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Abstract. Through deep learning, major advances have been made in
the field of visual road condition assessment in recent years. However,
many approaches train from scratch and avoid transfer learning due to
the different nature of road surface data and the ImageNet dataset, which
is commonly used for pre-training neural networks for visual recognition.
We show that, despite the huge differences in the data, transfer learning
outperforms training from scratch in terms of generalization. In exten-
sive experiments, we explore the underlying cause by examining various
transfer learning effects. For our experiments, we are incorporating seven
known architectures. Therefore, this is the first comprehensive study of
transfer learning in the field of visual road condition assessment.
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1 Introduction

Aging public roads need frequent inspections in order to guarantee their perma-
nent availability. In many countries, this includes the standardized visual assess-
ment of millions of images. Formerly, due to the lack of sophisticated approaches, 
the evaluation was typically done manually by human experts. Since large, anno-
tated road surface image datasets, like the German asphalt pavement distress 
(GAPs) dataset [12], have been published recently, automated visual road sur-
face analysis by machine learning approaches came into focus. In recent years, 
deep learning approaches dominated this field of application, e.g. for detecting 
cracks [2,3,6,10,16,22,23,27,32,37,39–41], potholes [7,25], or multiple types of 
surface distress simultaneously [1,9,11,13,24,29,30,36]. However, most of these
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approaches design their own neural network, or train well known architectures
from scratch, mainly justified by big differences of road images to the ImageNet
dataset, which is typically used for pre-training on visual data. For a description
of these methods, we refer to the surveys [5] and [15].

In this paper, we perform extensive experiments to analyze transfer learning
for visual road surface data analysis. In contrast to related work on transfer
learning in road surface analysis,
– we include more modern architectures in our analysis,
– we perform extensive hyper-parameter tuning for each experiment in order

to ensure a fair comparison,
– we evaluate how a changed input encoding does effect transfer learning,
– we evaluate the impact of freezing different proportions of the layers, and
– we analyze the effects of transfer learning in comparison to trainings from

scratch.

Consequently, in this paper we want to answer the following three questions:
How much will visual road condition assessment be improved by applying trans-
fer learning? What are the improvements achieved by? Which transfer learning
effects known from literature (see Sect. 2.2) do occur in our setting?

2 Related Work

Due to frequent inspections, many road surface images are available. All images
are analyzed by human experts. However, since results are needed in a timely
manner, in most cases the labeling is very coarse. Therefore, detailed annotations
are only available for a very small percentage of these data.

Since detailed labeling by experts is expensive, Seichter et al. [31] proposed an
approach where unlabeled data are analyzed regarding uncertainty of a trained
classifier. Thus, data worth annotating can be identified.

Even by increasing the percentage of annotations to a certain extent by
applying this method, the amount of available annotated data is still very lim-
ited. Thus, the purpose of our work was to ensure a good generalization on the
few training data by applying transfer learning.

2.1 Transfer Learning for Road Condition Assessment

In the following, we briefly analyze approaches, which utilize transfer learning
on road surface data or related applications, i.e. all kind of damage detection of
public infrastructure.

In [32] and [4], transfer learning was applied to a VGG16 and a ResNet-152
model, which were fine tuned on very few training samples without freezing lay-
ers. Both studies yield only mediocre results due to a limited amount of training
data and too many parameters to be tuned. Also having only few samples, in
[16,25], and [14], transfer learning was applied to a VGG16, an XceptionNet,
and an InceptionNet V3 model, while the weights of all layers but the last one
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was frozen. This led to better results. Zhang et al. [40], were able to fine tune
an AlexNet with only the weights of the first layer being frozen since they had
a larger dataset available in comparison to the studies above.

