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Abstract— Automated grasping of arbitrary objects is an
essential skill for many applications such as smart manu-
facturing and human robot interaction. This makes grasp
detection a vital skill for automated robotic systems. Recent
work in model-free grasp detection uses point cloud data as
input and typically outperforms the earlier work on RGB(D)-
based methods. We show that RGB(D)-based methods are
being underestimated due to suboptimal label encodings used
for training. Using the evaluation pipeline of the GraspNet-
1Billion dataset, we investigate different encodings and propose
a novel encoding that significantly improves grasp detection on
depth images. Additionally, we show shortcomings of the 2D
rectangle grasps supplied by the GraspNet-1Billion dataset and
propose a filtering scheme by which the ground truth labels can
be improved significantly. Furthermore, we apply established
methods for uncertainty estimation on our trained models since
knowing when we can trust the model’s decisions provides an
advantage for real-world application. By doing so, we are the
first to directly estimate uncertainties of detected grasps. We
also investigate the applicability of the estimated aleatoric and
epistemic uncertainties based on their theoretical properties.
Additionally, we demonstrate the correlation between estimated
uncertainties and grasp quality, thus improving selection of
high quality grasp detections. By all these modifications, our
approach using only depth images can compete with point-
cloud-based approaches for grasp detection despite the lower
degree of freedom for grasp poses in 2D image space.

I. INTRODUCTION

For many applications, such as Industry 4.0 and human
robot interaction, automated grasping is an essential skill [1],
[2]. In most settings, exact shape information of the objects
in undefined poses is often not available, as the acquisition of
this information is hard to accomplish for the large variety
of different objects. Therefore, estimating grasps based on
model-based approaches is not feasible. Recent methods of
model-free estimation of grasps using deep learning models
may be more appropriate for these scenarios. Such methods
rely on a dataset to learn grasp poses based on RGB(D)
images or point clouds. In general, these datasets contain
labeled grasp poses for parallel grippers only.

Recent work [4]-[6], focuses on point cloud inputs for
estimating 6D grasp poses. This has the advantage of not
restricting the possible orientation of the grasps to top down
grasps, which was a downside of earlier work where the
grasp poses were estimated as an oriented box in the image.
Fang et al. [3] created the GraspNet-1Billion dataset and
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Fig. 1. Overview of the pipeline discussed in this work. First, we discuss
a way to filter the 2D grasp labels provided by the GraspNet-1Billion
dataset [3]. Second, we investigate ways to encode the 2D grasp labels
into label maps needed for training our depth-based models. For training,
we additionally propose to incorporate void labels for areas where no grasp
labels are present. Last, we estimate two types of uncertainty for our model
and investigate their plausibility and potential applications.

claimed in their experiments on this dataset that estimating
grasp poses based on a point cloud is superior to estimation
based on images.

We show that image-based models, which can use color
or depth data exclusively or in conjunction, were largely
underestimated based on multiple reasons. As shown in
Figure [T we modify the usual pipeline in several ways in
order to improve such image-based models: First, we show
that the 2D rectangle grasp labels provided by the GraspNet-
1Billion dataset contain grasps which are in collision when
projecting them into 3D space, like it is done with the
grasps detected by a trained model. Under the assumption a
model would be able to perfectly replicate the provided labels
this would put image-based models at a disadvantage in
contrast to models trained on only valid labels. In Section [[TI]
we describe our filtering scheme for the supplied labels to
overcome this drawback.

Since image-based models need to be trained to estimate a
quality measure, an angle, and a gripper width for every pixel
in the input image, it is necessary to convert the provided
rectangular grasp labels to pixel-level maps that encode this
information. We show that the common way of encoding
grasp labels is insufficient for training well performing
models. Thus, we propose an alternative encoding which
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enables the reconstruction of grasp poses close to the original
grasp labels (see Section [[V). By additionally introducing
void regions in the image which are ignored during training,
we direct the focus of the model to important regions, as
further described in Section [V]

Since we are using image-based models whose output con-
sist of maps, we can apply established methods for estimating
uncertainties. Thus, in Section [VI| we examine the estimated
uncertainties regarding plausibility and applicability in order
to select detected grasps for actual execution on a robot that
are most trustworthy.

