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Abstract. Appearance-based person re-identification is very challeng-
ing, i.a. due to changing illumination, image distortion, and differences
in viewpoint. Therefore, it is crucial to learn an expressive feature embed-
ding that compensates for changing environmental conditions. There are
many loss functions available to achieve this goal. However, it is hard to
judge which one is the best. In related work, the experiments are only per-
formed on the same datasets, but the use of different setups and different
training techniques compromises the comparability. Therefore, we com-
pare the most widely used and most promising loss functions under identi-
cal conditions on three different setups. We provide insights into why some
of the loss functions work better than others and what additional bene-
fits they provide. We further propose sequential training as an additional
training trick that improves the performance of most loss functions. In our
conclusion, we provide guidance for future usage an d research regarding
loss functions for appearance-based person re-identification. Source code
is available (Source code: https://www.tu-ilmenau.de/neurob/data-sets-
code/re-id-loss/).
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1 Introduction and Related Work

For appearance-based person re-identification (ReID), there are two strategies
for learning a feature embedding using deep convolutional networks (see Fig. 1):
First, the training can be formulated as a classification problem, where each
person in the training set represents a separate class. By fitting the model this
way, the penultimate layer forms a meaningful feature embedding that can subse-
quently be used for RelD. Second, the feature embedding can be learned directly
using tuples of person images including a match and a mismatch. The objective
is to create feature vectors being more similar to each other for matching pairs
than for mismatches. In both strategies, the choice of a suitable loss function is
crucial.

This work has received funding from the Carl Zeiss Foundation as part of the project
E4SM under grant agreement no. P2017-01-005.
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Fig. 1. Basic concepts for learning a feature embedding by applying different loss func-
tions. Left: Formulation as classification problem. Right: Triplet-based training.
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Figure 2 shows applicable loss functions, categorized into three types. The
state of the art for RelD most often uses a combination of up to three loss func-
tions simultaneously for training. Usually, one loss function from each category
shown in Fig.2 is selected. A popular baseline [10] composes softmax loss [1],
triplet loss [11], and center loss [16]. Therefore, recent work mainly builds on
these loss functions, despite there being more advanced loss functions available
in each of the categories.

The single influence of these loss functions is rarely evaluated. In [6], the
performance of softmax loss [1], a.k.a. ID loss, and its extensions multiplica-
tive angular margin loss (MAML, A-Softmax, SphereFace) [8,9], additive cosine
margin loss (ACML, CosFace) [13,15], and additive angular margin loss (AAML,
ArcFace) [2] is compared. However, this comparison is done using a very weak
baseline (see Table 1). There is also related work that evaluates the individual
influence of loss functions for RelD, e.g., center loss [16] was used in [7] and ring
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Fig. 2. Systematization of loss functions. Arrows show which loss functions improve
previous ones. In our analysis, we incorporate loss functions of all three categories.
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Table 1. Results of related work using a ResNet50 backbone on the Market-1501
dataset compared to our results using the same backbone with modern training tech-
niques [10] and an identical setup for each loss function. A “— signifies that the loss
function was not evaluated on Market-1501 in the paper.

Paper Ours

Loss ReID Rank 1 mAP Rank 1 mAP
Center Loss [7] — — 944  85.3
Ring Loss [5] — — 94.7  86.1
Triplet Hard Loss [4] 84.9 69.1 924 827
Softmax Loss, a.k.a. ID loss [6] 71.0 46.3 931 82.0
MAML (with [w;]|2 = 1), 6] 784 56.0

a.k.a. A-Softmax (SphereFace) [3] 944 836 952 879

[12] 924 838

ACML (CosFace) 6] 77.8 562 954 87.7
AAML (ArcFace) [6] 79.2 573 955 881
Circle Loss [12] 942 849 955 884

