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Abstract—Path planning for robotic manipulation is a well
understood topic as long as the execution of the plan takes
place in a static scene. Unfortunately, for applications involving
human interaction partners a dynamic obstacle configuration
has to be considered. Furthermore, if it comes to grasping
objects from a human hand, there is not a single goal position
and the optimal grasping configuration may change during the
execution of the grasp movement. This makes a continuous re-
planning in a loop necessary. Besides efficiency and security
concerns, such periodic planning raises the additional require-
ment of consistency, which is hard to achieve with traditional
sampling based planners. We present an online capable planner
for continuous control of a robotic grasp task. The planner
additionally is able to resolve multiple possible grasp poses and
additional goal functions by applying an MDP-like optimization
of future rewards. Furthermore, we present a heuristic for
setting edges in a probabilistic roadmap graph that improves
the connectivity and keeps edge count low.

I. INTRODUCTION

The work presented in this paper is part of the SONARO!
and E4SM? research projects, which aim at smart object
handover between human and mobile robots in industrial
human robot collaboration scenarios. The demands for a new
controller for the robotic arm arises from the security issues
when a robot manipulator tries to grasp an object held by
a human hand. Due to the possible movements of the hand,
we have to consider changing obstacle situations and also
changing goal positions for the grasp, while the robot is
executing the grasp. Existing open source software like ROS
Movelt® is not able to handle these dynamic tasks, causing
the development of a new planning and control framework
for our robots.

In the past reinforcement learning methods in the field
of robotics [1] have been received more interest and proved
to be very successful. In contrast to classical path planning
approaches in that domain the task to achieve is not defined
explicitly as a discrete goal position, but the desired behavior
is defined implicitly by a scalar reward function that defines
the desirability of certain states and actions the robot can
reach. From this reward function an optimal policy can
be derived, which defines the best action to do in each
possible state. A Markov Decision Process (MDP) [2] is

All Authors are with Neuroinformatics and Cognitive Robotics Lab,
Technische Universitit Ilmenau, 98694 Ilmenau, Germany.

This work has received funding from Free State of Thuringia from the
European Social Fund (ESF) for the research group SONARO and from
the Carl Zeiss Foundation as part of the project Engineering for Smart
Manufacturing (E4SM) under grant agreement no. P2017-01-005
978-1-6654-1213-1/21/$31.00 ©2021 IEEE

Uhttp://www.sonaro-projekt.de/

Zhttps://www.e4sm-projekt.de

3https://moveit.ros.org/

the fundamental model behind many reinforcement learning
approaches. It defines the possible state and action space as
well as the reward function. The aim of the learning methods
is to identify the internal structure of the process and extract
the optimal policy based on observed state transitions and
received rewards. This is tedious but can be shortened, if the
process model is known. Therefore, we want to benefit from
the global policy and the implicit formulation of the goal
by using a fully observable MDP without any incremental
learning.

The perception of the environmental state is permanently
changing the reward function and the process model (state
action spaces) of our robot’s MDP. A real-time capable
solution of that MDP for the optimal policy allows to extract
the immediate control commands for our robots in form of
a local trajectory covering only the current planning time
interval. The MDP operates on a state and actions space,
which is defined by the high dimensional configuration space
(C-space) [3] of the robot’s joints. In order to make a real-
time solution of the MDP possible, the state and action space
have been discretized. Only valid, which means collision
free, states and transitions are considered in order to limit
the complexity. Thus, there are two processes involved. First
is maintaining the set of sampled states and possible actions
in form of a graph of sampled nodes in C-space and their
possible transitions. This is similar to a probabilistic road
map (PRM) [4]. Second process involved is the solver of the
MDP which extracts the currently best policy (trajectory to
follow along the graph edges). Both processes are executed
in a loop in order to react in real time to changing situations.

