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Abstract— Efficient and robust person perception is one of the
most basic skills a mobile robot must have to ensure intuitive
human-machine interaction. In addition to person detection,
this also includes estimating various attributes, like posture or
body orientation, in order to achieve user-adaptive behavior.
However, given limited computing and battery capabilities on
a mobile robot, it is inefficient to solve all perception tasks
separately, especially when using computationally expensive
deep neural networks. Therefore, we propose a multi-task
system for person perception, comprising of a fast, depth-
based region proposal and an efficient, lightweight deep neural
network. Using a single network forward pass, the system
simultaneously detects persons, classifies their body postures,
and estimates the upper body orientations while retaining
almost the same computation time as a single-task network.
We describe how to handle a real-world multi-task scenario and
conduct an extensive series of experiments in order to compare
various network architectures and task weightings. We further
show that multi-task learning improves the networks’ perfor-
mance compared to their single-task baselines. For training
and evaluation, we combine an existing dataset for orientation
estimation and a new, self-recorded dataset, consisting of more
than 235,000 depth patches that is made publicly available to
the research community.

I. INTRODUCTION

Mobile robots often rely on sequential processing archi-
tectures when several types of information are of inter-
est. In our ongoing research projects, which cover public
environments from supermarkets [1] to hospitals [2] and
domestic applications [3], our robots require a robust person
perception. This includes the sequential application of a
person detector [4], a body posture classification, and an
upper body orientation estimation [5] for standing persons
in order to enable socially aware navigation behaviors. Since
these tasks are based on machine learning and were trained
successively, this pipeline does not follow the human concept
of learning. Children are able to simultaneously learn how
to speak, walk and do social interactions instead of learning
one ability after another. In machine learning, this approach
of learning several tasks at the same time is known as multi-
task learning and offers two main advantages over learning
separate tasks sequentially [6]. On the one hand, it may
lead to performance improvements because knowledge is
shared over all tasks, which may also increase generalization
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Fig. 1: Multi-task system overview: Regions of interest found
in a 3D point cloud [7] are fed as depth patches into a
fast deep neural network in order to detect persons and
estimate their posture and upper body orientation (red arrow).
The box color encodes the posture of the respective person:
standing (red), squatting (blue), and sitting (green).

capabilities. On the other hand, it accelerates inference since
feature redundancy is reduced, and all tasks are solved with
a single model.

In this paper, we transform our person perception
pipeline [4], [5] into a multi-task system, as shown in Fig. 1.
Regions of interest found in a 3D point cloud are fed as
background-free depth patches into a single deep neural
network that solves the tasks person classification, posture
classification, and orientation estimation in a single forward
pass. Since, so far, only the orientation module was based
on deep learning due to runtime issues, a deep learning-
based approach leads to a significant performance increase
for person detection and posture classification. However, due
to 3D search space restriction, patch-based inference, and
a lightweight neural network architecture, our system still
runs in real time, even on CPU only. In our experiments, we
examine various network architectures as well as training
parameters and compare various multi-task networks to their
deep learning single-task baselines. Thereby, we demonstrate
that lightweight architectures can achieve the performance of
more complex ones due to the applied multi-task approach.

We explicitly consider person and posture classification as
separate tasks, since our robot should be aware of persons
in its vicinity even if no posture could be derived due to
heavy occlusions. Our system is able to distinguish between
standing, squatting, and sitting and estimates the upper body



orientation as the continuous angle around the axis perpen-
dicular to the ground. For training, validation, and test, we
rely on our previously recorded orientation dataset [5] and a
newly recorded dataset for person and posture classification.

In summary, our main contributions are:
1) an efficient multi-task system for person detection,

posture classification, and upper body orientation es-
timation for real-time application on mobile robots
with an exchangeable neural network depending on the
application scenario and available hardware

2) a comparison of various network architectures regarding
their applicability in a depth-based person perception
system

3) a new dataset with more than 235,000 depth patches for
person and posture classification

4) the publication of our new dataset, network code, and
trained network weights to the research community1

