
On Learning of Inverse Kinematics for Highly Redundant Robots with
Neural Networks

Benedict Stephan, Ilja Dontsov, Steffen Müller, and Horst-Michael Gross

Abstract— The inverse kinematic problem for redundant
robots is still difficult to solve. One approach is learning the
inverse kinematic model with artificial neural networks, while
the key challenge is the ambiguity of solutions. Due to the
redundancy in the robot’s degrees of freedom, there are multiple
or even unlimited valid joint states bringing the end effector to a
desired position. We show to what extent this problem influences
the achievable accuracy of supervised training approaches
depending on the number of degrees of freedom. To overcome
the difficulties, a new training scheme is proposed, which uses
the analytically solvable forward kinematics model. The new
unsupervised training method uses random sampling in the
joint state space and is not dependent on ambiguous tuples of
joint values and end effector poses. We analyze the effect of
the sample density on the remaining position error and show
that additional soft constraints can easily be integrated in the
training scheme, which offers the possibility to consider obstacle
avoidance directly in the inverse kinematic model. Evaluations
have been done using different robot models with up to 20
degrees of freedom, while not only position, but also the end
effector’s orientation at the goal point is considered.

I. INTRODUCTION

Solving the inverse kinematic (IK) problem, which is to
find the set of joint angles for a kinematic chain that brings
the end effector in a desired pose in the Cartesian space, is
a difficult task when the robot has more degrees of freedom
(DoF) than necessary. While there are analytical solutions
for simple robots, for redundant robots often only numerical
iterative solutions (e.g. Damped Least Squares method [1])
are possible, which require additional constraints to select
one among multiple possible solutions.

Already in the 1990’s there were attempts to train neural
networks to solve this problem, but mostly for low numbers
of DoF [2, 3]. Usually, the models were trained using a set of
captured tuples of end effector pose and respective joint state.
These are either captured from a real robot, incorporating
possible calibration errors, or it can be generated by means
of a forward kinematic model, which is always solvable
analytically. These approaches achieved good results when
there is no ambiguity in the training data. This is ensured by
either the low number of DoF or by introducing additional
constraints for disambiguation. Even if a robot has more
than six movable joints, the angular limits might be so
tight that there are no problems with ambiguity. Demby [4]
for example could achieve position errors in the range of
mm with an MLP for standard robots with four to seven

This work has received funding from the Carl-Zeiss-Stiftung as part of
the project engineering for smart manufacturing (E4SM).

Authors are with Neuroinformatics and Cognitive Robotics Lab, Tech-
nische Universität Ilmenau, 98693 Ilmenau, Germany.

joint
angles

θ

auxiliary loss function
to avoid joint limits

ta
rg

et
 p

os
e po

si
tio

n x
y
z

or
ie

nt
at

io
n

x-
ax

is

 y
-a

xi
s

MLP

forward
kinematic

KN(θ)

actual
poses
of joints

auxiliary loss
distance to obstacles

unsupervised
pose loss

supervised
loss

7 DoF 10 DoF 20 DoF

Fig. 1. Principle architecture of the proposed loss function for unsupervised
training. Bottom row shows results of the end effector of increasingly
complex robot models following a spiral trajectory. (green: target trajectory;
red: actual trajectory; blue: the limbs of the robot arm)

DoF, while the individual joint limits have been trimmed
drastically.

Restricting the training dataset to an unambiguous subset
of the configuration space seems to be counter-intuitive,
since the capabilities of redundant robots to manage difficult
situations with obstacles occluding some of the possible
solutions unfortunately gets lost by such an approach.

In more recent publications, the training of networks for
solving redundant robot geometries can be found. Bensadoun
et al. [5] for example handle ambiguities explicitly by
utilizing a sequence of networks each responsible for one
joint in the chain. Each of them is considering the state of
all the previous joints. So the individual models for higher
level joints are trained with data that is conditioned on the
state of the previous lower level joints.

Ensembles of networks have also been proposed to solve
the problem by each specializing on a certain solution [6].
This ensemble approach can drastically reduce the remaining
position error to a 10th.

In [7] the authors are discussing the problem of training
networks for redundant robots. They propose a network that
clusters the solutions and can query different solutions by
using an additional input to the network for indexing. They

IEEE Int. Conf. on Advanced Robotics (ICAR), Abu Dhabi, UAE, IEEE 2023

call this selective inverse kinematic (SIK). The same idea of
selecting situation dependent sets of joint angles is found in
some online controller applications. E.g., in [8] the current
joint state of the robot is used as an additional input to
the network. By means of selecting the closest among the
possible ambiguous solutions, also higher order IK problems
could be solved.