II. RELATED WORK

Motion planning for high dimensional robot C-spaces in
the last years has become efficient with the introduction of
sampling based planners [5] like rapidly exploring random
trees (RRT) and its derivatives. For application in a dynam-
ically changing environment the planner in a closed loop
operation has to be fast enough to find a solution within a
hard deadline. Even if there are closed loop versions of RRT
[6] for two dimensional navigation, for the high dimensional
space RRT may be too slow when a consistent and optimal
solution has to be found. A suboptimal (only collision free)
solution can be found quickly, while optimality with respect
to additional constraints of the path (for RRT*) is only
reached with longer planning times asymptotically. There
are also methods like RRT*FND [7] trying to prevent a
complete reset of the found connectivity structure, when a
new obstacle is detected, but another approach to reusing a
plan in closed loop scenarios may be multi query planners
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like the PRM planners. Here a consistent graph of reachable
states is computed, where a plan can be derived from
different start points and also to changing goal poses as long
as the obstacles do not change. In case of updated obstacles
a collision check may be necessary for the existing roadmap
graph, which can become expensive. In [8] a Lazy-PRM has
been introduced, where collision checks are updated only
along the current path. Replanning on an updated graph and
collision checks on the path are done in a loop until a solution
is found. The efficiency of this approach led to its integration
into our system.

For the construction of a roadmap graph there are two
essential questions involved determining the effectiveness
and efficiency with respect to the quality of generated paths.
First, where to sample the next nodes? And second, to which
neighbors are they to be connected? In [9] an overview of
different techniques concerning the two aspects is given.

The number of connections in the graph is essential for
finding straight paths, but checking a connection for colli-
sions is expensive, hence one tries to minimize the number of
edges. In a graph with a variable density of nodes, which is
desirable for increasing the accuracy in the proximity of the
currently selected path and goal, the neighborhood can not
be defined by a simple distance threshold. In [10] a Delaunay
triangulation in the planning space is used in order to avoid
redundant edges in the graph, but this is very expensive to
construct especially in the high dimensional C-space. We
developed a heuristic that tries to approximate the Delaunay
triangulation in the edges and concentrates graph nodes at
the relevant parts of the C-space.

Once a roadmap graph exists the task objective needs to
be defined and an optimal path through the graph needs to be
found with respect to that objective. Usually, the robot just
gets one desired goal position, which is converted to C-space
by means of an inverse kinematic solver [11]. Then the goal
is to find the shortest path on the roadmap graph connecting
the current state and that goal position.

In contrast, in the domain of stochastic control and re-
inforcement learning, the goal usually is not just a discrete
position, but it is defined implicitly by means of a reward
function rating individual actions, while the system aims at
collecting as much reward as possible over time [12]. The
MDP is an example for a model of that kind. This reward
function approach offers the opportunity for introducing
additional constraints or alternative goals rather than just
minimizing the distance to a goal state, Furthermore, the
inverse kinematic problem can be avoided. Therefore, we
tried to merge together a PRM and an MDP solver.

In the following, the setup of the system and the definition
of the objective function for grasping dynamic objects is
discussed. Then the roadmap algorithm and the solver for
the MDP are explained, before some analysis of the system
applied to a real world setup is presented.

ITII. OVERVIEW OF THE MOTION PLANNER

An in the loop motion planner should be as fast, as
the perception system of the robot. That means it can

consider the current knowledge of the robots environment
with obstacles, humans, and objects to grasp, in order to
generate a movement trajectory for the individual joints of
the robot’s kinematic chain that covers the next time interval.
Although, raw data of the environment such as depth data
can be acquired by RGB-D cameras at a rate of 30Hz, the
recognition of more complex features, such as human hands
and objects, generally runs at a much slower rate. In our
system, the slowest recognition module is the segmentation
of human hands and objects, running at SHz on an Nvidia
Jetson Xavier mobile GPU. Therefore, the motion planner
also runs at SHz and provides trajectories for the movable
joints, while it has to operate on only one CPU core of the
robot’s on board PC.

The most time consuming part for the motion planner is
the collision test. In our system, we use a distance transform
[13] of the NDT voxel map [14] of the arms’ operation space.
The robot’s geometry is approximated as a tree of spheres,
that efficiently can be tested for distances to obstacles in
the distance transformed map. Also self collision tests are
realized by means of that sphere tree of the robot’s links.

In our application the robot has to grasp hand held objects.
Therefore, the object’s 6d pose is tracked and a set of suitable
grasp poses for the robot’s end effector is generated relative
to the movable objects pose (see. Fig. 2 right). Each of these
potential grasp poses is ranked by an estimated quality value
g;- Since parts of the grasp poses might be occluded by the
holding hand or are not reachable for the robot otherwise,
we decided to formulate an objective function that rewards
the robot, if it reaches one of the possible poses (see below).
Then, we let the MDP solver select implicitly among the
possible grasp poses, while considering other aspects like
obstacle distances and path length, rather than selecting the
best grasp pose explicitly as implemented in ROS Movelt.

