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Abstract— In this paper, we present a system for socially
aware robot navigation for a wide range of service tasks in
supermarkets. It comprises modules for real-time person detec-
tion and tracking to gain situation awareness, modules to react
to situations, and means for human-robot communication. The
technical performance of the situation awareness was evaluated
in a shelf out-of-stock (SOOS) detection scenario under real-
world conditions in a supermarket in Germany. Furthermore,
in order to investigate whether and to what extent our social
navigation strategy can improve the acceptance and application
of a mobile service robot in a supermarket, we have conducted
surveys with N = 60 participants and usability tests with
N = 8 participants during a three-day field test. We can show
that a robot for SOOS detection operating in a supermarket
during the opening hours is generally accepted by customers
and that the integration of a real-time person perception is
crucial, especially for keeping appropriate distances to persons
and for improving user-centered communication. Furthermore,
our results indicate that various communication channels (e.g.
speech, a video projector, and LED lights) are beneficial in order
to address a wider user group in the targeted supermarket
setting.

I. INTRODUCTION

An increasingly attractive area for the use of mobile au-
tonomous robots is the retail. Supermarkets in particular offer
potential for various robotic service tasks, like guiding [1],
cleaning [2], or shelf out-of-stock (SOOS) detection. Since
supermarkets in Germany typically have long (up to 10m)
and narrow aisles (partly under 1.60m width) equipped with
shelves, one challenge is to realize a robot behavior that
does not annoy the customers when operating during the
opening hours. Such behavior, called human-aware behavior,
has to comprise an appropriate situation awareness and
suitable responses to situations, including polite waiting and
appropriate means for human-robot communication (Fig. 1).

In this paper, we present a system for a socially aware
robot behavior in supermarkets. In particular, we introduce
our robotic platform (see Fig. 3 right) and describe how it
detects situations that occur when performing service tasks
within supermarket aisles. Our example scenario is embed-
ded in the ROTATOR project (three-dimensional out-of-
stock detection using autonomous mobile robots, duration:
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Fig. 1: Left: Supermarket scene (shown as 3D point cloud),
a detected person, his/her estimated upper body orientation
(red arrow) and a visualization of the asymmetrical personal
space. Right: Means of communication on our platform
including the omnilight (top) and video projections (buttom).

11/2016 – 10/2019), where a robot performs a SOOS detec-
tion as service task. We further present, how the robot reacts
to detected situations by adopting its navigation behavior
appropriately and by using various complementary kinds
of actuators for human-robot communication, like an LED-
omnilight, a video projector, an LCD display and speakers.
We show results of a technical evaluation of our system for
situation awareness conducted under real-world conditions.
The development of the robot followed a user-centered-
design approach (e.g. like [3]) in order to ensure a high
customer acceptance. To proof this concept, we conducted
usability tests with N = 8 participants and surveys with
N = 60 participants during an extensive three-day field test
in a supermarket in Ilmenau (Germany). With these tests, we
aimed to answer the following research questions:

RQ1: Does a robot for shelf out-of-stock detection require
the ability of a socially aware behavior at all?

RQ2: Does human-robot communication increase the
feeling of safety for customers and the acceptance
of the robot?

II. RELATED WORK

Mobile robots have already been deployed in a wide
range of applications, ranging from public [4] to domes-
tic [5] environments. In supermarkets, robots have been
used either as shopping assistant [1], [6] or autonomous
cleaning devices [2]. In this domain, a relatively new field
for robotic applications is the so-called shelf out-of-stock
(SOOS) detection. Large annual losses caused by empty
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situation reaction
1) robot wants to scan, person

