
Robust Perception Skills for Autonomous Elevator Operation by Mobile
Robots

Steffen Müller1, Benedict Stephan1, Tristan Müller1 and Horst-Michael Gross1

Abstract— Autonomous mobile service robots with trans-
portation tasks are often restricted to work on a single floor,
since remote access to elevators is expensive to integrate for
reasons of safety certification. Therefore, already ten years ago
first robots have been enabled to use the human interface for
riding an elevator. This requires a variety of perception and
manipulation capabilities as well as social skills when it comes
to interaction with other people who want to use the elevator
too. We summarize the progress in solving the specific tasks of
detecting and localizing the required buttons to press robustly.
A deep-learning approach for detecting buttons in images is
combined with a verification based on predefined knowledge
on button arrangements in the elevator’s control panels. Also
perception of the elevator’s state and our realization of the
robot’s elevator riding capabilities are discussed.

I. INTRODUCTION

Riding an elevator is a subconscious action for human
beings, even if there is a lot of time to think about it while
waiting for the cabin. For a mobile service robot in contrast
the process has to be decomposed into clearly defined steps
each requiring specific recognition and articulation skills.

To reach a destination on another floor, a robot must
first implement a path planner capable of managing multiple
floors. Already in 2007 Kang et al. [1] described navigation
skills necessary to plan on multi-story maps. In general, a
combination of topological and metric planning allows to
solve the planning problem [2].

Once the plan shows that a transition between floors is
needed, the robot can go to the lift on its current floor, and
then the elevator procedure starts.

There exists research about robots without manipulation
skills, which need the assistance of humans for operating the
lift. [3] as well as [4] described how a robot seeks a helping
hand and analyzes the people’s intent in helping the robot.
Other social studies [5], [6] analyze the effect of a robot’s
appearance and interaction behavior in a conflict situation
while waiting for an elevator.

On the technical side, an autonomous robot first needs to
call the elevator by pressing the respective button. For that
purpose, a robust detection and localization of the button
in the 3D operational area of the robot is needed. In the
early days, this has been achieved using classical approaches
in image space. For example SIFT-feature-based detection

*This research has received funding from the thuringian project of
innovation potentials as part of the thurAI project (grant agreement 2021
FGI 0008).

1Authors are with the Neuroinformatics and Cognitive Robotics
Lab, Technische Universität Ilmenau, 98693 Ilmenau, Germany
steffen.mueller@tu-ilmenau.de

979-8-3503-0704-7/23/$31.00 ©2023 IEEE

or template matching [7] have been used. Recent solutions
rely on neural-network-based detectors. Zhu et al. [8] trained
a Faster RCNN detector on elevator buttons. In order to
also handle situations with unconventional buttons, they
combined the Faster RCNN-based region of interest (ROI)
detection with optical character recognition (OCR) to read
the button labels. Once a 2D proposal for a button location
exists, the utilization of depth data either from 3D cameras
or LIDAR sensors can be used to project the image position
into 3D space. A button detection with a neural network in
combination with a LIDAR for 3D coordinate transform can
be found in [9].

The detection of individual buttons alone may fail or the
wrong label might be predicted in a real world application
where partial occlusions or other artifacts may disturb the
perception. Therefore, the geometry and arrangement of the
complete control panel has been used to disambiguate the
meaning and position of individual buttons. Abdulla et al.
[10] for example detect button panels and correct the exact
location by using artificial landmarks at the corners of the
panel. We adopted the idea of using knowledge of the
complete control panel to make button localization more
resilient.

Assuming that the correct 3D coordinate of the desired
button could be found, the next step is to push the button.
This is a straight forward task utilizing the motion planner
for the robotic arm. To decide if the cabin has arrived and
whether the robot can safely enter the lift, further perception
skills are necessary. Lee et al. [11] recognize the state of the
elevator by laser, and a neural-network-based classification
of the arrow signs is used to confirm success of the push
button action. Once the cabin is entered, the goal floor has
to be selected by means of another button operation. Then
the robot has to recognize the correct floor to leave the lift.
This can either be done by means of artificial landmarks for
localization on the goal floor [11], or the robot can rely on
acceleration sensor tracking [12] and reading the information
panel of the elevator [13]. In all cases, the robot needs to be
specialized on the present elevator, or the environment has
to be adapted to the robot’s needs.

