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ABSTRACT
Deep neural networks represent the state of the art for com-
puter-aided medical imaging assessment, e.g. lesion detec-
tion, organ segmentation and disease classification. While
for large datasets their superior performance is a clear argu-
ment, medical imaging data is often small and highly hetero-
geneous. In combination with the typical parameter amount
in deep neural networks, this often leads to overfitting and
results in a low level of generalization performance. We pro-
pose a straight-forward combination of random forests and
deep neural networks for superior performance on medical
imaging datasets with only small data, and provide an ex-
tensive evaluation of survival prediction for metastatic col-
orectal cancer patients using computed tomography imaging
data, with our proposed method clearly outperforming other
approaches.

Index Terms— Ensemble learning, Random forests, Sur-
vival prediction

1. INTRODUCTION

Training of convolutional neural networks (CNNs) has be-
come a widely employed technique for medical image clas-
sification [1, 2, 3]. Given large datasets, CNNs were shown
to be significantly superior over other machine learning tech-
niques for a variety of medical tasks, at times archieving an
accuracy on par with gold standard human assessment [4, 5,
6, 7]. When only small data is available, their application
becomes somewhat complicated, and especially for medical
applications typically only small datasets are available.

In medical applications, the problem space is often un-
derdetermined due to large problem spaces on the one hand,
and a lack of large and publicly accessible medical datasets

on the other, which may lead to overfitting. Although there
exist techniques to tackle this issue, it typically results in a
significant number of manual adjustments for regularization
and data augmentation.

We propose a novel, deep-learning-based approach for
small datasets using a model ensemble technique inspired by
and constructed analogously to the well known random for-
est classifier, which can help to significantly reduce the need
for interactive model augmentation and regularization while
providing superior classification performance on unseen data.

2. BACKGROUND

Besides from deep neural networks, random forests (RFs) are
one of the most commonly employed machine learning algo-
rithms as they are easy-to-use and remarkably robust. Their
applicability is not limited to typical classification tasks, but
encompasses applications such as regression, survival anal-
ysis, and others. While deep neural networks (DNNs) auto-
matically derive discriminative features from data through op-
timization, RFs require handcrafted features that are usually
based on a-priori knowledge (e.g. Radiomics features [8]).
Especially with medical data this becomes an important is-
sue, as medical research is often explorative, intuition-driven,
and has the explicit goal of identifying novel, e.g. visual,
biomarkers. A combination of DNNs and RFs might there-
fore result in a solution which:

• handles medical imaging data with only small datasets,
• requires no prior knowledge-driven, hand-crafted fea-

ture design,
• outperforms deep neural networks and simple ensemble

techniques in terms of generalization error in unseen
data.
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Fig. 1. Visualization of the architecture of Deep Random
Forests. The model consists of several decision trees with
DNNs as nodes (yellow), which split the data with the ex-
tracted semantic features. The final classification is done ei-
ther by a leaf classifier (blue) or directly for pure nodes, i.e.
nodes of only one class (green/red). Each tree is trained with
a bootstrapped subset of the original data. All tree predictions
are averaged for classification
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Fig. 2. Visualization of the effects on the bias-variance trade-
off. Combining multiple classifier results by averaging mul-
tiple low-bias/high-variance classifiers effectively approaches
the point of optimal tradeoff.

We propose such a combination, using well-known prinici-
ples, and demonstrate its applicability to medical image clas-
sification with the example of lesion-based one-year survival
prediction in patients with metastatic colorectal cancer.

3. DEEP RANDOM FORESTS

While we give a basic introduction to the proposed method in
Sec. 3.1, we describe the concrete training procedure in Sec.
3.2 and 3.3 and provide an experimental evaluation in Sec. 4,
which is discussed in Sec. 5.

3.1. Random Forest Classifiers and Deep Ensembles

RFs were introduced in 2001 by Breiman [9], while their ori-
gins date back to 1995 [10] and earlier. Basically, RFs are an
ensemble of decision trees where each tree is independently
trained on a bootstrapped subset of the training data (i.e. sam-
ples drawn with replacement). Trees are correlated only in
the way that they are trained with partially common training
data, and the original publications explicitely emphasized the

Algorithm 1 Deep Random Forest Training
1: for K trees do
2: Draw N samples Xk, Yk from X,Y with replacement
3: Train decision tree DT (Xk) : Xk → Yk:
4: Train neural network to solve Xk → Yk
5: if >= 2 classes & depth ≤ max. depth then
6: Extract M = |Φ(Xk)| features
7: Randomly select m = b

√
Mc features

8: Select split feature and threshold T
9: Train subtrees for both subsets (Step 3)

10: else
11: Create leaf

bootstrapping idea behind this methodology [9, 10]. As de-
cision trees tend to overfit the data, RFs aggregate uncorre-
lated trees, resulting in an effective regularization, that shifts
the low-bias/high-variance approximation of a single decision
tree towards a low-variance approximation (see Fig. 2).

