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Abstract— Tracking people in the surroundings of interactive
service robots is a topic of high interest. Even if image based
detectors using deep learning techniques have improved the
detection rate and accuracy a lot, for robotic applications it is
necessary to integrate those detections over time and over the
limited ranges of individual sensors into a global model. That
data fusion enables a continuous state estimation of people and
helps reducing the false decisions taken by individual detectors
and increasing the overall range. In this paper, we present
a tracking framework with a new distance measure for data
association and a proper consideration of individual sensors’
accuracies. By means of that, we could deal with high false
detection rates of laser-based leg detectors without introducing
further heuristics like a background model. The proposed
system is compared to other tracking approaches from the
state of the art. Furthermore, we present a novel manually
annotated benchmark dataset for multi sensor person tracking
from a moving robot platform in a guide scenario, which will
be made publicly available.

I. INTRODUCTION

Complex scenarios [1, 2] in which robots interact with hu-
mans require complex approaches in order to perceive people
in the robot’s environment. While the pure task for detection
seems to be solved due to recent deep learning approaches
[3, 4], the task of how to combine these information in world
coordinates to consistent tracks over time, in order to enable
complex HRI tasks, remains still an open issue. Tracking
is particularly interesting when it comes to the fusion of
different types of sensors, which cover different purposes
and perception ranges.

Our target scenario is a robot which operates in a retail
store1 during opening hours to scan shelves for sold out
goods and guides interested customers to special offers.
Therefore, it has to be aware of people in its vicinity in order
to navigate politely. The robotic platform is equipped with
several sensors for different perception tasks (see Fig. 2). The
three fish-eye cameras for example cover a large field of view
to detect persons even when standing close to the robot e.g.
for interaction tasks. However, they are unsuitable to detect
persons far away due to their low resolution. The Kinect2 on
the other hand needs a minimum distance to capture whole
persons but its high resolution data are suitable to detect
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Fig. 1: A snapshot from our dataset with all the data channels
recorded. Colored blobs are the ground truth labels, while
the green blobs are the results of our tracker focusing on the
people’s heads

people at large distances with the disadvantage of a smaller
opening angle.

Two 2D lidar sensors for navigation can also be used
for detecting peoples’ legs. They cover a large area of
up to ten meters in horizontal plane at foot height over
ground. Unfortunately, detectors on laser data in cluttered
environments tend to yield a huge amount of false positive
detections, but the fast update rates allow a continuous update
of the peoples’ positions. This is crucial for a socially
acceptable navigation in order to react on fast changes of
peoples’ moving direction.

Laser-based leg detectors but also image-based detectors
mostly provide a score or significance describing how certain
a detection is. Often these information are only used by
means of thresholding uncertain detections. In contrast, we
suggest to use the scores and statistics gained from a test
dataset, in order to model the probability of a tracker hypo-
thesis to represent a real person or not. This also concerns
the way new hypotheses are spawned in the tracker and helps
combining different sensors with different characteristics.

In this paper, we present a generic framework which is
able to integrate all these information in an unified manner.
Therefore, we are able to provide a compact representation
of a robots surroundings for subsequent HRI and navigation
modules which take sensor/detector specific update rates and
uncertainties in the detections into account. Even though, this
work describes a system bound to our robotic platform, we
expect to give valuable input for other multi sensor systems
which face the same issues described above.

The contributions of this paper are:
• a modular tracking framework for integrating various

detectors working on different types of sensor data,
• a model for the probability of a hypothesis to represent

a person at all,
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• a comparison of the trackers performance to other state
of the art systems,

• a new benchmark dataset2, which consists of data from
4 cameras and 2 lidar scanners from a moving platform
during a guide scenario which will be made publicly
available as ROS bags,

II. RELATED WORKS

Tracking multiple persons, within single or multi sensor
setups, has undergone extensive research over the last several
decades, mainly in the vision and robotic community. We
follow the categorization of the survey from [5] which
divides tracking into online approaches, i.e. only using sensor
data from the past for the estimation and offline approaches
which process a batch of sensor readings. While the purpose
is the same, the targeted applications preserve different
constraints. Vision scenarios, like surveillance, typically ma-
ke use of offline approaches, because they are less real
time constrained and allow delayed results to better handle
ambiguities. Robotic HRI applications on the other hand are
bound to immediate results since the dynamic fast changing
environments have impact on the robots navigation and HRI
behavior and therefore often rely on online approaches. As
shown in [6], different approaches cannot be deployed out
of the box for each scenario. There, more elaborated offline
tracking approaches like [7] from the vision community per-
form on par with simple online filters [8] when parameterized
to deliver real time results. Therefore, we constrain the rest
of this section to tracking approaches which have already
been deployed in dynamic robotic scenarios with a multiple
sensor setup like ours.