Thus, key contributions of this paper are threefold:

1) We improve the labels of the GraspNet-1Billion
datasets regarding their usability for 2D image-based
models.

2) We analyze the impact of the encoding for 2D
rectangle-based grasps and provide an encoding that
significantly improves 2D image-based models to
match the performance of point-cloud-based 6D grasp
pose estimation approaches.

3) We compute epistemic and aleatoric uncertainties and
demonstrate how they can be employed to further
improve the quality of grasp pose selection.

Code for dataset generation and training models
is available at https://github.com/TUI-NICR/
nicr-grasping.

II. RELATED WORK

Grasp Detection: Model-free grasp detection is applied
to different types of input modalities. CNN-based methods
such as [7], [8] detect planar grasps based on depth images.
A planar grasp is often represented as an oriented rectangle
in the image plane described by its quality, the angle, and
the width the gripper should be opened for the grasp. Often,
these parameters are estimated based on a pixel-level esti-
mation resulting in the estimation of grasps for every pixel.
To employ this in an application, a local maximum search
over the estimated quality map is performed to find possible
locations of grasps. The inclusion of RGB images for training
was done in [9], [10], focusing grasps on foreground objects.

For model-free grasp detection, multiple datasets exist that
can be used to train a model. The Cornell dataset [11] as well
as the Jacquard dataset [12] contain RGB and depth images
and multiple labeled grasps per image. The annotated labels
are either feasible grasps or negative grasps, although they
are not used directly for training. Evaluation on these datasets
is commonly assessed by the Jaccard index, where a grasp
is counted as true positive as long as it is close enough to
an existing label. This metric, however, is not suitable for
evaluating the actual performance of a model as discussed
in [3], [12]. Therefore, Fang et al. [3] proposed a pipeline for
evaluating grasps without the need for actual execution on
hardware. In contrast to the evaluation pipeline proposed by
Depierre et al. [12], this pipeline does not rely on simulation
and allows for analytical evaluation of large numbers of grasp
poses. This pipeline is discussed in more detail in Section [[TI}

Other methods [4]-[6], [13] use point clouds instead of
depth or RGB images as inputs. As integration of uncertainty
estimation is more complex for these methods, and by
reaching competitive results by means of using our encodings
described in Section in our work, we focus on image-
based models.

Uncertainties in Grasp Detection: The estimation of un-
certainties for detected grasp poses has the potential of
increasing the applicability of models in the real world as
more information about the quality of estimated grasps could
be gathered. Despite this huge potential, the application of
known methods for uncertainty estimation of deep learning
models, such as MC dropout [14] or density estimation [15],
[16], was not yet evaluated in the literature. The only attempt
towards this direction was done in [17]. Lundell et al. [17]
used MC dropout for their 3D shape estimation for an object
to be grasped. Then they used the uncertainty regarding the
shape to select the most robust grasp poses. To the best
of our knowledge, directly estimating the uncertainties of
deep learning models for grasp detections has not yet been
studied.

III. GRASPNET EVALUATION

We use the evaluation pipeline of the GraspNet-1Billion
dataset [3] in our experiments. The dataset contains color and
depth images as well as point clouds recorded with a Kinect2
and a Realsense camera. As our experiments are independent
of the camera used and can be applied to both parts of the
dataset, we focus on the Kinect2 recordings. Additionally,
we focus on depth-based methods and leave investigation of
results on multimodal methods for future work.

The GraspNet-1Billion evaluation pipeline takes all esti-
mated grasps and first applies a non-maximum suppression
(NMS) in 3D space. After sorting the grasps by estimated
quality for each of the top k proposed grasp poses remaining,
the lowest friction coefficient y, for the grasp g to succeed
is estimated based on the force closure metric [18]. Using
these evaluated grasps, Fang et al. [3] define a metric
AP, as the mean precision over the top k € [1,50]
proposed grasp poses. A positive grasp is defined as not
being in collision and being successful at friction coefficient
u € [0.2,0.4,0.6,0.8,1.0,1.2]. Collisions are thereby com-
puted based on a fixed gripper model. Fang et al. [3] verified
a correlation between their computed friction coefficients and
the actual success rate of a grasp. Therefore, this score can
be used as a substitute for actual execution.