In our work, we tried to avoid any modification to the
environment and used pragmatic solutions for controlling the
whole sequence only with feedback on the lift state extracted
from the SICK laser range scanner of our robot. By reducing
the number of different image-based detection systems to a
minimum, the potential points of failure should decrease as
well, which makes the whole system more robust.

In Literature typically only solutions for the individual

in: European Conference on Mobile Robots (ECMR 2023), Coimbra, Portugal, IEEE 2023

Fig. 1: Robot platform Zeus as a combination of a SCITOS
G5 base by MetraLabs GmbH with an arm by Kinova

skills of the robot can be found. In practical application there
arise many challenges like short time spans to react when
the lift doors open or unforeseen interactions with people
occupying the robots way. We discuss these in the following
as well.

II. ROBOT PLATFORM AND BACKGROUND

This work is part of the research project RobInCare1

dealing with basic capabilities of mobile service robots to
enable autonomous navigation in nursing homes for the
elderly. When deployed to deliver mail and other items or to
pick up residents at their homes for group events, the robot
has to open and close doors and needs to use elevators with
its on-board manipulation skills.

The robot we use is a SCITOS G5 differential drive
platform equipped with an additional Kinova Gen II 7 DoF
arm for manipulation tasks. The wheels are big enough to
avoid getting stuck in the 4cm gap at the lift cabin entrance.
For perception of the environment, the robot has an Azure
Kinect and an ASUS Xtion depth camera on top of a pan-tilt
unit (PTU). Additionally, we use the three axes accelerometer
of the SCITOS G5 for recognizing the vertical movement of
the lift.

Navigation and localization of the robot platform relies on
a SICK S300 laser range scanner mounted in a horizontal
position. For self-localization in the environment, we apply
a Monte Carlo Localization [14], which uses laser to map
matching, and additional observations on button panel loca-
tions which have been mapped before. This will be explained
in Sec. V-B in more detail.

The navigation skills rely on [15] which allows maneuver-
ing in the lift cabin that is only a few centimeters wider than

1https://www.robincare.de/

door open at wrong floor

timeout

drive to elevator

press button (call)

success

fail

blocked

blocked

failure

ride elevator

elevator
analysis

drive to wait position

cabin occupied

door open

drive into cabin

press button (select target floor)

retry

failure

timeout elevator
analysis

door open at
correct floor

drive to ride position in cabin

leave elevator
blocked

blocked

Fig. 2: Procedure of riding the elevator

the robot’s footprint. The planning of arm motions is done
according to [16], which allows us to consider perceived
obstacles in real-time.

III. OVERVIEW OF THE ELEVATOR RIDING PROCEDURE

The whole elevator riding process is integrated in
our behavior-based software architecture implemented in
MIRA2. The higher order behavior decides to use the elevator
when the plan to the goal requires changing the floor. Then
the ride elevator procedure of Fig. 2 takes over. Here the
robot at first navigates to a starting position in front of the
elevator. Then the press button procedure is triggered which
will be explained in Sec. IV. This returns control after the
push force has been recognized and the robot’s arm has been
retreated to its home position allowing for safe navigation.
An additional feedback on the success of the call button
action is not implemented, since the robot will notice the
effect when the elevator doors open within a reasonable time.
So, the analysis of the elevator by means of the laser scan is
continuously running in the background yielding information
on the cabin door’s state and the occupancy of the cabin. This
is further explained in Sec. VI.