A. Multi Sensor Tracking

Approaches for tracking persons from multiple sensor
inputs mainly originate from the robotic community. In [9]
an approach was presented which uses estimations from a leg
and a face detector and compared different filter approaches
(EKF, UKF, particle filter). [8] used laser leg detections and
an upper body depth template detector deploying the same
tracking back-end as [9]. Volkhardt et al. [10] tested different
combinations of visual face, upper- and full-body detectors
in combination with a leg detector as input for a Kalman
Filter. All of these approaches have in common that they
fuse laser detections for a wider range of view with vision
based detectors with better detection qualities. However, all
of them just cover a more or less restricted area at the front
of the robot and not a real 360◦ tracking like we are aiming
for.

B. Track Initialization Logic

Two of the core problems for all tracking approaches
are the correct handling of false positive detections and
the introduction of new hypotheses in the tracker. Some
approaches [8, 9] use leaky counters for the number of
detections that support a hypothesis or just insert new tracks

2https://www.tu-ilmenau.de/neurob/data-sets-code/nikr-tracking-data-
sets/
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Fig. 2: Used robot platform with its sensors and processing
hardware.

if a certain motion profile is observed [11]. Other approaches
[6, 10] insert new tracks immediately, but only consider them
as certain if they are confirmed by more than one detector.
One conclusion from [6], where different tracking approa-
ches have been compared, was that in a highly dynamic
environment there is no optimal solution to handle these
problems for every field of application. A liberal strategy
to insert new hypotheses could lead to freeze the robots
social navigation behavior while a too conservative one will
undermine the social acceptance due to misses. Furthermore,
deleting hypotheses too fast could lead to an interrupted HRI
behavior.

C. Conclusion

Even though filter based tracking approaches for person
tracking exist for over two decades of research, they are
still standard when it comes to a real-world application.
Therefore, we focus on how such a filter approach can be
used in a complex sensor setup with six sensors covering
different detection areas around the robot and various data
representations (laser, RGB and depth images). Moreover,
we will show how such an approach can be extended with
a proper probabilistic track initialization logic and false
positive handling.

III. TRACKING SYSTEM

A. Overview of the Tracking System

As already described, our system has various sensors each
producing RGB images, depth images, or range scans at
distinct time stamps asynchronously (see blue box in Fig.
3). These data are processed by various detection modules
(green box) each providing person detections in the sensor
space with individual detection scores that can be used for
modeling the probability of a hypothesis to actually represent
a person. In following feature extraction modules, these
detections are converted to unified 3D position hypotheses in

IEEE Int. Symp. on Robot and Human Interactive Communication (RO-MAN), New Delhi, India, 8 pages



Feature ExtractorsDetectors

DPM [14]

FPDW [15]

DepthTemplate [17]

Leg [16]

Sensor Input

RGB

Depth

Laser

OpenPose [3]

Modular Tracker

Position Trackerbuffer

Data Association

buffer

World Position
World Position

Is Person Prob.
Is Person Prob.

Score to
Is Person Prob.
(per Detector)

Image Position to
World Position

2D Laser Coordinates
to World Position

buffer
buffer

Combined
Is Person Probability

Is Person Tracker
(per Detector)

Hypo-
thesis 
Filter

Fig. 3: Overview of our tracking system with individual submodules divided into four categories. Input sensor data (blue)
is processed by sensor specific detection modules (green) which deliver detections in sensor coordinates. Feature extractors
(orange) take these detections and compute the position in world coordinates and convert the detection scores (red lines)
into probabilities for detections to represent an actual human. In the Tracker (yellow) all observations are buffered and
sorted by time to handle varying processing times of previous modules. The position tracker’s hypotheses are used for data
association (which observation belongs to which hypothesis) and existence probabilities are estimated for each detection cue
independently. Finally, the combined probability is used to filter out weak hypotheses.

form of 3D Gaussian distributions that can be tracked over
time later on.