loss [19] was used in [5], or introduced new loss functions, like circle loss [12],
triplet hard loss [4], or other triplet loss extensions as in Fig. 2. All these papers
share the same problem: They either compare with a weak baseline (mainly soft-
max loss, triplet loss, or MAML) or do not compare with other loss functions at
all but use the loss functions in another context. Other loss functions (Attribute
Adaptive Margin Loss, Viewpoint-aware Loss) need additional label information
(attributes, camera IDs, etc.) and, thus, are not comparable. A second problem
can be seen in Table1: Even if they compare with the same baseline (MAML
with ||w;|l2 = 1), the results are not comparable at all. This is mainly due to
different setups that include only subsets of new training techniques introduced
in recent years that significantly improve results [10]. Table1 also shows the
performance of the single loss functions in our experiments on Market-1501 [18§]
using the same backbone as the papers above — a ResNet50 — and the training
techniques of [10]. Our results are consistently better than the results reported in
the respective papers. This confirms that likely some of the training techniques
are missing in these papers or hyperparameters are not carefully tuned.

In order to find out, which loss functions of each category are most useful
for RelD, we evaluate the effectiveness of solely applied loss functions on three
different setups. Therefore, our contributions are three-fold:

1. Our evaluation is the first attempt towards a more fair comparison of the
most promising and most often used loss functions for ReID under identical
conditions on strong setups.

2. Due to different setups, we gain insights into why some of the loss functions
work better than others and what additional benefits they provide.

3. We propose sequential training as an additional training trick that improves
the performance of most loss functions.
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2 Loss Functions

In our comparison, we include the typical baselines for the three categories of loss
functions — triplet (hard) loss as metric loss, softmax loss as classification loss,
and center loss as feature constraint loss — as well as additive angular margin loss
as the most promising classification loss without adaptive margin and without
side information based on benchmark results in RelD and face identification, ring
loss as the most promising feature constraint loss based on benchmark results
in face identification, and circle loss as the most promising loss with weighted
similarities based on how far they are from the optimization goal. Circle loss can
be formulated as metric loss or classification loss. We report the classification
loss results since, in our experiments, this version clearly outperforms the metric
loss version.

2.1 Metric Loss

Most metric loss functions train a feature vector x directly with triplets of an
anchor x%, a positive xP, and a negative x” [4,11]. As shown in Fig.1, the
objective is to make the distances of matches d(x*,x?) much smaller than the
distances of mismatches d(x%,x™). The metric loss functions differ in how the
triplets are compiled and how deviations from the objective are penalized.

Triplet Hard Loss (THL) [4] builds triplets of P random classes and K images
per class for each mini-batch. Then, for each person ¢ and anchor a, the hardest
positive p¢ and hardest negative 1 triplets of this batch that violate the objec-
tive the most are selected. Thus, the loss Ly, is calculated as in Eq.1 with
either a hard [11] or a soft margin [4].

Ly, _PKZZf Py i) (1)

i=1 a=1

Frtora(. ) = maxx (¢ +m —nf.0) 5 = max [lxf —x]

Fsopt(p2,7) = In (14 77 A= min [x¢ —x7s

j=1...P
n=1...K
J#i

2.2 Classification Loss

When using a classification loss, a classification layer with each person in the
training set as a separate class is added after the feature vector x during training
(see Fig. 1). The general equation for a mini-batch of size N and K classes, with
y; being the class label of the i-th mini-batch sample, is as follows:

N
1 efp(x'iawy,;)
L ass — xr E -1 2
Cl N = 08 <efp(xivai) + Z efn(x'iawk') ( )
n k=1..K
k#yi
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Softmax Loss (SL) [1], a.k.a. ID loss, applies a cross entropy loss on a softmax
output layer. Therefore, f, and f,, in Eq.2 are defined as:

Fob(xiy Wy, ) = Xi - Wy, + by, SR (i wi) = xi - Wi, + by (3)

Additive Angular Margin Loss (AAML) [2] is an extension of SL. It normal-
izes the feature (||x;|l2 = ) and weight vectors (||w;|2 = 1), removes the bias
(bj = 0), and adds a decision margin m regarding the angle 6., .,, in order to
increase the inter-class distance and decrease the inner-class variance. Therefore,
fp and f,, in Eq.2 are defined as:

