
 
 
 

Deep Learning for  
Clinical Decision Support in Oncology 

 
 

 
Dissertation 

Zur Erlangung des akademischen Grades 
Doktoringenieur (Dr.-Ing.) 

 
 

 
vorgelegt der Fakultät für Informatik und Automatisierung 

der Technischen Universität Ilmenau 
 
 

von Alexander Katzmann, M.Sc. 
 
 
  

1. Gutachter:  Univ.-Prof. Dr.-Ing. Horst-Michael Groß 
2. Gutachter:  Univ.-Prof. Dr.-Ing. habil. Bernhard Preim 
3. Gutachter:  Prof. Dr.-Ing. Horst Hahn 

 
 
 

 
Tag der Einreichung:       4. Oktober 2021  

 Tag der wissenschaftlichen Aussprache:  24. Februar 2022  
 

 
 

 
DOI: 10.22032/dbt.51864 
URN: urn:nbn:de:gbv:ilm1-2022000100 

 

 
 

Dieses Werk ist lizensiert unter einer Namensnennung – Nicht-kommerziell 
– Weitergabe unter gleichen Bedingungen 4.0 International Lizenz. 





Abstract

Over the last decades, medical imaging methods, such as computed tomography (CT),
have become an indispensable tool of modern medicine, allowing for a fast, non-invasive
inspection of organs and tissue. Thus, the amount of acquired healthcare data has rapidly
grown, increased 15-fold within the last years, and accounts for more than 30 % of the
world’s generated data volume. In contrast, the number of trained radiologists remains
largely stable. Thus, medical image analysis, settled between medicine and engineering,
has become a rapidly growing research field. Its successful application may result in
remarkable time savings and lead to a significantly improved diagnostic performance.
Many of the work within medical image analysis focuses on radiomics, i. e. the extraction
and analysis of hand-crafted imaging features. Radiomics, however, has been shown to
be highly sensitive to external factors, such as the acquisition protocol, having major
implications for reproducibility and clinical applicability.

Lately, deep learning has become one of the most employed methods for solving
computational problems. With successful applications in diverse fields, such as robotics,
physics, mathematics, and economy, deep learning has revolutionized the process of
machine learning research. Having large amounts of training data is a key criterion for its
successful application. These data, however, are rare within medicine, as medical imaging
is subject to a variety of data security and data privacy regulations. Moreover, medical
imaging data often suffer from heterogeneous quality, label imbalance, and label noise,
rendering a considerable fraction of deep learning-based algorithms inapplicable.

Settled in the field of CT oncology, this work addresses these issues, showing up
ways to successfully handle medical imaging data using deep learning. It proposes novel
methods for clinically relevant tasks, such as lesion growth and patient survival prediction,
confidence estimation, meta-learning and classifier ensembling, and finally deep decision
explanation, yielding superior performance in comparison to state-of-the-art approaches,
and being applicable to a wide variety of applications. With this, the work contributes
towards a clinical translation of deep learning-based algorithms, aiming for an improved
diagnosis, and ultimately overall improved patient healthcare.





Zusammenfassung

In den letzten Jahrzehnten sind medizinische Bildgebungsverfahren wie die Computerto-
mographie (CT) zu einem unersetzbaren Werkzeug moderner Medizin geworden, welche
eine zeitnahe, nicht-invasive Begutachtung von Organen und Geweben ermöglichen. Die
Menge an anfallenden Daten ist dabei rapide gestiegen, allein innerhalb der letzten Jahre
um den Faktor 15, und aktuell verantwortlich für 30 % des weltweiten Datenvolumens.
Die Anzahl ausgebildeter Radiologen ist weitestgehend stabil, wodurch die medizinische
Bildanalyse, angesiedelt zwischen Medizin und Ingenieurwissenschaften, zu einem schnell
wachsenden Feld geworden ist. Eine erfolgreiche Anwendung verspricht Zeitersparnisse,
und kann zu einer höheren diagnostischen Qualität beitragen. Viele Arbeiten fokussieren
sich auf "Radiomics", die Extraktion und Analyse von manuell konstruierten Features.
Diese sind jedoch anfällig gegenüber externen Faktoren wie dem Bildgebungsprotokoll,
woraus Implikationen für Reproduzierbarkeit und klinische Anwendbarkeit resultieren.

In jüngster Zeit sind Methoden des “Deep Learning” zu einer häufig verwendeten
Lösung algorithmischer Problemstellungen geworden. Durch Anwendungen in Bere-
ichen wie Robotik, Physik, Mathematik und Wirtschaft, wurde die Forschung im Bereich
maschinellen Lernens wesentlich verändert. Ein Kriterium für den Erfolg stellt die Verfüg-
barkeit großer Datenmengen dar. Diese sind im medizinischen Bereich rar, da die Bilddaten
strengen Anforderungen bezüglich Datenschutz und Datensicherheit unterliegen, und oft
heterogene Qualität, sowie ungleichmäßige oder fehlerhafte Annotationen aufweisen,
wodurch ein bedeutender Teil der Methoden keine Anwendung finden kann.

Angesiedelt im Bereich onkologischer Bildgebung zeigt diese Arbeit Wege zur er-
folgreichen Nutzung von Deep Learning für medizinische Bilddaten auf. Mittels neuer
Methoden für klinisch relevante Anwendungen wie die Schätzung von Läsionswachtum,
Überleben, und Entscheidungkonfidenz, sowie Meta-Learning, Klassifikator-Ensembling,
und Entscheidungsvisualisierung, werden Wege zur Verbesserungen gegenüber State-of-
the-Art-Algorithmen aufgezeigt, welche ein breites Anwendungsfeld haben. Hierdurch
leistet die Arbeit einen wesentlichen Beitrag in Richtung einer klinischen Anwendung von
Deep Learning, zielt auf eine verbesserte Diagnose, und damit letztlich eine verbesserte
Gesundheitsversorgung insgesamt.
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A Preface To Be Carefully Read
The following dissertation analyses the application of artificial intelligence and deep

learning to medical image analysis and clinical decision support. Within the last years,
artificial intelligence for clinical decision support has been a topic of steadily growing
research interest. The applications range from lung cancer analysis, over cardiac and
stroke assessment. This work is therefore dedicated to an assessment of the current state of
knowledge on this area.