As the original grasp poses for the GraspNet dataset were
generated in Euclidean space, we first need to discuss the
conversion procedure for generating 2D grasp labels. The
authors of [3] first removed all 3D grasp labels whose
grasp directions were not parallel to the camera axis. The
remaining 3D grasp labels were then converted into 2D
labels by projecting the positions of the gripper yaws into
the image plane resulting in a rectangular grasp label. While
this is a reasonable approach, this does not guarantee that
the resulting grasp labels can be projected back to 3D
space while still achieving the same quality measured by
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Fig. 2. Example images comparing rectangle grasp labels before and after

filtering colliding labels in 3D space based on the evaluation pipeline. Each
image shows 100 randomly sampled labels.

Original labels

TABLE I
CHANGE IN QUALITY OF 2D LABELS THROUGH OUR FILTERING.
| original labels | filtered labels

AP 14.53 80.53
Num Grasps 879,071,408 136,225,781

their pipeline. In contrast to this approach, we filter the
supplied rectangle grasps by projecting them into 3D space,
evaluating them through the standard evaluation pipeline
without applying NMS and finally filtering out all grasps
which result in an empty grasp or a collision.

Table [ shows the increase in quality over whole dataset
by applying the evaluation pipeline to the projected ground
truth 2D rectangle grasp labels before and after our filtering.
This defines the upper limit of image-based models which
are trained on these grasp labels. Additionally, it can be seen
that the number of grasps is significantly lower (around 15%)
after our filtering. As the GraspNet dataset contains a large
amount of grasp labels, the number of remaining grasps is
still sufficient as there are still far more grasp labels per
sample than for other datasets such as Cornell [11]. Figure 2]
shows an example of labeled grasps before and after our
filtering approach. We can see that for some objects there
are no grasp labels left. This issue will be addressed in
Section [Vl

Now, having collision free grasp labels, we will deal with
the subsequent processing of the now filtered ground truth
grasp labels in the following Section.

IV. LABEL SHAPE WEIGHTING

In order to successfully train image-based models using
grasp pose ground truth labels represented by oriented rect-
angles, it is necessary to choose an encoding to convert these
labels to image maps in order to compute a pixel-wise loss. In
the following, we address such encodings. First, we examine
the shape of the labels and subsequently their weighting.

A. Encoding 2D-Grasp Shapes

Usually the inner third of the rectangle is used to draw the
grasp parameters in the four label maps for position/quality,
rotation (sine and cosine) and gripper width [7], [8], [19].
Afterwards, the entire label map is used for training using the
¢? loss, thus always generating a loss for rotation and width,
regardless of whether an object is present in an image area
or not.

Inner Third Inner Tenth Inner Gauss

w/ Outer Ignore w/ Inner Ignore

w/o Ignore

Example of different grasp encodings. Top row shows different
shapes. Bottom row shows different types of box ignore regions. White:
positive label; Black: negative label; Grey: void; Red: gripper yaws; Blue:
box enclosed by grippers.

Fig. 3.

Training an image-based model would, in the optimal
case, learn exactly the encoding that is provided as a label.
Therefore, we investigate the results of this inner third
encoding, as well as other encodings, and thus show the
theoretical upper limit when training image-based models
with these encodings. To do so, we apply the GraspNet
evaluation pipeline directly to the generated label maps of
the different encodings. Additionally, we show the benefit for
state-of-the-art 2D image-based methods when using these
encodings.

For this analysis, we first consider three different types of
shapes as presented in the upper part of Figure [3]

« First, the commonly found shape of using the inner third
of the rectangle [7], [8], [19].

o Second, we use the inner tenth of the rectangle, as
proposed by Fang et al. [3E|

e Third, we examine our proposal for a shape, which
is a two dimensional Gaussian centered in the grasp
rectangle, called inner Gauss, which is explained below.

