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Abstract— Successful rehabilitation after surgery in hip en-
doprosthetics comprises self-training of the lessons taught by
physiotherapists. While doing so, immediate feedback to the
patient about deviations from physiological gait patterns during
training is very beneficial. In the research project ROGER, a
mobile socially assistive robot (SAR), which supports patients
after surgery in hip endoprosthetics during their self-training,
was developed. The robot employs task-specific, user-centered
navigation and autonomous, real-time gait feature classification
techniques to enrich the self-training through companionship
and timely corrective feedback. This paper presents technical
and usability results obtained during four weeks of user tests
at our partner hospital ”Waldkliniken Eisenberg” in Germany.

I. INTRODUCTION

Patients recovering from hip endoprosthesis surgery often
have to “relearn” a natural gait pattern. While professional
hands-on physiotherapy is part of the process, repetitive
practicing is in the responsibility of the patient itself. Con-
sequently, the patients’ motivation for self-training plays a
crucial role in their rehabilitation process.

Against this background, self-training with socially as-
sistive robots (SAR) bears medical as well as economic
potential in rehabilitation care, since it allows to influence
and document this important aspect of the process. Expected
benefits of SAR-assisted self-training systems were already
demonstrated in [1] and [2] with a robotic rehabilitation as-
sistant for walking and orientation self-training of patients in
late stages of the clinical post-stroke rehabilitation, practicing
both mobility and spatial orientation skills. The results of
these studies showed that the robot increases motivation for
independent training and encourages patients to expand their
training radius in the clinic [2].

Supporting patients by offering robot-assisted self-training
is also the context and the core idea behind the research
project ROGER (RObot-assisted Gait training in orthopEdic
Rehabilitiation, 2016 - 2019). Here, the focus is on guiding
the patients through their gait training on top of their
standard physiotherapeutic treatment and offering them real-
time feedback about their walking movement and forearm
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Fig. 1: Patient during SAR-assisted self-training where the robot
drives in front of the user while observing his gait pattern and
posture and giving immediate corrective feedback.

crutch usage. Giving timely corrective feedback to the patient
during the training is essential, as it helps to avoid adverse
long-term effects on their gait [3]. Therefore, the objective
of the project is to integrate real-time gait pattern analysis
into a robotic application that patients can and want to use
on a regular basis in an everyday clinical environment.

In this paper, the developed SAR for orthopedic gait
training is presented with a technical overview of the robotic
system and results from user tests. These results are part of
two test campaigns evaluating (i) the effectiveness on the
patient’s gait in a comparative experiment with a treatment
and control group each consisting of 15 patients, and (ii)
the technical performance and usability of the robotic trainer
with 20 patients. The results presented in this paper will only
focus on the latter test campaign.

Hereafter, Sec. II first discusses related work in the field
of mobile rehabilitation robotics with the focus of gait
analysis and the sensors used for this purpose. Sec. III then
describes the application scenario in our research project to
outline the requirement, followed by the system architecture
derived from those requirements. Sec. IV is describing the
organizational framework for the real-world test campaign,
whose results are then presented in Sec. V. We conclude the
article in Sec. VI, and also provide an outlook to possible
future work.



II. RELATED WORK

A. Mobile rehabilitation robotics in clinical environments
Although other gait training systems like exoskeletons and

treadmills exist, this paper focuses on systems that are mobile
and non-intrusive, because ROGER belongs to the field of
socially assistive robots (SAR) [4], where systems have no
permanent physical contact with its user.

Although SARs have shown encouraging results in several
domains, including skill practice, daily life assistance, and
physical therapy [5], there is no SAR project known to us that
has the full set of features of ROGER - the development of
a mobile robotic training companion which can accompany
and correct patients fully autonomously during their gait
training within a clinical setting.

The ROREAS project [6] addresses walking and orienta-
tion self-training of stroke patients to improve their mobility
skills and self-confidence but did not support gait training.
The CLARC project [7] developed a SAR to help clinicians
perform comprehensive geriatric assessment procedures in
clinical environments. While geriatric assessment is a dif-
ferent task than that of ROGER, both approaches base
on similar basic robotic skills, e.g. navigation in complex
environments and person perception by vision sensors.