A. Problem Definition

The possible states for the robot arms are represented by
the nodes s € N of a roadmap graph R = (IV, E). In each
state s the possible actions a for the robot are either to stay
(as) or to take one of the adjacent edges (ag/) in E yielding
to a neighboring state s’.

The individual states or nodes are more or less usefull for
solving a task. Therefore, task dependent rewards R, (s) and
R.(s,as ) for the nodes and edges respectively are defined
by a task dependent set of objective functions.

Let O = {(w;,r%,rl)} be this set of active objectives
with an influence weight w; each defining its own reward
functions 7% (s) and 7¢(s, as ). The actual reward for a node
s is then computed by

Ry(s) =Y _wirh(s) (1)
and the reward for a transition between s and s’ by

Re(s,as) = Zwiri(s,s’) ()

To solve for a reward maximizing policy in an MDP-like
manner, the immediate reward of an action in a state has
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to be defined. In contrast to ordinary discrete MDPs, the
actions have different durations depending on the distance
to go between two states. Thus, the overall reward for an
action results from integrating the node rewards and edge
rewards over the time [, it takes to traverse an edge from
sto s

This can be done by the following equation:

r(s,as) = (R"(S) —;Rn(s’)

A policy 7(s) is a mapping from states to the action to be
performed in that state. The aim of a MDP solver is to find
a policy 7* that maximizes the reward gained in the future.

+ Re (S; as’)) ls,s’ (3)

oo
T = argmax/ r(s¢, w(s¢))y Ot 4)
m t=0

The discount factor y €]0, 1| limits the time horizon. High
values result in a behavior, seeking only for the state with
the highest reward. On the other side, lower values take more
into account how much reward the robot will gain on the way
in its immediate future.

A movement trajectory 7" = (si,...,S;) can then be
queried from the policy 7*(s) by starting at the current robot
state and following the deterministic actions of 7* until the
end of the planning interval.

In sec. V we will describe how the optimal node sequence
T can be found given a set of constraints.

B. Objective Functions

For planning trajectories for our task of grasping moving
objects, we defined the following objectives.

a) Obstacle distance: This objective evaluates the dis-
tance dps(s) of a C-space configuration s and obstacles. The
reward starts at -1 for a distance of zero and increases linearly
up to O at a defined safety distance d,,;,. This objective
causes the robot to keep a safety distance to obstacles if
possible.
robst(s) _ mm{ dgbs.(s) —1, 0} 5)

n min

b) Distance of link to target pose: This objective is
used for moving to a specific pose g with the chosen link of
the kinematic chain. The reward is computed by

Tilinkdist(s) — e—d(fi(s),g)/a (6)
where s is the C-space configuration at the graph node of
interest that is converted into a pose in euclidean space via
the forward model f;(s) of the kinematic chain for the i-th
link. There can be multiple objectives of this type active at a
time and the planner tries to deliberate. The distance of two
6d poses d(a,b) is designed to punish rotational deviation
only if euclidean distance is already low.

c) Distance to grasp poses: This objective is similar to
the previous objective, but multiple target poses are handled
by a single objective by taking the maximum reward over
all poses to avoid superposition effects.

Tgrasp(s) = maX{qie_d(f(S)»gz:)/a} )

Where g; is the i-th grasp pose and g; its quality. Neverthe-
less, there will be multiple nodes with high reward in the
roadmap graph if they are close to one of the grasp poses.
d) Movement Costs: In order to prefer closer targets

over more distant ones, there must be a negative reward for
traveling along the edges. Here, we can chose a constant
re(s,as) = —1, since the time needed to travel along an
edge is proportional to its length in C-space. The overall
reward for passing a particular edge (see Equ. 3) in the end
will be the integral over time needed to pass the edge and
therefore, shorter edges are preferred.

By defining objectives in this manner it is easy to in-
corporate additional constraints or goals into the planning
algorithm.

IV. CONSTRUCTING THE ROADMAP GRAPH

The roadmap graph is constructed and maintained in the
ongoing planner cycle while aiming for the following goals:

« Keep it consistent with the environment model (collision
free with NDT voxel map),

« Discover connected areas of the reachable C-space,

o Optimize the resulting path (node positions) with re-
spect to the objective function.