The rectangles in the panorama images for example can
be transformed into 3D positions based on the ground plane
geometry. If the lower edge of the boxes represent the feet
and the box does not reach the image border the 3D world
position results from the intersection of a ray cast from
camera center through the center of the lower box edge with
the ground plane. If the foot edge of the box is not visible,
the distance can be estimated by means of an average object
width and the camera’s projective geometry. For the depth
template detector 3D positions result directly from the depth
data. The laser based detectors provide the 2D position on
the ground plane, which is extended into 3D by means of
an average person height having a rather large variance in
vertical direction.

Besides the position data, the scores from the detectors
are processed into probabilities of representing a person at
all, which is described in Sec. III-D.

Caused by the individual latency of the various detectors,
the detections typically arrive out of order, but the output
of the tracker should always represent the best estimation of
the peoples’ state, that is available for decision making in the
application. Therefore, the tracker runs at a fixed cycle time
(100ms in our case) and has an input buffer for detections
that allows for sorting the observations by time stamp of
the original sensor reading. If an older observation arrives,
the tracker rewinds to a state before that and recomputes
the whole sequence of updates with all available buffered
detections. This replay strategy solves the problem of out
of order detections, which alternatively is approached by a
backward prediction of the latest state estimation in literature
[10].

The actual tracker holds a set of hypotheses each having a
Gaussian distribution for the position and velocity in world

coordinates and several binary probabilities for the existence
proof in each of the i sensors (P i(E)). The output of the
system is a subset of the position hypotheses that is filtered
by a threshold for the combined existence probability P c(E).

The tracker processes the sequence of detections step by
step in groups of detections belonging to the same time
stamp. This is done by (i) predicting the belief state from a
former time stamp to the actual observation time stamp, (ii)
apply a nearest neighbor data association, and (iii) update
the individual belief states using the respective detections
and associations. For that update the Bayesian product of
the belief distribution in the hypotheses with the distribution
of the observation is used (update step of a Kalman-Filter).

B. Detectors
The images of the three wide angle cameras are projected

onto cylinder coordinates ending up with a low angular
resolution. Thus, these images allow person detections from
close interaction ranges from 0.5 m up to about 4.5 m. We
applied and tested different detectors on these three cameras,
which comprise the Deformable Part Model (DPM) [12]
with its fast implementation from [13], the Fastest Pedestrian
Detector in the West (FPDW) [14], and the OpenPose [3]
detector. While the first two detectors are deployed on one
of the two PCs of the robot, the latter one is a deep
learning approach and needs special GPU hardware (one
Nvidia Jetson TX2 for each camera in our case). Since
RGB detectors typically have relatively high execution times
and delays (0.1s FPDW, 0.2s OpenPose, 0.5s DPM) we use
the laser based leg detector from [15] as supplement. This
detector works on two laser range scans also covering 360◦

around the robot and delivers fast positional updates for
tracked hypotheses. In order to perceive people early and
to have a far range detector operating at distances above
10m, the robot is additionally equipped with a Kinect2 RGB-
D sensor. Using a pan-tilt unit this sensor is aligned to a
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Fig. 4: Left: Binned occurrences of true positives (green) and false positives (red) in relation to their score retrieved from
the classifier. The blue line is the probability, retrieved from these two distributions, that a given score with unknown class
label represents a true positive detection. Right: Precision recall curve in relation to the F1 score. The optimal working point
for the classifier is found with the max F1 score. For some working points on the precision recall curve (blue dots) the
corresponding score threshold is given.

region which has the highest priority for our application
scenarios. To the front of the robot for driving tasks and to the
back when guiding people for example. With the additional
depth information from this sensor, we apply the fast depth
template (DT) based detector from [16].