Inner Gauss: Drawing the Gaussian shape for an arbitrary
grasp rectangle is done by using the convariance matrix
C € R**2, C can be computed using the diagonal matrix
of eigenvalues E € R?*? and the matrix of eigenvectors
V e R?x2:

C=VEV~L (1)

We use the length and width of the respective grasp rectangle
as eigenvalues. The corresponding eigenvectors are given
in image space. Using C' and the grasp center in pixel
coordiantes, the two-dimensional normal distribution allows
us to compute the pixel-wise label values. Hereby, the
maximum of a Gaussian will always be in the center of the
grasp rectangle and, therefore, the original grasp position can
be recovered through searching for local maxima. This is a
major advantage of this encoding over the other two.

In Table[[M]in the column "AP w/o Quality”, we present the
results for these three shapes when the ground truth labels
are evaluated by the GraspNet evaluation pipeline. First, it

l‘The only reference of using the inner tenth in [3] can be found within
an issue in the code repository for GraspNet:
https://github.com/graspnet/graspnetAPI/issues/30F1issuecomment—1006422550
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TABLE II
AP FOR GROUND TRUTH LABEL ENCODINGS TREATED AS PREDICTIONS.

Encoding Shape ‘ AP w/o Quality AP w/ Quality

Inner Third 3.18 6.09
Inner Tenth 443 21.85
Inner Gauss 20.15 55.53

shows that choosing inner third as encoding shape seems to
perform worst. This is caused by the large position error of
the recovered grasps through local maximum search, as a
located maxmimum is unlikely to be located at the original
center of the grasps. Furthermore, we confirm that the non-
uniform label of the Gaussian encoding achieves the best
results and seems to be particularly well suited for recovering
the encoded grasp labels.

B. Weighting Labels according to their Quality

Since we computed the actual quality of the rectangle
ground truth grasp labels in Section we can use this
quality and weight the labels accordingly, rather than using
a binary value as it is the case for the training with the
2D-labels in GraspNet [3] or other datasets such as the
Cornell [11] or the Jaquard dataset [12]. Similar to [3],
we define the score of a grasp g as s(g) = 1.2 — p,
with i, as the computed friction coefficient for a grasp.
When creating the label map for the position, the individual
label shapes can now each be multiplied by the score for
the associated grasp. For areas where grasp labels overlap,
the grasp with the highest quality can now be used, also
defining which parameters for the grasp angle and the gripper
width are to be drawn into the label map. An evaluation of
the resulting labels with quality is presented in Table [[] in
the column "AP w/ Quality”. Clearly, such a definition of
the encoding is immensely beneficial, as grasps of lower
quality can be sorted out by the NMS resulting in only
the best grasp being evaluated. In contrast, using a binary
label can result in lower quality grasps suppressing higher
quality grasps. Likewise, in all subsequent experiments, we
will only use labels that have been weighted with the quality
for the training of image-based models, so that the models
can be given the opportunity to differentiate in their quality
estimation. Additionally, the models are less penalized if a
bad label grasp is learned with a low estimated quality, as it
would otherwise happen with binary labels.

Having dealt with the encoding of the grasp labels, in the
next section we will examine how the remaining areas of the
label maps should be addressed.

V. VOID MASKS AND IGNORE REGIONS

After encoding the rectangular grasp labels in the label
maps, we will now examine how the areas in the label maps
should be treated where grasp labels are not available.

A. Void Mask

First, we will examine the loss calculation for the rotation
and width maps for the positions where grasp labels are not
available. As explained at the beginning of Section the
loss is usually calculated for all positions on the label maps.

w/o Void Mask w/ Void Mask w/ Void Mask w/ Void Mask

w/o Ignore

11
Z2ER7AN ¢ K4

Fig. 4. Different masks applied during training. Masks shown in top row
are applied to cosine, sine, and gripper width output, while masks shown
in bottom row are applied to position output. Green: non-void; Red: void;
Gripper yaws and box enclosed by grippers visualized as in Figure

w/o Ignore w/ Outer Ignore  w/ Inner Ignore

Sin / Cos
Width

Position /
Quality

Thus, during training, a model is also forced to predict zero
for rotation and width for positions where no objects and
label are present, even though an output at such a position
is not well defined.