None of the aforementioned papers analyze the impact of transfer learning,
nor do they analyze the influence of any hyperparameters, like the amount of
frozen weights or the learning rate. The only paper analyzing transfer learning
in more detail in a related application is [28], that detected cracks in buildings.
The authors compared the generalization ability of seven architectures for a
varying number of training samples. During fine tuning none of the weights were
frozen. The authors did not compare their approach against training from scratch
and did not tune any hyperparameters. In particular, the learning rate has a
considerable influence on the generalization abilities. Therefore, the findings of
that study should be treated with caution.

2.2 Transfer Learning Effects

When applying transfer learning, two major improvements are reported in litera-
ture: Faster training and better generalization ability (e.g. in the comprehensive
survey of Zhuang et al. [42]).

Better Generalization. So far, generalization improvements by applying
transfer learning for road pavement distress detection has not been analyzed.
Therefore, we conducted experiments to analyze this issue. As reported in [38],
initializing a model with pre-trained weights yields remarkable improvements in
generalization. The improved generalization ability can be observed by a decreas-
ing gap between validation and test performance, which we will use as criterion.

Faster Training. On road pavement data, training with transferred ImageNet
weights as initialization is reported to converge within ten epochs [16]. But in that
study, all weights except the ones of the classification layer were frozen. No exper-
iments regarded convergence improvements by transfer learning, and the effect of
freezing weights were not investigated. Therefore, we analyzed the convergence
speed when all weights are adapted and compared to trainings where different pro-
portions of weights were frozen. Additionally, we compared results from transfer
learning with results achieved by trainings from scratch. We evaluated whether
the required training time reduces to a fraction of epochs in comparison to train-
ing from-scratch, which is often the case in other fields of application.

Feature Adaption and Selection. Kim et al. [20] analyzed transfer learning
effects in an application where material defects should be detected in microscope
images. They reported that mainly due to the fact that early layers in neural
networks tend to provide features which focus on simple structures, like edges
or brightness changes, they require less adaption to new datasets, even if they
are very different from ImageNet. This was also reported in [38]. Furthermore,
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Kim et al. [20] showed that during fine tuning of the pre-trained weights, a
kind of feature selection takes place instead of learning completely new features.
Unfortunately, they examined only one architecture, namely VGG. To address
this effect, we analyzed how much the pre-trained weights are changed in different
architectures during the fine tuning step of transfer learning. We also analyzed
whether a feature selection is observable when transfer learning is applied to
road pavement data and in case of more modern neural network architectures.

3 Setup

In the following, we describe our experimental setting.

3.1 Training

For transfer learning, we used the weights from pre-trainings on the ImageNet
dataset, which come with the models. We fine tuned on road surface data for 25
epochs, which is sufficient to ensure convergence, using SGD with mini batches of
size 32 and momentum of 0.9. During training, no further learning rate schedul-
ing was applied. To provide well founded results, we performed extensive exper-
iments with many different hyperparameter combinations for each model.

Hyperparameter Search. Per architecture, we examined at least nine differ-
ent learning rates and six different amounts of frozen layers in approximately
20% steps (0%, 20%, 40%, 60%, 80%, 100% excluding the fully connected lay-
ers). Since requirements are different for each architecture, we adapted the search
range for the learning rate individually. Overall 426 trainings were performed.

Reference: Training from Scratch. We trained each architecture from scratch
with randomly initialized weights for 250 epochs, which is sufficient to ensure con-
vergence. The best out of the three runs was used as reference for comparisons. To
ensure a fair comparison, a hyperparameter tuning regarding the learning rate was
applied.