enters aisle on opposite side
wait &
observe

2) robot wants to scan, person is
moving to same side

wait

3) robot wants to scan, person
looks at goods in aisle

wait &
observe

4) robot is scanning, person
appears in front

wait on
side

5) robot is scanning, person
appears from behind

go on
scanning

6) robot wants to scan, person
enters on same side

wait &
observe

7) robot wants to scan, multiple
persons in aisle

scan next
aisle

8) robot wants to scan, non-human
obstacle blocks scan trajectory

scan next
aisle

9) robot wants to scan, obstacle
blocks scan & person in aisle

scan next
aisle

10) robot wants to scan, person is
moving to opposite side

start
scanning

Fig. 2: Examples for situations that can occur during shelf scanning (1-10). The picture in the middle visualizes situation 10
from the robot’s point of view. The point cloud from a Kinect2 sensor is shown in blue, the green ellipsoid represents a
tracked person, and the red arrow marks the person’s upper body orientation. The free space of the aisle within the occupancy
grid map (grey) is framed with a yellow polygon derived from the grid map. The table on the right describes the situations
and the corresponding reactions of the robot. Please note that the situation of a free and ready-to-scan aisle (class 0 in the
functional tests of Sec. IV) is not specifically listed.

and missing stocks, as reported in [7], should be reduced
using mobile robots that autonomously detect these empty
stocks to initiate a quick refilling by the supermarket staff.
The advantages of such mobile systems [8], [9] are obvious.
In comparison to static SOOS systems [10], mobile robots
require just a fraction of the amount of sensors a static
system needs to monitor large scale super- or hypermarkets.
In addition, maintenance is reduced to a single device, which
may lead to lower operational costs. Such mobile systems
even have made it to purchasable products [11], [12], [13],
[14]. However, to be effective, the SOOS detection process
needs to be performed during opening hours, where the cus-
tomer acceptance is a critical factor that cannot be neglected.
Socially compliant robots have already been deployed in
various scenarios. A robot for the long-term application in
an office building and an elder-care facility was developed in
[15] that navigates adaptively near humans. In [16] a robot
for assistance, information, and guidance of passengers at
airports considers human social behavior.

One widely used concept to ensure the fit between robots
and humans is usability (e.g. [17], [18]). It originated in
the field of human-computer interaction (HCI) and has
also been applied in the field of human-robot interaction
(HRI). Usability refers to the ease of using a product. The
ISO 9241 [19] defines it as “the extent to which a product
can be used by specified users to achieve specified goals
with effectiveness, efficiency, and satisfaction in a specified
context of use”. For the robotic application described in
this paper, the main dimension of usability is satisfaction
as the efficiency and effectiveness dimensions need specific
tasks to be performed. From a customer’s point of view
the goal of the robot is to navigate through aisles of a
supermarket politely without bothering customers and, thus,
we focus on the dimension of satisfaction. Others have
proposed frameworks and guidelines for good human-robot
interaction specifically for robotic applications. One concept

is the USUS Evaluation Framework for HRI [20]. It outlines
several factors that determine good and appropriate HRI:
usability, social acceptance, user experience, and societal
impact with different indicators of each factor. For the appli-
cation described in this paper, again, because the interaction
between customers and this type of service robots in the
supermarket should ideally be minimized, and there are no
user-relevant tasks to be performed with the application, we
consider the factors emotion, feeling of security, and human-
oriented perception as the most relevant for a good HRI
in our context of use. According to [20], emotion hereby
refers to the fact that people tend to interact with computers
(and robots) socially, human-oriented perception requires the
robot to track human features, and invoking a feeling of
security should inform the design of the robotic applications.

In our project, we implemented and evaluated methods to
increase the customers’ acceptance with approaches for HRI,
described in the following. For the context of our application
scenario, we specify HRI as the combination of a socially
aware robot navigation and human-robot communication.

III. SOCIALLY AND SITUATIONAL AWARE
ROBOT NAVIGATION

Typical German supermarkets consist of a series of long
and narrow aisles, which normally do not offer much space
for large evasive maneuvers. Hence, a deadlock situation can
easily occur. Depending on the current task and location of
the service robot within the market (inside a narrow aisle or
outside), the reaction of the robot to such a deadlock should
vary. For a normal drive-to-task it is appropriate to plan an
alternative route to avoid aisles that are occupied by persons,
shopping carts, or cardboard boxes. In contrast, the behavior
has to be changed when the robot has to drive in a specific
aisle for a particular service task, like the SOOS scanning.
Then, the robot should only move to another aisle if it is
predictable that the current one will not be passable in the
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near future. Otherwise, the better option may be to wait in a
non-disturbing position or to queue behind persons walking
in the same direction (Fig. 2).