DNNs are known to generalize better when combined
in model ensembles. Recent work on this topic, inside and
outside the medical field, mentions various applications of,
e.g. horizontal, vertical, and snapshot ensembling meth-
ods [11, 12, 13, 14]. Indeed, it has been shown that the
widespread residual networks (ResNets) [15] behave com-
parably to an ensemble of relatively shallow networks [16].
Furthermore, random forest-like structures can be directly
represented within neural networks (Fig. 3). However, with
only few exceptions [17, 18], bootstrapping methods are
largely unkown for deep learning (DL), although they have
long been proposed for neural networks [19, 20]. While
there was research on a direct combination of RFs and DL
(most noteworthy gcForests [21]), previous work shifted
away from the basis of neural network by directly employing
random-forest-like structures as layers, and was inferior in
comparison to current state-of-the-art approaches on some
widely available benchmark datasets with more data [22, 23].
Our work, in contrast, is substantially different in the sense
that we propose randomized decision tree ensembles, called
Deep Random Forests, based on complete networks and not
randomized layers, without introducing restrictions regarding
the actual network architecture.

3.2. Model Architecture

RFs typically consist of decision trees of weak classifiers, that
use one or a few features to determine a criterion-based (e.g.
Gini coefficient, or entropy) split. We adopt the idea of only
using a minor subset of the available features at once, since
it acts as a regularization itself, but employ semantic features
derived by deep neural networks for splitting. A visualiza-
tion of the basic architecture can be found in Fig. 1. For
the construction of Deep Random Forests, we propose Algo-
rithm 1. While the training procedure still resembles RFs,
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each node within Deep Random Forests contains a DNN that
has been trained to solve the actual classification task for its
particular subset. Finally, the last layer of the DNN is re-
moved and the derived features are used (see Sec. 3.3). In
analogy to RFs, each subnode is trained with those samples
being most similar, and thus difficult to discriminate, with re-
spect to a specific feature. Since the training set is different
for each node, the network is obligated to always learn char-
acteristics that are discriminative within the concrete subset.
Formally, inter-cluster variance is used to discriminate easy-
to-split samples, while intra-cluster variance is maximized to
discriminate hard-to-split samples within each subset. To ac-
celerate feature inference, subtree DNNs are initialized with
the weights of their respective parent classifier, a technique
widely used in neural architecture search (NAS) [24, 25]. For
each subtree, the samples are reweighted according to their
new class distributions.

3.3. DNN Splitting Criterion

As already mentioned in Sec. 3.2, first a network D with L
layers is trained to solve the classification task Xk → Yk at
each node, with (Xk, Yk) being the bootstrapped training set
of tree k. The network D can be interpreted as a concatena-
tion D(Xk) = (hL ◦ hL−1 ◦ · · · ◦ h1)(Xk) of L functions
hi : 1 ≤ i ≤ L, where the last layer hL is typically the fi-
nal output activation function. When training D to solve the
classification task, the features at layer hL−1 are optimized to
contain information that is discrimative for the concrete sam-
ple subset, so that this layer is used for the split creation.

For each sample, M features Φ(Xk) = (hL−1 ◦ · · · ◦
h1)(Xk) with |Φ| = M are extracted. Of these, m = b

√
Mc

features φ are drawn randomly and considered independently
for the split. For each feature φj the optimal threshold T ∗j
for partitioning the set (Xk, Yk) is calculated by maximizing
the split value Vj of the feature j. Vj is calculated by using
the Gini coefficient based on the relative class probabilities pi
within both subsets as:

∑
θ

∑nθ
α=1

∑nθ
β=1 |pα−pβ |

2nθ
∑nθ
α=1 pα

p ∈ Pθ, Pθ ∈ {P (Yk|φj < Tj), P (Yk|φj ≥ Tj)}
(1)

with relative class probability distributions Pθ for nθ classes
in subsets θ and features φj lower than, or greater than or
equal to the threshold Tj , respectively. For each subset, a
derived node is trained with the same procedure until the sub-
set is either pure (i.e. consists of samples of only one class;
red and green nodes in Fig. 1), or until a specified maximum
depth is reached. In the latter case, the classifier output is used
for prediction (blue nodes, Fig. 1).

y = 0y = 1x
Fig. 3. Random forest-like structures within neural networks.
Positive (black), nearly zero (yellow) and negative (blue)
weights are represented by bold (high-magnitude), or dashed
lines (low-magnitude). The forests consists of two trees of
depth 2 (orange and blue neurons). The output layer consists
of a weighted average of the tree outputs, which effectively
implements a (non-randomized) forest classifier.

