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Fig. 1: The registration process can be described by apply-
ing five affine parameters to stitched candidate images: two
translations dx, dy , two scale factors sx, sy and a rotation ϕ.

We present an adapted version of the regional mutual infor-
mation (RMI) [22] similarity measure used for optimization
based registration in medical imaging [4] and other fields like
remote sensing [3] or aerial surveillance [1].
As non-differential optimization approaches generally have a
high number of iterations, we need to make the proposed
approach as efficient as possible.
Our main contributions are threefold:

• Extend RMI by subsampling methods
• Derive efficient implementation of subsampled RMI

method using matrix shape and memoization
• Apply and evaluate RMI-based registration to road im-

ages

In the following sections, we will first introduce approaches
to image registration. We will introduce mutual information
(MI) as the basis, followed by regional mutual information
(RMI) in II. Originating from an in-depth analysis of the
RMI sampling process, we will present an efficient sampling
method and implementation of RMI in III. An analysis of
the proposed adaptation and its implementation follows in IV.
In V, we will evaluate the method on a dataset of road surface

Abstract—Motivated by recent advancements in the detection 
and classification o f r oad d istress, w e a im t o a lign r oad images 
from different years to facilitate automated change detection. We 
present a variable and efficient v ariant o f t he R egional Mutual 
Information (RMI) similarity metric to speed up the registration 
process while keeping the alignment robust and precise. We 
propose several modifications t o t he s ampling p rocess o f RMI 
that allow an efficient i mplementation b ased o n t he resulting 
Hankel-type structures. We analyze the theoretical performance 
gains and the practical application of the proposed method in the 
road image domain. The achieved speed-ups significantly reduce 
the optimization duration while retaining the robust nature of 
RMI as a similarity measure.

Index Terms—regional mutual information, optimization, im-
age alignment, road distress analysis

I. INTRODUCTION

Within the ASFaLT1 project, deep learning techniques are 
used to detect and classify road distress on standardized road 
images. Motivated by recent advancements in the automated 
detection and classification o f d istress o n r oad i mages [8],
[26], we apply image registration to facilitate the automatic 
analysis of such images recorded over multiple years. To 
perform change detection and continuously assess the state 
of the road, robust alignment of images from different years 
is necessary. As the measurement vehicles cannot follow the
exact same path in different years, the sequences typically 
exhibit misalignments across the years and need to be roughly
aligned using GPS as a first s tep. U sing t he framework 
depicted in Fig. 1, we use two candidate images from a
later year in a way that, when stitched together, they contain 
the corresponding road segment seen in the reference image
and can be aligned to the reference image using an affine
transformation, excluding the shear parameter.

This work has received funding from the Austrian Research Promotion 
Agency (FFG) as part of the ASFalT project under project no. 869514.

1ASFaLT: Automatisierte Schadstellenerkennung für unterschiedliche 
Fahrbahnbeläge mittels Deep Learning Techniken (Automated distress de-
tection for varying road surfaces using deep learning techniques.)
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images.

II. PRIOR WORK

Image registration is an essential preprocessing step in
many applications of medical imaging, remote sensing, change
detection, and others. Its goal is to find a transformation
between two images that transforms the floating image such
that it aligns with the reference image.
Approaches to perform this task are generally divided into
feature-based and intensity-based approaches. Both types
have been studied extensively in the literature of different
fields of computer vision [16], [33]. In feature-based ap-
proaches, one uses visual correspondences between two im-
ages, to directly compute a transformation [33]. In intensity-
based methods, similarity metrics are calculated from pixel
intensities, to find the optimal transformation iteratively [2],
[16].
We decided to follow a mutual information-based approach
as “intensity-based techniques [are] now forming the basis
of the vast majority of registration approaches” and the “use
of mutual information as a similarity measure has played
a prominent role in this process” [28]. Non-differentiable
optimization methods are generally used as, in most cases, it is
infeasible to compute the full gradients of the cost function.
For our tests, we selected Differential Evolution [25] as it
offers a reasonable trade-off between speed and consistency,
although it is not the focus of the research here.
The part of the process with the greatest research interest
is the design of robust cost functions or similarity mea-
sures that lend themselves to iterative optimization. Of the
similarity measures discussed in the literature, an ongoing
debate is on information-theoretic measures, especially mutual
information-based measures [18].
In the next section we will introduce mutual information as a
similarity measure as well as a few of its many variants.