FAMME (o w,) = 70050 ey, 1) W

fT/L;AML(Xi’ W) = 7 cos(Ox; wy)
X; W,

with cos(0x,w,) = Sxiw; = T

(Oxiow;) = Sxiw; [xill2 - Iw; ]2

Circle Loss (CirL) [12] implements a circular optimization goal. Therefore, f,

and f, in Eq.2 are defined as:
o (ki Wy,) = v - max(—(sx,,w,, — 1) +m,0) - (5w, —1+m)  (5)

fsirL(Xia Wk) =" I’Ila.X(sxi,w1C + m, 0) : (Sxiywk - m)

2.3 Feature Constraint Loss

Loss functions of this type restrict the feature vector in a classification setting.
Usually, it is scaled by a weighting factor A and added to the classification loss.

Center Loss (CenL) [16] forces the model to learn feature vectors with low
distances to their respective class centers c,,. Therefore, the inner-class distance
is reduced. For a mini-batch of size N the loss Lcenr, is defined as:

A N
LCenL = 5 Z HXZ — Cy, % (6)
i=1

Ring Loss (RL) [19] forces the model to keep the feature vector on a hypersphere
with a radius R, which leads to more robust feature vectors. The loss Lgry, with
the trainable parameter R is defined as:

A N
I = 57 3 (Il = ) 7

3 Experiments

In our experiments, we compare the performance of the six loss functions
described above under identical conditions on three strong setups. In addition,
we analyze the costs of a setup that follows best practices in real-world appli-
cations, the complexity of training, the influence of different initializations in a
sequential training setting, and the generalization abilities.
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3.1 Setup

In order to achieve comparability with most state-of-the-art RelD papers,
we use a ResNet50 as backbone, pre-trained on ImageNet unless otherwise
stated (PyTorch weights as in state of the art). For optimization, we either used
SGD with momentum of 0.9 or Adam with standard parameters. The extensive
hyperparameter search for each loss function included the learning rate, batch
size, weight decay, batch composition, as well as scaling/weighting factors and
the margin if applicable. All experiments were conducted using TensorFlow 2.

For assessing the RelD performance, we report the mean Average Preci-
sion (mAP) and the rank-1 accuracy (rank 1) in percentage values. We applied
the single query protocol of [18] by running the evaluation code of [4]. The sim-
ilarities of the feature vectors were calculated with cosine similarity in favor of
the Euclidean distance since results are better regardless of the loss function
used. For metric losses, it does not make a significant difference to the results,
but for all other loss functions, the results always improve by a few percentage
points.

Baseline Setups

In our experiments, we compare the models trained with the different loss func-
tions on three baseline setups: The strong baseline as described in [10], the Multi
Granular Network (MGN) architecture as described in [14], and a simple base-
line, that we derived from [10]. In all setups, we use ResNet50 as architectural
backbone. We trained and tested on the Market-1501 [18] dataset.!

Modifications for Simple Baseline: With the simple baseline, we follow two
strategies: First, we intend to leave some room for improvements by the loss
functions and, therefore, deliberately abandon some of the training techniques
described in [10] that are not essential. Namely, these are label smoothing, a
change of the last stride in the backbone, random erasing augmentation, and a
batch normalization neck.

Second, we want this training setup to follow best practices in real-world
applications. These include the use of validation data to avoid optimizing on
the test data, and the use of side data to learn a better generalization. We used
DukeMTMC-relD and CUHKO03-NP as side data. The validation set is obtained
by splitting off 10% of the training data. For this, we randomly drew from the
904 persons with the most samples. This resulted in 36,823 training samples
incorporating 2,220 different persons for our simple baseline setup. We further
employ an additional fully connected layer after the last ResNet block. This
can reduce the size of the feature vector, which is particularly relevant for some
applications with real-time and data-storage constraints. In the following, we
simply refer to this setup as baseline.