As explained in the introduction, we use the roadmap graph
on the one hand for exploring the connectivity structure of
the collision free C-space by random sampling, and on the
other hand a subset of the nodes are directly used as the
trajectory points of the next control sequence sent to the
robot hardware. Therefore, the density of nodes in the graph
needs to be high in the regions of interest, while it can be
sparse in more distant parts of the state space resulting in
a very heterogeneous distribution. To support this behavior,
the nodes of the graph additionally estimate the node density
p(s) in form of the average distance to connected nodes in
the neighborhood and keep track of the nodes’ age af(s),
as well as the probability of them being part of an optimal
path p(s). The probability p(s) of belonging to a path is
estimated by a simple leaky flag that is set to one, once the
node s is part of a planned trajectory and decays over time
exponentially.

Through this additional information about a node we can
define operations to add or remove nodes to the roadmap
graph, which are done periodically in the main planning loop
(see Alg. 1).

A. Adding Nodes to the Roadmap Graph

Key element for constructing the roadmap graph is the
insert node operation, where we have to decide which
neighbor nodes are to be connected. A desirable goal is to
achieve a Delaunay triangulation which might be optimal
with respect to number of edges, but is hard to achieve in
high dimensional space. The Bowyer—Watson algorithm [15]
can be used for maintaining a Delaunay triangulation, but it
is quite expensive to find the corresponding d-simplex struc-
tures that would be required. Thus, we introduced a heuristic
that might not produce an exact Delaunay triangulation, but
proved to be fast and yields reasonable edge structures. By
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means of a parameter § in our approach the amount of edges
in the graph can be adjusted.

When introducing new graph nodes s, first, candidates for
connecting edges have to be defined, which then are to be
tested for collisions. In [16] a fixed distance threshold is
analyzed, which is the usual method, but in very unevenly
sampled graphs a fixed radius will fail to yield reasonable
connections. Therefore, we decided to use the k nearest
neighbor nodes (e.g. k=15) as a candidate set instead. This
condition helps adapting the amount of connections to the
local node density, but is not enough. We defined a further
condition that ensures skipping redundant edges. For creating
an edge to a neighbor node n, where a node m exists that
is connected to n and s, the following condition must hold:

|s —m|+ |m —n| > d|s — n| (8)

That means, there must not be a one hop detour that is shorter
than the direct way times a detour factor § € [1,00[. This
can easily be checked while traversing only the connected
nodes of n.

Only if this condition holds, we have to execute the
expensive collision checks for the new edge and if it is
collision free it can be inserted into the graph. Afterwards,
when a triangle [s,n,m]| has been created, we can check
the condition (8) also for the existing edges and remove
potentially dominated edges.

Fig. 1 shows the resulting edge structure for a small
example with different node densities. In Sec. VI we will
show how the number of edges created depends on § and
influences update speed and success rate of a dynamic
grasping task.

B. Pruning the Roadmap Graph

To prevent the number of nodes from growing indefinitely,
an operation for removing nodes is necessary. Here, the
additional node properties p(s), a(s), and p(s) will be
considered for computing a probability P(D;) for deleting
node s.

P(D) = p(9)™ (1= p(s)) (1-=*/7) )

Then, the number of nodes to be removed are drawn propor-
tionally to P(D;). The definition of the probability tries to
ensure, that necessary nodes, that are part of the optimal path,
survive for keeping the plan stable. Additionally, outdated
nodes are more likely to be removed, as nodes in high density
areas are. The selection pressure parameter v > 0 guides the
influence of the local node density and time constant 7 guides
the influence of the age.