Background / Context
Artificial agents play an important role in many areas such as medical images and health
(i.e. healthcare) [1], information retrieval or diagnosis [2]. However, it remains unclear
which problems are best solved by such applications [3]. The reason behind the lack
of good solutions lies primarily with computational complexity: it is difficult to find
algorithms that can tackle many real-world problems successfully [4]–with the notable
exception of medical image evaluation [5]. In the case of medical image processing, there
exist only a handful of robust methods used within the field [6]. Most of these methods
have proven effective in the past but still fall far short of what would be needed for efficient
use in practical tasks [7].

It was found that the problem could be overcome through new approaches to statistical
learning, based on deep neural networks. With these methods, the system learns to
distinguish various classes (e. g. brain lesions or tumors) by building models of individual
features from sparse and sparsely labeled data sets. These “feature architectures” can
then give an approximate representation of the target feature space via deep feedforward
circuits without training.

Because it does not require extensive preprocessing of images, these models do not re-
quire additional memory for intermediate values between the image and previous ones and
thus do not require more computational power compared to existing techniques. Another
benefit is that while classification systems require extensive memory for small datasets,
deep networks also scale up well to large datasets. The author developed several systems
under different optimization parameters using various learning algorithms. As the number
of training examples grows, these models converge at an adequate level of performance.
These results suggest that deep learning is a promising tool for biomedical imaging classi-
fication.

–
The above lines have been written by the Generative Pre-trained Transformer archi-
tecture GPT-2 [Radford et al. 2019], including paragraphing and references. GPT-2 is
a natural language processing model for text generation and prediction. It was given the
beginning of the first paragraph and continued with a well-structured text demonstrating a
profound knowledge of the subject as well as scientific writing. Obviously, this is an im-
pressive example of what current artificial intelligence1 is already able to achieve, leading
us to the highly important question of how this potential can be leveraged for improving
human life. While within the scope of this thesis it will not be possible to fully fathom out
every single aspect, this work aims for giving at least a part of the answer to this highly
important and valuable question by focussing on the subfield of medical image analysis.

1The used model only had 1.5 billion parameters, with its successor GPT-3 already having 175 billion
(117x) and the currently largest model Wu Dao 2.0 being at 1.75 trillion parameters (1,167x).





Contents

I Introduction

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Motivation 4

1.2 Outline 5

1.3 Innovative Contributions 7

1.4 Publications 7

II Scientific Background

2 Clinical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Cancer Statistics 15

2.1.1 Lung Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Colorectal Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Clinical Workflow 17

3 Radiomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



III Oncological Decision Support

5 Liver Lesion Growth Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Introduction 29

5.2 Methods 31
5.2.1 Autoencoder Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.2 Predictor Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Experiments 33
5.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.2 Classifier Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.3 Deep Network Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Discussion 36

5.5 Conclusion 38

6 One-Year Survival Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1 Introduction 39

6.2 Methods 40
6.2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2.2 Baseline Classifier Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.3 Sparse Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3 Experiments 42
6.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.4 Discussion 45

6.5 Conclusion 46

7 Deep Survival Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.1 Medical Background 48

7.2 Related Work 49

7.3 Methods 49
7.3.1 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.3.2 Loss Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.4 Experiments 51
7.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.5 Discussion 54

7.6 Conclusion 55



IV Meta-Methods & Decision-Explanation

8 Deep Confidence Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.1 Introduction 62
8.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.2 Base approach 64
8.3 Methods 66
8.3.1 Metamemory Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.3.2 Model augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.4 Experiments 68
8.4.1 CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.4.2 CIFAR-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.4.3 Radiological image data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.5 Discussion 71
8.6 Conclusion 72

9 Bootstrapping Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9.1 Bootstrapping 73
9.2 Classifier Architectures 74
9.2.1 Bootstrapped Path Shaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.2.2 Deep Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.2.3 Bootstrapping Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.3 Deep Survival Forests 87
9.3.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9.4 Conclusion 91

10 Deep Decision Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

10.1 Introduction 93
10.1.1 Theoretical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
10.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

10.2 Deep Decision Explanation using Cycle-GANs 98
10.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
10.2.2 Relevancy Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

10.3 Experiments 102
10.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.3.2 Quantiative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.3.3 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



10.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

10.4 Discussion 107
10.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10.5 Conclusion 108

V Conclusion

11 Summary & Critical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 115

11.1 Outcome Prediction in Oncology 115
11.2 Meta-Methods and Decision-Explanation 117

12 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

VI Appendix

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A Additional Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B Tables & Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

C Metrics & Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165



I

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Motivation
1.2 Outline
1.3 Innovative Contributions
1.4 Publications

Introduction





1. Introduction

Deep Learning has become one of the most employed methods for solving computational
problems of any kind. At the latest with the high-profile successes in image recognition
[Krizhevsky et al. 2012], Computer Chess and Computer Go [Silver et al. 2016, 2017,
2018], convolutional neural networks have become a topic of steadily growing interest
and were applied to a variety of applications, including complex board [Anthony et al.
2020] and video games [Torrado et al. 2018], face recognition [Sun et al. 2015], person
detection [Eisenbach et al. 2016] and re-identification [Ahmed et al. 2015], e-commerce
[Shankar et al. 2017], fluid dynamic simulation [Wang et al. 2020], and even exoplanet
[Shallue et al. 2018] & galaxy discovery [González et al. 2018] as well as planetary defense
[NVIDIA Corporation 2016]. While some approaches are mostly academic, deep learning
is applied to a number of very interesting daily, as well as highly specialized engineering
environments. It is employed for automated solutions in fields previously considered
non-automatable, thus steadily redefining this term [Jumper et al. 2021; Rao et al. 2018;
Santos et al. 2021].

This work aims to shed some light on recent applications of machine learning in
one of the most challenging, while interesting, fields of application. While known to be
traditionally conservative1, in recent years deep learning has evenly found its way into
this domain. Thankfully, it is a field that can strongly benefit from it, while creating a
significant and highly valuable contribution to human wellbeing. With a special focus
on exemplary applications, this work aims to demonstrate some of the most outstanding
opportunities of Deep Learning in Medical Image Analysis.