A. Mutual information

Initially, Viola and Wells, and Collignon et al. independently
introduced the information theory based measure of mutual
information (MI) as a criterion for multi-modal image registra-
tion in [5], [29] and subsequent papers [14], [15]. An overview
and thorough introduction of mutual information-based image
registration is given in [18].
The mutual information (MI) I(X,Y ) between two random
variables X,Y with density functions pX(x), pY (y) and joint
density function pXY (x, y) is defined as

I(X,Y ) = h(X) + h(Y )− h(X,Y ) (1)

using the entropies h(X) = −
∑
x pX(x) log pX(x),

h(Y ) correspondingly, and conditional entropy h(X,Y ) =
−
∑
x,y pXY (x, y) log pXY (x, y) [15].

As an information-theoretic similarity measure, the idea is that
with increasing overlap/similarity knowing something about
the first image decreases the uncertainty about the second
image. This corresponds to the conditional entropy term de-
creasing while the individual entropies stay constant. Hence

the goal is to maximize MI during a registration process.
MI is primarily adopted and used in the field of medical imag-
ing [24], [27], but also adapted by a number of researchers for
various other tasks [3], [7], [9], [19], [23].
Although there is a variety of approaches that try to incorpo-
rate some kind of localized features, like [12], [13], [17], [24],
[30], neither MI nor most variants use regional information.

B. Regional mutual information
Building on Rueckert’s second-order extension to MI [21],

both Kybic [11] and Russakoff et al. [22] introduced versions
of regional mutual information (RMI) that sample a window
around every pixel to create a sample matrix that is subse-
quently used to estimate high-dimensional entropy. Both steps
are introduced below.

1) Extending MI to higher dimensions: To incorporate
regional information Kybic and Russakoff create a high-
dimensional sampling matrix from the pixels of the image.
At each pixel, a rectangular region with radius r is sampled
and vectorized into d2 dimensional column vectors s(i) =
[s

(i)
0 , s

(i)
1 , . . . , s

(i)
d2−1]T where d = 2r + 1. As visualized in

Fig. 2, the vectors are concatenated horizontally to create
the sampling matrix SX = [s(0), s(1), . . . ] ∈ Rd2×N of the
reference image and SY ∈ Rd2×N of the floating image.
Considering the edge cases on both sides the number of
samples N = (H − 2r) · (W − 2r) with W and H being
the width and height of the images. The two resulting ma-

Fig. 2: Sampling matrix: vectorized regions are stacked to
create the sampling matrix.

trices are concatenated vertically to form a sampling matrix
S =

[
STX STY

]T ∈ R2d2×N . With regards to creating S,
Kybic and Russakoff coincide. It is at the step of entropy
estimation that they diverge from each other.

2) Entropy estimation: Whereas Kybic [11] uses the
Kozachenko-Leonenko estimator [10] based on nearest-
neighbors, Russakoff [22] uses a number of simplifying as-
sumptions to estimate the entropy of the high-dimensional
sample matrix.
In practice he subtracts the mean along each row of S from S
so as to obtain a matrix S̃ with points centered at the origin
before computing the covariance matrix as

C =
1

N
S̃S̃T =

1

N

[
S̃X
S̃Y

]
·
[
S̃TX S̃TY

]
=

[
CXX CXY

CXY CY Y

]
(2)

Using CXX , CY Y ∈ Rd2×d2 and C ∈ R2d2×2d2 he can esti-
mate the entropies. Using the entropy of a normally distributed
set of points in Rn.