For this reason, we implemented two polite navigation
strategies that differ depending on the task. While we rely on
classic navigation with the dynamic window approach [21]
considering the personal space for drive-to-tasks, the robot
explicitly classifies the current aisle situation for scanning-
tasks into one of eleven classes and reacts accordingly. All
situations, specified in a requirements analysis, are shown in
Fig. 2. In the following, we describe all hard- and software
modules that are required in order to enable a situation
awareness based on this classification of situations. We also
show how the robot reacts to detected situations, and how
HRI components are applied in this context.

A. System Overview

The developed system has a layered architecture
(see Fig. 3 left) similar to that presented in [22]. At the top,
the application layer manages transitions between different
states, the robot can be in, during SOOS scanning. The states
themselves are defined in the behavior layer. There, the robot
classifies the current situation and decides which reaction is
appropriate (Fig. 2 left). Behaviors make use of modules for
person perception and navigation from the underlying skill
layer. These skills receive their inputs from the sensor layer
at the bottom. Fig. 3 (right) shows the locations of the sensors
and actuators used for human-robot interaction on our robot.

B. Detection of HRI-Situations

In Fig. 2, situations that can occur during the SOOS
detection differ with respect to obstacles which block the
aisle, persons in the vicinity, their upper body orientation
within the aisle, and their walking velocity. Hence, the robot
has to be able to recognize all these aspects in order to
achieve situation awareness.

Person detection: Since persons may occur at far dis-
tances to the robot, like on the other entrance of an aisle,
as well as in close range, we rely on a combination of three
types of sensors and detectors for person detection. Thereby,
it is particularly important that the detection runs in real
time on mobile hardware in order to react appropriately fast
to situational changes. For larger distances, we rely on a
Kinect2 mounted on a Pan-Tilt-Unit (Fig. 3). We apply a
fast 3D point cloud detector [23] and a skeleton estimator
[24] that increases the robustness of the person perception.
Both approaches are well suited for detecting persons with
occlusions and in body postures that are typical for customers
moving in a supermarket, such as squatting or bending down
in front of a shelf. The skeleton estimator [24] is also applied
on three fisheye cameras to enable a robust 360◦ close
range perception. All skeleton estimators run on NVIDIA
Jetson TX2 modules on the robot. As a third type of sensor,
we use two planar SICK laser range finders and apply leg
detectors [25], [26]. Since these detectors are prone to a high
amount of false positives and tend to miss persons occluded
by objects, like cardboard boxes, we use them primarily to

increase the accuracy of spatial position estimation and the
temporal update rate of the succeeding tracker.

Person tracker: To combine all detections into a com-
mon representation in world coordinates, we apply a proba-
bilistic person tracker [27]. Tracking improves the robustness
of the person perception due to a temporal filtering. Since
this involves a data association step, it also fuses different
detections of the same person. For each hypothesis, the
tracker outputs a location, shown as green ellipsoid in Fig. 2,
and a certainty to be a person rather than a false detection.
Furthermore, differences in time and location of a trajectory
are used to calculate a 2D velocity vector per person.

Upper body orientation estimation: We explicitly com-
pute upper body orientations on point cloud detections with
the fast and precise DeepOrientation approach [28] which
relies on a deep neural network for a regression of orientation
angles. We combine the estimated angles and their uncer-
tainties with tracked velocity vectors in a separate tracking
module [29]. The velocity further enables an approximation
of orientations in walking direction for all detected persons
and is not restricted to the Kinect2 like the explicit approach.

Obstacle detection: For performance reasons, we do not
explicitly classify other objects than persons. Instead, obsta-
cles, like cardboard boxes or shopping carts, are detected in
general by using the local 2D and 3D obstacle mapping based
on 2D laser scanners and RGB-D cameras respectively. All
obstacles that do not correspond to a person are treated as
objects in the aisles and represent potential blockages.