We therefore propose that all positions in the rotation
and width maps with no values greater than zero in the
position/quality maps should be masked during training and
thus not be included in the loss calculation. This should
cause the model to concentrate more on the actual labels and
therefore lead to better results. This approach is analogous
to the void class in semantic image segmentation, where for
unknown classes the model is also given a void label, which
is masked during loss calculation. A visual representation for
the comparison of the void masks between the standard from
the state of the art and our proposal, can be obtained from
the first two columns from Figure [4| Later in this section,
we will use an comparative study to investigate the use of
the void mask for the rotation and width maps.

B. Ignore Region

Next, we will consider the possibility of voiding the
label on the position maps. Unlike rotation and width maps,
position labels are defined for object-free surfaces. However,
training of empty surfaces is not of interest for practical
application. Since in practice, grasps are estimated directly
in the regions containing interesting objects. For example,
Ainetter et al. [20] apply image segmentation for this pur-
pose, thus most of the captured scene, such as the empty
table, is being omitted. Therefore, we believe, it would be
advantageous for a model to focus on meaningful negative
grasps located on objects, rather than focusing on trivial
predictions such as on flat tables. Thus, to reduce the amount
of unnecessary negative labels on the position map, we
introduce an outer box ignore region located around the
oriented rectangle grasp labels. In this ignore region, the
negative position labels are replaced by void labels and
are thus not taken into consideration during training. The
underlying idea is that positions right next to working grasps
are good examples of negative positions, since here a grasp
should either collide with an object or miss. Furthermoe, in
the filtered dataset (see Section some objects have no
grasp labels, as all ground truth labels were invalid. Forcing
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Fig. 5. Comparison of AP achieved on different test splits by GRConvNet models trained with different shape encodings and masking schemes.
TABLE III
OVERVIEW OF BEST RESULTS ON DIFFERENT MODELS WITH RESPECTIVE ENCODING AND MASKING SCHEMES.
WE ALSO REPORT RESULTS WHEN FILTERING COLLIDING GRASPS BEFORE EVALUATION.
Method Encodin Collision Seen Unseen / Similar Novel
1ng Filtered | AP APys APys | AP  APys APypsa | AP  APys APya4
Depth-based [3] .
(GGCNN [8]) Not Described 16.89 22.47 11.23 15.05 19.76 6.19 7.38 8.78 1.32
RGB(D)-based [3] Not Described 1759 2467 1274 | 1736 2164 886 | 804 934 1.76
(Chu et al. [10])
Point-cloud-based [3] 6D Grasp Poses 29.88 36.19 19.31 27.84 33.19 16.62 11.51 12.92 3.56
GGCNN [8] Gauss w/ Outer Ign 17.28 21.40 9.67 11.67 14.62 5.29 9.76 12.16 3.63
GGCNN [8] Gauss w/ Outer Ign v 23.04 28.42 12.42 17.10 21.32 7.49 14.81 18.31 5.38
GRConvNet [7] Gauss w/ Outer Ign 23.18 29.11 14.40 16.12 20.49 8.30 11.15 13.83 4.70
GRConvNet [7] Gauss w/ Outer Ign v 29.77 37.20 17.82 22.23 28.12 11.00 16.43 20.27 6.72

the model to learn that grasps are not possible at these
positions could degrade the model’s ability to generalize to
novel objects.