! We also evaluated the performance on DukeMTMC-relD, and CUHKO03-NP, but
since the results are very similar and due to space restrictions, we decided in favor
of reporting only the Market-1501 results in this paper.
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3.2 Costs of a Setup for Real-World Applications

While using these best practices in our baseline setup brings us closer to a real-
world application, this choice comes with a cost that diminishes the test results
on the typical publicly available datasets in ReID. Therefore, we only use these
techniques for comparison on our first baseline. For the strong baseline and MGN
architecture, we follow the typical protocol from the state of the art in order to
ensure our results are comparable.

In the following, these costs are described numerically using an example. In this
example, we have trained the baseline with THL and SL. Our experiment reveals
that if we add the training data of DukeMTMC-relD and CUHKO03-NP as side data
to the training and not just use the Market-1501 training data, the test result on
the Market-1501 test data worsens by about 2 percentage points (p.p.) for the mAP
and by about 1 p.p. for rank 1. If we split off validation data from the training data,
then the mAP worsens by another 3 p.p. and rank 1 by about 2 p.p. These declines
were expected since when using side data, the network no longer overspecializes
for the test data on the dataset and when using validation, the training data is
somewhat reduced and the hyperparameters are no longer optimized on the test
data. Furthermore, the use of the additional fully connected layer also results in
a decrease in performance by slightly under 2 p.p. for mAP and 1 p.p. for rank 1.
However, it is not possible to avoid this if smaller feature vectors are needed on the
target system. Likewise, as also stated in [17], this shows that an additional fully
connected layer, which is still often used in current works (e.g. in MGN [14]), does
not necessarily have to be advantageous.

3.3 Complexity of Training

All loss functions achieve bad results with randomly initialized weights. There-
fore, transferring ImageNet weights is crucial for representation learning in RelD.
In the following, we report challenges we have faced during training:

Easy to Train: We did not face any difficulties in learning a feature embedding
for ReID using SL. Similarly, it is easy to train with a constraint loss (RL, CenlL).
We found that a good choice of the loss weighting factor A\ is important. The
larger the feature vector is, the smaller A has to be chosen since, at the beginning
of the training, the £ norm of a large feature vector is huge, resulting in a huge
constraint loss. Otherwise, the constraint loss would dominate the overall loss,
which is composed of SL and the constraint loss. For THL, in our experiments, it
was crucial to apply some kind of learning rate warm-up. Except for that, there
is no difficulty.

Hard to Train: Contrarily to SL, while it is easy and straightforward to imple-
ment the SL extensions AAML and CirL, these advanced loss functions are quite
difficult to handle. When initializing with ImageNet weights, the trained models
performed poorly if training converged at all. In order to overcome the problems
of having a margin right from the beginning of the training, we first pre-trained
with SL on RelD data, transferred the weights, and then started training with
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the SL extension. We refer to this approach as sequential training. Figure 5 gives
evidence that pre-training on ReID data simplifies the problem to be solved (see
Sect. 3.5).

3.4 Experimental Comparison

For each loss function included in our analysis, we performed an extensive hyper-
parameter search to ensure a fair comparison. Figure3 shows the individual
results? using the best hyperparameter combinations for all tested network archi-
tectures. The best models were determined based on the largest mAP, as the
mAP is closer to a realistic use case, as not only the simplest example from
many gallery matches is assessed in the evaluation, as it is the case for rank 1.

(a) mAP - Baseline (b) Rank 1 - Baseline (c) Strong Baseline (d) MGN
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Fig. 3. (a, b) mAP and rank 1 baseline results for different feature vector sizes trained
with the best hyperparameters for each of the loss functions. (¢) mAP and rank 1 results
for our strong baseline and (d) the MGN architecture for each of the loss functions.
All results are reported on the Market-1501 [18] test set.