The supervised training of inverse kinematic models is also
applied in the field of soft robotics, which tend to have a high
degree of redundancy in their DoFs. In [9] they are learning
from 10000 samples generated by exploration on real 9 DoF
elephant trunk like robot, which is actuated pneumatically.
In [10] this approach is analyzed theoretically.

When using machine learning models for solving a prob-
lem the question arises which architecture performs best.
While most approaches use a simple Multi Layer Perceptron
(MLP) as a baseline, in [11] different network architectures
(LSTM, MLP, GRU) have been compared to an analyti-
cal model. Also unsupervised models like Kohonen Maps
(KSOM) [12] have been used successfully for solving the IK
for a highly redundant mobile manipulator having 14 DoF.

Since the MLP yields good results for the low DoF
problems we also concentrate on this well-tried network
for our own analysis. We think that the supervised training
scheme is the main reason for the bad results reported for
MLP solutions with high DoF robots and therefore con-
centrate on that most simple network architecture, knowing
that the proposed training method might also improve more
sophisticated networks.

A neural network model of the inverse kinematic usually
is used in a controller for a robotic manipulator. Here,
additional constraints like collision avoidance and avoiding
of the joints’ endpoints have to be considered. There also
exist learned controllers for solving complete tasks by means
of deep reinforcement learning. For example [13] learned
a collision free, inverse kinematic model able to control a
welding robot.

While many of the existing approaches either use a more
complicated setup of multiple networks, constraint datasets
or more sophisticated models such as recurrent neural net-
works, we intentionally keep our model simple. By changing
the training method and the loss function to be optimized,
we are also able to include additional capabilities to the
IK solving neural network. For example, we can take the
collision scene into account, enabling the network to select
collision free configurations automatically during the training
process. In sec. III-F we show an example for such additional
benefits of our proposed training method.

Thus our key contributions are as follows:
• Introducing our approach of training inverse kinematic

models in an unsupervised way to avoid contradictory
training samples

• Analysis of the dependency of errors on model DoFs,
joint limits, and sample distribution, while taking the
orientation of the desired end effector pose into account

• Providing an example of integrating obstacle avoidance
while solving the IK problem

II. UNSUPERVISED INVERSE KINEMATICS MODEL
TRAINING

The main problem with training neural networks for IK is
the redundancy of joints. This results in multiple solutions for
a given target pose and therefore yields contradictory training
samples which would cause a neural network to average all
provided solutions during supervised training to minimize the
overall error. In Bensadoun 2022 [5] a comparative study of
different neural network approaches for robots with 4, 6, and
7 DoF is shown. Here for the simple MLP an increase of the
error from 123mm at 4 DoF to 591mm and 577mm for 6
and 7 DoF respectively could be observed, which proves that
relationship quite well.

We propose to deal with these contradictions during train-
ing and not by filtering the dataset beforehand. By applying
an unsupervised training regime we allow the neural network
to converge on a single solution for a specific input pose
while ignoring others. Instead of computing the training
error directly over the predicted joint angles, we compute
the resulting 6D pose of the end effector by using forward
kinematics. Then we minimize the error between this pose
and the target pose at the network’s input. As computing
forward kinematics can be formulated as simple matrix mul-
tiplications we can propagate the error to adapt the weights of
our neural network through the forward kinematic model. An
overview of our approach can be seen in Fig. 1. Our model
is similar to an encoder decoder or autoencoder setup but
with an analytical decoder. Although there may exist multiple
samples during training that consist of different joint angles
but result in the same 6d pose, our approach would allow the
model to effectively decide on one of these solutions. This
selection process takes place without handcrafted constraints
or any additional information provided by a human.

Not needing to resolve contradictions during dataset gen-
eration, allows us to use random sampling in joint space.
As we will show as part of our experiments, the remaining
error of our trained models could be improved with more
consideration during sampling, to achieve a more uniform
coverage of the Cartesian space.

An additional advantage of using a neural network for
solving the inverse kinematics problem is that one could eas-
ily integrate constraints to the learned solutions. For example
one could compute the distance between joint positions and
obstacles and add it to the error being minimized to achieve
obstacle aware solutions. We showcase this possibility by
using a static obstacle.