We investigate this outer box ignore region in more detail
in the following experiments. We will also include an investi-
gation of an inner box ignore region, which was proposed by
Fang et al. [3 The inner box ignore region is the opposite
to the outer box ignore region. With the inner box ignore
region all negative labels inside the oriented rectangle labels
are replaced by void labels and the negative labels outside
the rectangles remain negative labels. A visualization of the
ignore regions is shown in Figure [3] and their respective void
masks are shown in the right two columns of Figure [4]

C. Experimental Setup

We perform our comparative studies on the different
masking schemes on the depth images of the Kinect camera
of the GraspNet dataset [3]. As described in Section the
general findings should be independent of the camera and
also independent of whether RGB data are used in addition
to depth data or not. As 2D image-based models, we trained
two models: The first model is GGCNN [8], which had also
served as a baseline in GraspNet. As second model, we
trained the more powerful GRConvNet [7]. For each of the
different combinations of shape, loss mask, and margin, we
performed a search for all relevant hyperparameters, such as
learning rate and learning rate scheduling, to select the best
hyperparameters. Likewise, we have also repeated the train-
ing for each combination several times and present the AP

>The only reference to them using the inner bock ignore region can be
found within an issue to their published code for GraspNet:
https://github.com/graspnet/graspnetAPI/issues/30¥1issuecomment—1006422550

for the best result in each case. As described in Section [[TI}
we determine and report the A P using the evaluation pipeline
from GraspNet. We report the AP, AP, 4, and APy g over
the three test splits of seen, unseen (also called similar),
and novel objects. Furthermore, as a sufficient amount of
collisions of computed grasp poses can be efficiently esti-
mated through the use of point clouds captured by a robot
with nearly no computational overhead, we report computed
metrics with and without filtering colliding grasps before
applying the evaluation pipeline.

D. Comparative Studies

In the following comparative studies, we will examine our
introduced encoding types, compare our best model with
the state of the art, and evaluate it in more detail. Figure [3]
provides a summary of all results, which we will discuss in
detail below. For clarity, only the best GRConvNet models
for the different combinations of shape, void mask, and
ignore region are shown here. First, we can see general
trends independent of the test split (seen, unseen/similar,
novel We start by comparing the three tested shapes for
encoding grasp pose labels (as in Figure [3] top row). In this
comparison, the results from Table [[I] are also confirmed by
our experiments. The proposed inner Gauss provides the best
results. Next, we compare the void masks. When comparing
the green and orange bars, the AP is always significantly
better when non-relevant locations for rotation and grasp
width are masked during loss estimation (orange bar). Next,
we examine the results of the trainings with void mask, where
no ignore region, outer box ignore region, or inner box ignore

3These trends can also be seen for the different friction coefficients APy 4
and APy g, which have also been omitted for the sake of clarity.
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region was used (orange, blue and pink bars). Apparently,
the outer box ignore region has an advantage over no ignore
region with void mask, especially with inner Gauss encoding,
whereas the inner box ignore region has no advantage. This
also confirms our chain of reasoning above. In Section |VI}
we will discuss uncertainty estimation in more detail, and
we will also show that the outer box ignore region provides
a great advantage in this regard.

For further evaluation of our achieved results, in Table
in addition to our best results for the depth-image-based
GGCNN and GRConvNet models, we present the results
published in [3] for 2D-image-based models. Likewise, we
also present the results when a collision filtering is performed
prior to the NMS in the evaluation pipeline, as it is done in
real-world applications preceding the grasp execution. The
differences in performance regarding collision filtering show
that some of the grasps are predicted in collision. When
these are filtered, many good grasps remain. Comparing our
best model with the models from [3], we notice that our
model not only outperforms their depth-based model but
also outperforms their RGB(D)-based model. Furthermore,
comparing our model with the point-cloud-based model also
shows that we achieve comparable results in the seen test
set and even clearly outperform it in the most difficult test
set with novel objects. This shows the great advantage that
our encoding with inner Gauss and outer box ignore regions
brings for training 2D image-based models.

In [3], grasps are estimated mainly in 3D space, where a
larger input and output space allows for much more diverse
grasps to be estimated than when estimating on 2D input
data, as in our approach. Due to this fact, the choice to use
the top 50 grasps per scene in the AP calculation might be too
large for the evaluation of 2D grasp estimation. To investigate
this further, we looked at how many grasps remain on
average per scene after collision filtering and NMS. For our
best models, on average about 20 grasps remain regardless of
the test split. To show how good these 20 grasps actually are,
in Figure [ we present the collision filtered evaluation of our
best model for different top k, with & € (10, 20, 30, 40, 50).
Here, an evaluation of the actual estimated grasps can be
examined rather than an assessment that largely penalizes
the score in case of missing grasps when applying the top
50 AP metric. We can see that the curves actually improve
the smaller the & is. Based on this observation, we conclude
that the quality estimation of the model actually correlates
with the real quality of the grasps.