Baseline: We evaluated six different feature vector sizes for each of the loss
functions. Figure3 (a) and (b) show the results for each loss function. The best
result is highlighted by a diamond. Based on mAP, CirL performs best, followed
by THL and AAML. Next up are the feature constraint losses RL and CenlL,
which were both used together with SL, whereas SL alone scores significantly
worse. When comparing the results over different feature vector sizes, it becomes
apparent that the largest feature vector (2048) does not always provide the
best result, e.g., for CirL, the best result is achieved with 1024, SL works best
with 64. Often, in more complex architectures, such as the local-feature-focused
MGN, additional fully connected layers are added in different heads after the
last ResNet block. Our results show that depending on the loss function that
is applied on such a head with an additional fully connected layer, the feature
vector size might be adjusted to achieve better results.

2 The standard deviation for 8 training runs of the best loss function in each case is
omap = 0.226%, 0,1 = 0.418% for the baseline setup, o,map = 0.079%, 0,1 = 0.114%
for the strong baseline, and opmap = 0.046%, o1 = 0.098% for MGN.
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Strong Baseline, MGN: To get a better comparison of the loss functions, we
also tested them on two appropriate state-of-the-art architectures, the strong
baseline of [10] and the MGN architecture [14]. The results of these experiments
can be found on Fig. 3 (c¢) and (d). Here, we also trained SL together with THL
(SL + THL), as this is a common approach. The best loss functions on these
two architectures are AAML and CirL, followed by SL+THL. For the strong
baseline, RL, CenL, and SL follow next, and THL scored the worst. On the MGN
architecture, all loss functions, with the exception of THL,? produce results in
a very close range of values. In this case, SL. + THL corresponds to the original
MGN setup proposed in [14]. For THL, it was applied on all heads, and for all
other loss functions, the THL heads were removed and SL was extended with a
constraint loss or replaced with a classification loss.

Findings: In general, all experiments have shown that AAML and CirL achieve
the best results and far surpass the still often used SL. The comparable per-
formance of AAML and CirLs also shows the necessity to always compare with
strong reference approaches on a strong setup when introducing a new loss func-
tion, since the postulated superiority of CirL for ReID in [12] is only due to a
weaker reference approach.

It can be seen that all the loss functions perform differently depending on
the architecture. For the baseline, which corresponds to a typical architecture a
metric loss is applied to, THL is on a par with AAML and CirL.. On the strong
baseline, however, THL is among the weakest loss functions. Mainly this is due to
training techniques in the strong baseline and MGN that help the classification
loss functions to learn features better suited for cosine similarity, but do not
benefit (Euclidean-distance-based) metric loss functions equally strong.

Furthermore, RL beats CenL on the strong baseline. However for MGN it is
the other way around. This shows that the architecture plays a decisive role when
choosing a loss function. It also shows that when developing new loss functions,
a comparison with existing ones should always be done on various setups.

3.5 Generalization Ability and Sequential Training

Two aspects will be examined in this section. First, the generalization abilities of
the loss functions are investigated by using validation data. Second, the sequen-
tial training of loss functions is examined in more detail. These investigations are
performed on our baseline setup, since it follows best practices as described in
Sect. 3.1 and Sect. 3.2. Especially generalization abilities are a quality that is in
great demand in real-world applications and is often disregarded in the state of
the art with the typical approach of hyperspecialization of training methods on
public datasets. Fig.4 shows the test and validation results of the best models
from Fig.3 (a) and (b). Furthermore, the results from our sequential training
experiments are shown. The models with ImageNet in the index were initialized
with weights from an ImageNet training and the models with SL in the index

3 Results for THL (mAP: 79.38% and rank 1: 90.80%) are omitted in Fig.3(d) for
visualization purposes.
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Fig. 4. Comparison of validation and test results. The validation split is taken from
the training set of Market-1501, DukeMTMC-relD, and CUHKO03-NP. The test data
are from Market-1501.

were initialized with weights from a previous ImageNet-initialized training with
SL on RelD data.