Once the door opened, the robot can enter the cabin if it is
empty. Otherwise, it will give way for the people and retries
the whole procedure. This is commented politely via specific
voice outputs. In case that the robot reaches the goal position
inside the lift cabin, again the press button procedure can
take control. In our database, the semantics of the different
buttons of the control panel have been mapped and, thus, the
correct one can be selected according to the target floor. After

2https://www.mira-project.org

in: European Conference on Mobile Robots (ECMR 2023), Coimbra, Portugal, IEEE 2023

pressing the button, the robot places itself in front of the exit
door, because the doors open for a short moment (6 sec) only.
Again an explicit feedback on the success of the button action
is not implemented. The robot will react on the opening door
and counts floors to decide whether the target floor has been
reached or an unexpected intermediate stop took place. If the
later case, when the door is opening the robot comments to
the people who have called the elevator that he is occupying
the cabin and asks for patience. If there are no people waiting
and the cabin is not going to move to the next stop, the button
for the target floor is pressed again, which is also the case
if the cabin does not start to move after the selection of the
target. In the normal case, the robot simply drives to a point
outside the cabin and control is returned to the higher level
behavior responsible for the navigation to the actual target
(e.g. the apartment of the resident to be visited). There are
several possible points of failure, which in most cases can be
handled by a retry. Only if the navigation path is blocked, or
the whole system gets stuck after a collision, the procedure
has to be aborted with an exception.

Challenges for the design of the procedure were the short
time intervals for maneuvering the arm in a safe position
for platform movements and the required time to plan the
movements. If the elevator is already at the current floor
when the robot presses the call button, he has only around
six seconds to enter the cabin before the doors close again.
This has been solved by finding an optimal position for the
robot when pressing the button. It has to be nearly centered
in front of the door, but on the other hand, this should not
be too close to the door to allow for robust button panel
perception and room for manipulation actions. Finally, the
robot is slightly angled such that it can enter the cabin with
a gentle arc movement. Additionally, the retreat motion of
the robot arm could not be executed with the motion planner
in the short time. Instead, we reversed the trajectory for the
pushing action and executed that at a higher speed assuming
that the scene is still free of obstacles in that region. The
same timing issues are present when the elevator already is
on the target floor, and the robot would presses the respective
button inside, which causes the door to open immediately,
and there is not enough time to leave the cabin. Luckily, this
case only can happen when the path to the outside of the
cabin is blocked by people and the robot has to retry to leave
the cabin after verbal communication to the people outside. A
solution for that problem is that if the robot is already on the
goal floor the button for another floor is pressed, causing the
elevator to take a detour, which gives time for maneuvering
inside the cabin. The original target floor then is reached
after another cycle of selecting the destination by button.

IV. PRESSING THE BUTTON

The actual procedure of pressing a desired button is shown
in Fig. 3. It starts with a navigation to a panel specific
interaction position, which allows for a good camera view
at the buttons as well as good reachability. Then the camera
is pointed at the control panel, while button detection and
panel localization run in background (see Sec. V-A). Once

drive to button

wait for stable button pose

approach button with hand

press button linear motion

retreat arm to
home position

force > treached end
pose

retry
success

update hand
eye calibration

timeout

blocked

blocked

blockedretreat arm to
home position

blocked

failure

press button

Fig. 3: Procedure of pressing a button

the pose estimation stabilized, the manipulation starts by
bringing the robot’s finger 10 cm in front of the estimated
button. Since the target position of the button is estimated
in camera coordinates, and the camera is on a PTU, and
additionally the whole robot frame is not rigid, there is a
calibration offset from the internal robot model and the actual
position of the hand in respect to the camera. Depending on
the position in the reachable area, this deviation can be up
to 3cm, which is critical for hitting the button correctly. To
solve that calibration problem, we included an estimation
of the end-effector pose in camera coordinates by means
of an ArUco marker [17] detection. A hexagonal marker
arrangement has been mounted to the robot’s wrist, allowing
to see at least two non-co-planar markers at a time (see
Fig. 4). By means of the calibrated camera, the 6D pose
of the marker arrangement can be estimated, yielding an
offset to the internal model of the robot. This offset then
is used to correct the goal position for the next movement
to be executed. This is a linear motion to a virtual point
2 cm behind the button of interest. During the execution, the
collision check for the fingertip is disabled to allow for the
contact with the button, which otherwise would be avoided
because the wall is contained in the collision scene of the
motion planner. The success of the operation is monitored
by means of the end-effector force. If the force in movement
direction exceeds a threshold t of 6 N, the button is supposed
to be pressed and the arm can be retreated to the home
position. If the force has not been noticed before the end
point is reached, then the button is supposed to be missed
and the whole process starts over again.

