

The current orientation of persons (see Fig. [I) in the
surroundings of a robot is a useful attribute for various HRI
tasks. In the field of socially aware robot navigation, mainly
two core functionalities require orientation information. First,
for approaching a person correctly, the orientation of the user
provides useful information for positioning in order to allow
an unconstrained interaction. Second, in proxemic theory
the orientation is used to model a natural personal space
around a person which the robot should not enter during the
navigation process. However, in such high-level applications,
the orientation is typically considered to be given, either
through motion capture data [I]] or other external sensor
systems [2]], which cannot be used in real world scenarios.
In spacious application areas, the sensor setup is limited
to the mobile robot platform. Some approaches use closed
source 3D skeleton estimators like the OpenNI- or Kinect2-
SDK in order to derive orientation information. These in
turn have been used for approaching [3,/4] or personal space
[5] applications. This might work in an experimental setup,
but several limitations restrict the fields of application. For
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Fig. 1: Various samples from our train-set (top) and test-set
(bottom). The ground truths (red) and predictions (blue) are
indicated with arrows.

example, the constrained detection space of usually 1.5m —
4.5m limits the navigation planning horizon.

Other specifics, like a prior on the orientation of users with
respect to the sensor’s coordinates as seen in the Kinect2-
SDK, can lead to failures in case of approaching a person,
not facing the sensor.

Person orientation estimation itself was undergoing exten-
sive studies. However, for the best of our knowledge, all
robotic applications which use these information fall back to
more or less restricted methods not generally applicable in
a real-world scenario. Therefore, we consider the robust and
fast estimation of a person’s orientation still as a challenging
field for research.

The main contributions of this paper are as follows:

1) We provide a fast and accurate approach for person
orientation estimatio which exploits rich informati-
on of colored point clouds. This approach can even
compete with the accuracy of recent deep learning
methods but also allows computation in real-time on a
standard CPU without the need of specialized graphics
cards, as we will show in the experimental section.

2) We perform an extensive evaluation of the precision of
our approach on a self recorded dataset[6] with over
100,000 samples of colored point clouds and compare
the achieved accuracies of multi-class classification
and regression.

3) Since our approach is flexible with respect to esti-
mation accuracy and computation time, we compare
different levels of complexity to serve (i) applicati-
ons with a high need of accuracy but a lower time
constraint, like approaching static persons, and (ii)

IThe code is publicly available at |https://github.com/
TimWengefeld/OrientationEstimation
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applications where a fast prediction is more important
than a high accuracy, like personal space estimation or
person tracking.

II. RELATED WORKS

Person orientation estimation, as well as the similar pro-
blem of estimating the head orientation of a person, is usually
treated by one of two estimation strategies. The first strategy
handles the estimation problem as a multi-class classification
by discretizing the continuous prediction space into several
orientation classes. In contrast to that, more recent works
perform a regression by predicting the continuous angle di-
rectly. In [[7]], a combined detection and orientation estimation
approach is presented using Histogram of Oriented Gradient
(HOG) features and a Decision Tree of Support Vector
Machines to detect eight upper body orientation classes
and one background class. In []g[], different combinations of
well known RGB feature descriptors like HOG, LBP and
ACF were used for an eight class orientation estimation.
[9] extends the HOG feature space with the magnitude of
gradients from depth images, which increases the feature
weights at the boundary of the human body silhouette. In
this way, they achieved better performance on data with com-
plex background. All of these traditional machine learning
approaches have in common, that they divide the prediction
space into relatively coarse classes. This comes with the
drawback, that in addition to misclassifications (reported
accuracies range between 40% and 80%), a systematical
error is introduced, which is about 11.25° considering a ba-
lanced test set and eight orientation classes. Similar to other
domains, recent advances in deep learning have improved the
accuracy of orientation estimation approaches significantly.
One of the first deep learning approaches for orientation
estimation uses a deep convolutional neural network
(CNN) with cropped and resized person appearances from
RGB-images as input and a softmax layer with eight neurons
as output, which gives the confidence for each of the eight
trained classes. They report an mean angular error (MAE)
of 10.6°. However, their evaluation method also neglects the
mentioned systematical error, so the MAE must be higher
in reality. In [11]l, a regression approach is presented which
estimates the head orientation in RGB-images with a deep
CNN using two output neurons trained on the sine and cosine
part of the prediction angle. They reported a MAE of 20.8°
on a real-world dataset recorded in a town center. A similar
approach presented in predicts the full body orientation
using cropped and resized greyscale images of people as
input and two neurons as output. The CNN was trained with
a large synthetic training set and the evaluation was done on
a spinning wheel which can measure the ground truth with a
non changing simple background. Astonishingly good results
of 6.9° MAE are reported on this relatively simple test set.
Another way to estimate a person’s orientation is to retrieve
this information from estimated skeletons. In the past few
years, this field of research has produced outstanding results.
as probably the most famous representative, commonly
known as OpenPose, predicts 2D skeletons in RGB-images.
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Fig. 2: Processing pipeline of the proposed approach in a
supermarket scenery.