Classification of aisle situations: Situations are clas-
sified using a rule-based system that has been integrated
into the state machine of the application. Input is the in-
formation described above in combination with information
of the aisles to scan and a global 2D occupancy map of
the environment. When a certain aisle shall be scanned, a
polygon is spanned over the free space in that aisle. Together
with information about obstacles as well as the position,
velocity, and orientation of persons within and outside of
that polygon, the current situation is classified into one of the
defined classes shown in Fig. 2 using threshold operations.
All rules and thresholds were derived manually by an expert
from the specified situations. The free space polygon is
calculated with ray tracing on the global 2D map. To this
end, the end points of the rays along all normal vectors of
the scan-trajectory are determined to span up the polygon.
An example for such a free space polygon is shown in the
middle of Fig. 2.

C. Reacting to HRI-Situations

While in scanning mode, the robot has to react appropri-
ately to detected situations. It has to decide whether to enter
the aisle in order to start its scanning task, wait until the aisle
becomes free on a non-disturbing position in front of the aisle
where it still can observe the aisle, or put the current aisle
back into the queue and try to scan the next one instead, e.g.
due to blockages by nonhuman objects. If persons appear
during a running shelf-scan, the robot immediately stops,
turns its omnilight red (Sec. III-D), and drives to the side to
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Fig. 3: Left: System overview with submodules. Right: Robot and hardware configuration. In the experimental section, we
compare an application configuration with HRI (all software and hardware modules enabled) with a configuration without
HRI (just modules without purple boxes enabled). Please note, that in the final application the robot is equipped with
additional cameras for SOOS detection (not shown in the picture).

let the person pass. When the remaining (not yet scanned)
part of the aisle becomes free again, the scanning is resumed.
All reactions are briefly summarized in Fig. 2 (right). Note
that a certain reaction can lead to one of the other situations.
If so, the situation is classified again and the corresponding
reaction is made. To avoid endless loops, a timeout is used
that triggers the current aisle to be queued again, e.g. if a
person is present in the aisle for a longer period of time.
Afterwards the next aisle is processed.

To find suitable waiting positions, we rely on the approach
based on a particle swarm optimization (PSO) presented
in [30]. As optimization criteria for the PSO, we use, among
others, the distance to the aisle, the observability of the aisle
as intersection between sensor and aisle polygons, as well as
the proximity to the shelves. This should ensure that access
to the aisle is not blocked and that customers can get past
the robot as easily as possible.

In order to increase the persons’ feeling of safety, we rely
on the following channels for human-robot communication.

D. Human-Robot Communication

For reacting to situations close to persons as described
above, we implemented various complementary cues for
human-robot communication on our platform in order to
increase the feeling of being perceived by the robot and,
thus, to increase the feeling of safety. In addition to short
but concise display and male voice outputs, like “I have
detected a person, I’m waiting on the side until the aisle
becomes free”, we also use a mobile video projector and a
self-developed LED omnilight for this purpose.

The projector projects the robot’s planned trajectory as
an arrow to show driving intentions. Furthermore, to signal
a person that he/she is perceived by the robot it also
projects detected and tracked persons with their upper body
orientation as oriented circles into the scene (directly onto the
persons’ positions), as shown in Fig. 1. The LED omnilight
consists of 53 RGB LEDs and is attached to the “neck” of
the robot. It can be used for a huge variety of visualizations.

For example, the neck can light up in any direction in
which a person is tracked, and the color can be selected
by the person’s tracking ID. However, previous expert tests
have shown that such complex visualizations are not clearly
comprehensible by persons without technical background.
Hence, we have limited its application to simple and constant
traffic light colors on all LEDs: green - no person influences
the robot’s movement, yellow - person is close to the robot
but does not influence its movement, red - person in front of
the robot has been detected, and the robot stops.

E. Driving with an Asymmetrical Social Space
To make the navigation generally more polite whenever

the robot is moving, we have integrated an asymmetric
personal space cost function into the driving behavior. The
personal space is based on the theory of proxemics [31]
and should ensure that the robot keeps a certain distance
to persons. It is particularly important that the intimate (up
to 0.46m) and personal (up to 1.22m) zones are not entered
by the robot if possible. We implemented the personal space
according to [32], realizing it as density function that results
from the superposition of several Gaussian functions for
each detected person. This approach considers the person’s
position and orientation to weight the areas in front and
behind a person differently. In supermarkets, it is helpful
to adopt a smaller space behind persons in order to avoid
crossing the customers’ view on a shelf and, thus, produce
less disturbances. Similar to [33], we additionally scale the
front space by the person’s walking velocity. This should
ensure that evasion maneuvers are initiated earlier when
persons are moving fast. Furthermore, inspired by [34], we
integrated a second asymmetry into the cost function by
weighting the right side higher than the left side (Fig. 1
left). Thus, the robot applies a right-hand drive behavior in
accordance with the rules of German pedestrian traffic.