II. RELATED WORK

A. Person Detection

While classical image-based person detectors rely on
handcrafted features [8], [9], [10], modern deep learning
approaches, like [11], [12], [13], [14], learn relevant features
from the data themselves. This has led to a great leap
in performance. Unfortunately, color image-based detectors
often rely on classifying at a lot of image scales in order
to deal with persons in different distances and, therefore,
are computationally intensive, especially when applying deep
neural networks. More recent approaches address this prob-
lem by using a so-called region proposal network [15], [13]
or by deriving both bounding boxes and classes directly from
feature maps at different scales [12]. However, deep learning
on full-sized images often still requires specialized hardware
in order to run in real time on mobile platforms and a huge
amount of data for training, best with high variance of the
environments. With the advent of Kinect-like sensors, depth
information was incorporated into color-based detectors to
accelerate searching the scale space [16], [17]. Depth images
or 3D point clouds were also used directly for detection since
they often enable real-time application on CPU only [16], [7],
[4]. Our multi-task system also relies on 3D point clouds to
identify person candidates and classifies depth patches with
a deep neural network in order to enable fast and accurate
detections. As we will show, depth information further allows
to quickly record a large amount of data for training.

B. Body Posture Classification

Human body posture estimation can be accomplished in
different ways. To reduce the required amount of training
data, an already trained skeleton estimation algorithm, such
as [14], can be used to obtain a lower-dimensional feature
vector, which subsequently can be classified [18], [19] more
efficiently. However, estimating entire skeletons accurately

1Our code and dataset are available at:
https://www.tu-ilmenau.de/neurob/data-sets-code/depth-multi-task

from raw images is computationally intensive and not nec-
essary if only the posture is of interest. In contrast, end-to-
end posture classification approaches do not rely on skeleton
estimation. In [4], a multi-class support vector machine is
used to detect and distinguish standing and squatting persons
in 3D point clouds. In [20], a Fast R-CNN [21] is applied to
depth-based region proposals to categorize people according
to their mobility aids in a clinical environment. Since we
aim to solve all tasks in real time, we rely on an end-to-end
approach as well.

C. Orientation Estimation

3D skeleton estimation approaches, like [22], [23], [24],
also inherently provide an upper body orientation. The ori-
entation can be derived by geometrical relations between 3D
joints and bones. However, as we have shown in our previous
work [5], it is not necessary to rely on such computationally
intensive skeletons if only the upper body orientation is of
interest. Instead, estimating the orientation directly is much
faster and enables accurate social robot navigation. A direct
estimation of the upper body orientation is very similar to
estimating a head’s orientation and can be implemented ei-
ther as multi-class classification [25], [26], [27] or regression
[28], [27], [5]. Since a classification introduces a systematic
discretization error, we decided in favor of a regression for
our multi-task system. Furthermore, in [5], we demonstrated
that a lightweight neural network combined with depth-based
image patches may be advantageous to using color patches
while enabling a very accurate regression of the orientation
in real time. Hence, we use this kind of lightweight network
architecture as starting point in our experiments.

D. Multi-Task Deep Learning

Multi-task deep learning has shown excellent results for
language processing [29] and computer vision problems [30],
[31], [32], [33]. In this paper, we focus on heterogeneous
multi-task learning. In contrast to homogeneous multi-task
learning, i.e., learning similar tasks with the same output
space, this allows combining different output spaces, such
as regression and classification. Learning multiple tasks
simultaneously can improve the overall system performance,
as more task labels with different noise patterns can lead to
more robust features and, thus, improve generalization [34].
However, the network’s designer has to pay attention to
additional training details, like higher requirements on the
dataset, suitable task weightings [35], [36], [37], and the
multi-task network architecture. The latter can be designed
by loosely coupling several single-task networks [29], [30],
but these so-called soft-parameter-sharing approaches neither
reduce the computation time nor the network’s complexity
compared to their single-task counterparts. In contrast, hard-
parameter-sharing approaches divide the architecture into
several shared layers for feature extraction and multiple task-
specific layers for calculating the final prediction for each
task [31], [32]. Since most of the computations are done
in the shared part, hard parameter sharing can significantly
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reduce inference time while still benefiting from the multi-
task scenario [6]. Hence, heterogeneous hard-parameter-
sharing networks are well suited for deployment on a robotic
platform and, thus, form the basis of our multi-task system.

III. SYSTEM OVERVIEW

The idea of the proposed multi-task system (see Fig. 1) is
to simultaneously detect persons, classify their body posture,
and estimate their upper body orientation utilizing a single
neural network on our mobile robot. For search space re-
striction, we apply the network only to regions of interest
and not to the entire depth image of the robot’s Kinect2.