Hg(Σn) = log
(

(2πe)
n
2 |Σn|

1
2

)
(3)
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where Σn is the covariance matrix of a n dimensional signal
matrix and | · | is the determinant [6]. The joint entropy
Hg(C) is estimated from the entire covariance matrix C. The
marginal entropies Hg(CXX) and Hg(CY Y ) are computed
from the top-left and bottom-right parts of the covariance
matrix corresponding to the respective images.
The regional mutual information is finally computed as
Ir(X,Y ) = Hg(CXX) + Hg(CY Y ) −Hg(C). A number of
simplifications are available in the literature. [31] simplifies
RMI by using the average of the window as the single value
to compute a mutual information. [4], [20] use the principal
component analysis to reduce the computational burden of
RMI for multi-modal image registration.

III. EFFICIENT IMPLEMENTATION

We found that a large part of the complexity of RMI
goes into creating the sample matrix, and hence propose
a variable sampling method that lends itself to an efficient
implementation.

A. Variable region extraction
In most papers using RMI, the regions are sampled densely

in two ways, i.e., at every pixel location and every pixel in
the region is used. The only parameter to vary the sampling
process is the radius r of the region, leading to an increase
in the number of rows of the sample-matrix (and a decrease
in columns because of edge-case handling). Russakoff already
analyzed the radius as a trade-off between the independence
across samples and the “curse of dimensionality” for the
computation of the covariance matrix [22].
A variant that uses a dilation factor to reduce the amount
of necessary memory has been used as a loss for semantic
segmentation in [32]. We propose a similar idea, but further
increase the efficiency and variability while keeping the per-
formance as a robust similarity measure high.
Introducing the option of reducing the interval at which the
regions are sampled, and the step at which the pixels are
sampled within a region can reduce the size of the sample
matrix. We suggest using the sample step ss and radius step
rs additionally to the radius r as parameters for RMI. Fig. 3

ss

ss

rs

rs

r

r

Fig. 3: Left: Subsampling within a region relating parameters r
and rs. Right: Example with regions (r = 2, rs = 2) sampled
at sample step ss = 4.

illustrates both parts of the subsampling. For a given radius
r, the radius step rs specifies the stride with which pixels are
sampled from a region, giving us d = 2r

rs
+ 1 as the effective

diameter. This parameter allows us to use large radii, while
at the same time keeping the dimension of the sample matrix
low.
The parameter of the sample step ss allows us to sample only
every ss’th region in an image. This reduces the number of
samples in the sample matrix by a factor of s2s leaving us with
N = (W−2r)(H−2r)

s2s
.

Depending on the settings, the sparse sampling dramatically
reduces the computational burden, without a significant in-
fluence on the overall performance of RMI, which we will
analyze in sections IV and V.

B. Exploitation of Hankel-type matrix structure

We can further reduce the computational burden by using
the Hankel-type matrix structure that results from the sparse
sampling. Due to the repetitive nature of the sampling, there
are inherent, self-repeating patterns within the sample matrix.
For the following observations we suppose that the indices of
the pixels of an image are (m,n) for row m ∈ 0, 1, . . . ,H − 1
and column n ∈ 0, 1, . . . ,W − 1.
Looking only at the indices of the pixels that make up the
sample matrix SX with respect to the input image (top part
of S) for the simple case r = rs = ss = 1 we get

S
(1,1,1)
X =



(0, 0) (0, 1) (1,0) (1, 1)
(0, 1) (0, 2) . . . (1, 1) (1, 2) . . .
(0, 2) (0, 3) (1, 2) (1, 3)
(1,0) (1, 1) (2, 0) (2, 1)
(1, 1) (1, 2) . . . (2, 1) (2, 2) . . .
(1, 2) (1, 3) (2, 2) (2, 3)
(2, 0) (2, 1) (3, 0) (3, 1)
(2, 1) (2, 2) . . . (3, 1) (3, 2) . . .
(2, 2) (2, 3) (3, 2) (3, 3)