3.2 Dataset

As representative dataset for visual road condition assessment, we utilized the
50k binary classification set of the extended version of the German asphalt pave-
ment distress dataset (GAPs v2) [34] that was suggested for experiments. While
the complete GAPs v2 dataset yields ca. 6.7M samples, the reduced set provides
50,000 training patches including 30,000 intact road patches and 20,000 damage
samples composed of all types of surface distress. Additionally, 10,000 samples
each are provided for validation, validation-test, and test. The four-way split was
chosen as proposed by Ng [26]. Thus, validation data are used to find the best
epoch, validation-test data for hyperparameter tuning, and test data only for
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the final evaluation. The validation set were taken from the same distribution as
the training data. Validation-test and test data were recorded on roads that are
geographically distinct from training and validation data. Different patch sizes
are available, including 224× 224 and 299× 299, which are typical for inputs of
ImageNet architectures. The label of the patch is based on the 64× 64 image
center, while the surroundings are needed as context. In [34], it has been found
that the 50k subset represents the complete dataset with millions of patches very
well. The results achieved on this subset are close to the results on the complete
dataset. Therefore, as proposed in [34], we decided in favor of this subset in order
to enable much more experiments.

3.3 Architectures

In our experiments, we analyzed the transfer-learning properties of seven widely
used architectures, namely AlexNet [21], VGG19 [33], InceptionNet V3 [35],
ResNet50 [17], XceptionNet [8], SE-ResNet50 [19], and MobileNet [18]. Table 1
summarizes their characteristics regarding input coding and model size.

All architectures are pre-trained on the ImageNet dataset. For VGG19,
InceptptionNet V3, ResNet50, XceptionNet, and MobileNet, we used the mod-
els available in the Keras framework. For AlexNet and SE-ResNet50, we used
publicly available implementations for Keras.

To address the differences in pre-processing shown in Table 1, we had to
adapt the transferred weights regarding input size (224 × 224), channel count
(1-channel grayscale) and input scaling ([−1, 1]).

3.4 Evaluation Metrics

Performance Measures. After each training epoch, we computed accuracy,
F1 score, and balanced error rate on the train, validation, and validation-test
dataset. On the test dataset, we computed the metrics only once, based on the
best epoch in terms of the validation-test performance.

Table 1. Characteristics of architectures included in our evaluation

Zero-mean Input Channel Input
Architecture in terms of scaling order size # Weights

MobileNet Gray-world assum. [−1, 1] RGB 2242 4,253,864
XceptionNet Gray-world assum. [−1, 1] RGB 2992 22,910,480
InceptionNet V3 Gray-world assum. [−1, 1] RGB 2992 23,851,784
ResNet50 ImageNet dataset [0, 255] BGR 2242 25,636,712
SE-ResNet50 Gray-world assum. [−1, 1] BGR 2242 28,141,144
AlexNet ImageNet dataset [0, 255] RGB 2242 60,965,224
VGG19 ImageNet dataset [0, 255] BGR 2242 143,667,240
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Additional Measures. We used the Euclidean distance of the weights before
and after fine tuning and an activation-sparsity score to evaluate the appearance
of a feature selection and the magnitude of weight changes during fine tuning as
proposed in [20]. The activation-sparsity score counts zero or close-to-zero values
with respect to a threshold for a given feature map.

4 Experimental Results

In the following, we compare the results achieved by transfer learning with train-
ings from scratch (Sect. 4.1). Based on these results, in Sect. 4.2, we analyze the
transfer learning effects previously described in Sect. 2.2.

4.1 Transfer Learning Vs. Training from Scratch

The performance gain of transfer learning for visual road condition assessment
has not been analyzed in related work, yet. Therefore, in our extensive experi-
ments, we analyzed multiple well known architectures with tuned hyperparam-
eters (see Sect. 3.1). The best results for each architecture are shown in Fig. 1
and Table 2 for the validation, validation-test and test subset of the GAPs 50k
dataset.

(a) Validation set (b) Validation-test set (c) Test set

Fig. 1. Absolute difference in F1 score between a training from-scratch and fine tuning.
+ marks, where transfer learning performs better, – where it does not.

Figure 1 highlights the positive influence of transfer learning on the perfor-
mance. Clearly, no architecture has any drawback from using transfer learning.
Instead, we observe significant performance improvements for nearly every archi-
tecture and every subset of the GAPs 50k dataset. Most notably, the performance
on the test dataset increased significantly, which shows the improvement in gen-
eralization.