The first step for determining regions of interest is to
convert the depth image to a 3D point cloud. We then
apply the candidate generator of [7] that labels each point
individually as ground plane, object, or fixed structure by
taking into account the assumptions that persons are always
on the ground and have some free space above their heads.
3D points labeled as objects are then projected onto a 2D
histogram in the ground plane, in which they are segmented
into individual 3D point clusters. These clusters finally
represent the regions of interest. Since deep learning on point
clusters is challenging, we project each cluster back onto the
Kinect2’s image plane and crop it to the encasing bounding
box, as displayed in Fig. 1. The whole preprocessing takes
only 4ms on a single CPU core.

In [5], for orientation estimation, a system solely based
on depth patches turned out to be superior to one using
color patches or a combination of both. Hence, we rely on
depth images for our multi-task system too. The preprocessed
patches are free from background and form the input to our
multi-task network. The network’s output comprises whether
a particular patch represents a person or not (is person) as
well as the person’s posture (standing, squatting, or sitting)
and upper body orientation as a continuous angle.

On our robot, each person attribute is further tracked with
our modular probabilistic tracker [38] (see Fig. 1). Since
our derived network architectures use dropout before fully-
connected layers, we are able to model the uncertainty for
each task using dropout sampling [39]. This helps tracking
and, thus, makes the robotic application even more robust.

The entire multi-task system and its insights are further
visualized in the attached video to this paper2. Due to
the preprocessing, patch-based inference, and a lightweight
deep neural network, our multi-task system runs in real
time either on an NVIDIA Jetson AGX Xavier or even on
CPU only, depending on the chosen network architecture.
In the following, we examine various network architectures
suitable for the proposed multi-task system and compare their
performance for all three tasks.

IV. DATASETS

Training a multi-task network requires data with labels
for all tasks. However, to the best of our knowledge, no
depth image-based public dataset did meet all of our re-
quirements of having labels for the body posture as standing,

2The attached video is also available at: https://youtu.be/wRLk1kcsy5Y

train. valid. test
Orientation [5] 57,717 19,368 31,420
Standing [5] 57,717 19,368 31,420
Standing 22,150 8,054 6,602
Squatting 9,308 2,831 5,056
Sitting 5,809 4,816 3,491
Person [5] 57,717 19,368 31,420
Person w/ posture 37,267 15,701 15,149
Person w/o posture 2,722 1,602 1,065
Non-person 86,781 17,594 59,423
Female/male [5] 7/14 3/4 5/4
Female/male 4/10 2/3 1/7
Intersections 0 1 3 2 4 6 8 10

Mean Cluster Distance [m]
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Fig. 2: Left: Number of patches per task (orientation, posture,
is person), number of female and male persons, and num-
ber of persons appearing in both datasets. Right: Distance
distribution of the new data.

squatting, and sitting, the upper body orientation, and person
classification, i.e. providing both person and non-person
samples. Fortunately, the depth-based nature of our system
allows us to record data easily. Since input patches to the
neural network are background-free, persons can be recorded
continuously at a single place. Therefore, we recorded a
new person and posture classification dataset that we make
available to the research community1. It complements our
already published NICR RGB-D Orientation Dataset [5],
which was captured in a similar manner. With both datasets
combined, we have more than 340,000 depth patches for
training, validation, and test. Statistics about the data are
shown in Fig. 2.

A. NICR RGB-D Orientation Dataset

This dataset [5] was recorded for regression-based upper
body orientation estimation. It consists of more than 105,000
RGB-D patches of 37 standing persons who were captured
with five static Kinect2 devices simultaneously, placed in a
half circle and in different distances. A learned background
model was applied to each recorded depth frame in order
to create background-free person patches. The upper body
orientation has been automatically annotated using a highly
precise external tracking system. The samples were divided
into subsets for training, validation, and test with each person
being assigned to exactly one of them. Since each sample
represents a standing person, we can use this dataset for the
posture and person classification tasks as well.