However, from these 2D information the person’s 3D orien-
tation cannot be retrieved directly. Other recent approaches
are able to estimate 3D skeletons from RGB[14]] and RGB-
D[15] images. We compare our approach to them in the
experimental section. However, when it comes to the appli-
cation, not every problem can be treated with deep learning
due to the need of graphics cards which opposes to the
restricted resources on mobile platforms. Even though there
are power-saving graphics cards available, like the NVIDIA
Jetson series, complex robotic systems which also
need person re-identification or scene understanding benefit
from computationally less expensive alternatives for specific
tasks.

III. ROBOTIC APPLICATION

The proposed approach for orientation estimation is based
on the attribute estimation presented in , which uses
clusters of colored 3D points as input. There, person point
clusters are generated within a static sensor setup using a
background model. In order to use this approach on a mobile
platform, where background models are not feasible, we
integrated it in a processing pipeline using the robotic middle
ware framework MIRA (see Fig. [2). Color and depth
images from a Kinect2 sensor are transformed into a colored
point cloud. Afterwards, the segmentation method from
is applied to generate candidate point clusters which possibly
represent persons. For cluster validation, we use the person
detector presented in [21]], which currently delivers the best
detection results for this data representation. The advantage
of this and other point-cloud based person detectors
is that they share the required segmentation step with our
approach and, therefore, no computational overhead is ge-
nerated when used in combination. But in general, arbitrary
person detectors combined with a projection into the point
cloud coordinate system could be used to validate that a
point cluster originates from a person. Another advantage
of using clusters of point clouds as data representation is
the independence from different backgrounds. For detection
accuracies in a supermarket scenario, we refer to [21]. After
the detection step, the person point clusters are transformed
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Fig. 3: Results for proposed orientation classifiers for the 8 class CV-SAC-WL100-D1-CC8 (MAE: 17.84°) classifier (left)
and the 16 class CV-SAC-WL500-D2-CC16 (MAE: 12.21°) classifier (right). The confusion matrices are shown on the left.
They indicate how likely each binned ground truth label is predicted to each orientation class. These results are further
transformed into a radial coordinate system shown on the right to get a more intuitive representation. In this plot, the radial
dimension encodes the prediction probability while the circular dimension encodes the ground truth label.

in a local coordinate system aligned at the cluster’s center
of gravity. This normalized point cloud representation of
each detected person is passed to the orientation estimation
module, described in the following section.

IV. ORIENTATION ESTIMATION

As mentioned before, the proposed method is a modifica-
tion of the human attribute classification approach from [18]
which classifies binary attributes like gender or long/short
trousers. In this former work, a typical Adaboost approach
has been used where a small amount of simple, yet fast
to calculate features are extracted from a large amount of
different regions of a colored person point cloud to train the
classifier. More precisely, they used 19 statistic, geometric
and color features, like the number of points, linearity and
mean color, from 14,023 overlapping subregions of the point
cloud. The main idea of such boosting approaches is, that the
designer of the algorithm does not have to put much effort
into data preprocessing, feature design, or feature selection,
since the Adaboost training aims to find the most distinctive
features by itself. An Adaboost classifier can be described
in the notation of eq. E} For a feature vector x, an ensemble
of T consecutively trained weak classifiers f:(x) (typically
decision trees) vote with a confidence for a class label. This
predicted confidence is then multiplied with a scalar factor oy
which encodes the importance of the specific weak classifiers
decision to the combined decision for the strong classifier
F(z). For more details, we refer to the original Adaboost
paper [23].