In contrast, a neural network trained in this manner does
not allow for computing redundant solutions for a single
target pose, as it focuses on a single solution during training.
This makes our approach unsuitable for applications where
multiple solutions are necessary, although a similar approach
to [7] could allow conditioning the network with an extra
input, allowing queries for multiple solutions.

A. Kinematic Model

For evaluating our approach we use an artificial robot arm
which makes it easier to scale the number of joints. For

IEEE Int. Conf. on Advanced Robotics (ICAR), Abu Dhabi, UAE, IEEE 2023

comparison and to rule out a possible bias in constructed
kinematic chain we additionally provide results for the real
robot model of a TIAGo1 robot’s arm which has 7 DoF.

The kinematic chain of our artificial robot model consists
of two types of links which are used alternately. The first and
all uneven numbered links have a revolute joint in x-direction
followed by a 0.01m long limb. At the end of that, all even
numbered joints are axial revolute joints with a length of only
0.15m. The corresponding transformations matrices for the
forward kinematic model, which depend on the joint angles
θi, are as follows:

A2i(θ2i) =

 cos(θ2i) −sin(θ2i) 0 0
sin(θ2i) cos(θ2i) 0 0

0 0 1 0.15
0 0 0 1

 (1)

A2i+1(θ2i+1) =

 1 0 0 0
0 cos(θ2i+1) −sin(θ2i+1) 0
0 sin(θ2i+1) cos(θ2i+1) 0.01
0 0 0 1

(2)

By means of these transformations, the forward kinematic
model KN (θ) results from multiplication of all the joints:

KN (θ) =

[
RN tN
0 1

]
=

N∏
n=1

An(θn) (3)

A given point p̂N in coordinates of the Nth joint (zero vector
to get the actual joint’s pose) can be transformed to world
coordinates pN by multiplying it with KN (θ):

pN = KN (θ)p̂N (4)

The forward model matrix KN (θ) also contains the descrip-
tion of the rotation RN and the relative position tN directly.

B. Data Generation

For training a model to solve the IK problem generat-
ing data is comparatively easy as one can simply sample
randomly in the joint space within the robots limits and
compute the joints’ poses in Cartesian space by means of the
forward kinematics. For our models we generate a test split
by drawing 200 000 samples in this manner. As sampling the
dataset is computationally simple, for training we randomly
sample a new batch for each step, which is independent from
the test split. This ensures that resulting errors are not caused
by a general lack of training data. With a training split,
which is functionally infinite, we train our models until it
the loss converges. It is important to note that thereby it is
possible for the model to be trained on samples which are
similar or close to samples in the test set. For the problem of
solving the inverse kinematics this is of low importance as
we train our model on a fixed robot model. This removes the
need for generalization while still being feasible for actual
application.

By training our model with the unsupervised approach
there is no need to account for possible contradictions in
the datasets as all generated goal poses in Cartesian space

1TIAGo robot platform by PAL Robotics https://pal-robotics.com/

−0.4 −0.2 0.0 0.2 0.4

X coordinate

−0.4

−0.2

0.0

0.2

0.4

Y
co

or
d

in
a

te

0

20

40

60

80

100

120

140

160

180

−0.4 −0.2 0.0 0.2 0.4

X coordinate

−0.4

−0.2

0.0

0.2

0.4

Y
co

or
d

in
a

te

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fig. 2. Left: Cross section of the density of data points in Cartesian space
resulting from uniform sampling 1M points in joint space of our 7 DoF
artificial robot model; Cross section was taken with z ∈ [0.1, 0.15]. Right:
corresponding L2 position error of the neural network IK model trained
with the unsupervised method. The dot marks the origin of the robot arm.

are reachable by at least one joint configuration. Since we
optimize only the difference of predictions and targets in
Cartesian space, it makes no sense to measure errors in joint
space as commonly seen in literature when the supervised
training is used. Thus we concentrate on position error in
our evaluation.

The uniform distributed sampling in joint space unfortu-
nately yields an uneven distribution of end effector poses
in Cartesian space as shown in Fig. 2 (left). This might be
a point for improvement, since regions with lower sample
density usually correlate with higher errors. Tracking the
sample density or applying some kind of hard sample mining
in the sampling process could help to even out the sample
density and therefore also reduce the variance of the position
error.