In [9] a smart walker was developed, which uses a laser
scanner to record and analyze leg motion trajectories. [10]
and [11] followed a similar approach, but equipped their
walker with two depth cameras to observe the upper and
lower body simultaneously. This setup makes it possible to
evaluate the overall posture of the person relatively to the
walker.

B. Mobile gait analysis using depth sensors
Stationary multi-camera setups, e.g. Vicon Bonita 10 with

10 infrared cameras [12], are able to perform a very accurate
3D gait and motion analysis. Because of their high precision,
these systems are used in biomechanic research and sports
science. They are, however, not suited for unsupervised
everyday use, since they have to be set up and calibrated
carefully, and usually require manual placement of reflective
markers at predefined body keypoints.

In contrast, devices such as Kinect or Kinect2 are low-cost
depth sensors and a suitable alternative to the expensive lab-
oratory systems under the right conditions as shown in [13],
[14], [15], [16]. In these studies, the sensors are mounted
statically on a treadmill or in a laboratory environment for
evaluating temporal parameters and joint angles, proving
their ability to analyze the user’s gait cycle in real-time.

In [17] a Kinect is used for fall detection of elderly
people, however the authors note that movements near the
wall, furniture or poorly reflective clothes complicate the
detection. [18] also investigated a static Kinect2 for fall risk
assessment of elderly people and therefore analyzed gait
parameters like step length, step duration, cadence and gait
speed. They found the Kinect2 to be a suitable low-cost
alternative for this task.

A mobile version of a fall detector was developed by [19].
Their robot is able to follow the user, while the on-board

Fig. 2: (Top) Robot approaching the patient during break. (Bottom)
Robot waiting on the hallway in a non-obstructing observation
position for the training to continue.

Kinect can be used to evaluate the user’s gait pattern in order
to predict whether the user is about to fall. An obstacle-free
environment is assumed for a smooth procedure. Similarly
the authors in [20] describe a six-wheeled mobile robot with
a Kinect2 mounted on-top, driving in front of the subject and
evaluated parameters such as walking speed and step lengths.
None of these systems is able to navigate autonomously
and avoid obstacles or give an immediate acoustic or visual
corrective feedback to the subject.

In all cases, the spatio-temporal gait parameters obtained
using a Kinect or Kinect2 were well in agreement with the
reference system. Also, calculation of hip and knee angles
is mostly unproblematical. However, the angles at the ankle
joint pose an issue due the fact that skeletal point estimations
in the foot area tend to be very inaccurate [16].

III. MOBILE ROBOT AS A GAIT COACH

Sec. III-A is describing the scenario and outlines the
distinct challenges a robot system faces during a training
session. They are mainly caused by the interaction of the
robot with its environment, the patient, and other persons
in its immediate surroundings. Sec. III-B will consequently
describe how the ROGER prototype intends to address these
requirements using a wide variety of skills.

A. Scenario

The robotic gait coach assists patients who have received
medical consent to walk alone on crutches with three-point
gait, usually on the second day after the surgery. For more
details on the training schedule, refer to Sec. IV.

To initiate the training, the patient has to go to the robot,
log in by using a personalized RFID transponder, and take
a seat on a nearby chair. The robot then approaches the
sitting patient until it is at arms reach [21], and starts to
interact using speech synthesis and its touchscreen. Before
the training begins, the patient can watch a short video
on how to use forearm crutches correctly during training.
This is followed by a textual and spoken reminder that it’s
always possible to rest at one of the chairs placed along the
hallway. After the dialog has finished, the robot generates an



appearance model to re-identify its user among bystanders
while driving to the starting position in the hallway.

During the training session, the robotic gait coach leads
its current patient by a certain constant distance in order to
continuously ensure sufficient sensor coverage of the patient
[22] (see Sec. III-B). By analyzing the user’s skeleton while
walking, several gait features are extracted and rated by a
rule-based classifier [23]. If a gait deviation is detected, the
robotic coach gives speech- and GUI-based feedback to the
patient. At the end of the hallway, the robot stops, turns
around and waits. As soon as the patient gets behind the
robot again, the training continues.