Generalization: First, we examine the difference between validation and test
results, and thus the generalization abilities of the loss functions. As mentioned
in Sect. 3.1, we split the training data into a training and a validation set.
Images in the training and validation set are disjoint but comprise the same
persons. In contrast, the test set contains different persons. Therefore, on the
validation set, we measure the model’s ability to distinguish known persons, while
on the test set, we measure the generalization ability to unknown data. CirL
and AAML achieve the best validation results by a wide margin. The constraint
losses, THL, and lastly SL follow in descending order. When comparing the mAP
test results, THL is about as good as AAML and CirL. This shows that THL is
less likely to memorize the classes in the training data and more likely to achieve
good generalization ability. This is a reasonable explanation why THL is used
in addition to SL (SL + THL) in current approaches, since according to these
results, the additional use of a metric loss in addition to a classification loss
induces the network to develop better generalization capabilities. This is also an
important conclusion for practical applications where the generalization abilities
of a network should be maximized.
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Fig. 5. Different initializations influence the distributions of inner-class angles oziva,;
and inter-class angles 6y, ., (training data).
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Sequential Training: In order to train with AAML and CirL successfully, we
had to initialize the models with weights from a previous training with SL on
the RelD data. This approach is not described in the state of the art, but this
is the easiest way to achieve similar results to the state of the art when training
with these classification loss functions that introduce a margin. For a closer
look at why this sequential training works so well, Fig. 5 shows the inner-class
and inter-class angles when training with AAML®*. As can be seen, in a typical
initialization with ImageNet weights (gray), the inner- and inter-class angles are
distributed in the same range of values and, thus, very large errors occur in
the beginning of the training. If weights from a pre-training with SL on RelD
data (purple) are used for initialization, then already at the beginning many
inner-class angles are by m smaller than the inter-class angles, so the problem
becomes simpler and the training easier to handle. Thus, right from the start
the loss functions mainly focus on hard positives and hard negatives that violate
the margin constraint.

Since this has led to many benefits for AAML and CirL, we further examined
whether other loss functions that complicate the optimization target also benefit
from such an approach. The results of these sequential training experiments are
shown in Fig.4. As it turns out, RL: and CenL benefit from this approach. The
optimizer has an easier problem to solve right at the beginning of the train-
ing. Thus, the training simplifies, which results in a better generalization. This
can be seen in Fig. 4 when comparing the validation and test results with (RLgy,,
CenLgy,) and without sequential training (RLimageNet, CenLimagenet). While val-
idation results are similar, test results are better with sequential training.

On the other hand, the THL results worsen with sequential training. Most
likely, many class-specific aspects of the training data are learned in the pre-
training with SL. Thus, there is no way to learn an equally good generalization
as in the less biased initialization with ImageNet weights. This is confirmed by
the larger gap between validation and test results for THLgy, in comparison to
THLImachct~

4 Conclusion

Our analysis is the first step towards a fairer comparison of loss functions for
ReID. We compared the most widely used and most promising loss functions on
three different setups. We confirmed the superiority of the softmax loss extension
additive angular margin loss (AAML) and circle loss (CirL). We also analyzed the
effect of sequential training, which is a necessity for AAML and CirL to perform
well but also benefits constraint loss functions by improving the generalization
ability. Furthermore, we observed that the performance of the loss functions
strongly depends on the architecture and the training techniques used, which
needs to be taken into consideration for loss function selection. Thus, a decisive
ranking of all loss functions is not feasible as it would change depending on

4 The angles of AAML are shown instead of those of CirL, because here the margin
of AAML to be learned can be better visualized.
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the training setup. Modern training techniques seem to benefit classification
and constraint loss functions but do not improve the performance of (Euclidean-
distance-based) metric loss functions, like triplet hard loss (THL), equally strong.
However, THL tends to generalize better than classification and constraint loss
functions. Therefore, it is understandable why metric loss functions are still in
use as a complement to classification loss functions. Furthermore, we examined
what costs are to be expected on a public test dataset when typical best practices
are used for a real-world application.

As a consequence, for future work, we suggest to benchmark new loss func-
tions on different setups, including a setup following best practices for real-world
applications, and to compare against strong reference approaches. Based on our
findings, we propose to always try sequential training instead of immediately
starting training with ImageNet weights, as this is beneficial in most cases and
allows stronger constraints to be enforced by loss functions. We also suggest to
finally replace the softmax loss with a more advanced classification loss function.
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