IV. FUNCTIONAL EVALUATION
We conducted a functional evaluation of our system for

situation awareness with data of a real supermarket (in
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Thuringia, Germany). The robot was configured to alter-
nately scan two aisles for noodles and canned food while
non-instructed customers were shopping. In total, our system
classified 463 real-world situations. Ground truth labels were
manually noted by an observer. Results are shown in a con-
fusion matrix in the left of Fig. 4. While most situations were
classified correctly, the robot had problems with situations 7
(multiple persons in aisle mostly misclassified as just one
person in aisle), 8 (obstacle in aisle mostly misclassified as
aisle is free), and 9 (person with shopping cart in aisle mostly
misclassified as just one person in aisle). The two major
problems were occluded persons and far and empty shopping
carts. Due to the long and narrow aisles, people occlude each
other to more than 70% across multiple frames and thus, the
robot was not able to detect all of them from its point of view,
neither with vision nor laser-based detectors. However, since
often at least one person was detected the robot’s behavior
was still socially acceptable most of the times, since it was
waiting in front of the aisle according to situation 3, avoiding
disturbances. The problem with shopping carts are their
thin metal struts, which were barely perceived by our laser
and depth-based sensors for obstacle detection. Especially
empty shopping carts are difficult to detect. With increasing
distance, the problem becomes greater, as the struts are less
likely perceived by the sensors. An explicit vision-based
detection of shopping carts could provide a remedy here.
However, for most cases of situation 9 the robot could at
least detect the person (corresponds to situation 3) and thus,
it could at least be avoided that the robot enters the aisle.

Since some situations lead to the same reaction, we also
evaluated our system with respect to the chosen action. For
this purpose, we have summarized the robot’s actions as
follows: 0 =̂ start scanning, 1 =̂ wait & observe, 2 =̂ wait
on side, 3 =̂ go on scanning, and 4 =̂ scan next aisle. The
results are shown in the right of Fig. 4. While most actions
were made correctly, it is obvious that often the action wait &
observe was taken instead of directly driving to the next aisle.
This can again be explained by the difficulty of perceiving
shopping carts. However, although the robot did not act as
intended, it still waited politely in front of the aisle.

V. FIELD TEST EVALUATION

The human-robot interaction was developed following a
user-centered design approach, e.g. like in [3]. Prior to the
field tests in the supermarket, the robot platform enabled with
social navigation was tested in an expert evaluation according
to [35]. Findings, like simplifications of voice outputs and
visualizations, were then implemented on the platform as
part of the iterative development. Furthermore, the maximum
speed of the robot was limited to 0.4 m/s, which corresponds
to results presented in [36] for approaching persons. The
modified platform was tested with users in a supermarket
afterwards and compared to a robot without any kind of
social navigation or human-robot communication. The goal
of the field tests was to evaluate the system and to ensure
higher acceptance of the robot among customers in a final
product. In surveys, customers (N = 60) were asked about
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Fig. 4: Results of the functional evaluation with 463 real-
world situations. Left: Confusion matrix for actual and
detected situations according to Fig. 2. Class 0 represents
the situation of a free aisle, ready to scan. Right: Confusion
matrix for the chosen action.

their impressions during their observation of the robots. In
usability tests, customers (N = 8) interacted with the robots.

A. Methods

Design: During the three-day supermarket field test, ex-
tensive surveys were carried out which provided information
about HRI. The platform presented in Fig. 3, which offered
the possibility of social navigation and human-robot commu-
nication (HRI) and a similar platform that was not equipped
with the corresponding skills (NO HRI) were tested. While
both can perceive obstacles and, therefore, avoid collisions,
only the HRI platform is capable of explicitly distinguishing
between humans and other objects, which enables person-
aware behavior. Concrete differences between both test con-
figurations are highlighted in Fig. 3.