F(z) =) afi(x) (1)
t=1

The main advantage of this procedure is, that the prediction
step of the classifier is quite fast since in the application
phase only important features need to be calculated. This
makes these approaches real-time capable with a low need
of computational resources. However, the original Adaboost
algorithm from [23] is just able to solve binary classification
problems.

A. Orientation estimation by Multi-class classification

A typical approach to overcome this issue is to train
several binary classifiers and make a one-vs.-all decision
based on the maximum classification confidence of each
classifier:

maz { Foe (), Fi50(T), ..., F_450(x)}

However, dividing the former continuous prediction space
into discrete bins leads to the issue that samples which
are close to each other in the feature space may fall into
different classes. Furthermore, if we take noise in our ground
truth labels into consideration, which is very likely when
training on data which is not artificially generated, one
classifier may be trained with similar samples which have
both positive and negative labels. This is an issue often
ignored in most state-of-the-art publications. To the best of
our knowledge, the only approach which treats this issue was
presented in [24f]. There, the SVM training algorithm was
extended with a cost relaxation parameter which weights the
errors of similar classes lower than fatal misclassifications.
Using this extension, they achieve an accuracy improvement
for the eight class classification of up to 3.23%. However,
the fundamental idea of the Adaboost algorithm is to find
importance weights for specific samples by itself during
training. Hence, this method cannot be adapted without
changing this principle of Adaboost. Therefore, we simply
tackled this issue by just ignoring samples adjacent to the
positive class in the training step of a classifier for a specific
direction. In the experimental section, we will show that we
can achieve a notable precision boost with this simple yet
efficient training strategy. Furthermore, this training strategy
allows us to choose more fine granulated subdivisions of our
prediction space than the de facto standard of eight classes
to reduce the MAE, while a normal one-vs-all training just
increases the MAE for a finer granulated prediction space
division.

B. Orientation estimation by Regression

Another strategy is to treat the orientation estimation as a
regression problem. The Adaboost algorithm was generalized
to regression problems in [25] calling it gradient boosting.
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Fig. 4: Environment where we recorded our dataset.

The concept is pretty similar to the original Adaboost by
consecutively training weak classifiers, also typically deci-
sion trees, which solve the problem by finding the optimal
features. However, instead of independently returning a class
confidence, the first weak classifier predicts the mean of
the real-valued labels, while consecutive ones iteratively
minimize the residual errors from previous steps during
the training. In the application phase, these weak classifiers
can be evaluated independently giving this machine learning
approach the same fast prediction capabilities. However,
treating the orientation estimation as a regression problem
comes along with the problem of periodicity of angles. This
leads to the effect, that two samples close to each other in
reality would have a high distance for our model if they are
on different sides at the transition point of our prediction
space, i.e. —179° and +179°. In general, such issues can
be handled by transforming the prediction label to a higher
dimensional space. However, gradient boosting classifiers are
natively not capable to provide multi-dimensional outputs.
In [[11] the periodicity of the orientation angle is treated
by a CNN with a two dimensional output for the sine and
cosine part of the prediction angle. In our approach, we have
adapted this method and trained one separate model for the
sine and cosine component of the angle.

V. EXPERIMENTS

Over the years, several evaluation metrics have been
developed. Most classification approaches use the accuracy
evaluation metric for correctly classified samples. However,
since we are just interested in a precise estimation of the
real valued orientation in the application, we will use the
mean angular error (MAE) evaluation metric independently
from class division for classification or regression. The MAE
represents the mean absolute difference between ground
truth and predicted angles while taking the circularity of
the prediction space into account. Computation times are
averaged results per sample over our balanced test-set on
an Intel Core i7-4790K using 4 cores.