After successfully achieving improved grasp detection
results by incorporating void areas in conjunction with our
improved grasp label encoding, we will now describe our
experiments on uncertainty estimation.

VI. UNCERTAINTY ESTIMATION

For estimating uncertainties, we focus on the best models
from Section [V] Therefore, we use GRConvNet [7] as a base
with our Gaussian-based margin encoding as labels unless
noted otherwise. To be able to estimate uncertainties, we
first need to adapt the model.

AP-novel

— 10 — 40

AP, g-seeri

ARy 4-novel

-similar

AP, g-similar

Fig. 6. AP for different top k for our best model shown in Table[ll} Values
reported are results when filtering colliding grasps before evaluation.

Epistemic uncertainty is commonly estimated using MC
dropout [14]. This method approximates the distribution over
the weights by sampling the model with different dropout
masks during inference. Therefore, we added dropout with
p = 0.2 before all convolution layers except the first and
last ones. Additionally, we need to choose the number of
samples to draw during inference to estimate the uncertainty.
We choose a sample size of 50 as this is the value used most
commonly [14]. It is important to note that the number of
samples drawn has an impact on the inference speed of the
model during application. Furthermore, the applicability of
methods to optimize inference speed, such as parallel com-
putation of multiple samples, depends on available hardware
resources and model size.

Aleatoric uncertainty can be estimated as a function of
the input. Thus, we can train a model for this task using
the Gaussian-based negative log likelihood [15], [16]. We
could add additional heads to the original model and estimate
uncertainties and actual grasp detection in tandem. As this
tends to result in a slight loss of quality (~ 2% for AP
in our experiments), we froze the model used for grasp
detection and trained an additional model with the same
architecture for uncertainty estimation. Since these models
can be computed in parallel and are identical in complexity,
this does not reduce inference speed.

A. Quantitative evaluation

Similar to [16], we first evaluate the estimated uncertain-
ties based on their theoretical properties and visual plausibil-
ity. The usage of grasp encodings with margin allows us to
verify the plausibility of epistemic uncertainty, since large
parts of the image are labeled as void, and therefore have
no influence on the model during training. When training
a model while ignoring the parts in the input image where
no grasp is labeled, such as the empty table, this type of
input basically becomes unknown to the model. Therefore,
these inputs should generate higher epistemic uncertainty
than areas containing known objects.
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Figure [7] shows example predictions for models trained
with no ignore region and outer box ignore region. We can
see that the model trained with outer box ignore region and
thus had regions without objects labeled as void generates
high epistemic uncertainty in the empty area around the
object whereas the model trained with no ignore region does
not. This shows that unknown areas in the input can be
detected by means of epistemic uncertainty. For real-world
applications the knowledge of the distribution of epistemic
uncertainty over the image is an important tool. Especially, if
no application-specific dataset can be collected or generated,
and therefore all inputs are potentially novel for the model,
it is important to know where we can trust the models’
decisions and where it cannot make trustworthy decisions
regarding robust grasp poses.

When using estimated uncertainties in an application, it
is important to know how the uncertainties correlate with
the actual quality of the estimated grasps. If they are not
correlated, they are not applicable in a meaningful way.
Figure [§] shows the uncertainties versus the grasp quality
score computed by the GraspNet evaluation. We can see
a negative correlation of epistemic uncertainty with the
grasp quality score. The lower the epistemic uncertainty
is, the higher the quality score. Aleatoric uncertainty is
positively correlated with quality. This means high aleatoric
uncertainty is associated with high grasp quality. This is
plausible, since contradictions in the ground truth lead to
high aleatoric uncertainty estimates. For grasping, this is in
particular the case when grasps with maximum quality are
available for some objects in a subset of the data and no
valid grasps are labeled in another subset of the data, e.g.,
due to filtering out grasp labels as in our proposed approach.
In this case, maximum quality labels and negative labels
contradict, leading to high aleatoric uncertainty. However,
selecting grasps with high aleatoric uncertainty would mean,
selecting grasps based on contradictory knowledge. While
we do not propose to use aleatoric uncertainty due to this
reason, it could be useful when dealing with the described
contradictions during training.