Possible points of failure for the whole procedure are un-
reachable positions. Either the position for the robot platform
is occupied, or the robot’s arm can not reach the desired start
and end point of the push trajectory.

in: European Conference on Mobile Robots (ECMR 2023), Coimbra, Portugal, IEEE 2023

Fig. 4: Localization of the robot’s end effector in camera
coordinates by means of ArUco markers used for online
hand-eye calibration.

V. BUTTON DETECTION AND LOCALIZATION

Detecting and distinguishing individual buttons either with
classical or machine learning methods always is prone to
confusion of labels or complete misses due to occlusion
for example (see Fig. 5). In order to make the button
pressing process more robust, we decided to incorporate
prior knowledge on the existing button arrangements in our
operational environment. The raw detections of buttons are
compared to previously mapped button panels in order to
optimize their position and correct labels. The recording of
panel configurations during installation is done using the
same detector as for online recognition but under optimal
recognition conditions without occlusions and from a per-
pendicular view.

Furthermore, to reduce the influence of occasional false
detections, the recognition process during application is not
only done once but runs in background at 4 Hz yielding a
stream of button panel locations that are filtered for outliers
by means of a geometric median.

On the first instance, the location of the button panel and
therefore the exact position of the individual buttons is used
for planning a push trajectory for the end effector of the
robotic arm, but the deviation of the panel’s relative position
in robot coordinates to the mapped panel position is also
fed into the MCL as additional cue for localization. This
allows a reduction of the typical laser-based localization error
from about 5 cm, which is related to the occupancy grid
map resolution, to a value in the 1 cm range. Therefore, also
static collision scenes can be considered by the robot during
manipulation, which prevents contacts to walls and surfaces
that are not visible in the depth camera directly.

In the following the realization of the neural-network-
based button detection is described before the actual local-
ization of button panels is explained, which uses the set of
detected buttons.

A. Raw Button Detection

For the recognition of individual buttons in color images
of our Azure Kinect, we trained a Faster-RCNN network on
the dataset of [8].

The aim is to distinguish 16 classes of buttons, which
are the special functions (open doors, close doors, alarm)

as well as most prominent floors B (basement), L (lobby),
G (ground floor), 1, ..., 9, and some wild card buttons with
unrecognizable labels called ’button’. The exact semantics of
the buttons is not necessarily to be detected by the network
since it is mapped to the buttons in the button panel as stored
in the robot’s database as described in the next section.

The network architecture we used is more lightweight than
in [8] since we use a ResNet-50 backbone instead of ResNet-
101 in order to save resources on our mobile hardware
(Nvidia Geforce RTX 2060). Additionally, we did not use
the OCR-RCNN approach proposed in [8] as the number of
floors and therefore the possible elevator buttons are within
the set of 15 classes. The slightly worse AP50 value of 85.8%
(compared to 90.1% of the ResNet-101) is acceptable due to
the further processing in the panel matching process.

Once the bounding boxes of candidate buttons have been
found, the next step is creating 6D poses for each of them
by means of projecting the boxes onto a point cloud of a
depth camera. We use the ASUS Xtion depth image due
to more reliable geometric properties of that active stereo
camera. The depth image of the Azure Kinect camera shows
material dependent depth offsets and other artifacts due to
the time of flight approach. From the 3D points inside the
bounding boxes, the surface normal and the xyz-coordinate
of the center can be extracted by means of a plane regression.
Using the vertical axis as granted, the full rotation matrix can
be easily computed for the normal and the z-unit vector by
means of three cross product operations, which completes
the 6D pose of the buttons.

B. Panel Matching

Having the incomplete set of button poses and respective
predicted labels, the association to known button panels can
be done. From the robot localization we can find the panel
of interest in our database and for that the relative position
of the buttons to the panel’s origin (at its center) is known.