C. Model Architecture

The network used for the evaluation (see Fig. 1) has the
following structure: Inputs are the three dimensional goal
coordinates of the end effector (x, y, z) normalized to a range
of [0, 1]. For the experiments with orientation the desired
rotation of the end effector is added as six additional inputs
which represent two column vectors of the rotation matrix
Rin = [axayaz]. Since the third orthogonal vector az can
be computed from these, the two direction vectors (ax x-axis
and ay y-axis) are unique and represent the 3D version of a
sine cosine representation of the three Euler angles.

Following a simple feed forward structure, the network
has three hidden layers each using 100 neurons and a ReLU
activation. In each hidden layer a batch normalization helps
to stabilize the training.

The output of the network consists of neurons with linear
activation function for the set of joint angles θi, which are
normalized to match the joint’s limits in the output range
[0, 1].

A second option for encoding the angles at the output
called biternion is the representation by two neurons each.
One encoding for the sin(θi) and the second encoding for
the cos(θi). By means of the arctan the actual θi can be
reconstructed from these values. This representation is able
to overcome the problems of periodical angle values which
otherwise are highly discontinuous functions due to the wrap

IEEE Int. Conf. on Advanced Robotics (ICAR), Abu Dhabi, UAE, IEEE 2023

around. Biternion encoding is a promising way for encoding
angles at network outputs [14] and therefor was compared
against the linear output. In our special case it is not expected
that the biternions have a dramatic advantage over linear
neurons, since our joints are not continuous and we do not
have a wrap around point. (Details on the joints’ limits are
given in Section III-A.)

D. Loss Functions
For the supervised training which is used as a reference,

the loss function is defined by the mean squared error (MSE)
of the predicted θi to the ground truth θgti . In case of the
biternion output the MSE is taken from sin(θi) and cos(θi)
from the prediction to the sin(θgti) resp. cos(θgti) of the
ground truth from the training data.

The loss function we propose for the unsupervised training
does not make use of ground truth joint angles at all. As
depicted in Fig.1, the predicted joint angles θ are put into
the forward kinematics KN (θ) which yields the individual
coordinates of the Nth joint. Then the MSE of the goal point
vector (network input) and the translation part tN to be found
in the third column of the KN (θ) yields the position error
(L2 error). Since absolute errors in Cartesian space are less
comparable for robots of different scales, we also provide
the relative L2 error, which simply results from dividing by
the robot arm’s maximum range.

For the experiments that consider the orientation of the
end effector, the first two columns of KN (θ) –neglecting the
forth row– correspond to the two vectors ax and ay which
define the target orientation at the network’s input. These
simply are compared by means of MSE as well yielding the
rotation loss Lrot.

To get a more meaningful metric for the rotational differ-
ence we report the angle of the angle axis representation of
the rotation Rdiff = RinR

−1
N with Rin = [axayaz] being

the rotation of the target pose and RN being the rotation of
the predicted pose. This will be referred to as rotation error
in the following experiments section.

As already claimed, it is easy to include additional loss
terms further restricting the selection of the solution. E.g. in
the last experiments we added a distance term Lobs, which
sums up the truncated distances of the N individual joint
positions (fourth columns of the KN (θ)) to a sphere defined
in world coordinates (see Sec. III-F). This is exemplary for
any more sophisticated representation of a static collision
scene.

A further very important term is self collision avoidance.
From the KN (θ) it would easily be possible to compute
mutual distances of the limbs of the robot. A violation of a
distance threshold then could be added as an additional loss
term restricting the selection to collision-free solutions.

A last loss term we propose is responsible for restricting
the joint angles to their limits. This can directly be derived
from the predicted joint angles as shown in Fig. 1.

E. Training Setup
For training our models we used the same hyperparameters

for all experiments. We trained with a batch size of 100

and used the 1cycle scheduler with a maximum learning rate
of 0.001 and Adam as optimizer. As described in Section
II-B we randomly sampled each batch during training and
trained until the model converged. Preliminary experiments
showed convergence within 1 600 000 iteration. We evaluated
the final weights on the test split and report errors as mean
over all samples.

III. DISCUSSION OF EXPERIMENTAL RESULTS

Using the described setup, we conducted four compara-
tive experiments, the results of which are discussed in the
following:

• To show that our artificial robot model is reasonable,
we compare the results of the 7 DoF case with the real
robot model of our TIAGo robot.

• A second series of trainings of the 7 DoF artificial
model with varying angular limits shows that the limits
actually influence the difficulty of the IK problem and
therefor the achievable error.