C. Existence Probability

Once a position hypothesis H is created based on an
observation in a detection module, the aim is to estimate
if this hypothesis is a true positive or a false detection. To
that end, in the tracker for each detector there is a module,
that estimates the probability of representing a real person
(existence probability) for each hypothesis. This is done
per detector, since each detector has a unique update rate
and an individual detection rate. These characteristics are
taken into account in the process model which is used for
propagating the existence belief over time. Unfortunately,
typical detection approaches only yield positive detections
over a certain threshold and no observations of the class non-
person. Hence, a proper Bayesian integration of probabilities
is only possible for the proof of existence but not for
non-existence. Therefore, non-existence must be modeled
otherwise. For example by not existing observations over
time. Assuming that at time t a new detection Di

t arrives for
detector i, the corresponding tracker executes the prediction
step (Eq. 1). There, it applies a detector specific decay τ i,
which pulls the existence probability towards 0.5 over time.
0.5 is the neutral state that does neither proof the existence
nor the absence of a person.

P̂ iH(Et) = 0.5 +
(
P iH(Et−∆t)− 0.5

)
e−∆t/τ

i

(1)

Then, with each associated detection the Bayesian update is
done for the hypothesis H by

P iH(Et)=
P̂ iH(Et)P

i
D(Et)

P̂ iH(Et)P iD(Et)+(1−P̂ iH(Et))(1−P iD(Et))
(2)

where P iD(Et) is the detection specific existence probability
extracted from the detection score or certainty as described
later.

In order to get a combined existence probability P cH(Et)
for a hypothesis H that is supported by different detectors,
the P iH(Et) all get multiplied together as independent pro-
babilities.

P cH(Et) =

∏
i P

i
H(Et)∏

i P
i
H(Et) +

∏
i(1− P iH(Et))

(3)

D. Mapping detection scores to probabilities

Typically, person detectors like [3, 13–16] deliver posi-
tional information in the specific sensor space along with
a score indicating how certain the detector is about this
position. One way to model a probability is to map the
score directly to a probability. This is done by counting false
positives and true positives in a histogram over the score and
building the respective ratios (Eq. 4).

P (E|s) =
#(tp, s)

#(tp, s) + #(fp, s)
(4)

An example of such a probability function is visualized
in Fig. 4 on the left for the OpenPose detection approach
evaluated on our test-set from [17]. Another way to model the
probability that a detection is a true positive is to determine
the detectors precision. Typically, detections are just forwar-
ded to a tracker if the scores exceed a certain threshold. One
method to find such a threshold is to evaluate the detectors
F1 score over a given test-set (see Fig. 4 right). The threshold
with the highest F1 score gives the optimal ratio between a
low amount of false detections and a high recall. Calculating
the precision at this point, which is the ratio of true positives
to false positives exceeding the threshold, can then directly
be used as probability for all detections forwarded to the
tracker. We will compare these two methods for probability
determination in the experimental section where we call the
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first approach ours-dynamic-probs and the second approach
ours-fixed-probs.

E. Data Association
For a multi hypotheses tracker the essential step before

all the updates described so far is the data association. That
means which hypothesis yields which observation and thus
has to be updated with it. For position trackers different
approaches have been suggested in the literature. First the
Euclidean distance, which is working well but ignores the
variances of the hypotheses and detections. Another option
is the Battachayya-coefficient as a measure for the similarity
of the distributions of the hypothesis and a detection. But
often this is not practical since the tracked hypothesis usually
has a smaller variance than the detection, which reduces
similarity also for correct matches and therefore is not
comparable to the values gained by other pairs of detection
and hypothesis. A further option seen in literature is the
Mahalanobis distance, which takes into account the variances
of the individual hypotheses in the tracker. But we found that
the effect of this is counterproductive in our system. Because
there is no mechanism foreseen for merging hypotheses that
occur at the same position, we need a mechanism to prefer
one of the competing hypotheses over the other in order to
make one of them extinct. The Mahalanobis distance does
exactly the opposite by reaching smaller distance values for
the hypothesis with the larger variance, which usually is the
one that has less support by observations over time. In order
to reinforce the better supported hypothesis at one position,
we developed a similarity function spos(P (x|D), P (x|H))
that prefers small variances in the hypotheses. P (x|D) and
P (x|H) are Gaussian distributions over the position with
mean vector µ and covariance matrix Σ.

spos(P (x|D), P (x|H)) = e
−
(
|µD−µH |·|ΣH |ν

r

)2

(5)

The parameters r ≈ 1.0m and ν ≈ 0.1 define the tolerance
for position deviations and the influence of the hypothesis’
variance.