(4)

The highlighted blocks contain the same pixels from the first
row of the original image and are arranged in a Hankel-type
pattern. A Hankel matrix is a square matrix where ascending
diagonals contain the same value.
We can write each block i according to the row i it originated
from and thus we can re-write SX in terms of such block
matrices.

i =

[
(i, 0) (i, 1) (i, 2)
(i, 1) (i, 2) (i, 3) . . .
(i, 2) (i, 3) (i, 4)

]
→ S

(1,1,1)
X =

[
0 1 2
1 2 3 . . .
2 3 4

]
(5)

This is best summarized as sub-matrices that are Hankel-
type matrices and that themselves are arranged as Hankel-
type blocks. Depending on the combination of r, rs and ss
the respective layout of the blocks varies. For an image
X ∈ RH×W this can be condensed as

S
(r,rs,ss)
X =


0rs + 0ss 0rs + 1ss . . . H− 2r− 1

1rs + 0ss 1rs + 1ss . . .
...

...
...

. . .
2r+ 0ss 2r+ 1ss . . . H− 1

 (6)
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with

i =


(i, 0rs + 0ss) (i, 0rs + 1ss) . . . (i,W − 2r − 1)

(i, 1rs + 0ss) (i, 1rs + 1ss) . . .
...

...
...

. . .
(i, 2r + 0ss) (i, 2r + 1ss) . . . (i,W − 1)


(7)

It can be seen that i ∈ Rd×
W−2r

ss and as S
(r,rs,ss)
X con-

tains d × H−2r
ss

such matrices we get that S
(r,rs,ss)
X ∈

Rd
2× (W−2r)(H−2r)

s2s , where d = 2r
rs

+ 1.
Ending the submatrices at W − 1 and H − 1 constitutes an
ideal case. In practice the last indices might deviate depending
on the size of the image.

C. Memoization of submatrices
The above findings greatly simplify the construction of the

sample matrix by precomputing the needed submatrices only
once. It can be seen that for most combinations of settings, it
suffices to only compute a portion of all possible submatrices.
Generally, we only have to compute every n’th submatrix
where n = min(rs, ss). As the smaller of the two values will
determine the step at which submatrices are used in the sample
matrix, it suffices to compute only those. The submatrices can
be precomputed and stored in, e.g., a hash-table. This way,
they can be efficiently accessed and stacked into the final
sample matrix.
Following we will refer to this variant as Memoized Sampling
RMI (MS-RMI).
There are a few limitations to how the parameters can be
chosen. The radius step has to be smaller than the radius, i.e.,
rs ≤ r, and both should be even to ensure an uneven effective
diameter d. Additionally, rs should be an integer factor of r
such that the region lies over a central pixel.

IV. ANALYSIS OF EFFICIENT RMI
A. Effect of subsampling

As a first evaluation, we will compare the “full” sampling
to our sparse subsampling with regular matrix computation
(i.e. without memoization). For a set radius, we compute
the sample matrix iterating over all pixels and selecting all
pixels in the area, and compare that to different settings of rs
and ss for the same radius. The left part of table I shows
the cumulative duration of the sampling process over 500
iterations for a test image (400 × 200 pixels). We performed
the experiments with two different radii and 3 to 4 different
settings for rs and ss, doubling the parameters for each
configuration. All experiments are run on a 8-Core Intel i7-
2600 CPU (16GB RAM) using Python 3.7.7 with Scipy and
Numba where possible.
The results, roughly follow the expected theoretic gain for
changes of ss, where a doubling leads to approximately a
fourth of the number of samples in the sample matrix. This
means only a fourth of the samples have to be accesses and
stored in the sample matrix. As table I shows, this translates
nicely to a reduction of the sampling duration by a similar

factor.
The speedups achieved by increasing the radius step are
visible, though not as extensive. The decreased dimensionality
has a larger influence on the following computations in RMI.
Comparable settings between different radii, seem to give an
edge to the larger radius. Comparable in this sense means
that the settings result in roughly the same dimensions for
the sample matrix (e.g. r=4, rs=1 compared to r=8, rs=2). It
is usually a little faster to use a larger radius with larger rs,
even though d is equal but N is slightly smaller due to edge
cases.
TABLE I: Duration (in [s]) for 500 iterations of
basic sampling (RMI) and memoized sampling (MS-RMI) for
random test images.