In addition to the robot’s onboard safety precautions
(i.e. bumpers, an emergency stop switch, and a reactive
navigation component), the tests were constantly monitored
by a technical staff member who was equipped with a remote
control to increase safety during the experiments.

Customer survey: For each of the two robots (NO HRI
and HRI) 30 persons were asked to fill in a survey based
on external observations of the robot’s behavior. The survey
consisted of seven identical items for both robots covering
general reactions of the use of such robots in the supermar-
ket. The dimensions covered were:

• perceived distance between human and robot
• anxiety towards the robot
• speed of the robot
• impact on buying behavior
All dimensions were measured on self-developed items

(e.g. “The robot distracts me while shopping”) and measured
on five point likert scales (from 1 = completely disagree to
5 = completely agree). Moreover, for the robot with HRI,
additional items have asked about the shoppers’ impressions
of voice output and how information is communicated.

AttrakDiff2-mini: The general impression of the robots
was measured using the AttrakDiff2-mini questionnaire [37].
It covers three dimensions, pragmatic and hedonic quality as
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well as perceived attractiveness of the robot and is widely
used in different fields and also in robotics (e.g. [38]). The
pragmatic quality (PQ) essentially corresponds to the task-
related usability and describes how certain goals can be
achieved effectively, efficiently, and satisfactorily [39]. The
hedonic quality (HQ) refers to the user himself and evaluates
to what extent the user can identify with the product, i.e. the
robot. The attractiveness (ATT) is evaluated based on the
perception of a product. The questionnaire consists of ten
antonym pairs rated on a 7-point scale.

Usability test: While we wanted to obtain quantitative
customer feedback with the surveys based on external obser-
vations, we also aimed for qualitative feedback in the sense
of a mixed methods approach with longer usability tests
(≈ 45 minutes). In these usability tests, participants were
asked to go through specific reference situations with both
robots by themselves. The aim was to assess how customers
react when a robot passes through the aisles during their
shopping and does not interact directly with them. In order
to keep the test scope manageable, we have selected three out
of all reference situations from Fig. 2 that were evaluated:

3) robot wants to scan, person looks at goods in aisle -
reaction: wait and observe (HRI), start scan (NO HRI)

4) robot is scanning, person appears in front - reaction:
wait on side (HRI), stop if path blocked (NO HRI)

5) robot is scanning, person appears from behind - go on
scanning (HRI & NO HRI)

We have chosen these situations because they occur fre-
quently and reflect well the spectrum of possible HRI re-
actions. Since a customer does not always notice when the
robot politely waits in front of an aisle (depending on the
distance), only situation 3 with this behavior was added.

The participants were informed about the experiments
before they were conducted and could stop them at any
time. The order of the robot that was experienced first was
randomized between participants. During a test sessions,
participants were asked to think aloud.

Participants: In the surveys, N = 60 persons were
interviewed. The participants who evaluated the robot with
HRI were about 49 years old on average (MHRI =
49.22;SDHRI = 22.12). The participants who evaluated the
platform without HRI were about 41 years old on average
(MNO HRI = 41.52;SDNO HRI = 21.14). The usability tests
were conducted with eight persons (N = 8) at an average
age of 26 years (M = 26.25;SD = 6.92). Differences
in age were caused by the real-world setting, where older
customers were less likely willing to take part in the longer
sessions. However, choosing participants randomly from the
test environment ensures more unbiased impressions.

B. Results

General reactions: If the ratings from the customer sur-
vey of both platforms are considered together, the following
results are evident: The respondents could imagine shopping
in a supermarket where such a robot is used (MHRI =
3.77;SDHRI = 1.55), (MNO HRI = 4.14;SDNO HRI = 1.30)
and do not feel disturbed (MHRI = 1.55;SDHRI = 0.87),

(MNO HRI = 1.34;SDNO HRI = 0.55). The robots do not
invoke a feeling of fear (MHRI = 1.34;SDHRI = 0.90),
(MNO HRI = 1.28;SDNO HRI = 0.59). The speed of the
robots was not found to be too fast (MHRI = 1.64;SDHRI =
1.19); (MNO HRI = 1.28;SDNO HRI = 0.45). All of these
items were not statistically different between the two plat-
forms HRI and NO HRI (p > .05).