1Medicine requires high standards for the introduction of new methods. E. g. is any kind of human
trial, including the use of automated decision systems for diagnosis, internationally subject to a variety of
highly-strict regulations. The Helsinki declaration, the ethical codex of the World Medical Association
(WMA), explicitly demands to not do any medical research with humans in case of non-predictable risks or
unsure benefits. [World Medical Association 2013]



4 Chapter 1. Introduction

1.1 Motivation
Medical image analysis has become one of the most rapidly growing fields in medicine.
Medical imaging allows the practitioner to inspect organs and tissue, i. e. the inner workings
of the body, while simultaneously being only minimally invasive. Over the last century,
medical imaging has become an indispensable tool in modern medicine. The amount of
acquired healthcare data has grown from 153 exabytes in 2013 to 2,314 exabytes by 2020,
i. e. 15-fold ([Statista 2021], cf. Chapter 2.2), currently being responsible for around 30 %
of the world’s generated data volume, and having an estimated annual growth of 36 %
[RBC Capital Markets 2021]. Simultaneously, the number of trained radiologists who are
needed for clinical interpretation has remained largely stable. As a result of this imbalance,
medical image analysis has become more and more important for the automation of the
clinical reading process, specifically taking care of simple and repetitive tasks, which in
turn allows the radiologist to focus on the assessment of clinical manifestations which are
less simple to automate.

As was shown by Cowan et al. [2013], the median reading times for abdominal
computed tomography scans, although typically containing multiple hundreds of image
slices, currently lie as low as only 14 minutes, including the creation of a clinical reading
report. 25 % of all clinical pelvis/abdomen scans are read and reported in less than only 9
minutes2. As is demonstrated by these low turnaround times, an automated case preparation
by the means of medical image analysis, e. g. by segmenting clinically relevant findings,
highlighting suspicious image regions, or even triaging cases by urgency, can significantly
help radiologists to save valuable time, resulting in lower error rates, higher throughput
and ultimately improved patient healthcare.

With the rise of increasing computational capabilities, the role of medical image
analysis in clinical assessment has become significantly larger and is now involved in many
clinical imaging tasks. Still, most clinical decision support software is based on static
algorithms, using the fixed parameterizations which proved to be valuable during their
implementation and evaluation process.

In contrast, this work will emphasize the role and potential of data-driven clinical
decision support using deep neural networks (DNNs). Using purely data-driven approaches,
such as deep neural networks, allows for a variety of highly interesting advantages, taking
into account the current technological developments, such as the continuous capability
of using steadily growing data pools, scalability with respect to the available hardware, a
known tolerance against missing and incomplete data in case of sufficiently large datasets,
and finally: the possibility of learning problems without any need for hand-crafted problem
engineering [Shen et al. 2017].

Unfortunately, medical imaging data is often sparse due to data privacy, data security,
and regulatory issues. Thus, due to the enormous amount of model parameters in data-
driven approaches, many of the above-mentioned advantages do only partly apply, or
can even turn around, which may ultimately lead to an unknown result quality. This is
especially true if classes are irregularly (label imbalance) or only weakly (small data)
represented, or if the provided labels are sparse or contain errors (label noise). Although
medical imaging datasets often suffer from these problems, the outstanding prospects of a
clinical application clearly overweigh. This work will therefore specifically address these

2Assuming a slice thickness of 1 mm over a range of approximately 50 cm, this is equal to the assessment
of around one full image per second, not including the time for reporting.
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issues and will aim to show up ways for researchers to handle typical issues with medical
imaging data. Moreover, it will present approaches for confidence estimation and decision
explanation, being integral components for a translation into clinical practice. Although
a concluding analysis of all possible approaches would be far beyond the scope of this
work, this thesis will aim to highlight the outstanding importance of the field, as well as its
potential for improving the wellbeing of millions of people all over the world, encouraging
current and future researchers to engage in exploring and illuminating this highly important
topic.

1.2 Outline
This work is structured in five parts (I–V), each of them tackling a specific segment of
the above-mentioned points. While each part will illuminate the general topic from a
different perspective, they are organized in such a way that it is possible to read each of
them independently, and refer to each other where adequate:

• Part I will be a general introduction into the topic. It will give an overview, point
out the innovative contributions of this thesis, and lists the relevant work that was
published during its creation, and which was fundamental for the contents of this
thesis.

• Part II dives into the concrete field of application. It specifically gives an introduc-
tion to relevant clinical terms in the field of CT oncology and the clinical workflow,
as well as an outline of the field of classical radiomics based on multivariate statistics,
and the application of deep neural networks to medical imaging.

• Parts III–IV cover the methodological contributions of this thesis and thus will be
the main part of this work (see Fig. 1.1 for an outline of the discussed applications
within this thesis).

– More specifically, Part III introduces algorithms for lesion growth and one-
year survival prediction, as well as a novel architecture for deep survival
regression. All algorithms are analyzed and discussed thoroughly regarding
performance, limitations, and applicability in a clinical environment.

– Part IV will tackle the specific issues which arise from an application of deep
learning on medical imaging data, such as the few data and unknown-certainty
issues which were briefly discussed in the previous section. First, a method for
confidence estimation is proposed, which can be used to improve training on
small- to medium-sized datasets. Secondly, model ensembling techniques are
discussed, resulting in an algorithm for significantly improved performance on
small to medium-sized data sets by utilizing ideas from the well-known random
forest classifier architecture. Third, a novel approach for decision explanation
on medical imaging data is proposed and compared to various state-of-the-art
algorithms, showing the superiority of the approach for medical imaging data
in comparison to existing methods.
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• Finally, Part V contains a critical evaluation of the achievements of this work. In
particular, it will be discussed to which extent open issues in current research could
successfully be addressed, where it was possible to make a significant contribution,
and which issues could not yet be satisfactorily covered, and thus need further
investigation. Finally, the ethical implications of an application of neural networks
to clinical decision support are examined, aiming to conclude with a preliminary
answer to the question of what can be expected in this highly interesting field of
research within the near future, and how the work presented in this thesis may
actively contribute to it.

Tasks

Explanation

Methods

survival death

 

!

?

Figure 1.1: Overview on the topics of this thesis. First, a variety of deep learning-based
methods for clinical decision support is presented (top-right), including methods for lesion
growth and patient survival prediction. Subsequently, this work discusses meta-methods
and advanced architectures (bottom-right), yielding improved classifier performance as
well as relevant additional information in medical imaging scenarios. Finally, this work
will present a method for classifier decision explanation (bottom-middle), being a key
component towards a better comprehensibility of deep learning-based solutions in clinical
decision support.
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1.3 Innovative Contributions
The main scientific contributions of this work comprise:

• A successful application of deep learning-based methods for lesion growth and
one-year survival prediction in metastatic colorectal cancer patients, being amongst
the first realized solutions within this direction (see Chapters 5 and 6),

• A method for non-proportional hazards-based deep survival regression (Chapter
7) building on the results of the previous method,

• A successful application of confidence estimation of deep image classifiers in
medical imaging few-data scenarios, and a demonstration of how it can be used
for curriculum learning schedules for improved test time performance (Chapter 8),

• An innovative combination of meta-classifier methods and deep neural net-
works for efficient classification, regression and survival time estimation in few-data
scenarios with enhanced accuracy (Chapter 9),

• A novel method for the high-quality visualization of classifier decisions in few-
data scenarios by using cycle-consistent activation maximization (Chapter 10).