Using this similarity measure, the data association is done
by means of a greedy strategy. New hypotheses are generated
also based on this value. Detections with a similarity below
0.5 to any of the existing hypotheses are introduced as new
hypotheses. Introduction of too many hypotheses is not a
problem, since before output they are filtered based on the
existence probability, which only can raise above a threshold
if subsequent observations (also from other sensors) will be
assigned.

Hypoheses which are not supported by observations over
time also need to be removed later on. Therefore, we use the
fact, that uncertainties in position and existence probability
grow over time if no detection takes place anymore. A
threshold on |ΣH | is used to decide that hypotheses have
to be removed from the tracking process.

IV. DATASET
Over the years, a huge amount of datasets for benchmar-

king detection and/or tracking approaches have been publis-

hed. They include 2D laser [18–20], RGB [21] and RGB-D
[22, 23] data, just to mention some of them. Unfortunately,
multi sensor datasets are very rare. The only one from a
robotic scenario [6] contains a static setup in the publicly
available version. Moreover, datasets with ground truth labels
from an external motion capture system are typically bound
to a relatively small recording area. More critically, we
examined ground truth failures for some frames in [6, 23]
and even completely unannotated bystanders in [6].

Since our current interest in the further development of our
tracking system is concentrated on the correct identification
of the target person during a robotic guide procedure in
populated environments, we have the need for a respective
dataset. This dataset should contain multiple sensor data
streams from a moving robot, while people walk behind a
robot but also cross the way at all sides.

Therefore, we recorded our own data using our mobile
robot platform (see Fig. 1). The dataset consists of five
sequences with an overall time of 11min 35sec, each con-
taining a guided tour in our office building. There are five
persons present in average from which one walked behind the
robot in a distance of about 3m, while the others randomly
walked around and crossed the guided person.

The data has been manually labeled in 3D world coordina-
tes. Each person who is visible in at least one sensor has been
annotated with their position and orientation, while the IDs
are consistent if someone reappears later in a scene. This also
allows the benchmarking of person re-identification on this
dataset. The labels have been placed at significant key frames
manually and positions and orientation were interpolated for
the intermediate frames.

The images of the Fish-Eye cameras are very distorted and
can not be rectified on a plane due to the large opening angle.
For the application of image based detectors we therefore use
a projection on a cylinder around the vertical axis. By means
of that, vertical lines and proportions at one distance were
preserved and only horizontal lines become curved, which is
the best solution for the task of finding people with detectors
trained on pinhole images. The dataset also provides access
to these ”rectified” images in addition to the raw images.

V. EVALUATION

To evaluate the performance of our system we use the
common Multiple Object Tracking Accuracy (MOTA) metric
from [24].

MOTA = 1−
∑
t(misst + fpt + idst)∑

t gt
(6)

For every frame, we use the Hungarian Method to assign
exactly one tracked hypothesis to the ground truths using a
maximum valid assignment distance of 1m. Ground truths
which have no assigned hypothesis count as missed (miss).
Likewise, Hypotheses which have no assigned ground truth
count as false positives (fp). When a hypothesis is assigned
to a ground truth with another ID than in the previous frame,
an ID switch (ids) is counted. The values of these three
measures are summed up over all t frames and divided by the
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Fig. 5: Evolution of MOTA values with different existence
thresholds. While higher thresholds lower the amount of false
positives and ID switches, the amount of missed hypotheses
increases. The threshold with the highest MOTA determines
the best working point for our tracker in the application phase
(vertical black line).

sum of all ground truths to make sequences with a different
number of persons comparable. The resulting MOTA values
can range from −∞ (since the amount of false positives
is theoretically unbound) to 1 for a perfect tracking of all
ground truths. An example for MOTA values with different
existence thresholds can be found in Fig. 5. It shows how the
MOTA values change if we consider hypotheses to be certain
only if their corresponding probability of existence exceeds
a certain threshold. In each of the following experiments,
we consider the threshold value with the highest MOTA
as the working point for our tracking system. To show
how our tracking method performs in comparison to other
SotA approaches, we conducted several experiments on the
publicly available dataset from [6] and our own dataset.