AttrakDiff2-mini: The results of AttrakDiff2-mini show
that the robot with HRI was rated with a significantly higher
perceived HQ (MHRI = 5.05,MNO HRI = 4.47), (t(49.92) =
−2.17, p = .035). The pragmatic quality (PQ) was not
significantly different between the two robots (MHRI =
5.07;MNO HRI = 4.77, p > .05). The attractiveness (ATT)
of the robots was also not rated significantly differently
(MHRI = 5.04;MNO HRI = 4.96, p > .05).

Human-robot communication: The descriptive data and
the results of the usability test indicate that customers feel
slightly more distracted by the HRI (MHRI = 3.24;SDHRI =
1.27) than by the NO HRI (MNO HRI = 3.03;SDNO HRI =
1.12) although the differences are not statistically signifi-
cant. However, the robot with social navigation (MHRI =
2.30, SDHRI = 1.37) was found to be perceived as signif-
icantly more intrusive than the NO HRI robot (MNO HRI =
1.70, SDNO HRI = 0.67), (t(43.05) = −2.12, p = .039).

The customers were asked about the possibilities of
human-robot communication with the HRI robot (Sec. III-D).
The voice output was found useful by the customers (MHRI =
3.67;SDHRI = 1.21), and the information was perceived as
clear and unambiguous (MHRI = 3.96, SDHRI = 0.93). The
male voice was rated as pleasant (MHRI = 3.96, SDHRI =
1.31). The information displayed on the monitor was rated
as useful (MHRI = 3.85;SDHRI = 1.13). Most partici-
pants of the usability tests found it helpful that the robot
communicates its tasks and actions via a voice output and
a display. The consideration of accessible communication,
which enables visually impaired and blind as well as hearing
impaired people to get all necessary information about the
robot, was positively evaluated by the participants.

The voice output of the HRI robot helped to understand
the robot’s actions. However, it was questioned whether all
customers understood the auditory cues. “I heard the robot
was saying something, but I did not fully understand whether
this had anything to do with me” (TP07). Most test persons
were disturbed by the fact that the robot without social
navigation did not communicate what its task is. Due to this
lack of communication, the customers did not know how to
interact with the robot. “I have no idea what it [the robot] is”
(TP05). The HRI-based robot was preferred by seven out of
eight test persons, presumably because of its communication.

The test persons also commented on other forms of com-
munication described in Sec. III-D. Many people recognized
the importance of the colors red, yellow, green of the signal
lamp “He switched to red as soon as he recognized me”
(TP01). The importance of the traffic light colors of the
signal lamp was recognized by many. The detection of
persons, which was graphically beamed on the floor, was
clear to most and was perceived very positively. For some
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Fig. 5: Ratings of the AttrakDiff2-mini questionnaire [37].
Boxes are 95% confidence intervals.

testers, the contrast to the floor was too weak. For this reason,
we developed an alternative to the video projector solution
based on the deflection of a laser beam [40]. An evaluation
of it in the application environment remains future work.

Social distance: The test of the social distance, which
is achieved by combining the social space (Sec. III-E) with
the anticipatory reaction to certain situations (Sec. III-C),
showed that the distance of the robot with social navigation
(MHRI = 4.15;SDHRI = 0.99) was reported significantly
better than the one without social navigation ((MNO HRI =
3.43, SDNO HRI = 1.48), t(47.31) = −2.13, p = .038). Most
of them noticed that the HRI-based robot recognized the
own person and waited at the end of the aisle. “He works,
he sees me, he waits. The robot notices something” (TP01).
While the HRI robot scanned the shelves, most of the test
subjects had enough space to shop. “I had enough space and
he didn’t bother me” (TP03). “He is not threatening. He is
not so big too” (TP08). The distance that the robot kept to the
customers was rated positively by nearly everyone. “What I
find even better is that it drives to the side and does not stay
in the way (...) you can still walk past it” (TP06). “Very far
away, [.] that doesn’t bother me at all. Very respectful, so to
speak” (TP07). However, almost all participants noticed that
the robot NO HRI did not keep enough distance and came
too close to them. “He is already getting quite close to me.
Which can be frightening in any case, if you don’t know much
about it yet.” (TP01). “So a little bit more distance, maybe
an arm length, I would find quite appropriate” (TP07).