B. NICR Multi-Task Dataset

This new dataset was created using our robot’s Kinect2
with focus on posture classification and person detection.
Persons were recorded in distances of about 2m to 10m to
the robot (see Fig. 2 right). To simplify labeling, only one
body posture was recorded during a single session. For the
sitting posture various kinds of chairs and stools were used.
In order to introduce some occlusions, we also added various
objects, such as shopping carts or cardboard boxes, to the
scene. Since we had a static recording setup, background-free
patches could be generated by simply subtracting a learned
background model. To make the data being similar to the
results after our preprocessing step, we further applied the
candidate generator of [7] to the foreground point cloud
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Fig. 3: Color and depth image of a recorded scene in our
new dataset as well as the extracted patch and point cluster.

to generate patches. We verified all labels by hand after
recording. Patches that could not be clearly assigned to
one of the three body posture classes, e.g., due to heavy
occlusions, were labeled as person without posture (see
Fig. 2). Fig. 3 shows an example scene, the extracted fore-
ground patch, and the corresponding point cluster. Negative
samples were captured by manually driving the robot through
three buildings of our university and a supermarket after
closing time, ensuring that no person was included in the
recordings. Afterwards, we extracted all regions of interest
using the aforementioned preprocessing and labeled them
as non-person. In total, our new dataset consists of more
than 235,000 samples. Similar to the orientation dataset [5],
we divided all samples into a training, validation, and test
subset and assigned each person to exactly one of them.
Furthermore, we ensured that persons who appear in both
datasets are assigned to the same subset as their counterparts
in the orientation data. Non-person samples were assigned to
subsets based on the recorded building. Note that samples of
the supermarket were assigned to the test set only in order to
prevent overfitting to one of our operational environments.

V. MULTI-TASK PERSON PERCEPTION

In order to derive neural networks capable of handling all
three tasks in our multi-task system, we conducted a series
of experiments on the aforementioned datasets. To assess
the networks’ performance, we first trained several single-
task baselines for each task independently. Subsequently,
we gradually extended the number of tasks covered by the
networks, taking into account the challenges when training
multiple tasks at once.

A. Experimental Setup and Network Training

As the tasks are heterogeneous and, therefore, have dif-
ferent output spaces, require different loss functions and
data, we start by summarizing the experimental setup for
each task. Furthermore, we focus on network training and
common hyperparameters.

Orientation estimation: For orientation estimation, we
follow [5] and rely on biternion output encoding and von
Mises loss function [28]. We used our NICR RGB-D Ori-
entation Dataset for training and validation, and report the
mean absolute angular error (MAE) on the test set.

Posture classification: Since the goal is to distinguish
three classes, we use softmax output encoding in conjunction
with cross-entropy loss. For network training, we joined the
proposed NICR Multi-Task Dataset (persons with posture

only) and the NICR RGB-D Orientation Dataset. Since the
resulting dataset is not balanced, we report the balanced
accuracy (bAcc) on the joined test sets.

Person classification: Due to the preprocessing pipeline,
person detection is simplified to another classification task.
Hence, we use softmax output and cross-entropy loss as well.
Both datasets (NICR RGB-D Orientation Dataset and NICR
Multi-Task Dataset) are joined for training, validation, and
test. For evaluation, we report the F1 score on the test set,
as it is common practice.

Network architectures: Due to restricted computational
resources, in our previous work [5], we only focused
on lightweight architectures, especially designed for mo-
bile robotic applications, such as Deep Orientation Net-
work (DONet) [5] and MobileNetV2 [40]. However, in this
paper, we aim to solve multiple tasks at the same time using a
single network. Therefore, we integrated more sophisticated
backbone architectures, such as ResNet [41], ResNeXt [42],
and recently published EfficientNet [43] in our study as
well. Fig. 4 shows the network architectures used in this
paper in detail. Note that the design for the task-specific
layers is different for the DONet-based architecture (see
Fig. 4a) compared to the ones that use a more sophisticated
backbone (see Fig. 4b). These backbones are designed with
regard to image classification. We found that a single fully-
connected layer on top of the final average pooling of the
backbone works well for posture and person classification.
However, for orientation estimation another fully-connected
layer is necessary. We assume that the number of weights
in a single fully-connected layer is too small to adequately
solve the regression problem. This finding coincides with [5].

Network training: To further increase the num-
ber of samples, we applied random horizontal flipping
as data augmentation. For optimization, we used both
SGD with momentum of 0.9 and Adam [44] with
initial learning rates of {0.001, 0.01, 0.05, 0.1, 0.2} and
{0.0001, 0.0005, 0.001, 0.01}, respectively. During training,
the learning rate was decreased after each batch of 128 sam-
ples using a polynomial decay. For multi-task training, due
to our data handling, each batch always contained samples
for all the tasks considered. The final weight configuration
was chosen within 200 epochs based on the performance
on the respective validation set. All networks were trained
on NVIDIA GeForce 2080 Ti and TitanRTX GPUs using
PyTorch [45]. For further details and other hyper parameters,
we refer to the implementation1.