In case the patient chooses to sit down on one of the chairs
along the hallway, the robot starts approaching the patient to
reach the necessary distance for physical interaction with
the robot’s touch display (see Fig. 2). The patient can
then select to either pause or abort the training session.
If the patient chooses to pause, the robot will drive to
a non-obstructive waiting position permitting a continuous
observation of the patient such that the robot will not miss
the moment the patient stands up again and continues the
training. If the training is aborted, the robots guides the
patient to the waiting room where a closing dialogue takes
place. Physiotherapists are also able to check the results of
each training session afterward and may adjust the focus and
length of the next training session.

The following sections III-B and V provide more technical
details on the functional requirements derived from this
scenario.

B. System architecture

To manage the complexity of our application for SAR-
assisted gait training, we designed our system hierarchically
in multiple abstraction layers (see Fig. 4). Therefore, we
relied on the robotic middleware MIRA [8], allowing us
to decompose the application into modules, which can be
developed and tested independently.

1) Hardware Layer: The base of our robotic system is a
customized SCITOS plattform [24] with a height of 1.5m
and a footprint of 45 cm× 55 cm. The platform can reach
a speed of up to 0.9m/s. For obstacle avoidance, person
perception, and HRI, multiple sensors and actuators are
mounted on the base platform (Fig. 3 and [23] for a detailed
description).

As primary user interface, two touch displays are mounted
at different heights allowing standing or sitting patients to
comfortably interact with the robot.

To assess the patient’s gait during training, we utilize a
backward-directed Kinect2. Since the Kinect2 has a rela-
tively narrow field of view of 70◦, it is mounted on a pan-tilt
unit. With this configuration, we can actively keep the patient
in view [22] even when the robot has to evade obstacles or
persons encountered on the training track.

2) Skill Layer: The skill layer builds upon the sensor in-
formation and actuators of the hardware layer to provide the
core functions of our robotic gait coach. These core functions
can be categorized in modules for person perception, gait

1
.5

 m
, 

8
0

 k
g

Sensors Actuators

Panoramic color vision system

Controllable 6 DoF eyes

Touch displays with GUIs and 

loudspeakers

Two Asus RGB-D cameras

Differential drive with caster

Two 270° SICK-Laser scanners

Safety Edge

Safety Edge

Kinect2 RGB-D camera

on pan-tilt unit

Fig. 3: Sensors and actuators of our robot platform. A detailed
description can be found in [23].

analysis, navigation, and HRI. Only the main modules are
discussed in the following. For more technical details and
experimental evaluation, refer to the given references (see
Fig. 4).

Navigation: The core of our navigation system consists of
the motion planner and pose finding skills for determining
poses to approach and observe the patient when s/he takes
a break at a chair. These skills depend mainly on the input
of the localization and obstacle detection module providing
the current pose and the location of obstacles in the robot’s
vicinity. Both localization and obstacle detection can process
2D laser and 3D information [32], [33]. Since we are oper-
ating on the hallway of a hospital where we may encounter
other persons, the robot’s movement must be able to adapt
to the current situation. To account for these dynamics, the
motion planner and the pose finding modules use a multi-
objective optimization approach. While the motion planner
uses an evolutionary algorithm to find safe trajectories which
also keep the patient at a predefined distance to the robot,
so that the patient is fully visible by the Kinect2 [22], [35],
the pose finding modules uses particle swarm optimization to
calculate the best poses to approach and observe the patient
[36], [21].

Person Perception: We use a multi-modal person tracking
framework [25] which is not only capable of estimating the
positions and velocities of persons in the robot’s vicinity, but
also to re-identify the patient among all detected persons.
This is crucial for our training application since on the
hallways other persons (e.g. hospital staff or guests) may
cross the robot’s path. To track position and velocity, a mul-
tivariate Kalman filter is utilized. As detection modules, we
use OpenPose [26] and a laser-based detector able to detect
persons’ legs, even with mobility aids [27], i.e. crutches,
walkers or wheelchairs. For re-identification, we rely on face
features [30] and the patient’s overall appearance by using
a metric-learning approach with color and texture features
[29].

Gait Analysis: The Kinect2 is the primary sensor for
our gait analysis algorithm. By using it in conjunction with
Microsoft’s SDK [31], we can utilize a fully functioning 3D
skeleton tracker which robustly estimates a 25-joint-skeleton
in real-time (30 fps). To describe the patient’s gait, we extract
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Fig. 4: Hierarchical architecture of the robot’s functional system. A detailed description of the skills developed within the ROGER and
ROREAS [6] projects together with the results obtained from functional tests can be found in the red highlighted references.

the step length, step width, stance duration, trunk lean, and
flexion/extension of knee and hip from the 3D skeleton.
Since the correct execution of the three-point gait is also
an important factor for the healing progress, we extract the
crutch position in reference to the patient’s feet from the
point cloud.