• The main argument for our proposed unsupervised
training method is a direct comparison of the supervised
and unsupervised training for a series of increasingly
complex robot models. Here the point where ambiguous
solutions appear can be seen clearly. The supervised
method fails completely while the unsupervised ap-
proach can handle even 20 dimensional joint spaces
easily.

• As a last experiment we demonstrate the inclusion
of static obstacles in the training yielding an inverse
kinematic solver which considers collision avoidance.

A. Comparison of Artificial to Real Robot Model

We decided to conduct our experiments with an artificial
robot model as described in Sec. II-A, which more clearly
shows the problems induced by redundant DoF and the
influence of limitations in the individual joints. This highly
complex model yields position errors in the range of some
cm, which is quite an unusable result for practical appli-
cations, but the robot’s parameters have been chosen to be
excessively difficult. To show that the general findings of the
experiments are applicable to a real world robot as well, we
used the supervised and unsupervised training for the TIAGo
robot model, which has a 7 DoF arm. Table I summarizes
the errors for different training setups on that model.

The TIAGo model reached an L2 error of 3.59cm using
the unsupervised training and 5.9cm using the supervised
approach. The supervised training fails to consider the target
orientation and only reached 87.5° average error, while the
unsupervised approach depending on the output encoding
ends up in a range of 5° to 15°. These values are in a similar
range for our artificial model with 7 DoF.

As a reference Köker et al. [6] reported position errors of
5.76–13.41mm for a 6 DoF robot arm using one feed forward
neural network tuned for minimizing the error, which was not
the primary goal for our experiments.

IEEE Int. Conf. on Advanced Robotics (ICAR), Abu Dhabi, UAE, IEEE 2023

TABLE I: Results achieved on a 7 DoF real robot model for a TIAGo robot
and for the artificial robot with 7 DoF using different output encoding and
various loss functions for supervised and unsupervised training.

Model Training Output L2 pos. rotation
encoding error [m] error [°]

Tiago Sup. Linear 0.0783 57.89
Tiago Sup. Biternion 0.0592 87.47
Tiago Unsup. Pos Linear 0.0130 115.40
Tiago Unsup. Pos Biternion 0.0122 120.02
Tiago Unsup. Pos + Rot Linear 0.0613 4.68
Tiago Unsup. Pos + Rot Biternion 0.0359 14.51

7 DoF Art. Unsup. Pos + Rot Linear 0.0889 3.75
7 DoF Art. Unsup. Pos + Rot Biternion 0.0445 4.63
7 DoF Art. Unsup. Pos + Rot Linear 0.0629 3.62
(0.8 limits)

B. Restricting Joint Limits

In the literature the achievable error values for robots with
the same DoF seem to have a high variance. According to our
hypothesis, the difficulty and therefore the remaining errors
are related to the degree of ambiguity in the dataset used
for training. This ambiguity depends mainly on the DoF of
the robot, but also the angular joint limits and the actual
topology of the kinematic chain.

In a series of trainings, we incrementally reduced the
angular limits of our 7 DoF artificial robot model. The max-
imum range of [-180°,180°] for even numbered joints and [-
120°,120°] for the odd numbered joints has been scaled down
to [-36°,36°] and [-24°,24°] respectively. The optimization
considered position and orientation and used linear output
encoding with the unsupervised training method.

The chart in Fig.3 shows the trend. For smaller limits the
robot’s operational area get more and more restricted and
therefore also contradictory poses appear less often. For the
restricted limits case the error values are in a practically
usable range of 5mm and 1° which are comparable to the
results of Demby [4] who trained supervised on an even more
limited robot model.

C. Supervised vs. Unsupervised Training

The main focus of this paper is the comparison of the
performance reached with the supervised and unsupervised
training method for incrementally complex robots. We took
the artificial robot model and extended the kinematic chain
link by link while training the IK model with both methods.

0.000

0.025

0.050

L
2

er
ro

r
[m

]

0.2 0.4 0.6 0.8 1.0

Scaling factor for joint limits

0

2

4

ro
ta

ti
o

n
er

ro
r

[°
]

Fig. 3. Comparison of errors based on range of joint limits of 7 DoF
artificial arm. Full limit’s range of 1.0 means [-180°,180°] for the even
numbered joints and [-120°,120°] for the odd joints.