The detection of the button panel’s pose in respect to the
camera is done by a Maximum Consensus approach. For that,
each pair of possible associated buttons, one from the known
panel in the database pi and one from the current detections
d j, is used to compute the relative 6D transformation between
them. This in the following can be used to project all the
detected buttons onto the known panel. For each detection,
we then search for the closest button p∗ on the known
panel and accumulate the distances. Here the match of the
predicted and the mapped label are taken into account. Label
mismatch yields a penalty offset ρ to the distance causing a
possible association to neighboring buttons that might be a
better match.

From that accumulated minimal distances to associated
buttons a matching score m(pi,d j) is computed to rank the
predicted transformation.

m(pi,d j) = e−(∑ j mini(|pi−d j |+l(pi,d j)))
2
/σ2

(1)

Here pi and d j are the xyz-coordinates of the panel
buttons and projected detected buttons respectively. The term
l(pi,d j) has a value ρ (free parameter) if the labels do

in: European Conference on Mobile Robots (ECMR 2023), Coimbra, Portugal, IEEE 2023

Fig. 5: Examples of exact button panel localization in case
of occlusion (right) and in normal conditions (left). top: raw
detections from the Faster RCNN; bottom: estimated 6D pose
of button panels and respective buttons

not match and 0 otherwise. This ensures that geometrically
ambiguous arrangements of buttons can be resolved by
means of the associated labels. See Sec. VIII for selection
of ρ . The parameter σ has been set to 0.03 m, which defines
the matching radius to the order of a single button’s size.

The pairing of detection and panel button with the max-
imum matching score yields the final hypothesis for the
panel’s pose estimation.

Fig. 5 shows some examples of the detection, which is
robust even if more than half of the panel is occluded by the
robot’s gripper.

VI. ELEVATOR ANALYSIS

Once the lift call button has been pressed, the robot needs
to detect when the cabin is ready for boarding. Therefore,
the laser range scan is analyzed, while the robot is waiting in
front of the door. Individual scan rays’ line segments in map
coordinates are intersected with a virtual line 5 cm behind
and parallel to the door. Then the left most and right most
intersection point on that door line define the traversable
gap. A threshold on the gap’s width allows to distinguish
door open and door closed state.

This method also works from inside the cabin, but in this
case the virtual line is offset 5 cm to the outside of the door
in order to become tolerant against localization errors.

Once the door is open, the robot needs to decide whether
the cabin is empty or occupied. Due to safety reasons, we
do not allow the robot to enter an occupied cabin, as people
could be blocked to leave the lift. To check the cabin, again
the laser range scan can be used. If the number of scan end
points inside the polygon of the cabin exceeds a threshold,
the cabin is considered to be occupied. To compensate for
small localization deviation the polygon has a safety margin
of 10cm to the actual walls of the cabin. Also people in front
of the elevator need to be recognized when the robot has to
decide whether to wait outside the lift or when leaving the
cabin. To that end a square of 1.5m by 1.5m in front of the
elevator’s door has been defined as the waiting area. This area

0 1000 2000 3000 4000 5000 6000 7000 8000

−4

−3

−2

−1

0

1

p
os

it
io

n
[fl

o
or

s]

pos lowpass

pos −1.0

−0.5

0.0

0.5

1.0

ve
lo

ci
ty

[m
/s

]

vel lowpass

vel

0 1000 2000 3000 4000 5000 6000 7000 8000
time [samples]

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

ac
ce

le
ra

tio
n

z
[g

]

raw sensor readings
low pass filtered
threshold

1 2 3 2

Fig. 6: Bottom: vertical acceleration sensor readings while
traveling one floor up, two floors down, three up, two down.
The time intervals between the acceleration peaks indicate
the floor difference. Top: integrated acceleration (velocity)
and integrated velocity (position) show a drift (red curve
should end at start level).

can be checked in the laser range scan similar to the inside
of the cabin. Usually, there are no other dynamic obstacles
in that region other than people.

VII. FLOOR RECOGNITION

After the robot finally has entered the cabin and the
destination floor has been selected by means of another
button action, the system needs to detect the current floor
in order to leave the cabin at the right one.

While other implementations try to read the indicator
screen inside the cabin [11], we rely on the built in acceler-
ation sensor of the SCITOS G5 robot.