1.4 Publications
Some of the ideas discussed in this work have been presented in international journal and
conference contributions, comprising:

• Katzmann, A., Mühlberg, A., Sühling, M., Nörenberg, D., Holch, J. W., &
Groß, H. M. (2018, July). TumorEncode - Deep Convolutional Autoencoder for
Computed Tomography Tumor Treatment Assessment. In 2018 International
Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.

⇒ This paper analyzes the application of deep convolutional autoencoders for
liver lesion growth prediction (Chapter 5).

• Katzmann, A., Muehlberg, A., Sühling, M., Noerenberg, D., Holch, J. W., Heine-
mann, V., & Groß, H. M. (2018). Predicting lesion growth and patient survival
in colorectal cancer patients using deep neural networks. In 2018 International
Conference on Medical Imaging with Deep Learning.

⇒ This publication extends the former ideas to an application for patient overall
survival prediction (Chapter 6).

• Katzmann, A., Mühlberg, A., Sühling, M., Nörenberg, D., Maurus, S., Holch,
J. W., ... & Groß, H. M. (2019, October). Computed Tomography Image-
Based Deep Survival Regression for Metastatic Colorectal Cancer Using a
Non-proportional Hazards Model. In International Workshop on PRedictive Intel-
ligence In MEdicine (pp. 73-80). Springer, Cham.

⇒ Within this paper an implementation of a fully deep convolutional survival
estimator is analyzed, which extends on the ideas of the commonly employed
Cox proportional hazards model (Chapter 7).
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• Katzmann, A., Mühlberg, A., Sühling, M., Nörenberg, D., & Groß, H. M. (2019,
April). Deep Metamemory-A Generic Framework for Stabilized One-Shot Con-
fidence Estimation in Deep Neural Networks and its Application on Colorectal
Cancer Liver Metastases Growth Prediction. In 2019 IEEE 16th International
Symposium on Biomedical Imaging (ISBI 2019) (pp. 1298-1302). IEEE.

⇒ In this publication an application of confidence estimation in medical imaging
scenarios is discussed, demonstrating the potential to be used for curriculum
learning-inspired training schedules for improved test time performance (Chap-
ter 8).

• Katzmann, A., Muehlberg, A., Suehling, M., Nörenberg, D., Holch, J. W., &
Gross, H. M. (2020, April). Deep Random Forests for Small Sample Size Predic-
tion with Medical Imaging Data. In 2020 IEEE 17th International Symposium on
Biomedical Imaging (ISBI) (pp. 1543-1547). IEEE.

⇒ Within this publication, a novel meta-training framework for handling small
and medium-sized datasets is presented, showing wide applicability across
multiple medical imaging scenarios, which is going to be discussed in Chapter
9.

• Katzmann, A., Taubmann, O., Ahmad, S., Mühlberg, A., Sühling, M., & Groß,
H. M. (2021). Explaining clinical decision support systems in medical imaging
using cycle-consistent activation maximization. In Neurocomputing, 458, 141-
156.

⇒ This paper proposes a novel framework for medical decision explanation based
on Cycle-Consistent Activation Maximization, and will be further explained in
Chapter 10.

Clinical evaluations of the above results have been presented at international conferences,
including:

• Nörenberg, D., Huber, T., Maurus, S., Jäger, N., Katzmann, A., Mühlberg, A.,
Moltz, J., Heinemann, V. & Holch, J.. (2019). Deep learning based radiomics
and its usage in prediction for metastatic colorectal cancer. European Congress
on Radiology (ECR) 2019.

• Nörenberg, D., Huber, T., Maurus, S., Kazmierczak, P., Jäger, N., Katzmann,
A., Moltz, J., Ricke, J., Heinemann, V. & Holch, J.. (2018). Deep Learning
Based Radiomics and Its Usage in Prediction for Metastatic Colorectal Cancer.
Annual Meeting of the Radiologic Association of North America (RSNA) 2018.
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Throughout this work, it was furthermore possible to file patents for some of the imple-
mented systems, including3:

• Feature-Enhanced Computed Tomography for Deep Learning yielding Quanti-
tative Imaging Biomarkers. Muehlberg, A., Kaergel, R., Katzmann, A., Suehling,
M., EP 3570288, US 2019/0355114. Published: 20.11.2019

• Sparse Lung Nodule Characterization for Differential Diagnosis from CT im-
ages. Katzmann, A., Kratzke, L. Muehlberg, A., Suehling, M., EP 3576020, US
2019-0370969. Published: 04.12.2019

• Dispersion-based Tumor Analytics System. Muehlberg, A., Katzmann, A., Durlak,
F., Suehling, M., EP 3792871, US 2021/0082569. Published: 17.03.2021

• Geometric Deep Learning-based Whole Tumor Burden Analytics System. Muehl-
berg, A., Taubman, O., Katzmann, A., Suehling, M., EP 3836157, US 2021/0183514.
Published: 16.06.2021

While this thesis has a focus on deep learning-based methods for medical image processing,
more classical machine learning-based techniques can and have been similarly applied
to the medical imaging datasets found in this work. They typically have specific pros
and cons, which will be discussed in more detail in Chapter 3. While these works have
strong interconnections with the work discussed in this thesis or do even include parts
of it, the contributions below either have a more classical and/or medical, rather than
methodological focus than this work and therefore can not be covered in detail within this
thesis. Notable work which was created in parallel to this thesis includes:

• Muehlberg, A., Katzmann, A., Heinemann, V., Kaergel, R., Wels, M., Taub-
mann, O., ... & Rémy-Jardin, M. (2020). The Technome - A Predictive Internal
Calibration Approach for Quantitative Imaging Biomarker Research. Scientific
Reports 10(1) (Nature Publishing Group), 1-15.

⇒ Within this work, a novel system for automated biomarker calibration is pre-
sented, taking into account application-specific external factors which are
compensated, leading to a higher reproducability

• Mühlberg, A., Holch, J.W., Heinemann, V., Huber, T., Moltz, J., Maurus, S.,
Jäger, N., Liu, L., Froelich, M.F., Katzmann, A. and Gresser, E., 2021. The
relevance of CT-based geometric and radiomics analysis of whole liver tumor
burden to predict survival of patients with metastatic colorectal cancer. Euro-
pean Radiology, 31(2), pp.834-846.