B. Single-Task Baselines

To identify network architectures suitable for all tasks,
we conducted extensive single-task experiments, varying the
network architecture, the optimizer, and the initial learning
rate. Only one of the heads shown in Fig. 4 was activated
at the same time while training the single-task networks.
Tab. I summarizes the best results obtained for each network
architecture and presents a per-task ranking.

It is obvious that the performance increases as the net-
work’s depth and complexity increase. The lightweight net-
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Fig. 4: Network architectures used for multi-task learning as well as for single-task baseline training (only one active head).

work architectures DONet and MobileNetV2 0.25 (width
multiplier of 0.25) are almost consistently ranked last. Sur-
prisingly, for all tasks, the best result was not obtained
using one of the complex residual networks but using Mo-
bileNetV2 1.0 (width multiplier of 1.0). Another mobile
network architecture, the recently published EfficientNet B0
is ranked second or third. This result suggests that recent
mobile network architectures can compete with complex
residual networks. However, MobileNetV2 and Efficient-
Net B0 feature depthwise and grouped convolutions to
reduce the number of parameters and computations. Cur-
rently, these operations cannot be optimized to the same
level as vanilla convolutions used in DONet and ResNet.
Therefore, we further examined the runtime on CPU and
GPU for all network architectures. Fig. 5 shows the results
when processing a batch of 20 samples (average number of
candidates per image) at inference time. The results indicate
that all network architectures allow real-time execution on
GPU using a NVIDIA Jetson AGX Xavier with at least
20 Hz. Furthermore, it is obvious that the overall number of
parameters has less influence on the runtime than the used
type of convolution. ResNeXt50 and EfficientNet B0 heavily
use grouped convolutions and, thus, result in a similarly slow
runtime. Moreover, ResNet18 has far more parameters than
MobileNetV2 but can be executed at the same speed. On
CPU, the type of convolution is not as crucial as for GPU.
Rather, it seems that the runtime is mostly influenced by
the overall number of convolutions and feature maps in the
network. However, only DONet and MobileNetV2 0.25 meet

Model
Orientation

MAE ↓
Posture
bAcc ↑

IsPerson
F1 ↑

Ranking
O - P - I

DONet [5] 5.211∗ 0.9242∗ 0.9962∗ 6 - 7 - 8
MobileNetV2 0.25 [40] 5.256 0.9201 0.9983 7 - 8 - 3
MobileNetV2 1.0 [40] 4.601 0.9488 0.9990 1 - 1 - 1
EfficientNet B0 [43] 4.729 0.9483 0.9986 3 - 3 - 2
ResNet18 [41] 5.344 0.9347 0.9970 8 - 6 - 6
ResNet34 [41] 5.031 0.9422∗ 0.9969 5 - 5 - 7
ResNet50 [41] 4.771 0.9433 0.9978 4 - 4 - 5
ResNeXt50 [42] 4.728 0.9485∗ 0.9982 2 - 2 - 4

TABLE I: Single-task evaluation metrics and task rankings
obtained on the respective test set when training various net-
work architectures for each task. ∗ indicates that optimizing
using classical SGD instead of Adam led to better results.

our real-time requirement on CPU with at least 5 Hz.
Based on the obtained single-task performances and in

favor of a fast runtime on both CPU and GPU, we decided
to stick to DONet and both versions of MobileNetV2 for our
multi-task experiments. Both DONet and MobileNetV2 0.25
allow real-time execution even on CPU. MobileNetV2 1.0
performs best while being faster than non-mobile network
architectures on GPU. The results for both the selected
network architectures as well as the dropped ones help to
assess the performance of the multi-task system presented in
the following.