Especially the InceptionNet V3 benefits from using transfer learning, as
shown by the precision-recall curves in Fig. 2. Due to the improvement in gener-
alization, it does even perform better on the test set than on the validation-test
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Table 2. Comparison of the best results (F1 score) for each architecture using transfer
learning (TL) or training from scratch (FS), respectively.

Validation Validation-test Test
Architecture TL FS TL FS TL FS

InceptionNet V3 0.9441 0.9254 0.9024 0.8886 0.9143 0.8760
VGG19 0.9495 0.9231 0.9151 0.8940 0.9065 0.8794
ResNet50 0.9456 0.9206 0.9054 0.8925 0.8950 0.8485
MobileNet 0.9482 0.9241 0.9106 0.8854 0.8868 0.8334
XceptionNet 0.9473 0.9385 0.9155 0.9073 0.8842 0.8813
AlexNet 0.9089 0.9184 0.8895 0.8863 0.8604 0.8601
SE-ResNet50 0.9336 0.9276 0.8928 0.8881 0.8566 0.8414

set, which both contain road data geographically distinct from training data, but
only the validation-test set was used for hyperparameter tuning. Additionally,
on any subset of the GAPs 50k dataset, the transfer learning results are superior
to the results achieved by training from scratch.

Convergence. For all architectures, the training converged within 15 epochs
when transfer learning was applied. In comparison, training from scratch took
considerably longer and converged within 150 epochs. In conclusion, transfer
learning based on ImageNet pre-training speeds up the training significantly,
even if the application is considerably different from ImageNet.

Fig. 2. Precision-recall curves for InceptionNet V3. Training from scratch is shown as
dashed lines, transfer learning results as solid lines. The smaller gap between valida-
tion and test results for transfer learning (solid red and blue line) shows the better
generalization. (Color figure online)
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Hyperparameters. For each architecture, we performed a grid search to iden-
tify appropriate hyperparameters. The best learning rate for the individual archi-
tectures differed in a large range between 0.000355 and 0.1. Freezing layers turned
out to not improve the performance of any architecture. Therefore, these exper-
iments are omitted here.

4.2 Effects of Transfer Learning

According to literature, the following transfer learning effects should be observ-
able: Feature selection in the final convolutional layer, only small weight changes
in terms of Euclidean distance, and filters in early layers focus on simple features
and can be re-used.

Feature Selection. Basically, a slight increase of the sparsity from input to
output of the network can be observed for any architecture. Therefore, the final
feature map of each architecture tends to be the one with the highest sparsity.
Nonetheless, we found that the actual magnitude of sparsity highly depends on
the specific architecture and the actual image sample which is passed through
the network. Overall, we had no clear finding of an increase in terms of sparsity in
the final feature map, regardless of the architecture, even though our application
is significantly different from ImageNet as in [20].

We found that simple architectures like VGG19 or AlexNet tend to have a
high sparsity (50% or more) in the final convolutional layers, and thus do only
re-use some of the features. The activation-sparsity score counts zero or close-to-
zero values with respect to a threshold for a given feature map. This high sparsity
applies to the feature maps after transferring the weights as well as after fine
tuning. In contrast, all modern architectures except InceptionNet V3 tend to
have a sparsity of less than 10%. This means, more than 90% of the features in
these modern architectures are activated regardless of the input, and therefore
they re-use or re-combine most of the transferred features. Furthermore, while

Fig. 3. Sparsity: VGG19 (left) vs ResNet50 (right, logarithmic ordinate). The red lines
show the sparsity of the transferred weights from pre-training, the blue lines show the
sparsity after fine tuning. Best viewed in zoomed digital version. (Color figure online)
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the fine tuning leads to an increase of sparsity in the VGG19, the sparsity of
ResNet50 seems to be not affected at all (see Fig. 3).