C. Roadmap Graph Optimization

As already described, we try to guide the node sampling
in a way, that considers the current task to be executed and
also keeps up the consistency with the collision model. Since
it is too expensive to check all edges in the existing graph for
collision in each planning cycle, we only compute obstacle
distances for all the nodes, which is necessary anyway to

update the reward function 72°!(s). By removing nodes that

Fig. 1: Example of a roadmap graph with 200 nodes for
planning a trajectory for the 7 dof arm of the TIAGo robot
(0 = 1.3). Target is the big axes beneath the table. The color
of the nodes codes for the estimated average neighbor node
distance p(n) which is obviously smaller along the suitable
path (green nodes). The highlighted edges (red and cyan)
show the adaptive connectivity in more and less dense areas
respectively.

are in collision, the majority of edges leading in collision
will be removed as well. Only long edges can remain, where
intermediate poses lead into collision. In order to consider
these as well, we establish an inner loop in the planning
cycle that is repeated as long as the available planning time
is not exceeded. In that loop, a path on the existing graph is
planned as described in Sec. V and then all edges involved in
the resulting trajectory are tested for collision and removed
if necessary. Since that inner loop is repeated multiple times
in a planning interval, there is a good chance to find a better
collision free path before the deadline.

The process in a full planning cycle is given in Alg. 1. In
the following, the individual sampling strategies involved in
optimizing the roadmap graph are presented.

D. Path Interpolation and Shortcutting

Since probabilistic roadmap graphs with a manageable
number of nodes are rather sparse in a high dimensional C-
space, the resulting trajectories tend to be suboptimal with
respect to smoothness and achievable reward. We use the
result of the planned trajectory to improve the graph in
the relevant region in order to get better trajectories in the
next cycle. Therefore, on the one hand, interpolated poses in
between nodes of the found trajectory are added to the graph,
and on the other hand, direct connections of arbitrary pairs
of points on the path are sampled. This checks for possible
shortcuts and straightens the path gained in the next cycle.
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Algorithm 1: Main Planning Cycle

1 trajectory T, = (J;
2 for all nodes s in roadmap graph do
a(s) :=a(s) + At ; p(s) := 0.9p(s) ;
remove s if in collision;
while planning time left do
reduce node number to maximum like Sec.IV-B;
add current state ¢ as new node;
compute rewards R,,(s) and R.(s,s’) like
Sec.IlI-A;
9 T,.:=solve MDP on graph like Sec.V;
10 for all k € T,. do
1 | pk):=1
12 check for colliding edges in 7, and remove them,;
13 sample shortcuts on T, like Sec. IV-D;
14 sample along T, like Sec. IV-D;
15 optimize endpoint of 7T like Sec. IV-E;
16 | sample proportional to R, (s) like Sec. IV-E;
17 sample in full C-space like Sec. IV-F;
18 return 7;

® N U s W

In order to explore also laterally to the path, the new points
get offset by a Gaussian noise.

E. Optimizing the Trajectory End Point

Due to the formulation of the task goal in the form of an
implicit reward function, we hardly can put exact goal points
in the graph. For single objective end point position tasks, it
is possible to use inverse kinematic solvers for generating the
goal C-space point, but this is not possible for the general
case. Thus, similar to numerical IK-solvers, we can do a
gradient ascent. Instead of following the distance gradient
in Euclidean space we follow the gradient of our reward
function in order to optimize the terminal path node in the
goal region. Since that gradient ascent might suffer from
singularity points and local maxima of the reward function,
additionally a couple of Gaussian distributed samples are
added around the end point of the planned trajectory. This
is similar to an evolutionary optimization over time.

The idea of exploring the position of maxima in the reward
function can be extended to the whole graph rather than
just for the end point of the currently reachable path. In
this manner, we draw random nodes s from the roadmap
graph proportional to their actual reward R, (s), for which
the similar procedure of gradient ascent and Gaussian noise
is applied in order to insert additional nodes in the promising
regions with high reward.

FE. Exploring the Connected C-Space

The last process of sampling pure random points from the
C-space is necessary to explore the connectivity structure of
the reachable subspace. Similar to an RRT (rapidly exploring
random tree) planner [3], for the random sample s the nearest
neighbor n in C-space is used in order to do a collision check
along the connection line. The most distant, collision free

point on the line 5,1 that is closer than a maximum distance
is added to the roadmap graph. Edges to other nodes fulfilling
the usual conditions (Sec. IV-A) are also introduced.

V. PLANNING ON THE GRAPH

Given the roadmap graph R = (V, E) with the nodes s €
N labeled with rewards R,,(s) and the costs R.(s, as/) and
duration [, o for traveling along the edges es s = (s,8') €
E, we now have to solve the problem of finding a reward
maximizing sequence 7 of nodes starting at the current node
c. Therefore, we solve a Markov Decision Process (MDP)
where in each state the possible actions are determined by
the set of connected edges and the transition probabilities are
one for ending in the successor state defined by the endpoint
of the edge. The immediate rewards for the transition action
then equals Equ. 3.