C. Dual-Task Experiments

As the output spaces for orientation estimation and both
classification tasks are heterogeneous, we started by building
a dual-task system in order to understand, how to combine
heterogeneous tasks. We selected orientation estimation and
posture classification for this study as posture classification
is more challenging and the number of training examples is
lower than for person classification.
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Fig. 5: Runtime comparsion of several multi-task network
architectures on CPU (Intel Core i7-7700H, PyTorch, Intel
MKL-DNN) and GPU (NVIDIA Jetson AGX Xavier, Ten-
sorRT, float16) when processing a batch of 20 samples. For
each architecture, the overall number of parameters (circle
diameter) and the single-task ranking is noted in brackets.
Note that the runtimes were measured for the triple-task case
but hardly differ for the single-task case.
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Training a multi-task system requires handling and com-
bining multiple losses. In general, each loss Li for task i is
weighted with a factor λi, before accumulating all losses
to get the overall loss L. With Dynamic Weight Aver-
age (DWA) [37], GradNorm [36], and uncertainty weight-
ing [35], several approaches for determining the weights λi
automatically have been proposed recently. Unfortunately,
in our scenario, none of them led to good results. With
GradNorm, the loss diverged within few epochs. Using
uncertainty weighting, a weight close to zero was assigned
to the classification task in early epochs and kept throughout
training. Only DWA led to a stable training. However, the
results for one of the two tasks were always consistently
worse compared to the single-task baselines. Therefore,
we performed a grid search for determining suitable loss
weights. For our dual-task system, the overall loss was
calculated as:

L = λO · LO + λP · LP (1)

Since several initial learning rates are examined, we decided
to set λO + λP = 1.

Another problem to deal with is the selection of the best
epoch. Due to the distinct task-specific layers, the best epoch
can differ between the tasks. Unfortunately, most of the
related works do not explain their procedure for selecting the
best training epoch. We found that selecting the best epoch
based on the accumulated per-task rankings over all epochs
works best.

The results of our grid search for DONet and selected
initial learning rates are depicted in Fig. 6. For all initial
learning rates, similar trends are shown. First, posture clas-
sification heavily benefits from multi-task training. Second,
for orientation estimation, λO ≥ 0.8 is required to reach the
single-task baseline. Unfortunately, through multi-task learn-
ing, an improvement compared to the single-task baseline
cannot be achieved for orientation estimation.

Fig. 7 further summarizes the results for the top-5 net-
works for each architecture and their corresponding loss
weightings. These results support our findings across all
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Fig. 6: Results of dual-task loss weighting grid search for
DONet and various initial learning rates.
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Fig. 7: Top-5 results over all learning rates and loss weight-
ings for the considered network architectures DONet and
MobileNetV2 in our multi-task system. In addition, the best
result using DWA [37] is depicted for each architecture.

network architectures and confirm the effectiveness of multi-
task learning for our scenario. Moreover, it becomes obvious
that tuning the loss weights manually leads to better results
than using DWA in our multi-task scenario.

D. Triple-Task Experiments

With the findings of the previous subsection, we extended
our dual-task system and included the person classification
task as well. Since we know that the orientation task requires
a much greater weight without affecting the posture task too
much, we fixed the ratio between both tasks according to best
results of our dual-task experiments. To consider the third
task, we took a similar approach as before and modified our
loss function as follows to include the is-person loss LI :

L = (1− λI)(λO · LO + λP · LP ) + λI · LI (2)

Note that after modifying the loss function in this way, the
sum of the resulting weighting factors is still 1 and, therefore,
does not scale the learning rate indirectly. For determining a
suitable λI , we used the two best performing ratios {λO =
0.8, λP = 0.2} and {λO = 0.9, λP = 0.1} and performed a
grid search for λI using values between 0.05 and 0.9.

Fig. 8 summarizes the best results for all considered
network architectures and compares them to relevant single-
task baselines. For all architectures, we could successfully
extend our dual-task system so that it is able to handle person
detection as well. As shown in Fig. 8a, multi-task learning
greatly improves the performance of DONet for person clas-
sification, even catching up with the larger ResNet34. More-
over, for posture classification, DONet is able to compete
with the best single-task baselines. For MobileNetV2 0.25
(shown in Fig. 8b), a similar trend is emerged. Both person
and posture classification significantly benefit from multi-
task learning. The obtained results are of the same quality
as the single-task baselines of EfficientNet B0 and even
ResNeXt50. However, similar to our dual-task experiments,
triple-task learning does only lead to results on par for
orientation estimation without any further improvement. For
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Model
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Orientation
MAE ↓

Posture
bAcc ↑

IsPerson
F1 ↑

DONet 5.211∗ 0.9242∗ 0.9962∗

X 5.389∗ 0.9449∗ 0.9971∗

X 5.625∗ 0.9487∗ 0.9972∗

MobileNetV2 5.256 0.9201 0.9983
0.25 X 5.320 0.9470 0.9983

X 5.608 0.9509 0.9984
MobileNetV2 4.601 0.9488 0.9990
1.0 X 4.589 0.9590 0.9988

X 4.683 0.9624 0.9988
ResNet34 5.031 0.9422∗ 0.9969
EfficientNet B0 4.729 0.9483 0.9986
ResNeXt50 4.728 0.9485∗ 0.9982

(c) Exact values

Fig. 8: Top-2 triple-task results for DONet and both MobileNetV2. Networks selected for application in our multi-task
system are printed in bold. ∗ further indicates that optimizing using classical SGD instead of Adam led to better results.