C. Discussion

Overall our results indicate that a mobile service robot is
generally accepted by customers of almost all age groups,
regardless of a social navigation behavior. The maximum
robot speed of 0.4 m/s is considered appropriate as it is slow
enough so that customers do not feel insecure, but still fast
enough to ensure its service tasks in a reasonable time.

In the following, we give answers to the research questions
we asked at the beginning.

RQ1: Does a robot for shelf out-of-stock detection require
the ability of a socially aware behavior at all?
According to the results of our surveys and usability tests,
this question can be answered with yes. A robot needs a
socially aware communication and navigation behavior in

order to keep an appropriate distance to people as far as pos-
sible. The robot without social navigation (NO HRI) came
too close to the customers, making them feel uncomfortable.
Increasing the minimum distance to obstacles in general is no
solution for that problem because the aisles in a supermarket
are too narrow and, thus, the robot would not be able to
navigate at all. Hence, an explicit person detection and its
integration into the navigation is required. Our HRI robot
therefore keeps larger distances to humans, if possible, by
considering a social space and especially by reacting to
situations according to Fig. 2 (right).

However, social navigation has no effect on the pragmatic
quality, i.e. on the usability, when using the robot for out-
of-stock detection only. This is probably due to the lack of
direct interaction of the customers with the robot. It informs
the customers audio-visually, but reacts only implicitly to
them by recognizing situational changes (see Fig. 2).

It should also be considered that a socially aware behavior
including person perception may require extra hardware,
depending on the sensor and hardware configuration already
used for detecting out-of-stocks.

RQ2: Does human-robot communication increase the feel-
ing of safety for customers and the acceptance of the robot?
Also our second research question can be answered with yes.
The results indicate that people felt more comfortable in the
presence of the HRI robot and they could identify themselves
better with it. That means that the HRI robot has a higher
hedonic quality than the NO HRI robot (Fig. 5). At the
beginning and without communication, this robot was a quite
big, autonomously driving machine to the customers. They
did not know its functions, if it was a danger or restricts them
during shopping. In contrast, the HRI robot informed people
about its actions and, thus, they knew what it was doing at all
times. However, the HRI robot was also evaluated as more
intrusive. From this, it can be concluded that communication
is very important. However, it must be balanced and should
not disturb the customers too much while shopping.

In order to reach a large user group, i.e. increasing acces-
sibility also for people with a disability, several easily under-
standable communication channels are required. Combining
speech, mobile video projector, and display outputs enables
persons to experience the robots actions, that it recognizes
them and that it drives to the side in order to wait in narrow
aisles. The simple LED omnilight with adapted traffic light
colors (green, yellow, red) as additional visual signal further
improves the robot’s communication, especially from larger
distances without being too intrusive.

VI. CONCLUSION

We have presented a system for social navigation and
human-robot communication for mobile robots in super-
markets, using the example of a shelf out-of-stock (SOOS)
detection. It classifies situations that occur during scanning
in order to react politely to customers. Anticipatory waiting
and an asymmetrical social space ensure that the robot keeps
as much distance to persons as possible. The use of speech
and display outputs, a video projector, and an LED omnilight
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allows to communicate information to a large user group and
takes accessibility to people with disabilities into account.

Functional tests demonstrated that the situation classifi-
cation generally works well, but the person detection has
sometimes problems with shopping carts or occlusions. Sur-
veys and usability tests we conducted during a three-day
field test have shown that customers generally accept robots
for scanning tasks. The results indicate that robust person
perception is crucial for keeping social distances and to
enable user-centered communication. Multiple and easy to
understand communication channels are important, but the
communication must be balanced and should not be too
intrusive in order to disturb customers as little as possible. It
remains future work to investigate in long-term experiments
which combination of information and communication chan-
nels are less disturbing and intrusive, or whether customers
get used to them over time.

Although our system was developed and evaluated for the
task of SOOS detection, we believe that it can be easily
transferred to other tasks in a supermarket-like environment
like for cleaning, stocktaking, or guiding purposes. However,
it remains future work to further examine such scenarios.
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