For solving MDPs in general there are established methods
like value iteration or dynamic programming [17]. Key idea
of these approaches is to find the expected value V (s) for
each state s by approximately solving the Bellman Equation

V(s) = max {7V (s') +r(s,as)} (10)
For our problem, which has some special conditions, there
is a faster and exact solution, which will be presented in the
following.

A. Problem Specific Properties

We can make the following assumptions about our prob-
lem:

o Considering node rewards R, alone, the optimal path
can not contain cycles because it is a potential field.

« Since rewards for traveling along an edge R, are strictly
negative, each loop in a path would reduce the overall
reward. Thus, no loops are expected in the optimal path.

¢ Due to the discount factor ~, the overall reward would
decrease, if the agent would rests in an intermediate
point of the path rather than at the end point.

o Assuming that there are no loops and given the finite
number n of states it follows, that there is one terminal
state, which is reached after at most n — 1 steps.

These observations induce the idea, that beginning from the
end point we can plan the reward maximizing path to the
start point in at most n iterations. The proposed approach is
similar to the algorithm of Dijkstra [18] for planning shortest
path on graphs. Instead of minimizing costs for moving along
the edges, in our case we try to minimize the loss of reward
to be expected. Unfortunately, the portion of reward gained
in a node is not constant but depends on the time of arrival
due to the discount factor v (see Eqn. 4). Thus, we can not
plan with the accumulated reward from the start point. What
we can do is estimating the amount of reward that would
accumulate when staying in a potential end point s forever.

0o , ’yt“
v'r(s,as)0t = —
Aot = -

Ry (s) Y
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Here t, is the time of arrival and if we arrive later, e.g. at t;,
the complete amount of remaining reward would scale down
by a factor ~ty~ta,

Similarly, we can extend the estimation of the gainable
reward by one step. Let the value V' (s) be the expected future
reward for the optimal policy starting at s, then the value
V(n) of a neighbor state n is at least:

'ns —4% Ry (n)+Ry
Vin)z ( () + (s)—l-Re(n,as))

+ AtV ()
B. Algorithm for Solving the MDP

Using Equ. 12, we can now test for all incoming edges of
a node s, if it would be better to come over from a neighbor
node n rather than staying there. If the result of Equ. 12
is higher than the current estimate of achievable reward in
node n, we can update the policy in n to follow the edge to
s and with it the achievable reward for a trajectory starting
at n. This is the estimate of the value V' (n) of node n.

The comparison only yields a final result, if we can
know, that the estimate for node s will not increase later
in the computation. If the node with the global maximum
value is considered next, there is no possibility to increase
the value of that node by coming over from a neighbor,
since edge rewards are strictly negative and symmetric.
The planning algorithm, therefore, pushes all nodes in a
priority queue P using the expected reward for staying in
the nodes forever (Eqn. 11) as the priority. Then the queue
is processed starting from the highest element while testing
for possible improvements of neighboring nodes. In order
to find the final path, each node holds a pointer S to the
most profitable successor, which is kept up to date when a
better successor is found. Then the path 7. can queried by
following the successor pointers until it points to itself. The
whole algorithm is shown in Alg. 2.

(12)

Algorithm 2: Path Planning for Start Node c

1 for all nodes s do

/* init expected rewards */
2 V(s) = —In(y) 1 Ru(s);

/+ init pointer to successor */
3 S(s):=s;

4 push s in priority queue P with prio V(s);
5 while P not empty do

6 pop s with max V (s) from P;

7 for all neighbors n of s do

In,s (]
3 Vto=2 h’l(;)v <Rn(s)-‘:2-Rn(n) + Te(n,as)> +
V),
9 if V* > V(n) then
10 V(n):=VT;
1 S(n) :=s;
12 update (n,V(n)) in P;

13 Ti.:=collect path by following S(c);
14 return T,;

C. Run Time Analysis

The proposed algorithm touches each node only once.
Thus, it has a runtime complexity in O(nmlog(n)), with
n being the number of nodes and m the number of edges
per node. The factor O(log(n)) results from the priority
queue, which has to be filled and updated when the planning
proceeds. The practical evaluation has shown, that by means
of the proposed method for maintaining the roadmap graph
the number of edges can be kept within a reasonable limit
that is just dependent on the number of dimensions of the C-
space, the number of candidate neighbors &, and the detour
factor §. Thus, m can be seen as constant w.r.t. n which
yields O(nlog(n)) as the overall complexity. Maintaining
the roadmap graph structure is in O(nm?) if a naive nearest
neighbor search is used and the check for dominated edges
has to follow m? neighbors.