MobileNetV2 1.0 (shown in Fig. 8b), posture classification
could be further improved through multi-task learning.

For application on our mobile robots, we finally selected
the networks printed in bold in Fig. 8c. This emphasizes
person and posture classification but also leads to a small
performance drop in orientation estimation. However, the
results for orientation estimation are already sufficient for
our application scenario. If a GPU is available on our robot,
we stick to MobileNetV2 1.0 for our multi-task system (see
Fig. 1), if not, DONet and MobileNetV2 0.25 still allow real-
time execution without fully utilizing the CPU (see Fig. 5).

E. Comparison to other Person Perception Approaches

For a final assessment, we compare the performance of
the networks we selected for application on all three tasks to
reference approaches from the literature. Since, to the best of
our knowledge, there is no other multi-task system designed
to handle the same tasks, we consider each task distinctly.
The results show, that our multi-task system performs on par
or even better to other state-of-the-art approaches suitable
for mobile applications. Note that the same training set
could only be used for orientation estimation, whereas for
posture classification and person detection, each approach
was trained on its own dataset.

Orientation Estimation On our NICR RGB-D Orientation
test set, our system outperforms the point cloud approach
of [27] by a margin of at least 5.585◦ (MAE of 11.21◦).
Compared to the results in [5], our triple-task DONet is
on par with the original DONet while solving three tasks
at the same time instead of only one (5.625◦ vs. 5.44◦

MAE). Moreover, our triple-task MobileNetV2 0.25 (input
size of 224×224, width multiplier of 0.25) performs similar
to its counterpart MobileNetV2 0.75 (input size of 96×96,
width multiplier of 0.75) [5] with comparable FLOPs (5.608◦

vs. 5.43◦ MAE). However, our triple-task MobileNetV2 1.0
outperforms all network architectures examined in [5].

Posture classification For posture classification, we com-
pare our system to the multi-class SVM-based approach
proposed in [4]. On the test set of our new NICR Multi-Task
Dataset, all triple-task networks outperform the approach

in [4] by a large margin (0.9487, 0.9509 and 0.9624 vs.
0.8276 bAcc). This also demonstrates the improvements
modern deep neural networks can achieve.

Person Detection We evaluated the person detection per-
formance of our multi-task system including preprocessing
on the test set of the supermarket dataset [4] (includes heavy
occlusions). This allows a comparison to depth-based [7], [4]
and color image-based detectors [9], [10], [14], [12]. The
results in Fig. 9 indicate that our system outperforms all
depth and classical color image-based detectors. Even the
deep learning-based detector YOLOV3 [12] is outperformed.
Furthermore, all triple-task networks beat their correspond-
ing single-task counterparts, which confirms that multi-task
learning improves generalization capabilities. Through multi-
task learning, MobileNetV2 0.25 almost reaches the single-
task performance of MobileNetV2 1.0. The skeleton esti-
mator OpenPose [14] performs best in this scenario as it is
able to detect even single individual body parts resulting in
superior performance for heavy occlusions. However, this
approach does not meet our real-time requirements and,
therefore, is not applicable in our application scenario.
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Fig. 9: Results for person detection as DET curves on the
test set of the supermarket dataset presented in [4].
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VI. CONCLUSION

We have presented a multi-task system for person detec-
tion, body posture classification, and upper body orientation
estimation suitable for mobile applications. Due to the com-
bination of preprocessing for detecting regions of interest,
the processing of fixed size depth patches, and a lightweight
deep neural network, our system runs very energy-efficient
and in real time on mobile robots, even on CPU only. We
analyzed various network architectures and task weightings
and demonstrated that multi-task learning does improve the
performance in person detection and posture classification.
For both tasks, we recorded a new dataset consisting of
more than 235,000 depth patches and combined it with our
previously recorded orientation dataset. To support research
for depth-based person perception, we make the new dataset
as well as our network code and weights available to other
researchers1.
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