Fig. 4 shows the results. According to the theory starting
from 4 to 5 DoF the solutions become ambiguous and
therefore the performance of the supervised training method
significantly becomes worse. The chart shows also that the
dramatic drop of performance is independent of the encoding
of the joint angles at the network output, while the biternion
version has a slightly better positional error.

The results of the unsupervised method seem counter-
intuitive, since with higher DoF (over 8) the position and
orientation errors drop again, having their maximum at 6 DoF
resp. 8 DoF. This gives rise to the hypothesis that the
unsupervised training process with redundant robots earlier
finds a valid solution since the error landscape is more
flat because there is a manifold of optimal solutions rather
than only one. Obviously the method can disambiguate the
possible solutions robustly. The unsupervised method finds a
smooth continuous solution for the whole operational area.
This is visible when following a smooth trajectory as shown
in Fig. 1 (lower part).

Nevertheless, for the higher DoF problems the errors are
worse than for the 4 DoF problem, which can relate to the
network architecture limitations but also to the data sampling.

For 6 DoF the robot is not redundant for the position
plus orientation problem and there is a finite set of algebraic
solutions only. For the supervised method these already seem
to cause the network to average the solutions which causes
the dramatic rise of errors at 4 and 5 DoF for orientation
and position respectively.

The experiment also showed that the difference between
supervised and our training method is present for the
biternion encoding of the joint angle outputs. This encoding
has slightly better position errors, but the orientation error
increases. There seems to be a trade-off, while the overall
error is limited. The classical supervised training independent

0.0

0.5

1.0

L
2

er
ro

r
[m

]

Training
Unsupervised biternion

Unsupervised linear

Supervised biternion

Supervised linear

0

20

40

R
el

a
ti

ve
L

2
er

ro
r

[%
]

3 4 5 6 7 8 9 10 20

Number of joints

101

102

ro
ta

ti
o

n
er

ro
r

[°
]

Fig. 4. Comparison of L2 and rotation error dependend on number of DoFs
for supervised and unsupervised training on our artificial robot model. The
two encodings (linear and biternion) for the joint angles also have been
tested separately.

IEEE Int. Conf. on Advanced Robotics (ICAR), Abu Dhabi, UAE, IEEE 2023

0.00

0.05

0.10

L
2

er
ro

r
[m

]
Loss

position (biternion)

position (linear)

position + rotation (biternion)

position + rotation (linear)

0

5

10

R
el

a
ti

ve
L

2
er

ro
r

[%
]

3 4 5 6 7 8 9 10

Number of joints

101

102

ro
ta

ti
o

n
er

ro
r

[°
]

Fig. 5. Comparison of unsupervised training with position only and position
plus orientation as target. The output encodings (linear vs. biternion) also
have been varied.

of the encoding is not suitable to learn IK with a MLP
for redundant robots without additional constraints on the
dataset.

D. Position-only Training

In many publication only the position error is evaluated
neglecting the orientation at the target point. Especially in
early publications for low DoF (2 to 4) networks have been
trained to reach a position regardless of the orientation of
the end effector.

Whereas supervised training implicitly learns the orienta-
tion of the end-effector, unsupervised training must explicitly
ensure that this is the case by introducing respective loss
terms (see Sec. II-D). We also tried to train the unsupervised
model only on the position loss, which yields the results
given in Fig. 5.

The general trend, as discussed above, can also be found
in this chart, but there is a clear benefit for the position
only training. The positional error for all DoF configurations
is reduced to less than half the value of the position and
orientation target. Of course, the rotational errors far exceed
the results for the position only case, since the network does
not receive an appropriate loss signal.

It is remarkable, that even with 20 DoF the unsupervised
training method reached a relative position error that is not
bigger than that of a 3 DoF model. This makes the approach
interesting for the soft robotics domain, where robots with
highly redundant topology may exist.

E. Distribution of the Error in the Workspace

The errors reported so far seem to be very high compared
to practical implementations found in literature. Therefore,
we searched for a possible explanation and analyzed the
distribution of the position error over the operational area of
the robot. In many publications the error along special testing

TABLE II: Average L2 position error for different DoF models along a test
trajectory vs. measured with a uniformly distributed test set.

DoF trajectory uniform
7 0.0248 0.0293

10 0.0139 0.0304
20 0.0188 0.0337

trajectories is reported, where the trajectories are in a good-
natured, limited subspace of the reachable area. This also
improves the error for our experiments. When concentrating
on the spiral test trajectories shown in the Fig.1 the errors
reduce almost to a half compared to the uniform distributed
test samples. See Table II for exact numbers.