We found that simply integrating the vertical component
of the acceleration two times is not reliable enough. Even
after careful calibration, the resulting distances drift rapidly
over more than the height of one story. Fig. 6 (top) shows
that drift in the red curve, which in practice should end at
the same level as it started. Instead, we found that in most
elevators the duration for changing from one specific floor
to each other are more or less constant (see Fig. 6 (bottom)).
This is especially true, if the weight of the cabin is constant
which is guaranteed since the robot will ride the elevator
alone. Therefore, by using the acceleration sensor, we simply
detect the acceleration event of the cabin at the start and the
deceleration event at the end by a simple threshold on the
low-pass-filtered vertical acceleration value. The low pass
filter shown in Fig. 6 ensures that little bumps at the entrance
of the lift do not trigger floor change recognition when the
robot enters or leaves the lift. This approach may reach its
limits, when the number of stories increases. The potential
deviation of the travel time increases with the overall distance

in: European Conference on Mobile Robots (ECMR 2023), Coimbra, Portugal, IEEE 2023

0.0 0.2 0.4 0.6 0.8 1.0

button label misclassification rate

0.75

0.80

0.85

0.90

0.95

1.00
p

an
el

d
et

ec
ti

on
ra

te

0.0 0.1 0.2 0.3 0.4 0.5

label mismatch penalty

0.75

0.80

0.85

0.90

0.95

1.00

p
an

el
d

et
ec

ti
on

ra
te

Fig. 7: Ratio of correct panel localization depending on the
amount of misclassifications of the button labels (top) and
in dependency of the label mismatch penalty parameter ρ

(bottom). Both were evaluated over a sequence with heavy
occlusions of two button arrays.

and finally reaches the duration of a single floor transition
with an increasing number of stories. In our test facilities we
only had access to a four story elevator. Therefore, during
our real world application the floor recognition did not fail
a single time.

VIII. EXPERIMENTAL EVALUATION

We use the proposed methods in two installations of the
autonomous assistance robot. One is operating in our uni-
versity building and the other in the target facility, a nursing
home for elderly in Ilmenau Germany. First, the results of
a quantitative evaluation of the button panel localization is
presented before the insights into the development process
and the results of a one week application test are discussed.

A. Evaluation of the Button Panel Localization

In the following, we report the analysis of the button panel
localization which is a prerequisite for the precise robot
localization and button interaction.

In order to evaluate its robustness, we have recorded a
video sequence of the robot observing the button panels of
two different elevators. This dataset shows occlusions to parts
of the panel due to the robot’s hand operating on the buttons
in 35% of the images.

First, we wanted to show the panel detection results
in presence of misclassified buttons in the raw detections.
Unknown buttons will effect the panel localization in the
same way. This would be the case in a building with more
than 10 stories since we only use the 16 button classes as
described in Sec. V-A. For the experiment, the predicted
labels in the video sequence have been artificially invalidated
randomly for a variable amount of raw detections in each
image. The label match parameter ρ has been set to 1.0 for
that experiment. Fig. 7 (top) shows that for the given setup
the panels have been localized correctly in more than 97%
of the frames with label drop out rates of up to 30%. The

position of the detected panels has been count as false if it
snapped to another grid position, which means that there was
a position offset of more than 5 cm in 3D world coordinates.
Note, that this is not the accuracy of the localization in
camera coordinates since it includes the localization error
of the moving robot platform.

The position accuracy of the correctly detected panels in
camera coordinates inherits directly from the accuracy of
the raw button detection and has been evaluated as follows.
Knowing the size s of the buttons in the real world, the
position accuracy could be evaluated by comparing the offset
d of the detected box to the ground truth box and the ground
truth box dimensions w.

ē =
1
N

N

∑
n=1

sn
dn

wn
ê = max

n∈[1,N]
sn

dn

wn
(2)

Using the test dataset of known buttons, the average and
max position offset has been found to be ē = 0.16 cm and
ê = 0.33 cm. This small offset is increased slightly when the
3D position is evaluated from the point cloud data but at the
end it is reasonable for hitting the button with the robot’s
finger.