4. EXPERIMENTS

We have examined our model at different granularities to
demonstrate the impact of all components. As baseline, we
employed a RF classifier of 1,000 trees trained with a) the
maximum lesion diameter (RECIST [26]), and b) the Ra-
diomics signature from [8]. Additionally, we trained c) a
vanilla convolutional neural network, d) a complex neural
network based on ResNet [15], e) a deep decision tree as
proposed using ResNets as node classifiers (Deep DT), and
f) a Deep Random Forest. All networks were built with 3
blocks (normal/residual convolution), followed by a global
average pooling and a softmax output. The blocks were
built with 3x3 convolutions, batch normalization and leaky
ReLU activation, followed by either max pooling (ConvNet)
or strided convolutions (ResNet). Residual blocks were built
from 5 convolutional blocks with residual connections. The
maximum depth of deep trees was set at 3, ensembles each
contained 30 elements, i.e. networks or trees. All metrics
were calculated using 10 times 10-fold grouped cross vali-
dation, i.e. 100 classifiers per task, with identically varied
random seeds using micro-averaging. Confidence intervals
were calculated using bootstrapping [27] until convergence
(ε < 10−3), significance is reported with α = .05.

4.1. Metastatic Colorectal Cancer

We used the dataset of [28] to predict the one-year survival
of patients with metastatic colorectal cancer (mCRC) from
single liver metastases computed tomography images (1,282
longitudinal annotations, 885 pos., 397 neg., from 491 lesions
and 104 patients). As in the original publication, all lesions
were masked and the slice with the largest RECIST diameter
was used to predict one-year survival based on a 64x64 image
of 80x80mm in world coordinates. Since longitudinal data
are not necessarily available in practice, only one timepoint
was used for prediction to prevent extrapolation.

The results in Tab. 1 correspond to the above analysis.
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Table 1. Results on mCRC dataset, 95% CIs
Sensitivity Specificity

Radiomics .563 [.532,.595] .509 [.455,.575]
RECIST .584 [.557,.613] .535 [.480,.591]

ConvNet .537 [.507,.567] .476 [.427,.527]
ResNet .549 [.519,.582] .532 [.476,.583]
Deep DT .560 [.521,.598] .534 [.469,.600]

Deep Forest .596 [.566,.625] .555 [.500,.615]

φ-coefficient AUC

Radiomics .063 [.003,.122] .556 [.518,.591]
RECIST .104 [.048,.157] .562 [.527,.594]

ConvNet .012 [-.037,.060] .524 [.492,.555]
ResNet .071 [.023,.128] .570 [.538,.605]
Deep DT .082 [.018,.144] .577 [.534,.618]

Deep Forest .132 [.075,.189] .610 [.574,.647]

ResNet outperforms the ConvNet approach, which might
be due to the ensemble-like behavior of ResNet ([16]; see
Sec. 3.1). However, due to the problem complexity and the
small amount of data, ResNet provides only mediocre re-
sults (φ = .071, AUC = 57.0%), and is comparable to the
results of RECIST-diameter- or Radiomics-signature-based
prediction. The deep decision tree provides a slightly higher
AUC (57.7%), although the difference is not significant. The
Deep Random Forest outperforms the other approaches in
each metric with a φ-coefficient of 13.2%, which is signifi-
cantly higher than the Radiomics (t(102) = 2.35, p = .021,
two-tailed), ConvNet (t = 4.5, p = 1.8 · 10−5) and ResNet
(t = 2.21, p = .029) approaches, and an area under the
curve of 61.0%, again significantly higher than the RECIST,
Radiomics, ConvNet and ResNet approaches (t(102) =
2.72/2.93/5.00/2.26, p = .008/.004/2.4 · 10−6/.026).

5. DISCUSSION

As indicated in Sec. 4, the application of standard deep learn-
ing architectures when having only small datasets is not al-
ways possible. Without requiring prior knowledge or hand-
crafted features, as opposed to classical Radiomics-based ap-
proaches, Deep Random Forests outperformed all other tested
classifiers in terms of all tested metrics on the given dataset.
It is noteworthy that classifying survival based on one sin-
gle lesion is a rather difficult task. However, given the preva-
lence of colorectal cancer it can be assumed that deriving even
only few additional information can lead to a significantly im-
proved patient wellbeing on the large scale and can therefore
be of high clinical value.

Deep Random Forests could provide a highly benefi-
cial, easy-to-use framework for medical image classification,

where data is usually sparse and difficult to acquire. Partic-
ularly explorative research could benefit from our approach,
as it highlights small differences when only a small amount
of data is available. Future work should analyze whether the
method improves results for large medical image datasets,
too.

We plan to analyze the applicability of other splitting cri-
teria, as well as ways to improve the computational effiency.
The training was done on an HPC platform and could be done
within one week for all runs. Training a single forest using
state-of-the-art hardware takes about one day with an RTX
2080 Ti.

While this paper provides an example of a classification
task, future work should cover the applicability for other pur-
poses, e.g. medical image segmentation. Variants of RFs have
been used for a variety of other uses, with survival regression
being of particular interest for medicine. While this topic can
not be covered within this paper, an extension of the approach
to survival regression could be an interesting topic for future
research.
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