A. Comparison on the Motion Capture Sequence

At first, we performed experiments on the Motion Capture
Sequence from [6]. This dataset consists of data from a RGB-
D camera with a small field of view (FOV) in combination
with a laser sensor (large FOV). Since [6] has already shown
that for the best performance on this dataset these two
sensor sources have to be combined, we will just provide
results for a combination of detectors from these two sensor
sources. With this first experiment we want to show how
our approach performs in comparison to other SotA tracking
approaches. To give comparable results, we used the same
two detection cues (leg detector and depth template detector
[15, 16]) like in [6]. Results can be found in Table I. In this
experiment our approach performs on rank two. While we
clearly outperform the Nearest Neighbor (NNT) and Multi
Hypotheses Tracking (MHT) approach from [6], we achieve
a slightly better (5% MOTA) performance than the Multi
Modal Person Tracker (MMPT) from [10]. The extended
NNT approach on the other hand, with a track initialization
logic where just moving hypotheses are considered as certain,
outperforms our approach with about 11% MOTA. However,

Approach MOTA ids fp miss
[6] NNT* 18.1% 52 77.6% 3.7%
[6] MHT* 17.8% 76 77.7% 3.6%
[6] Extended NNT* 77.4% 62 16.5% 5.4%
[10] MMPT 61.0% 158 11.0% 26.5%
ours-fixed-probs 66.6% 59 1.7% 31.9%

TABLE I: Tracking performance on the Motion Capture
Sequence from [6]. All approaches use the same detection
cues [15, 16] as input. Results for approaches marked with
* are taken from the corresponding publication.

Approach Detectors MOTA ids fp miss
[10] MMPT [15] [13] 34.8% 193 22.6% 40.6%
ours-fixed-probs 60.7% 167 12.0% 24.0%
[10] MMPT [15] [14] 29.9% 183 25.5% 42.8%
ours-fixed-probs 48.4% 158 11.1% 37.3%
[10] MMPT [15] [3] 35.9% 334 28.4% 32.3%
ours-fixed-probs 64.9% 246 7.5% 22.6%
[10] MMPT [3, 13–16] 47.2% 141 37.2% 14.2%
ours-fixed-probs 68.7% 104 9.3% 19.9%

TABLE II: Tracking performance on the Motion Capture
Sequence from [6] with different detection cues: Leg detector
[15], DPM [13], FPDW [14], OpenPose [3], DT [16].

Approach Detectors MOTA ids fp miss
[10] MMPT

[15] [13]
60.3% 110 0.7% 38.5%

ours-fixed-probs 69.9% 172 7.0% 21.9%
ours-dynamic-probs 69.8% 189 6.3% 22.5%
[10] MMPT

[15] [14]
52.7% 71 0.1% 46.9%

ours-fixed-probs 64.3% 135 11.8% 22.9%
ours-dynamic-probs 64.5% 113 11.3% 23.2%
[10] MMPT

[15] [3]
52.9% 109 1.4% 45.3%

ours-fixed-probs 64.0% 200 10.2% 24.3%
ours-dynamic-probs 64.7% 185 11.2% 22.7%
[10] MMPT

[3, 13–16]
64.3% 113 6.1% 29.1%

ours-fixed-probs 68.1% 166 9.4% 21.2%
ours-dynamic-probs 68.7% 209 8.4% 21.2%

TABLE III: Tracking performance on our Guide Sequences
with different with different detection cues: Leg detector
[15], DPM [13], FPDW [14], OpenPose [3], DT [16].

since the extended NNT approach is not able track persons
standing still, and most of this dataset consist of moving
persons, we consider our approach to be the best tracking
approach for general person appearances.