⇒ This paper proposes new biomarkers and highlights the role of geometric ra-
diomics features for the prediction of patient survival in metastatic colorectal
cancer patients.

3Additional patents have been filed for work with relation to this thesis (3 US, 3 EP, and 1 CN), but at the
time of this publication have not yet been published.
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• Muehlberg, A., Kaergel, R., Katzmann, A., Suehling, M., et al. (2021) Unrav-
eling the Interplay of Image Formation, Data Representation and Learning
in CT-based COPD Phenotyping Automation: The Need for a Meta-Strategy.
Medical Physics

⇒ Within this paper, state-of-the-art approaches for COPD phenotyping are ana-
lyzed and complemented by novel classical, as well as deep learning-guided
methods.
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Scientific Background





2. Clinical Application

“The science dealing with the preserving of health and with preventing and treating
disease or injury” – according to the Cambridge Online Dictionary, this definition consti-
tutes a comprehensive specification of the term medicine [Cambridge Online Dictionary
2021]. Evidently, if taking this wide definition, there is an overwhelming amount of
potential medical applications which could be the subject of a doctoral thesis on medical
image analysis. Although none of them can be quantified as more or less important, this
work should aim for a clinical scenario that addresses as many people as possible, while
having the potential of a large positive impact on their life quality.

With more than 17 million cases and over 9.5 million deaths per year, cancer currently
poses the second leading cause of death after cardiovascular diseases, by 2040 is expected
to even have a total number of 27.5 million cases and over 16.3 million deaths yearly.
In 2018, the estimated years of life lost due to cancer were estimated to be as high as
15.3 years per case, and can cause treatment costs of as high as 150,000 USD per patient,
contributing to overall healthcare costs of more than four times the amount of any other
common health condition [AARP 2021; American Cancer Society 2021a; NIH-NCI 2021].
As clearly demonstrated by these numbers, a successful early-stage treatment of cancer
would not only result in significant growth in life expectancy and quality of millions of
people but could also reduce the consequential health costs by up to hundreds of billions
of dollars globally, which in turn would be available for fighting other diseases.

From a medical image analysis perspective, cancer-related diseases are a rather promis-
ing target: Most cancer forms are routinely monitored by continious and fine-granular
applications of non-invasive imaging techniques, such as ultrasound (US), and magnetic
resonance (MRI), or computed tomography (CT) imaging. Furthermore, imaging data is
routinely archived, and the strongly normed clinical treatment protocols require compre-
hensive documentation of the treatment process, which in turn can be used as information
for the estimation of clinically relevant variables through classification and regression.
Although utilizing a different physical mechanism, and in contrast to US imaging, MRI
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Figure 2.1: This figure shows the basic concept of CT imaging. The patient is slowly
moved through a ring construction, called gantry, holding X-ray source and detectors, being
opposed to each other. The gantry, and thus X-ray source and detectors, are revolving
around the patient, yielding linewise attenuation curves which are concatenated to a
sinogram. After collecting multiple sinograms, they can be transformed into a volumetric
array, i. e. the final CT image, by using an image reconstruction technique, such as the
Radon transform [TOFT 1996], the filtered backprojection [Brooks et al. 1975] or the
iterative reconstruction [Willemink et al. 2013a,b]. Source: [FDA 2018]

and CT both yield volumetric images by slice-wise scanning of the patient (cf. Fig. 2.1).
If available, volumetric data is generally to be preferred, due to the significantly larger
amount of usable information. Amongst these two, computed tomography is particularly
promising, as CT images are normed to a common scale called “Hounsfield Units”, or HU
values1. HU values are a measure of radiodensity and are normed in such a way that an
HU value of -1000 represents the attenuation of air, and 0 represents the attenuation of
distilled water at standard pressure and temperature (i. e. 273.15 K at an absolute pressure
of 1 bar). In contrast to other imaging techniques, such as US or MRI, CT images can
thus be interpreted as absolute, neglecting the influence of patient position and geometry,
measurement apparatus positioning, the imaging device or scanning parameterization, etc.,
i. e. the scanning protocol2. While MRI in direct comparison generally provides better
soft-tissue contrast, devices are significantly more costly, and thus generally less affordable
and available in smaller clinics, rural areas, or emerging and developing countries. US
imaging, on the other hand, being rather inexpensive, is subject to strong variations across

1Hounsfield units are named after Sir Godfrey Hounsfield who suggested the scale, and who for develop-
ing the computed tomography imaging technique together with Allan MacLeod Cormack received a Nobel
Prize for Physiology or Medicine. He was later honored as a Commander of the Order of the British Empire
(CBE) and a Fellow of the Royal Society (FRS) of London.

2In fact, the scanning protocol is important for the finally measured HU values to a relevant degree, as was
demonstrated by Muehlberg, Katzmann, et al. [Mühlberg et al. 2020]. However, especially in comparison to
other scanning modalities, such as MRI or US, these variations are rather low, and within a wide range of
applications can be neglected.
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views, such as beam width, side lobe, reverberation, and comet tail artifacts [Feldman et al.
2009], generally non-quantitative, and thus less suitable for an automated image analysis
process. Thus, in the course of this work, CT imaging data is used. However, most of the
approaches discussed in this work can likely be transferred to other imaging modalities,
too.

In the following chapters, various methods will be proposed for a mostly automated
clinical decision support, leading to estimates and diagnoses regarding cancer growth,
treatment response and recovery chances, and even patient survival expectations. Clearly,
these methods are currently far off from an actual clinical application. Next to the ethical
implications (see Chapter 11) it would be possible to list a vast variety of reasons for this,
but the two most prominent, also being the strongest market barriers, are the unsolved
questions of:

(a) the consequences of potentially resulting treatment errors, and,
(b) the questions of liability in case of such an event.

In clinically approved products, a common way to combat this is to provide multiple
proposals, but require the clinician to actively take the final decision, e. g. by choosing
specific presentation styles which enforce this. While the automation of non-diagnosis-
related tasks, such as simple measurements or contouring, is less strictly regulated and
thus can be seen as state of the art already, the legal framework for more sophisticated
solutions, slowly follows the state of the art, reflected by the FDA Artificial Intelligence
and Machine Learning-based Software as a Medical Device (SaMD) Action Plan [Food
et al. 2021]. However, quality is a highly important factor: There are demonstrated cases of
deep learning-based systems clearly outperforming even experienced practitioners, which
have consequently received FDA approval [Benjamens et al. 2020].