In collaboration with physiotherapists, we developed an
heuristic approach to detect pathological gait patterns. In a
previous study we performed training sessions with patients
where the robot did not actively analyze and correct the gait
movement but filmed their walks and captured their skeletons
provided by the Kinect2 at the same time. Subsequently,
a subset of videos was selected to be annotated by four
physiotherapists. Since the gait training robot should be able
to detect gait errors concerning step length, stance duration,
step width, upper body lean, flexion/extension of hip and
knee joints as well as the correct usage of the crutches, the
physiotherapists used an annotation tool to label the stored
video sequences with the predefined error labels. From the
labeled data, error and non-error classes were created and
thresholds by means of the F1-score were determined. For
some gait parameters, such as step width and knee flexion,
absolute values are appropriate to describe the patients’
motions, whereas in other cases calculating the ratio between
two values leads to more understandable gait features, e.g.
ratio between left and right stance duration as a measure
for gait symmetry. For further details on the extracted gait
features and assessment algorithms, refer to [23].

HRI: The HRI modules consist of skills for displaying
graphical user interfaces on the robot’s touch displays and
a text to speech system [39] (TTS). The TTS can generate
spoken language in real-time, allowing us to customize the
gait correction instructions to the patient’s needs.

3) Behavior Layer: Basically, behaviors can be regarded
as small state machines, parameterizing and coordinating the
activation and deactivation of skills. Each behavior realizes
a directly observable function of the robot by managing the
interplay of the required modules in the skill layer. The
training application mainly uses the behaviors “Guide User”
(using the skills, e.g. “Evolutionary Motion Planning”, “Keep

in View”) and “Gait Correction” (using the skills, e.g. “Gait
Feature Extraction” and “Gait Assessment”) for analyzing
the patients’ gait while guiding them through the clinic
hallways.

4) Application Layer: Top layer of the hierarchical system
architecture is the application as interface for guiding the
patient through the whole training. The application is imple-
mented as a state machine realizing the described training
procedure (see Sec. III-A).

IV. USER TESTS

In August and September 2019, the main study was con-
ducted with a focus on evaluating usability and user accep-
tance as well as the technical performance of the robotic gait
coach over four weeks within a clinical environment. The
tests took place at Waldkliniken Eisenberg, an orthopedic
hospital located in Thuringia, Germany. For the sake of
comparability, we only included patients in our study, who
met the requirements of having a hip total endoprosthesis,
being in a reasonable physical and psychological condition
otherwise, and were between 55 and 75 years old.

To avoid scheduling conflicts when two patients would
want to train at the same time, every user had preset
time slots of 30min. The actual training time within a
single session lasted from 5min to 10min, predefined by
a physiotherapist. Training sessions for a single patient took
place twice a day each day until the patients were released
from the clinic and were scheduled so that there is a rest
period of not less than three hours in between. Limited by the
daily routine at the hospital and the robot’s battery capacity,
a maximum of six patients per day could take part in the
tests.

At the first training, a physiotherapist was present, super-
vising the right usage of the crutches, giving useful hints
and monitoring the patient for signs of exhaustion or other
severe problems. From the second up to the last training
the patients practice on their own. Usually, the patients are
released at noon on the 6th day after operation, so they
had the possibility to use the SAR-assisted training up to
eight times during their stay (see Fig. 5). Since the robot
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Fig. 5: Possible training days (•) for patients with surgery (×) at
different days

could not operate on Sunday, because of legal restrictions
for the observing staff, we could only guarantee two days
of successive training for all patients taking part in the
study. Hence, only the results from these first two days are
used when judging usability and user acceptance. However,
reported results on robot functionality include all training
sessions.

Prior to the first training, the patients were asked to
provide a short self-assessment questionnaire regarding their
attitude towards technical innovations. Later on, they an-
swered a relatively short questionnaire immediately after
each SAR-training. The questions varied slightly between
each session and covered aspects of the patients’ attitude
towards the robot, their satisfaction with what happened
during the training, as well as system usability. Those
questions regarding usability also included the set widely
established by the System Usability Scale (SUS) [40]. Each
question could be answered using one of five response
options, ranging from Strongly Disagree to Strongly Agree.
The last questionnaire also asked the participants to provide
some biographical data, such as year of birth, gender, as well
as their highest school degree.