VI. EXPERIMENTAL ANALYSIS

The proposed system has been implemented and tested on
two different robot platforms. First is a TIAGo robot by Pal
Robotics with a 7 dof robotic arm and a prismatic joint for
raising and lowering the body (see Fig. 2) and the second
platform is a Scitos X3 by Metralabs equipped with two
Kinova Jaco arms each having 6 dof (visible in Fig.3).

We conducted a series of comparative experiments using
the proposed motion planner in the context of grasping for
a moving object. The setup for reasons of repeatability was
using a simulated target object, which has been moved along
a rectangular path as depicted in Fig. 2. A table served as
a static obstacle causing the robot to plan longer evasive
movements when the object passes behind the legs of the
table or when it switches over to the other side of the table
top.

As the target for the grasping action a set of 100 grasp
poses (see right side of Fig. 2) had been generated using an
analytic grasp pose planner each having a quality weight
between 0.5 and 1. These grasp poses were attached to
the moving object and have been fixed for all experiments.

Fig. 2: Robot in the start pose for the experimental grasping
setup. The target object moves along the given trajectory
above and beneath the table. On the right there is the object
(kitchen knife) with the set of suitable grasp poses. Color
intensity is coding for the quality of the grasps.
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Method Success | Timeout | Avr. Duration | Avr. Obstacle Dist.

MDP OD 70% 30% 14.3 sec 45 mm
MDP 78% 22% 13.8 sec 37 mm

Dijkstra 59% 41% 15.1 sec 64 mm

TABLE I: Results of 1000 attempts to grasp the moving
object with the proposed method (MDP OD) including
obstacle distance objective and without (MDP) vs. a pure
distance based approach (Dijkstra).

A grasp attempt counts as successful, if in the moment
the gripper closes a grasp quality evaluation of the current
gripper pose yields a valid grasp quality in the range of 0.5
to 1. If the robot did not attempt to close the gripper within
30 sec. the trial is aborted and counted as a timeout. For each
trial, the robot pose is reset to its home pose and the roadmap
graph is cleared. The objects start position is changed in a
deterministic sequence in order to have consistent conditions
for all experiments.

A. Evaluation of the MDP Solver

In a first experiment, we compare the MDP solver for the
dynamic multi target task (y = 0.99) with a simple Dijkstra
algorithm, which aims to reach the roadmap graph node
with the highest reward R, (s) on the shortest path (w.r.t.
R.(s,as) ) in each planning cycle.

Table I shows that the success rate of the proposed method
(MDP) with and without the objective function for obstacle
distance (Sec. III-B.0.a) outperforms the naive approach
(Dijkstra). The Dijkstra algorithm due to the moving object
yields a very unstable goal pose, since the node with highest
reward changes regularly. This causes more complicated
detouring trajectories in order to reach the new best grasp
pose. Therefore, the average time to grasp is higher and also
the distance to obstacles along the path is higher, since it
spends less time close to the target object. For the MDP
solver, the success rate is much higher due to more consistent
trajectory end points. The MDP accepts a suboptimal end
point if the smaller costs for the path compensate the loss of
reward due to the smaller grasp quality.

The experiment also shows, that the objective function
considering the distance of roadmap graph configurations to
obstacles has an effect, which for the Dijkstra algorithm can
not be the case, since this is only considering the length
of the resulting path. If the obstacle distance objective is
active, the average distance to obstacles increases, which
might improve safety, but on the other hand, the robot has
more difficulties to fit the object between the grippers, since
in the reward function the object repels the gripper. This
leads to the slightly longer duration to grasp and thus a worse
success rate due to more timeouts.