Radius Radius RMI MS-RMI
step Sample step ss Sample step ss

r rs 1 2 4 8 1 2 4 8
2 1 54.06 12.22 3.20 0.82 7.01 2.16 0.68 0.54

2 47.25 11.84 2.63 0.64 2.95 0.56 0.29 0.15
1 128.60 24.27 4.77 0.88 40.57 5.42 1.49 0.58

4 2 61.3 13.50 3.18 0.91 6.70 1.73 0.47 0.26
4 44.22 9.35 2.61 0.69 2.57 0.59 0.16 0.10
1 417.22 89.36 17.48 4.97 106.17 31.73 4.86 1.49

8 2 104.62 21.67 4.37 0.99 29.19 4.14 1.14 0.38
4 49.04 12.60 4.49 1.04 5.79 1.20 0.29 0.15
8 38.42 8.68 2.00 0.46 2.28 0.47 0.14 0.06

B. Effect of memoization
Next, we will analyze the performance gains introduced by

pre-computing and memoizing submatrices. We showed that
only a portion of submatrices need to be extracted and can be
repeatedly used in the construction of the final sample matrix.
We compare the duration of the matrix construction between
RMI and MS-RMI. Comparing the two sides in table I,
we can see clear speed gains for random images. Table II
additionally shows the factors of speed gained for varying
sizes of real images for a fixed radius r = 8 and step size
ss = 16. Interestingly the factors increase for larger images
and increasing radius step. This nicely shows the potential of
the memoized sampling.
Naturally, there is a trade-off between the complexity we
achieve and the error we introduce by subsampling. There
are many ways to analyze this trade-off. We will use the

TABLE II: Average duration (in [s]) of matrix creation for real
images with varying size for set radius r = 8 and step size
ss = 16.

Width Radius step Method Factor
rs RMI MS-RMI ≈
2 0.00341 0.00218 1.564

512 4 0.00231 0.00078 2.961
8 0.00187 0.00033 5.666
2 0.01573 0.00799 1.968

1024 4 0.00984 0.00263 3.741
8 0.00773 0.00114 6.780
2 0.03782 0.01673 2.260

1536 4 0.02334 0.00577 4.045
8 0.01710 0.00213 8.028
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application in the road image domain to judge the overall
performance and robustness as a similarity measure.

V. APPLICATION TO THE ROAD DOMAIN

To analyze the performance in the road domain, we need
to introduce the data available as well as the metrics used to
evaluate different settings of MS-RMI.

A. Image data
As mentioned above, our domain is 10m surface images

that are regularly captured using standardized measurement
vehicles. Depending on the vehicle, the images have different
resolutions and exhibit various artifacts. To cover a wide range
of possible applications, our dataset for testing the approach
on real data comprises of data from different vehicles and
different road types. We have a dataset of 200 labeled images
from three different sub-domains, highway (60), federal (96),
and inner-city (44) roads. An example for each road type is
given in Fig. 4. Federal and inner city roads generally contain
more unambiguous areas making the task somewhat easier.
To correct for the different capture devices, we normalize the
pixels of the road to achieve similar brightness levels across
all images. To achieve this, we select only pixels that are
likely to lie on the surface (using the peak of the histogram)
to estimate the mean and standard deviation, and use those
values to normalize the entire image.

(a) Highway (b) Federal road (c) Inner city
Fig. 4: Example images for different types of road domains.