It has to be noted that any diagnostic proposal might finally influence the clinician’s
decision and may thus have the potential of inducing harm to the patient. Within the context
of this work therefore all evaluations have been conducted on retrospectively acquired data
for which an ethical council approval was given in advance.

2.1 Cancer Statistics
Amongst the various tumor entities, lung and colorectal cancer (CRC) are of particular
interest, as they are the two leading causes of cancer-related deaths in modern societies.
In the U.S. alone, lung and colorectal cancer were responsible for more than 140,000
and 50,000 deaths, respectively, in 2019 only [American Cancer Society 2017a]. Both,
lung and colorectal cancer, tend to show significantly reduced survival rates especially
if distant metastases are present. Commonly metastases can be found in the lung, brain,
and liver, where they may lead to organ compression, organ failure, and ultimately death
[Holch et al. 2017; Misiakos et al. 2011]. Both clinical entities go hand in hand with a
significantly reduced patient lifetime, i. e. 14.9 and 15.6 years of life lost on average for
lung and colorectal cancer, respectively [NIH-NCI 2021].

2.1.1 Lung Cancer
Lung cancer can be clinically categorized into multiple sub-classes. The most important
classification is small-cell (SCLC) vs. non-small-cell lung cancer (NSCLC), as the
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Figure 2.2: Left: Incidence of lung cancer per 100,000 inhabitants for man, women and
both over time, averaged over 175 countries for which data was available. As can be clearly
seen, the lung cancer incidence steadily drops for men and rises for women, both being
directly linked to smoking behavior. Right: Prevalence of colorectal cancer cases over
time, evidently showing a significant increase globally. Data from [Roser et al. 2015].

clinical treatment between both differs. Due to its much higher prevalence, NSCLC is the
clinically most relevant form, accounting for 80-85 % of all lung cancers, in contrast to
only 10-15 % with SCLC. SCLC, however, is significantly more deadly. While the average
5-year survival rate for localized NSCLC lies at around 61%, it reduces to only 27%
for localized SCLC. More than that, SCLC tends to metastasize early, i. e. becomes non-
localized, leading to an average 5-year survival rate over all stages of only 7 %, compared
to 25 % percent for NSCLC [American Cancer Society 2021b,c,d,e]. Globally lung cancer
numbers remain mostly stable, although incidence on average starts to decrease with a
strong imbalance between male and female persons, largely due to a change in the number
of smoked cigarettes ([Flanders et al. 2003], cf. Fig. 2.2). Within this work, automated
lung cancer assessment is mostly discussed in the Chapters 9 and 10.2.

2.1.2 Colorectal Cancer

In contrast to lung cancer, localized colorectal cancer (CRC) can typically be treated
very successfully. This is usually done by a full resection of the primarius. Unfortunately,
however, only 39% of all colorectal cancer patients are diagnosed at an early, non-metastatic
stage, as at the beginning of the disease colorectal cancer tends to show only a few
unspecific or even no symptoms at all.

For metastatic colorectal cancer (mCRC), i. e. if distant metastases are present, these
can typically be found in organs such as the liver, brain, and lung, leading to a significantly
reduced life expectancy. This is clearly expressed by numbers: While the average 5-year
survival for localized CRC lies at around 90 %, it drops to 71 % if locally spreading, and
to only 14 % if distant metastases are present [Clinical Oncology 2021]. Globally, the
amount of colorectal cancer cases is steadily increasing (see Fig. 2.2). While multiple
authors suggest a link to changed lifestyle (e. g. [Hausen 2012; Thanikachalam et al.
2019]) for which recent research also implies an influence on the treatment outcome after
diagnosis (cf. [Zutphen et al. 2017]), other reasons also include a significant increase in
life expectancy, as well as larger screening efforts and a better diagnosis. Within this work,
colorectal cancer data will in particular be used in Chapters 5, 6, 7, 8 and 9.
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Figure 2.3: Number of active radiologists in the U.S. (blue) and amount of acquired
healthcare data (red) per year. Notably, while the number of trained radiologists remains
largely stable, the amount of healthcare data is rapidly increasing, clearly creating a need
for algorithmically supporting and automating tasks for increasing the clinical throughput,
while simultaneously ensuring an equal or even improved level of treatment quality. Data
from [AAMC 2021; RBC Capital Markets 2021]

2.2 Clinical Workflow

Depending on the tumor entity, the clinical workflow may differ. For both, lung and
colorectal cancer, the disease is regularly monitored via computed tomography imaging,
with typical intervals being 8 to 12 weeks between two subsequent scans. For colorectal
cancer, whenever possible the first step of treatment is the full resection of the primarius.
However, as mentioned above, over 60 % of all CRC patients already have metastases at
the date of first diagnosis (DOFD). The most common site of mCRC metastases is the
liver, being particularly susceptible as the main filter organ of the human body, followed by
the lung and brain. Around 50 % of all CRC patients develop liver metastases in contrast
to 15-20 % with lung and only 1-4 % with brain metastases [Damiens et al. 2012; Mongan
et al. 2009]. As a result, treating colorectal cancer typically involves at least half-year
scans over three years even if resection was successful and if no metastases are present.
As liver metastases are common, a fine-granular assessment of the liver is obligatory.
If metastases are present, these are usually treated by local or systemic chemotherapy,
radiation, or resection, if possible. Advanced therapy options may include hyperthermia,
radiofrequency ablation, or cryotherapy.

Similarly, the primary treatment for non-small-cell lung cancer is the resection of the
primarius and infiltrated tissue, although an interventional resection is significantly less
likely, which is clearly reflected by the statistics above. Generally, treatment of lung cancer
is more difficult and typically involves less surgical, but instead systemic treatment.

For both entities, all lesions are monitored in regular follow-ups. This includes the
scanning, measurement, registration, and re-identification of each lesion. Each of these
tasks provides considerable potential for automation, which is currently only partly lever-
aged. The subsequent clinical assessment involves an estimate of future progression, which
– although being based on treatment protocols and clinical experience – is qualitative in its
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nature, meaning that similar to the previous processes it may significantly vary in interpre-
tation, reliability, and quality. This was for example underlined by De Vries et al. [2014],
demonstrating that the clinical outcome of cancer patients is significantly influenced by
the practitioner’s psychological constitution, and Waite et al. [2019], demonstrating that
radiologists mostly automatically focus on relevant regions in medical images by using
video-oculography and that this process was faster, more precise and more accurate for
experienced radiologists.