Furthermore, we can observe similar correlation of epis-
temic and aleatoric uncertainty with grasp quality over dif-
ferent test splits. The only exception is the correlation of
aleatoric uncertainties and grasp quality in the novel split.
As the aleatoric uncertainty is estimated by a network as a
function of the input, the novel split presents unknown data

RGB image Outer Ignore

Outer Ignore

Fig. 7. Example prediction of epistemic uncertainty for models trained
with no ignore regions and with outer box ignore regions respectively. Dark
color means low uncertainty while bright colors represent high uncertainty.
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Fig. 8. Mean uncertainty vs. grasp score. Rows show results on different
test splits. Correlation of epistemic uncertainty with the grasp quality score
is visible across test splits while aleatoric uncertainty is only informative
over known objects.

and therefore the network has to extrapolate, which is known
to be a source of error for neural networks.

B. Qualitative evaluation

As the investigation of correlation showed that aleatoric
uncertainties are not suitable for selecting high quality
grasps, we focus on epistemic uncertainty in the follow-
ing. To evaluate the usefulness of the estimated epistemic
uncertainties, we investigate the change in quality of the
estimated grasps when filtering the estimated grasps based
on the estimated uncertainties. We apply a threshold to the
estimated uncertainties and keep only the grasps with lower
epistemic uncertainty than the threshold. The evaluation of
the filtered grasps with the GraspNet evaluation pipeline is
not representative as the number of remaining grasps after
the NMS is to small to investigate the impact of the filtering.
Therefore, we investigate the correlation of uncertainty and
quality score of all estimated grasps, meaning without NMS
applied. As in practice a threshold for the estimated quality
is applied, we report results for a minimum estimated quality
of ¢ € 0.0,0.1,0.2].

Figure [0] shows the mean score of all grasps versus the
percentage of remaining grasps after filtering by epistemic
uncertainty. We varied the threshold for uncertainty with a
stepsize of 0.05. As it is not practical to apply a filter such
that there are samples with no grasps remaining, we only
report results as long as every sample in the dataset has at
least one grasp remaining after filtering.

For all splits, we can see that filtering by epistemic uncer-
tainty in general increases the mean quality of the remaining
grasps. The improvement in quality score is greatest for the
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Results of filtering estimated grasps based on epistemic uncertainty. Results are only reported as long as every sample has at least one grasp

remaining. The figure shows results for different thresholds over estimated quality. While being low for seen objects, the improvement when filtering out

uncertain grasps is visible the more unknown the data becomes to the model.

novel split. This implies that the epistemic uncertainty is
informative even on objects the model has not seen during
training. For the application of a trained model in a specific
scenario, this can be an advantage.

By estimating uncertainties and showing their potential for
real-world applications, we further improved our depth-based
models over the point-cloud-based approach of [3].

VII. CONCLUSION

In this work, we showed through improved label fil-
tering and label generation that depth-based models still
have potential for grasp detection that was overlooked in
previous work, as we achieved comparable results to point-
cloud-based methods. We would like to point out that this
performance is achieved on depth inputs only. In future
work, it could be further improved by also considering the
RGB inputs available. Additionally, we have taken the first
step towards applying uncertainty estimation to our grasp
detections in order to incorporate the potential that these
uncertainties hold for real-world application. By showing the
immediate applicability and the plausibility of the estimated
epistemic uncertainties, we pave the way for future studies
regarding this topic. Even though we did not use aleatoric
uncertainty directly, its correlation with the grasp scores
was confirmed. Further work on utilizing these type of
uncertainty provides potential for improving contradicting
labels, which are mostly unavoidable when estimating grasp
poses, as there are a multitude of different grasps which can
be applied to a single position on an object.
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