Since we did not observe a clear feature selection for any of the examined
architectures, we assume the feature selection observed in [20] is an effect caused
by their dataset, the selected data samples, and the architecture (VGG), respec-
tively.

Additionally, we observed some basic patterns regarding sparsity, which
reveal insights on how the architectures work: In particular, ReLU activations,
1×1 convolutions, and Squeeze-and-Excitation blocks increase the sparsity dras-
tically. While the increase at ReLU layers is caused by negative activations, the
increase at the other layers is due to their feature selection effect. In contrast,
purely spatial convolutions lead to a decrease of sparsity.

Small Weight Changes. In addition to an increase in generalization ability,
transfer learning also offers a remarkable reduction in training time. Often, this
observation is explained as follows: Weights that were learned during the pre-
training require only small changes to fit the new dataset. In our experiments,
we observed that fine tuning had the following effects:

– For AlexNet and VGG19, in early convolutional layers, the weight changes
are lower than in trainings from scratch (Fig. 4), which suggests that these
features could be re-used. For intermediate convolutional layers, the weights
have to be adapted as much as in trainings from scratch. Features in late
convolutional layers are fine tuned less.

– For all modern architectures, weight changes were rather small. Features could
be re-used to a high degree, since weight differences in most layers are smaller
for fine tuning than for training from scratch.

– Because of their random initialization, weights in fully connected layers at
the very end of each architecture are changed drastically, even more than in
trainings from scratch. In AlexNet and VGG19, these layers contain more
than 90% of all weights. Therefore, in sum, weight differences are higher for
fine tuning than for trainings from scratch in these architectures.

– Due to the re-training of transferred color features, which make up ca. 50%
of the first-layer filters, we observed relatively strong changes in the first
convolutional layers regardless of the architecture. However, these changes
are lower than in trainings from-scratch, suggesting that some filters could
be re-used.

– Weights in pointwise convolutional layers and squeeze-and-excitation blocks
are changed significantly stronger than weights in other layers. We observed
clear peaks in the weight change diagrams for these layers in all modern
architectures. Both types of layers are responsible for combining or weighting
features of the previous layer. This indicates that previously learned features
are re-combined during fine tuning.

In summary, our experiments do not confirm that weights require less changes
when pre-trained weights were used for initialization. For some layers, even
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Fig. 4. Weight difference measured by euclidean distance of weights before and after
training for layers of the VGG19 architecture (top curves) and the euclidean distance
divided by the filter size (bottom curves)

greater weight changes were applied by the fine tuning in comparison to the
training from scratch. Instead, we assume that training is faster since early-layers
features can be re-used in classical architectures and features can be re-combined
in modern architectures. This re-usability of features trained on a large dataset
also has a positive effect on the generalization ability.

5 Conclusion

So far, transfer learning has not been examined systematically in the state of
the art for deep-learning-based visual road condition assessment. Therefore, we
performed extensive experiments to analyze the impact of transfer learning on
the performance in the application of road surface image analysis. The gener-
alization ability of all architectures considered in our analysis was significantly
improved by the use of transfer learning, although this application differs signifi-
cantly from the ImageNet dataset, which was used for pre-training. The training
time has been reduced to a fraction of the time required to train a network from
scratch. Furthermore, we analyzed transfer learning effects in order to explore
how different architectures benefit from transfer learning. Classical architectures
(AlexNet and VGG19) benefit from re-using features of early layers. Therefore,
weights in early layers are adapted less during fine tuning and the sparsity of
activations in mid and late layers is high. In contrast, for modern architec-
tures (InceptionNet V3, ResNet50, SE-ResNet50, XceptionNet), we observe a
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low sparsity of activations in all layers. During fine tuning, layers responsible
for combining and weighting features of previous layers are adapted more than
other layers. We conclude that modern architectures re-use a larger fraction of
features by re-combining them. Therefore, for deep-learning-based visual road
condition assessment, modern architectures, especially those that contain skip
connections, should be preferred over classical architectures in a transfer learning
setting.
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