A further evaluation deals with the free parameter ρ of the
panel matching algorithm. Although, it is possible to find the
correct matching buttons pairs without any label information
if the corners of the panel are not occluded, in cases with
the arm in front of the panel the correct pairing based on the
label makes the localization of the panel more robust. Fig. 7
(bottom) shows the influence of the parameter ρ . When label
matches are not rewarded at all (ρ = 0), then due to occlusion
25% of the frames yield a panel detection that is snapped to
the wrong grid position. When ρ reaches 0.2, the association
mistakes can be reduced and the false panel detections drop
to about 3%. The error that might be introduced by a ρ that
is too high depends on the actual misclassification rate of the
raw button detector. For our practical application that rate is
so low that no negative effects of a big ρ could be observed.

B. Application Test and General Findings

The development of the elevator procedure took place
in the said facilities leading to a functional transportation
service that has been tested in our office building for a week.
There were 96 transportation tasks that required changing the
floor. In three cases a human intervention was necessary to
recover the robot from a deadlock. In one case the robot got
stuck when leaving the cabin. The drive system was not able
to overcome the gap. In the other cases the robot stopped
assuming to be in a collision with the static environment,
which actually was not the case. This can happen when the
platform gets moved passively or the localization system
changes the position without an actual movement of the
robot. In the later case the robot model virtually is placed
inside e.g. a wall, which causes the collisions.

During the application no problems with the floor recog-
nition could be recorded. The travel-time-based tracking of
floors seems to be robust against all jerks happening.

in: European Conference on Mobile Robots (ECMR 2023), Coimbra, Portugal, IEEE 2023

There was a total number of 305 press button procedures,
of which seven missed to hit a button at all. That means
the force threshold has not been exceeded, which could be
caused by a unfavorable positioning of the robot in relation to
the button panel of a wrong localization of the panel (distance
estimated too large). The unexpected high number of button
operations is caused by repeatedly calling the elevator when
it is occupied or busy. The timeout for a retry was only 20
sec. When the lift is stopping at other floors this often is not
long enough.

During development, the robot occasionally pushed away
itself while pressing the call button in front of the lift. Then
the changed orientation caused difficulties with the following
detection and cabin entering movements. This misbehavior
could be mitigated by means of active breaking when the
push trajectory is executed with the arm.

A further, more critical point of failure was related to
the navigation while entering the cabin. When the robot
struggles to get over the doorstep it can get stuck when the
cabin doors close and hit the robots bumper. In that case
the hardware needs 3 seconds until safety stop is released
and the door closes again soon. A fallback strategy for this
situation has been implemented, which consists of a manual
drive command for going backwards for 10 cm in order to
escape from that loop.

IX. CONCLUSIONS
In this paper we present a complete pipeline for automated

operation of an elevator by a mobile robot. We introduce our
button localization approach based on the complete panel,
which makes it robust to detection errors made by the button
detector. Additionally, by localizing the panel our approach
can handle occluded buttons during push operation allowing
us to continuously track the button’s position.

We evaluated the panel localization and the complete
pipeline through real world trials with two different elevators.
While most of the problems remaining are caused by strict
time constraints caused by the small time frame in which the
elevator doors are open, our pipeline is effective enough to
be used in real world applications.

REFERENCES

[1] J.-G. Kang, S.-Y. An, and S.-Y. Oh, “Navigation strategy for the
service robot in the elevator environment,” in 2007 International
Conference on Control, Automation and Systems. IEEE, 2007, pp.
1092–1097.

[2] H.-M. Gross, A. Scheidig, K. Debes, E. Einhorn, M. Eisenbach,
S. Mueller, T. Schmiedel, T. Q. Trinh, C. Weinrich, T. Wengefeld,
et al., “Roreas: robot coach for walking and orientation training
in clinical post-stroke rehabilitation—prototype implementation and
evaluation in field trials,” Autonomous Robots, vol. 41, pp. 679–698,
2017.

[3] J. Liebner, A. Scheidig, and H.-M. Gross, “Now i need help! passing
doors and using elevators as an assistance requiring robot,” in Social
Robotics: 11th International Conference, ICSR 2019, Madrid, Spain,
November 26–29, 2019, Proceedings. Springer, 2019, pp. 527–537.