Student assistants of our lab were present during the tests
to observe the robot. They also assisted the patients with
the post-experiment questionnaires if necessary, but were
instructed not to interfere otherwise. Situations where the
robot could not resolve a major issue on its own, such as
system crashes or severe application failures, were exempt
from this rule. However, the patients were not informed
about this beforehand in order to not influence their initial
expectations towards the system.

V. RESULTS

This section is to presenting the results obtained during
the tests as described in the previous section.

A. Navigation

1) Guiding and Keep-in-View (KIV):
Guiding is the most crucial behavior to facilitate a success-

ful gait training. The requirements that have to be fulfilled
during this task can directly be derived from choosing the
Kinect2 as sensor and Microsoft’s Kinect SDK as skeleton
estimator to be used for gait assessment. With a field-of-view
of 60◦ × 70◦ (vertical × horizontal) and a maximum range
of 4.5m of the skeleton tracking algorithm, the following
criteria where chosen:

• distance between robot and user: 3.0m± 0.5m
• user within ±25◦ relative to the camera center

Fig. 6: (Top) Distance between user and robot over all training
sessions (Bottom) Angular position of the user in the Kinect2
sensor cone (static would be without the actively controlled PTU)

As can be seen in Fig. 6, the distance requirement was
satisfied 76.3% of the time. Closer analysis suggests that
situations where the distance was too short regularly occurred
at turning points at the end of the hallway, or when restarting
the training after a break. These situations are not critical
since the gait’s initial phase was not of special interest in
our application. Furthermore, a few patients were able to
walk faster than the robot was able to drive and followed
the robot at a relatively close distance. This can be seen
at the slight peak at around 1.25m − 1.5m measured from
the robot’s point of origin, which is approximately 0.75m
away from where the PTU and camera are mounted. If those
fast patients are excluded from the evaluation, the distance
criterion is met in 84.9% and the second peak is no longer
visible.

Results of the camera tracking algorithm can also be found
in Fig. 6 (lower graph). Since the robot’s operation environ-
ment was a mostly straight hallway, the expected gain from
using a PTU-mounted camera is relatively low. Therefore it’s
not surprising, that even without a PTU, the patient would
be within the angular constraints defined above most of the
time (99.6%). The active camera control is nevertheless able
to reduce the angular deviation significantly.

2) Approaching sitting Users:
Approaching the user is another core skills the robot has to

manage in order to provide a seamless training experience for
the patient. The robots performance in this task was judged
using the following criteria:

• distance to user, measured from midpoint of front
display to users’ center of mass

• deviation from the optimal orientation relative to the
direct line of sight



During all tests, the robot had to approach patients a total
of 267 times. The success of an approach maneuver was
evaluated afterwards by looking at the recorded camera im-
ages. In case of a success, the patient was able to comfortably
reach the touch screen without leaning and the deviation from
the optimal orientation was less than 30◦, otherwise it was
counted as unsuccessful. This lead to the following results
based on the points outlined above:

• average distance to user: 0.66m± 0.11m
• average orientation deviation: 10.1◦ ± 8.7◦

• successful: 86.5%
The suitability of the found pose is strongly dependent

(a) on how well the obstacles in the user’s vicinity are
perceived and (b) how accurate the position of the sitting
user is estimated. The unsuccessful maneuvers were mainly
caused by violation of these two factors. (a) The used ASUS
RGB-D cameras for 3D obstacle perception have a limited
field of view and need a appropriate observation pose to
fully perceive the obstacle configuration. For a seamless
training, we had to trade off the waiting time for the approach
maneuvers such that a fast but sometimes suboptimal obser-
vation pose was accepted which lead to some unsuccessful
cases. (b) The accuracy of the estimated position of the
patient is dependent on our person detectors. Since we use
visual detectors operating on RGB images, we can encounter
positional inaccuracies when projecting the detections from
the image plane back into 3D world coordinates.