A. Datasets

In the literature, a considerable amount of data sets for
training and benchmarking orientation estimation of persons
are publicly available with RGB [26] and RGB-D [27]]
data. However, to the best of our knowledge, none of them
fulfill our requirements of synchronized depth and RGB data

dataset ‘ # samples
train-full 57,717
train-balanced 27,720
test-full 50,788
test-balanced 21,600

0 100 200 300
Bins

Fig. 5: Left: histogram of the orientation angles in our
recorded training set. The blue line indicates the number of
samples drawn for balancing. Right: statistics of the datasets.

streams to generate point clouds in combination with highly
precise ground truth labels suitable for both classification and
regression. Therefore, we decided to record our own data set
using a highly precise external ARTTRACK tracking sys-
tem [28]], which tracks markers using four infrared (IR) ca-
meras with a positional precision of 0.4mm =+ 0.06mm [29].
In order to reduce the influence of the markers in the actual
point cloud data, the IR markers were placed on a thin pole
about 0.5m above the heads (see Fig. f). The pole itself
was fixated under the cloth at the back of the subject to
keep the orientation label unaffected from the head/view
direction. By means of that, the label reflects the orientation
of the person’s thorax. We recorded data from five Microsoft
Kinect2 sensors placed in a half circle around the recording
area such that the sensors’ active boosters did not interfere
with each other. Different behaviors of daily life, like walking
around, using cellphones, or conversations were captured.
To generate samples to train our approach and to evaluate
the performance we used a background model. Afterwards,
we applied the person detection pipeline described in Sec.
[ to filter noise and to use the same preprocessing as
in the application phase. During the sessions, appearances
of 37 persons were recorded in a range of 1.5m to 5m
which we divided into groups of 21 persons for training
and 16 for the test set. To give a valid evaluation of the
system’s generalization capabilities, no person is included
in both sets. We also tried to keep the variance of persons’
attributes in the test set high with respect to gender, height,
and clothing (see Fig.[I). During the complete session 57,717
samples for the training set and 50,788 samples for test set
were recorded. Unfortunately, since we placed the sensors
in a half circle, some of the recorded ground truth angles
are overrepresented. Therefore, we balanced the data sets
by sampling from 360 angle bins randomly without using
a sample twice. The resulting data sets contain 27,720
training samples and 21,600 test samples (see Fig. [5). In
the following, we discuss the results on the balanced test set
only. Results for the full test set are given in the Tab. [[] and
[ but are not discussed.

B. Classification results

One of the first issues we faced during the performance
evaluation of our approach was the computational effort of
the Adaboost algorithm during training. Given a large dataset
with several parameter configurations and an increasing
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exp test test avg. avg. #WL tree strain
seriés Identifier MAE MAE time time per #class dep samples
bal. full feat. class. class. ’

CVAB-UAC-WL100-D1-CC8 20.92° | 20.57° 7.89ms | 0.03ms 100 8 1 8,000
CVAB-SAC-WL100-D1-CC8 17.84° | 17.51° 6.36ms | 0.03ms 100 8 1 8,000

1 CVAB-UAC-WL100-D1-CC16 | 22.45° 21.93° 13.78ms | 0.09ms 100 16 1 8,000
CVAB-SAC-WL100-DI1-CC16 | 15.40° | 14.78° | 14.30ms | 0.09ms 100 16 1 8,000
CVAB-UAC-WL100-D1-CC32 | 24.66° | 23.49° | 29.39ms | 0.22ms 100 32 1 8,000
CVAB-SAC-WL100-D1-CC32 21.18° 19.68° 29.12ms | 0.23ms 100 32 1 8,000
CVAB-SAC-WL100-D2-CC16 14.31° 13.76° 28.73ms | 0.24ms 100 16 2 8,000

2 CVAB-SAC-WL100-D3-CC16 | 26.38° | 25.86° | 24.06ms | 0.15ms 100 16 3 8,000
CVAB-SAC-WL500-D2-CC16 12.21° 11.80° 78.96ms | 0.96ms 500 16 2 8,000

TABLE I: Results of our classification approach with different training parameters in context of mean angular error (MAE)
and computation time for feature calculation and classification. The identifier encodes the parameters the multi-class classifier
was trained with in the form (machine learning back end [OpenCV AdaBoost] - training strategy (Use/Skip Adjacent Classes)
- # weak learners per classifier - tree depth - # prediction classes).

test test . .
exp. Identifier MAE MAE time time #WL. per tree #train
series . feat class classifier | depth | samples
balanced full