As shown in Fig. 2.3, the amount of medical imaging data is steadily increasing, and
clearly surpasses the amount of newly trained radiologists. As was discussed in Sec. 1.1,
a typical radiological assessment for a CT scan comprising multiple hundred images on
average is conducted in less than 15 minutes. Thus, as already pointed out at the beginning
of Chapter 1, both throughput and quality could strongly benefit from an automated case
preparation which independently composes a diagnostic draft by the means of computer
vision and deep learning. With the automation of clinical tasks, these algorithms have the
potential to significantly improve healthcare by enabling the radiologist to spend more
time on the actual case assessment, with broad automation especially due to the increasing
amount of data becoming more and more needed.

As discussed initially, deep learning has had its largest successes when trained on
equally large amounts of well-structured training data. In contrast to this, the amount of
publicly available and especially well-structured data in medical imaging is typically scarce,
as these data are difficult to obtain, and often have heterogeneous quality (cf. Chapter 1.1).
Therefore, this work will focus on the successful implementation of deep learning-based
solutions for medical imaging when only a few data are available. It will propose novel
architectures for working with this data, analyze their strengths and shortcomings, and
finally demonstrate how to even get a deeper insight into highly complex decision-making
processes if only small datasets are available.



3. Radiomics

While this work will focus on deep learning-based systems, it has to be noted that espe-
cially in the field of radiomics1 has given a new thrust to the research in medical image
analysis, and will at multiple times serve as a comparison within this work. The term
“radiomics” was originally introduced by Kumar and Aerts [Kumar et al. 2012]. Radiomics
is a neologism built upon “radiology” and “-omics”, chosen in analogy to other disciplines
such as genomics and proteomics, and expressing the systematic analysis of radiological
imaging data. While the impact was only limited at that time, after the later “Nature
Communications” publication [Aerts et al. 2014], radiomics became one of the most active
fields in medical research. In a nutshell, as depicted in Fig. 3.1, given a set of images XXX ,
radiomics is characterized by the successive application of:

1. Filtering - Apply a set of predefined preprocessing operations PPP independently to
each input image (typically image filters),

2. Feature extraction - For each image and each filter, extract a set of predefined
image features FFF , using an image mask if given,

3. Feature selection - Select several features based on a predefined selection criterion,
or by systematically varying selection criteria,

4. Predictor training - Train a predictor based on the selected subset of the |PPP|× |FFF |
features of the |XXX | images, either using a predefined machine learning model or by
systematically varying models.

1While often the term is written with a capital letter (“Radiomics”), with becoming more widespread the
capital is typically omitted and the word is written in lowercase only. In the following, the lowercase writing
will be used.
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Figure 3.1: Overview on the basic radiomics process, consisting of the systematic applica-
tion of image filtering, feature extraction, feature selection and finally predictor training.

Radiomics is thus not a novel methodology itself, but instead describes relevant tools
for the process of a systematic analysis, rather than case-to-case feature design, selection,
and classifier training. Radiomics provides a variety of benefits, most prominently, the
possibility of a combination of hand-crafted, potentially meaningful features on one side,
and a simple and easily-understandable machine learning model, e. g. logistic regression,
on the other. Such a combination allows for analysis with strong human comprehensibility,
thus being a striking advantage over deep learning-based classifiers, which tend to be
difficult to explain and understand. In many cases, the combination of simple features
can yield a comparable or even equally good quality2. Similarly, with a small known
and successfully reproduced feature set, such as the 4-feature Aerts signature [Aerts et al.
2014], radiomics can be applied to very small datasets for which deep learning might be
infeasible, too.

Although radiomics captivates with an easier understanding and comprehensibility, the
adequacy of the chosen features remains unsure yet. First, there is no general guarantee
that radiomics features are sensible for the problem at hand. In contrast to pure, data-driven
methods, radiomics features are extracted in advance, thus important information might
have been erased in the feature extraction step already. Secondly, radiomics typically
comprises a large amount of hundreds or even thousands of features, many of them highly
correlated, making the model prone to false discovery, and unstable model parameters
(cf. multicollinearity3), and overfitting. If region-based features are used4, the region
annotation itself may pose a major source of variance. In summary, radiomics results have
shown to vary strongly, depending on the used modality, the scanning protocol, the patient

2A prominent example for this is the so-called Apgar-Score for health assessment in newborn [Apgar
1952]. For radiology, similar approaches exist, such as the LA950 threshold for lung emphysema detection
[Hueper et al. 2015].

3Multicollinearity describes the situation that multiple predictor variables are strongly correlated and
thus can predict each other. As a result, model parameters are unstable, as an indefinite number of model
parameterizations would yield similar results.

4Radiomics is often applied to a particular region-of-interest (ROI) within the image, which is typically
defined by a binary mask and allows to infer features such as the compactness or sphericity, with the former
also being part of the 4-feature signature from Aerts et al. [2014].
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geometry, and many more factors [Moltz 2019; Mühlberg et al. 2020, 2021b], and were
often found to be non-reproducible. This is underlined by meta-studies demonstrating
that positive results are highlighted and negative findings downplayed in as high as 97.8 %
of the published work on radiomics [Song et al. 2020]. Lastly, in contrast to the above-
mentioned advantage, the comprehensibility problem is mainly redirected towards the
feature construction process. Especially for more advanced but often used features, such
as the Haralick gray level co-occurrence matrix (GLCM) or the neighboring gray level
dependence matrix (NGLDM), an intuitive understanding of the features is not necessarily
given. This especially becomes relevant when radiomics is not only used for feature
candidate exploration but when a larger amount of features is combined for classification,
yielding a model complexity that can become evenly difficult to understand like other
machine learning models such as deep neural networks.

In summary, radiomics has been demonstrated to be a powerful toolbox for the auto-
mated analysis of medical imaging data. Its advantages especially lie in the comparatively
higher comprehensibility and its potential for simple and feasible clinical application when
only a few features are used and few data are available. Radiomics has successfully demon-
strated its applicability to a large variety of medical imaging scenarios and even clinical
products. It has indisputably given an enormous new impetus to the field of medical image
analysis.