3) Observing Users at Waiting Positions:
Whenever the patient takes a rest at one of the chairs

in the hallway, the robot has to determine a suitable, non-
obstructive waiting position near the patient. That also covers
the requirement to be able to observe the user during breaks
in order to detect the user standing up, and also possibly
leaving the training hallway. Reported results therefore cover
the following aspects:

• distance to wall
• alignment of robot to the wall (robot’s driving direction

should be parallel to the wall)
• do not stand in front of doors
• observability of the user (so that the PTU can center the

user in the Kinect2).
In 103 cases, the robot had to autonomously determine and

drive to a observing position. Similar to V-A.2, the recorded
data was used to determine whether or not the position taken
by the robot fulfilled the criteria. We did not set a fixed
thresholds for the quantifiable factors, but instead looked at
possible obstructions for other persons using the hallway as
well as blocked doors. In addition, we looked at the Kinect2
camera image to make sure that a clear line of sight did
persist. That lead to the following results:

• average distance to wall: 0.34m± 0.09m
• average deviation from optimal orientation parallel to

the wall: 1.5◦ ± 8.4◦

• successful: 95.1%
In the unsuccessful cases, the robot was misaligned to

the wall or partly covered a door but always kept the user
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Fig. 7: Total number of correction given by the robot during 91
trainings with 20 patients. In total the robot gave 615 gait error
related corrections. In comparison, during the same period the robot
gave 647 motivation increasing encouragements.

in view. The robot did not block the hallway or the door
completely, but made it more difficult to enter the door or
pass the hallway.

B. Gait Assessment

Besides the autonomous navigation, the ability of gait
assessment is the fundamental part of our presented SAR-
assisted training. During the usability study, 20 patients took
part in a total number of 91 trainings on 16 days. Thereby,
each patient did 4.6 trainings within total time of 35min on
average during her or his stay.

The robotic gait coach was configured to avoid trainings
without any feedback or, however, giving to much gait im-
provement suggestions could cause a high level of frustration.
Therefore, a positive feedback was triggered automatically
if no gait error was detected within the last 30 s. In case
of detecting multiple gait errors within one period, the most
important error was selected and the corresponding correc-
tion comment was triggered. In total, the robot delivered 615
corrections and 647 positive responses during all training.
This leads to an average amount of 6.7 corrections and 7.0
praises per patient and training. Fig. 7 shows the distribution
of all feedback given to the patients during their training.
Since gait errors concerning the usage of crutches as well
as asymmetric step lengths were rated as errors with high
priorities, their related outputs are preferred over other gait
errors detected at the same time. Therefore, they occurred
more often compared to the other errors. In a clinical
setting, the gait error distribution can be used to verify the
correct configuration of the error priority module as well as
the individual training progress. Comparing the number of
corrections with the number of motivating output, it can be
noticed that the ratio between these types is quite balanced.
Since we assumed positive effects for a successful and joyful
training, we configured our SAR-assisted gait robot to reach
a good balance of both types of outputs. As stated in Sec. V-
C this configuration led to a high level of user acceptance
and motivation during the training.

Following the usability study in September 2019, we
asked three physiotherapists to re-evaluate the quality of
corrections given by the robot. They used an annotation
tool to watch video snippets and marked the robot given
corrections they could confirm. The snippets were created
from the video footage which was captured by the Kinect2
camera during the patients’ training sessions. The end of each
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Fig. 8: Evaluation of the quality of robot given corrections. Columns
show the proportion physiotherapists agreement (green) on the
occurrence of the specific gait error and their disagreement (or-
ange) respectively. The higher the percentage of physiotherapists
agreement the greater the ability to recognize specific gait errors
properly.

video snippet is determined by the time a new correction
was given to the user. In order the get a video of sufficient
length, the start time is chosen to get a total video length of
at least 20 s. Start and end timestamps were utilized to select
the gait errors the robot had recognized within this time
span. During the annotations every therapist watched 702
videos and rated 1399 proposed gait errors. Subsequently,
the ratio of agreement between the gait errors as recognized
by the physiotherapists with those detected by the robot
was computed. The results of this evaluation are shown in
Fig. 8. It can be seen that there are some gait errors the
three physiotherapists mostly agreed with, whereas other gait
errors were rarely seen by the therapists.