1 CVGBT-WL800-D1 17.68° 17.27° | 5.36ms | 0.15ms 800 1 8,000
CVGBT-WL800-D2 15.17° 14.76° | 7.80ms | 0.13ms 800 2 8,000

2 XGB-WL800-D2 12.55° 12.24° * 0.60ms 800 2 27,720
XGB-WL3200-D3 11.52° 11.21° * 0.70ms 3200 3 27,720

TABLE II: Results of our regression approach with different training parameters in context of mean angular error (MAE) and
computation time for feature calculation and classification. The identifier encodes the training parameters of the classifier
in the form (machine learning back end [OpenCV Gradient Boosted Trees / XGBoost] - # weak learners per classifier - #
tree depth. (*) Results for XGBoost are currently just retrieved from the python interface with pre-calculated features.

amount of prediction classes, the training can easily exceed
several weeks using the OpenCV [30] machine learning back
end. Therefore, the training was not possible on the full
balanced training set and thus, it had to be reduced to 8,000
samples for the parameter evaluation, which also needs our
maximum amount of 32GB RAM. For accuracy evaluation in
order to find the best training parameters, we conducted two
series of experiments. The first one is intended to prove the
advantage of our training strategy and to find the best number
of subdivision for the continuous prediction space, i.e. the
number of classes. In the second series, the accuracy of the
best performing method should be increased by variating
the training parameters, i.e. number and tree depth of the
weak learners. For the complete parameter configuration,
we refer to the implementation’|The results are shown in
Tab. [Il As expected, the SAC (skip adjacent classes) training
strategy performs better than the standard approach using all
samples. Therefore, we used this strategy in the following
experiments. The first classifier trained with eight classes
performed surprisingly well by predicting the orientation
with an MAE of 17 .84°E] with an average execution time of
6.39ms per sample. The specific results for each orientation
can be found in Fig. 3] There, it becomes obvious (especially
in the polar plots), that frontal or backward appearances
can be estimated more precisely than sideviews. This can
be explained with a larger surface of the persons in such
appearances and more descriptive features resulting from
them. However, none of the ground truth classes is estimated

2 https://github.com/TimWengefeld/OrientationEstimation
3The best achievable accuracy for an eight class classifier due to discreti-
zation is an MAE of 11.25° given a well balanced test set.

extremely worse than others and mispredictions are mostly
adjacent to the real ground truth rather than pointing into
complete different directions. By increasing the number of
prediction classes to 16 the MAE drops to 15.40° with an
execution time of 14.39ms. However, setting the number
of classes to 32 performs worse than 16 but better than
eight classes. Therefore, we assume 16 classes to be the
optimal subdivision of our prediction space. In our second
experimental series, we performed a parameter grid search
over the number of weak learners (ranging from 100 to
500) and their maximum tree depth (ranging from 1 to 3).
Exemplary results can also be found in Tab. |lj (for all results
we refer to our github repository). The best combination
achieves 12.21° MAE for our classification approach using
16 classes, 500 weak learners, and a weak learner’s maxi-
mum tree depth of two. However, increasing the number of
classes or model complexity comes with the drawback of a
higher computation time of up to 79.92ms per sample. Thus,
the optimal model has to be chosen for each application
separately. It depends on whether accuracy or low latency
is more important. Since we are just interested in real-
time predictions, this is the maximum tolerable execution
time for our application, where typically more than one
person appears in a scene. In the following, we will refer
to the CVAB-SAC-WL100-D1-CC16 classifier with 15.40°
MAE and 14.39ms execution time as ours-classification-fast
and the CVAB-SAC-WL500-D2-CC16 classifier with 12.21°
MAE and 79.92ms execution time as ours-classification-
precise.
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test . .
avg. comp. time | avg. comp. time

Approach l\gﬁE (orientation est.) (detection)

[ 114] 22.60° 1127.48ms*
113 14.66° 606.33ms*
ours-classification-fast 15.40° 13.7ms®
ours-classification-precise | 12.21° 105.9ms*® 7oms®
ours-regression-cv 15.17° 20.8ms * ms
ours-regression-xgb 11.52° -

TABLE III: Comparison of our approaches to two recent
deep learning 3D skeleton estimation approaches. For run-
time comparison, we applied the deep learning approaches
on the Jetson Xavier(*), NVIDIAs most recent graphics card
designed for mobile autonomous systems. For our approach,
we measured the average runtime on our robot’s i7-7700T(*)
CPU, using four threads.