With the second experiment we want to show how our
approach performs with different combinations of detec-
tion cues as input. Results can be found in Table II. It
can be seen that detection cues from sole RGB data in
combination with a leg detector perform generally worse
than a leg detector in combination with the depth template
based detector [16] from the first experimental series. This is
contradictory to previous experiments we performed for the
pure detection task [17]. There, we have shown that every
RGB detector outperforms the simple depth template based
detection approach [16] in the image space. We analyzed this
phenomenon and figured out that the 2D detection quality is
not the only quality feature for a detector when it comes
to tracking in world coordinates. While the detections in
image space seem quite well, the projection into 3D space
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leads to offsets which makes the data association harder for
detectors without precise depth information. However, our
approach is more suitable to deal with this issue than the
competitor from [10]. While our approach was just 5% better
using the DT detector [16] as second detection cue, this gap
rises by at least 20% when using RGB detectors instead.
This comes from the track initialization logic they applied
in [10]. There, just a single false detection or erroneous data
association leads to a certain hypothesis even when just the
leg detector offers continuous support. However, covering
the complete surroundings of the robot with small FOV
and power consuming RGB-D cameras, like the Kinect2,
would be impossible for mobile platforms with restricted
resources. Therefore, we now turn to our dataset with a
sensor setup suitable for a mobile platform. The results in
Table III show that our approach for multi sensor tracking
also performs well on a dataset with an omni directional
RGB camera setup in addition to two large FOV laser
sensors. The method to determine the existence probability
seems to have no significant influence on the tracking quality.
This on the one hand can be explained with the highly
differing environment (supermarket) of the dataset on which
we determined the detection probabilities. On the other hand,
our test dataset shows only few situations suffering from a
large amount of false positive detections where the dynamic-
probs approach can show its supremacy. However, duly
determining existence probabilities as well as to fuse them
in a probabilistic manner gives a great boost for the tracking
quality compared to the approach from [10] for all detector
combinations.

At last, we examined the tracking quality for different ran-
ges and sensor areas. For this experiment, the configuration
using all available detectors in combination was applied. The
leg detector [15] on both lasers. DPM [13], FPDW [14] and
OpenPose [3] on the Fish-eye cameras. DPM [13], FPDW
[14], OpenPose [3] and the depth template on the Kinect2.
Results can be found in Fig. 6. There, the MOTA values are
given for a tracking range up to 5m, 10m and 20m as well
as for the sensor area covered by all sensors and the one just
covered by the laser scanners and fisheye cameras. It can be
seen that the tracking is more accurate in close proximity to
the robot, which is reasonable because of the low resolution
of our wide angle cameras and the resulting shorter detection
ranges. For the area, which is additionally covered by the
Kinect2, the MOTA values rise by 5% for longer distances
because of the high resolution RGB and depth images. This is
important for applications where a specific area has a higher
importance, like in our guiding scenario where the person of
interest follows the robot in the viewing area of the Kinect2.

To make a statement about the real-time capability of our
system, we measured the runtime on the robot’s i7-7700T
CPU using just a single core. While benchmarking on our
dataset, each tracking cycle took 1.6ms on average. This
enables a maximum frame rate of 625fps. Since our fastest
detector (laser based leg detector) runs at 15fps, we are able
to process results from all detectors of our system immedia-
tely. However, complex real world applications [1, 2] require

M
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79.4% 73.3% 68.1%

81.1%

77.3%

76.1%

Fig. 6: MOTA values of different evaluation distances and
angles in relation to the robot coordinate system.

various other robotic skills in combination with tracking, like
navigation, scene understanding, and application services.
Therefore, we usually let the tracker operate at 10fps only.
This frequency is high enough for our applications and
only utilizes 1.6% of one CPU core, which leaves enough
computation capacity for other tasks and robotic services.

VI. CONCLUSION & FUTURE WORK

We have presented a filter based tracking system which
takes probabilities retrieved from several SotA detectors into
account to distinguish true hypotheses from false ones. The
tracking accuracy using the MOTA criterion exceeds the
values of several competitors on a publicly available dataset.
Moreover, we introduced a novel dataset for robotic tracker
evaluation which is, for the best of our knowledge, the first
one which comprises multi sensor data from more than two
sensors and was recorded in a highly dynamic scene on a
moving robot. One obvious fact, which is depicted in the
tables of Sec. V, is that our tracking approach prefers a
high miss rate in favor of a low false positive rate when
the existence threshold is optimized to maximize the MOTA
criterion. This might be an issue in scenarios where a
high person perception rate is more important than the low
number of false hypotheses. A static robot for example,
which observes persons passing by to find individuals who
are willing to interact, like in our project FRAME3, might
suffer from this optimization. However, the working point
of existence probability threshold in the hypothesis filter can
be varied freely during runtime. It might be even possible
to adapt the threshold dynamically depending on the actual
requirements in various application states.
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