B. Evaluation of registration quality
As suggested by Legg [12] we compute the registration

error as the average distance between grid points transformed
with the ground truth and transformed with the found transfor-
mation parameters. All the images are labeled using manual
correspondences. Whereas Legg only uses the four corner
points, we generate a grid of points and average across
the individual distances dτ,i = |T (pi) − τ(pi)| between
the points pi transformed with the labeled T (·) and found
transform τ(·) giving us Dτ = 1

n

∑
i dτ,i. To account for

different scaling of the images, we always scale the parameters
and grid points as if the images had a width of 1000 pixels,
to keep results across experiments comparable.
In addition, we compute a performance measure based on
the number transformations with a registration error below a
threshold nt = |{τ |Dτ ≤ t}|. We sum these for a series of
thresholds t ∈ {0, 5, 10, . . . , 50} and divide by the number
of total images in the sequence S to get a performance score
r = 1

S

∑
t nt. We selected the above thresholds as they are

the ones that can be considered “good” in terms of visual
acceptance. The performance score s lies between 1 and 0,
with larger values corresponding to better performance.

C. Results

As a baseline, we performed regular RMI with r = 2, as
Russakoff et al. “found that even a radius as low as r = 2
works quite well in practice” [22]. We achieved s = 0.489
which indicates that RMI itself is a robust similarity measure
for our scenario, compared, e.g., to s = 0.378 which we
achieved with mean squared error as a similarity measure (both
with W = 512). It can be assumed that the score improves
for larger radii, however the time needed for the optimization
would increase dramatically as shown in the previous section.
This is why we evaluated a set of parameters (r ∈
{2, 4, 8, 12, 16}, rs ∈ {2, 4, 8}, ss ∈ {4, 8, 16, 24, 32}) that
offer a reasonable trade-off between speed and performance.
We achieved such speeds that a lot of the combinations could
also be tested on images with twice the size (W = 1024).
The results are presented in Fig. 5 with ss increasing along
the x-axis and rs for lower figures. Generally we achieved
very good scores for r ≥ 4 with a tendency for larger radii to
perform better. The trade-off between speed and performance
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(a) Radius step rs = 2
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(d) Radius step rs = 4
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(e) Radius step rs = 8
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(f) Radius step rs = 8

Fig. 5: Average performance s (averaged over all images) for
different settings of ss and rs with W = 512 (Figs. 5a, 5c
and 5e) and W = 1024 (Figs. 5b, 5d and 5f) pixels.
Radius: = 2, = 4, = 8, = 12, = 16
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when increasing the radius step is quite obvious, with larger rs
performing worse than when more pixels of a region are used.
This is what is expected, but interestingly for most radii, larger
sampling steps do not have a very large (negative) influence.
This means that we can easily increase the speed without
sacrificing performance. This is especially true for larger rs
and the larger images. Hence, careful choices must be made
with regard to the necessary accuracy of an application.
For some of the smaller sample steps, the set time limit
stopped the optimization, which is why not all results are
available. One other case that did not work is r = 16, rs =
2, ss = 32 where we fall victim to the curse of dimensionality.
Compared to the baseline, we achieve significantly better
results at lower computational costs for a number of larger
radii (up to s = 0.730 for W = 512) and at similar cost for
the larger images (up to s = 0.748 for W = 1024).

VI. CONCLUSION

Using a variable sampling process and the resulting Hankel-
type structure of the sampling matrix, we introduced Memo-
ized Sampling RMI as an efficient, yet robust implementation
of RMI. We analyzed its performance with respect to the
original implementation by Russakoff et al. [22]. Our proposed
algorithm can speed up the computations drastically, while
containing the accuracy and robustness in a practical scenario.
Aligning road images, we achieved higher registration scores
(s = 0.748) for a number of configurations while reducing
the computational cost compared to the original RMI method
(s = 0.489). The approach is a general adaptation and could
also be combined with different image features. Hence it
offers great variability, while speeding up the computation of
a similarity measure.
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