Dependent on our testing method with randomly sampled
poses, regions which are difficult to reach are present causing
a higher average error. Fig. 2 on the right side shows a cross
section of the Cartesian operational space of the 7 DoF robot
at a z-position of 10 to 15 cm. In this plane the average
position error is color coded. One can clearly see that the
errors linearly grow outside the range of the robot arm,
but already increases within the sampled space. Also in the
center close to the origin of the robot arm there seem to
be poses that are harder to reach than in the mid range
areas. The density of data samples, which is shown on the
left side of Fig. 2 seems to be a good explanation for the
error distribution. The regions of higher error correspond to
regions with lower sample density. This is consistent with
the theoretical behavior of a network training which tries to
minimize the average error over the whole dataset. Individual
harder to reach samples in a low density region participate
only little to the overall error and the network concentrates
on minimizing the error in more densely sampled regions.

These insights provide an impetus to rethink the sampling
process. In order to make the error distribution more homo-
geneous, one possible solution would be to make the distribu-
tion of training samples more uniform in the Cartesian space.
In future work we want to work on that problem by creating
a kind of bootstrapping during training. Samples could be
approximately uniformly sampled, utilizing the partly trained
IK solving network itself. Other options are a tracking of the
sample density in Cartesian space and re-weighting the newly
drawn samples by the inverse of the density. Also a gradually
changing sample set in the training batch is possible while
the evaluation of the error for the batch samples helps to
identify harder examples that might be reused in the next
batch together with new random samples.

F. Obstacle Avoidance

To showcase how our approach can be easily extended
to incorporate constraints or more dynamic scenarios, we
perform a small experiment to enable collision avoidance
for our trained models. As a proof of concept, we added
the distance of the joint positions to a spherical obstacle as
an additional loss function during training. The obstacle loss
Lobs results from the tN from the KN (θ) and the center c
of the sphere with the radius r as:

Lobs = ReLU (−minN (|tN − c| − r − 0.1)) (5)

IEEE Int. Conf. on Advanced Robotics (ICAR), Abu Dhabi, UAE, IEEE 2023

0.00

0.05

0.10

M
in

.
o

b
st

a
cl

e
d

is
ta

n
ce

[m
] Unconstrained

Constrained

0 20 40

Timestep

0.00

0.05

L
2

E
rr

or
[m

]

Fig. 6. Example results of 10 DoF arm (blue line) with a sphere as static
obstacle; Green: target trajectory; Red: actual trajectory by IK network; On
the right the minimum obstacle distance to all joints of the robot and the
actual L2 error to the target trajectory are given over time. The training
without additional loss functions (blue graph) is compared to the model
with obstacle distance loss Lobs (orange graph).

The 0.1m here is a safety margin, the robot should keep to
the obstacle when possible.

The resulting behavior of the IK model is exemplary
shown in Fig. 6. The comparison of the minimum joint to
obstacle distance over the pass along the green trajectory
(see right side of the figure) shows, that the extended model
finds a trade-off between the distance to the target trajectory
and the distance to the obstacle inside the safety margin and
avoids the obstacle completely otherwise. Therefore, the L2
error (orange curve lower diagram) is increased in the region
where the sphere comes close to the target trajectory. The
model without the Lobs term (blue plots) completely ignores
the sphere causing collisions even if the actual trajectory is
outside the sphere.

This behavior demonstrates the claimed ability to consider
collision avoidance in static scenes during the training of
the redundant IK model. In order to extend the obstacle
awareness to dynamic objects, the network needs an ad-
ditional input describing the current scene. As there are
multiple approaches to represent the environment of a robot,
e.g. though point clouds or voxel based approaches, which
can also be used as an input to a neural network (e.g.
PointNet[15]), it would be promising to train a network
capable of handling dynamic environments in future.

IV. CONCLUSION AND FUTURE WORK

We could show that the lack of performance of simple feed
forward neural networks (MLPs) for the inverse kinematic
task is related to the contradictory data samples when us-
ing supervised training. The proposed unsupervised training
proved to be insensitive to ambiguity and even performed
better for highly redundant robots. We also showed that
learning to solve the orientation of a robot’s end effector
is possible but harder than using only a target position.