B. Evaluation of the Triangulation Strategy

In order to demonstrate the benefit of the proposed method
for connecting nodes in the roadmap graph (Sec. IV-A), a
second experiment evaluated the success rate of the dynamic
grasp task in dependence of the detour factor §. Tab. II
shows that the number of edges in the graph and thus

0 k | Succ. | Time- | Avr. # | Fan Out | Max. # | Fan Out
Rate out Edges Avr. Edges | Variance
7.0 | 15 | 78% 22% 3531 3.55 4168 7.5
50 | 15| 72% 28% 3458 3.53 4189 7
30 | 15 | 81% 19% 3543 3.59 4243 7
20 | 15 | 80% 20% 4101 4.16 5486 6
1.7 | 15 | 76% 24% 5346 535 7336 8
1.5 | 15 | 69% 31% 6763 6.92 9260 14
13 | 15| 73% 27% 8397 8.67 12074 25
1.1 | 15 | 76% 24% 9338 9.58 15836 33
1.0 | 15 | 74% 26% 9855 10.39 18378 51
1.0 | 4 70% 30% 3650 3.70 5899 4.18
20 | 4 66% 34% 2498 2.50 3429 1.90

TABLE 1II: Results of 100 attempts to grasp the moving
object with MDP planner depending on detour factor §. Max
number of graph nodes was 2000.

also the average fan out of the nodes decreases when ¢
increases. Interestingly, also the success rate of the grasps has
a maximum at lower connectivity in the graph (at 6 = 3.0).

This may result from an increased number of internal
optimization cycles (Alg. 1 line 5), which is possible because
the time for solving the MDP decreases on a less complex
graph in the same amount of planning time.

In order to verify that the proposed method also creates
an improved connection structure compared to a simple
reduction of neighbor candidates, the experiments in the last
rows of Tab. II have been done. It turns out, that neighbor
count k = 4 produces also about 3600 edges in the graph,
but the success rate drastically dropped, which is an indicator
for a worse graph structure, since all other parameters were
unchanged.

C. Real World Experiment

Since all previous experiments analysed the properties of
the proposed motion planner in simulation, a last experiment
is to demonstrate the capabilities in real world. For the real
world problem the robot had to follow moving targets with
one or both of it’s Kinova Joco 6-axis arms simultaneously.
The targets switch over behind obstacles periodically forcing
the arms to do evasive movements. For the two armed case
the two target positions were moved at different speeds.
Parameters of the planner were kept the same for both
experiments. Fig. 3 shows the setup whereas results are
shown in Fig. 4.

For the single armed scenario the arm can follow the target
until it passes the obstacle. As soon as the goal is reachable
again the arm moves around the obstacle, resulting in an
increase in distance. After catching up the goal can be fol-
lowed closely again. For moving both arms simultaneously
the results are similar to the one armed case. Once the first
arm has to move around an obstacle an effect on the second
arm can be observed. This is because both arm movements
are represented by the same graph. Thus, if both arms are in
close proximity to the moving target, the graph node density
in the goal region is high enough to allow both arms to find
a solution quickly. If one arm is occluded, the path has to
explore new regions of the 12 dimensional C-space, where
node density is low. The usable nodes in the graph are not
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Fig. 3: Real world setup with two armed Scitos X3, paths of
the goal positions and obstacles.
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Fig. 4: Resulting distance between end effector and goal over
time. Interval at which a goal position was unreachable is
marked. Top shows results of single arm experiment and
bottom with two arms.

optimized in position yet, forcing the second arm on a sub
optimal path.

VII. CONCLUSIONS

In this paper a motion planner is proposed, working with
a dynamic and local update of a probabilistic roadmap in
closed loop operation. We showed the effectiveness of the
mechanism for managing the connectivity in the graph in
order to handle heterogeneous density of nodes and keep the
number of edges low. Further, we could demonstrate, that a
grasp task can be solved more effective, if the set of possible
grasp poses is also considered by an implicit formulation of
the goal in form of a reward for a MDP, rather than just
moving to the best rated single grasp goal position on a
shortest path. Additionally, we showed, that a decomposition
of the reward function together with the constraints given in
our motion planning scenario allow to find an exact solution

for the MDP in O(nlog(n)), which is done in each planning
cycle.

In future work grasping for real objects presented by a
human will be evaluated in more detail. Unfortunately, the
robust and stable tracking of handheld objects,which is a
prerequisite for the motion planning, is a hard task on its
own and has to be solved first.
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