[4] S. Rosenthal and M. Veloso, “Mobile robot planning to seek help
with spatially-situated tasks,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 26, no. 1, 2012, pp. 2067–2073.

[5] F. Babel, P. Hock, J. Kraus, and M. Baumann, “Human-robot conflict
resolution at an elevator - the effect of robot type, request politeness
and modality,” in 2022 17th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), 2022, pp. 693–697.

[6] W.-t. Law, K.-s. Li, K.-w. Fan, T. Mo, and C.-k. Poon, “Friendly
elevator co-rider: An hri approach for robot-elevator interaction,”
in 2022 17th ACM/IEEE International Conference on Human-Robot
Interaction (HRI). IEEE, 2022, pp. 865–869.

[7] D. Troniak, J. Sattar, A. Gupta, J. J. Little, W. Chan, E. Calisgan,
E. Croft, and M. Van der Loos, “Charlie rides the elevator – integrating
vision, navigation and manipulation towards multi-floor robot loco-
motion,” in 2013 International Conference on Computer and Robot
Vision, 2013, pp. 1–8.

[8] D. Zhu, T. Li, D. Ho, T. Zhou, and M. Q. Meng, “A novel ocr-
rcnn for elevator button recognition,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,
pp. 3626–3631.

[9] P.-Y. Yang, T.-H. Chang, Y.-H. Chang, and B.-F. Wu, “Intelligent mo-
bile robot controller design for hotel room service with deep learning
arm-based elevator manipulator,” in 2018 International Conference on
System Science and Engineering (ICSSE). IEEE, 2018, pp. 1–6.

[10] A. A. Abdulla, H. Liu, N. Stoll, and K. Thurow, “A robust method
for elevator operation in semi-outdoor environment for mobile robot
transportation system in life science laboratories,” in 2016 IEEE 20th
Jubilee International Conference on Intelligent Engineering Systems
(INES). IEEE, 2016, pp. 45–50.

[11] J. Lee, X. Cui, H. Kim, S. Lee, and H. Kim, “Elevator riding of mobile
robot using sensor fusion,” in The 8th International Conference on
Robotic, Vision, Signal Processing & Power Applications: Innovation
Excellence Towards Humanistic Technology. Springer, 2014, pp. 89–
98.

[12] R. Stricker, S. Müller, E. Einhorn, C. Schröter, M. Volkhardt,
K. Debes, and H.-M. Gross, “Interactive mobile robots guiding visitors
in a university building,” in 2012 IEEE RO-MAN: The 21st IEEE Inter-
national Symposium on Robot and Human Interactive Communication.
IEEE, 2012, pp. 695–700.

[13] J. Krejsa, S. Vechet, K.-S. Chen, M. Havelka, and M. Černil, “Mobile
robot in the elevator: What floor am i on?” in 2022 20th International
Conference on Mechatronics-Mechatronika (ME). IEEE, 2022, pp.
1–5.

[14] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte carlo
localization for mobile robots,” Artificial intelligence, vol. 128, no.
1-2, pp. 99–141, 2001.

[15] S. Müller, T. Q. Trinh, and H.-M. Gross, “Local real-time motion
planning using evolutionary optimization,” in Towards Autonomous
Robotic Systems: 18th Annual Conference, TAROS 2017, Guildford,
UK, July 19–21, 2017, Proceedings 18. Springer, 2017, pp. 211–
221.

[16] St. Mueller, B. Stephan, and H.-M. Gross, “Mdp-based motion plan-
ning for grasping in dynamic szenarios,” in Europ. Conf. on Mobile
Robotics (ECMR), Bonn, Germany. IEEE, 2021, p. 8 pages.

[17] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and
M. Marı́n-Jiménez, “Automatic generation and detection of
highly reliable fiducial markers under occlusion,” Pattern
Recognition, vol. 47, no. 6, pp. 2280–2292, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0031320314000235

in: European Conference on Mobile Robots (ECMR 2023), Coimbra, Portugal, IEEE 2023