An analysis of the distribution of the remaining errors
showed a correlation to the sample density. Therefore, in
future work we will concentrate on improving the sampling
strategy. Also the ability to consider additional constraints
gives rise to further investigations. We plan to train obstacle

sensitive inverse kinematic models by adding an abstract
encoding of a dynamic collision scene at the network input
while using the distance of the robots limbs to the scene as
additional loss during training. Despite the remaining error
and the lack of redundant solutions for a single target pose,
the IK network with obstacle avoidance can therefore be
helpful as a fast sampler for motion planning approaches
like [16]. By means of such a model, the planning time in
cluttered environments might be drastically reduced, as it
can provide an initial guess for the required joint config-
uration. While this initial guess might not reach the target
pose exactly, subsequent optimization steps can reduce the
remaining error.

REFERENCES

[1] X. Wang, X. Liu, L. Chen, and H. Hu, “Deep-learning damped
least squares method for inverse kinematics of redundant robots,”
Measurement, vol. 171, p. 108821, 2021.

[2] B. B. Choi, Inverse kinematics problem in robotics using neural
networks. Lewis Research Center, 1992, vol. 105869.

[3] S. Tejomurtula and S. Kak, “Inverse kinematics in robotics using
neural networks,” Information sciences, vol. 116, 1999.

[4] J. Demby’s, Y. Gao, and G. N. DeSouza, “A study on solving the
inverse kinematics of serial robots using artificial neural network and
fuzzy neural network,” in 2019 IEEE international conference on fuzzy
systems (FUZZ-IEEE). IEEE, 2019, pp. 1–6.

[5] R. Bensadoun, S. Gur, N. Blau, and L. Wolf, “Neural inverse kine-
matic,” in International Conference on Machine Learning. PMLR,
2022.

[6] R. Köker, T. Çakar, and Y. Sari, “A neural-network committee machine
approach to the inverse kinematics problem solution of robotic ma-
nipulators,” Engineering with Computers, vol. 30, pp. 641–649, 2014.

[7] C.-K. Ho and C.-T. King, “Automating the learning of inverse
kinematics for robotic arms with redundant dofs,” 2022. [Online].
Available: https://arxiv.org/abs/2202.07869

[8] H. Toshani and M. Farrokhi, “Real-time inverse kinematics of re-
dundant manipulators using neural networks and quadratic program-
ming: a lyapunov-based approach,” Robotics and Autonomous Systems,
vol. 62, no. 6, pp. 766–781, 2014.

[9] M. Rolf and J. J. Steil, “Efficient exploratory learning of inverse
kinematics on a bionic elephant trunk,” IEEE transactions on neural
networks and learning systems, vol. 25, no. 6, pp. 1147–1160, 2013.

[10] T. G. Thuruthel, E. Falotico, M. Cianchetti, and C. Laschi, “Learning
global inverse kinematics solutions for a continuum robot,” in RO-
MANSY 21-Robot Design, Dynamics and Control: Proceedings of the
21st CISM-IFToMM Symposium, Udine, Italy. Springer, 2016.

[11] J. S. Toquica, P. S. Oliveira, W. S. Souza, J. M. S. Motta, and D. L.
Borges, “An analytical and a deep learning model for solving the
inverse kinematic problem of an industrial parallel robot,” Computers
& Industrial Engineering, vol. 151, 2021.

[12] R. Raja, A. Dutta, and B. Dasgupta, “Learning framework for inverse
kinematics of a highly redundant mobile manipulator,” Robotics and
Autonomous Systems, vol. 120, p. 103245, 2019.

[13] J. Zhong, T. Wang, and L. Cheng, “Collision-free path planning
for welding manipulator via hybrid algorithm of deep reinforcement
learning and inverse kinematics,” Complex & Intelligent Systems,
2021.

[14] B. Lewandowski, D. Seichter, T. Wengefeld, L. Pfennig, H. Drumm,
and H.-M. Gross, “Deep orientation: Fast and robust upper body orien-
tation estimation for mobile robotic applications,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2019, pp. 441–448.

[15] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2017, pp. 652–660.

[16] St. Mueller, B. Stephan, and H.-M. Gross, “MDP-based motion
planning for grasping in dynamic szenarios,” in Europ. Conf. on
Mobile Robotics (ECMR), Bonn, Germany. IEEE, 2021, p. 8 pages.

IEEE Int. Conf. on Advanced Robotics (ICAR), Abu Dhabi, UAE, IEEE 2023

https://arxiv.org/abs/2202.07869