C. Usability and Acceptance

Of all patients who matched the criteria outlined in Sec. IV
during that four week period, 20 volunteered to take part
in the tests. Two participants did not complete the final
questionnaire, so some biographical data about them are
unknown. They were assigned to the female group based
on their clinical records. Of the remaining 18 participants,
nine identified themselves as women and nine as men. Their
average age was 64 years. The participants had a significantly
higher education level than typical for their age group [41].
Nevertheless, their general affinity for technology only was
slightly above average [42]. Therefore it’s unlikely that
this factor would positively bias their view on the robotic
gait trainer. Eight, respectively three patients, had already
experienced “a robot” in person or did own one. Even though
this was not explicitly asked for in the questionnaire, these
are likely vacuuming robots or similar appliances.

During pauses as well as when the training begins or ends,
the robot has to operate very close to the patients to allow
for a comfortable interaction with its touchscreens. Still,
most of the patients (18/20) felt very safe when interacting
with the robot in these and other situations and provided
positive feedback (20/20) on the robot approaching and
waiting for them whenever they take a break. Although this
is a remarkable result, further experiments will be required
to examine how the staff that was present during the tests
influenced this rating.

Inspired by the experience of physiotherapists, two aspects
were discovered which are expected to make a training

effective. On the one hand, the robot needs to recognize when
gait errors occur and correct them by giving appropriate
instructions. On the other hand, the robot should give positive
feedback if the patient walks without gait errors or puts
the robot’s feedback into practice. Occasional praises are
considered to keep up the patients motivation and joy while
training. The results showed, that all users felt motivated
by the robot and thought they’d train more often with the
robot than on their own (“I’d never be this fit without
him [the robot]!”, “I’d really like to train with him again
tomorrow.”). When asked for the reasons of this increased
motivation, all said they enjoyed being positively encouraged
by the robot, while still 17 of 20 also felt motivated by
the correction hints they got. Three users would like to get
even more positive feedback, while 14 felt that on some
occacions they were being corrected although they did walk
properly. Seemingly neutral quantitative feedback, e.g. about
their average walking speed and the distance covered during
training, was put into perspective by the users themselves
and provided another source for self-motivation, e.g. “I was
very happy to see, how I walked a little faster each time.”.
In general, there seems to be a generous level of trust in the
SAR regarding the correctness of what is proposed by the
robot (19/20 users).

In general, the participants found the robot easy to handle
in most cases, with only one individual disagreeing after the
first two training sessions. All individual factors combined
lead to a very favorable overall rating of 90.7± 7.27 points
on the SUS (range: 0-100). Interestingly, older participants
were more positive in their view towards the robot-assisted
self-training.

VI. CONCLUSION

The project ROGER aimed to develop a mobile Socially
Assistive Robot (SAR), which supports patients with hip
endoprosthesis during their self-training to relearn a physio-
logical gait. To reach this goal, three aspects are considered
to be important for a successful training with a robotic
coach. First, a robust collision avoiding and user-centered
navigation, which guides the user along the hallway and
reacts when the user slows down or takes a seat in order
to have a rest. Secondly, a reliable person perception, which
is able to keep the patient in view and distinguish him/her
from bystanders. Finally, for a successful and motivating
training a real-time gait analysis with gait error recognition
and immediate corrective response is crucial. To investigate
the benefit of robotic self-training, we conducted a user
study over four weeks with 20 patients in ”Waldkliniken
Eisenberg” (Germany). The technical investigations were
accompanied by a sociological study on usability and accep-
tance. Both investigations showed promising results. Almost
all patients felt safe and motivated using the robot, indicating
that the performance of our user-centered navigation and user
perception reached a level where an autonomous training
is possible most of the time. Concerning navigation and
person perception, further improvements are still needed
for a fully autonomous training, such as increasing the



positional accuracy of the 3D obstacle and person detection,
especially during situations where the robot is very close
to the user. In terms of the given robot corrections the
results showed that not all corrections were confirmed by
consulted physiotherapists. Generally, the physiotherapists
rated the robot as being potentially helpful and supportive
if becoming an additional part of the therapy, because it
would lead to more time for hands-on therapy within their
narrow schedule. Further investigations could be done to
tweak the gait correction module on base of a larger set of
annotated gait errors. Another promising approach could be
the exploitation of deep leaning methods due to their proven
ability to recognize patterns in spatio-temporal sequences.
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