C. Regression results

By using the same OpenCV machine learning back end
for gradient boosting for regression, the same limitations
considering the training set size hold true. In the first
experimental series (see Tab. [[I), we also performed a
parameter grid search over the number of weak learners
(ranging from 100 to 800) and their maximum tree depth
(ranging from 1 to 3). The best OpenCV regressors (CVGBT-
WLS800-D2 in the following referred as ours-regression-cv)
achieved a MAE of 15.17° with a computation time of
7.80ms, while a classification approach with similar time
consumption performs 2.67° worse. However, we have not
achieved the same accuracy of the best multi-class classifier
yet due to the large amount of training times. But since
the regression approach is faster in general, the training of
more complex models seems to be a valid option for future
work experiments. Our second experimental series shows the
reachable accuracy of the regression approach when using
the complete training date available. Therefore, we changed
to the more recent machine learning back-end for gradient
boosting XGBoost [31]], which provides better parallelization
support and a more efficient memory management. With the
same training parameters, like the best OpenCV regressor,
the MAE decreased from 15.17° to 12.64°. We are currently
not able to give a run time comparison for XGBoost since
we need to re implement the optimized feature calculati-
on for this back end. But since feature calculation is the
computational bottleneck, the run time should be similar to
the OpenCV results with equal model complexities. With
XGBoost as back end and a parameter grid search (see Fig.
[6) over the number of weak learners (ranging from 200 to
3200) and their maximum tree depth (ranging from 1 to 3),
our best regression approach (see Fig. [/) achieved a MAE
of 11.52° (XGB-WL3200-D3 in the following referred as
ours-regression-xgb) which is 0.69° better than our precise
classification approach. Moreover, we analyzed the model
complexity and the dependency of the model performance
to the amount of samples used during training (see Fig. [6).
There, it can bee seen that more complex models perform
better in general. The enlargement of training set size from
14,400 to 27,700 samples gives a performance boost of about

225
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Fig. 6: MAE values achieved by various XGBoost parameter
configurations on the balanced test-set. The x-axis encodes
the number of samples used for training. The best MAE for
each parameter configuration is given in the legend.

1° MAE. However, increasing the model complexity above
a tree depth of two and 1,600 weak learners just give a
minor performance boost. Therefore, we conclude that our
approach is near the maximum of its achievable accuracy.
Enhancing the training set with further samples could give
a slight performance boost, but for more precise estimations
more complex features are required.

D. Comparison to 3D Skeleton Estimation

In order to give an insight on how other approaches
perform on our data, we applied two recent SotA Deep
Learning 3D skeleton estimation approaches from [14] and
[15] on our test set. Even though we are not able to re-
train these approaches on our training set, we assume that
the large amount of data they were trained with provides
good generalization capabilities. To calculate the person’s
orientation from the estimated 3D skeleton, we used the
cross product from the left to right shoulder vector and the
vector from the left shoulder to the spine base. Note: For the
coco model in [15] the spine base is interpolated from both
hip joints. The resulting vector is then projected onto the
ground plane and the acrtan function is used to calculate

Prediction

90

135

135

Ground Truth

90

0.0

Fig. 7: Confusion matrix of our best XGBoost regression
model discretized to 128 bins.
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the orientation angle. Results are depicted in Tab. [[Tl} It can
be seen that our estimations are much more accurate than
the ones extracted from [14]. This is reasonable since we
use depth as an additional source of information. Orientation
estimations results from [[15]], are slightly better than our fast
approach but worse than our precise one. However, when it
comes to computation times, the presented pipeline clearly
outperforms the deep learning competitors without the need
of specialized hardware. In combination with the preferred
detector from [21]], our fast approach achieves a frame rate
of ~12fps while our precise one runs at ~6fps, when one
person is in the scene.

VI. CONCLUSIONS

We presented a fast and accurate approach for person
orientation estimation based on colored point clouds. Our
approach achieves real-time estimation rates with low com-
putational costs on a consumer CPU and is, therefore,
particularly suitable for mobile robotic applications. We
compared the common orientation estimation methods of
multi-class classification and regression on a novel data
set. Moreover, we have shown that the former approach
for attribute estimation [|18]] is also able to work in the
continuous domain. Hence, we expect it will also work for
other real-valued person attributes, like age or weight.
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