A major downside of radiomics is its very strong sensitivity to environmental parame-
ters, such as the used acquisition protocol, the scanner physics, the patient geometry, and
similar [Mühlberg et al. 2020]. Its comprehensibility only stays high as long as the number
of used features stays low. As radiomics uses pre-defined hand-crafted features, however,
the features do not necessarily represent the full, clinically important image variance, often
making the use of a larger number of features obligatory, and thus the applicability to
small datasets more difficult. Finally, radiomics mostly represent the classical machine
learning domain. In the last years, however, deep learning has started to become the state
of the art in most machine learning applications, with a demonstrably higher performance
on a variety of problems. In accordance, the increase in publication numbers on deep
learning for medical image analysis has clearly surpassed that of radiomics, with over
90 % of submissions on the International Conference on Medical Image Computing and
Computer Assisted Intervention (MICCAI), the largest conference in the field, being about
deep learning since 2020.





4. Deep Neural Networks

In recent years, as for example pointed out in [Katzmann et al. 2018b], Deep Neural
Networks (DNNs) have been employed for a variety of medical imaging applications, such
as tumor [Havaei et al. 2017], multiple sclerosis [Brosch et al. 2015] and whole-organ
segmentation [Roth et al. 2015], vessel tracking [Wu et al. 2016], and many more. Some of
the proposed architectures even found a larger distribution outside of the medical domain,
such as the well-known U-Net from [Ronneberger et al. 2015], now being a standard
approach for image segmentation in very different fields, such as robotics. As emphasized
in Part I, most breakthroughs in the field of artificial intelligence in the last decade can
be attributed to deep learning-based approaches. Notably, its power to infer meaningful
latent variables in a pure, data-driven fashion allows it to extract relevant information from
images by constructing the most informative features itself, which in direct comparison
to radiomics is likely the largest advantage, as it can leverage arbitrary information, and
may ultimately lead to a significantly improved estimation accuracy (cf. [Mühlberg et al.
2020]).

On the other hand, training DNNs comes with some disadvantages, most of them being
a result of model complexity. DNNs typically contain hundreds of thousands, millions,
or even billions [Radford et al. 2019] of parameters that have to be trained prior to a
successful prediction by the model. In classical statistics, the so-called “One in ten rule”
[Harrell Jr et al. 1984] states that the number of samples should be typically at least ten
times the number of parameters that are to be estimated from the distribution at hand – a
requirement which in the deep learning domain is rarely met in practice. While datasets
in some computer vision domains contain at least some thousands of samples, acquiring
these amounts for medical scenarios is rather difficult. Even in medical specialization
centers the amount of patients with a specific medical condition does rarely exceed the
number of hundreds per year, typically with only a subset of these patients being eligible
for the question at hand (cf. Chapters 5 and 6). As described in Chapter 1.1, further
reasons include data security, data regulation, and data privacy issues, which – although
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having outstandingly relevant reasons – are an obstacle to the collection of large and
freely accessible multicentric medical imaging databases from a data scientist’s point of
view, reinforcing the problem of finding optimal model parameters, from a mathematical
perspective being an underdetermined problem. In turn, the model provides no guarantee
that solutions are optimal or even near to being optimal. In fact, recent studies have
emphasized that deeper networks tend to generalize better than shallow networks with
comparable parameter amounts (e. g. [Szegedy et al. 2015]), and, for the particular case of
natural language processing architectures, it could be shown that models with an extremely
large parameter space even perform well in few-shot learning environments (e. g. [Brown
et al. 2020]). However, while this can reduce the issue at hand, it still needs explicit
addressing. As a result, many of the algorithms presented in this work either directly
address (cf. Chapters 5 and 6) or even explicitly focus (cf. Chapter 8) on the trainability of
DNNs with only small datasets.

As pointed out above, one of the largest issues for the application of DNNs in medical
applications is the overall low comprehensibility. While many applications do not necessar-
ily require an in-depth understanding of the actual processing as long as possible mistakes
are limited in their consequences, this is clearly not the case in a medical scenario, in
which wrong decisions can easily lead to a significantly shortened patient survival or death.
In fact, even the top-5 strongest research university hospitals in the US do not employ
a single fully-automatic machine learning-based system in clinical practice, particularly
mentioning skepticism as a reason [Sennaar 2021]. Thus, creating comprehensible systems
is therefore seen as a major goal toward a market transition of DNN-based algorithms into
the daily clinical workflow (cf. explainable artificial intelligence, XAI [Linardatos et al.
2021]). For this reason, multiple chapters within this work will explicitly take into account
algorithmic comprehensibility. Finally, with Chapter 10, a whole section is specifically
dedicated to this highly important issue.
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In Chapter 2, we have already discussed a variety of reasons that oncological image
classification is one of the most promising targets for medical image analysis (cf. Chapter
2), e. g. as data is quantitative, and major parts of the clinical assessment can be automated,
such as lesion measurement and re-identification. The latter arguments both aim at patient
throughput. While turnaround times are a clinically highly relevant factor, however, quality
is even more important. As already discussed in Chapter 2.2, the clinical expertise across
practitioners may vary. For example, shown in a study from Moltz et al. [2011], manual
liver lesion delineation in CT images can easily result in a high inter-observer variability,
showing volume differences of up to 35 % across annotators. Recent research has further
demonstrated that both accuracy and performance in complex human decision-making
processes can depend on a variety of highly non-related factors, such as daytime, shift,
fatigue, and even the presence or absence of the expectation of a full meal (cf. [Alshabibi
et al. 2020; Cowley et al. 1997; Danziger et al. 2011]). Thus, as pointed out in [Katzmann
et al. 2018b], a reliable estimation based on deep neural networks “may enable better
therapy planning, deeper insight into tumor growth dynamics, [and] a greater patient
turnover”. Taken together, there is a clear need for an automated, quantitative and deter-
ministic assessment. The following part will therefore cover multiple applications of deep
neural networks for automated treatment outcome prediction in oncology using computed
tomography imaging data.

Like also pointed out in [Katzmann et al. 2018b], it should be noted that within a
clinical workflow, as emphasized by Glimelius et al. [2013] and Van Cutsem et al. [2016],
a radiological assessment amongst other information typically includes an evaluation of:

• visual lesion appearance (e. g. shape, size, density),
• a histopathological assessment,
• oncologically relevant blood values and biomarkers, such as haemoglobin, antibodies,

tumor markers (CA19.9, ...), etc.,
• the patient’s demographic data (age, gender, ...),
• the patient’s medical history.

The design of a clinical treatment plan comprises the collection of these and other
information, as each may strongly influence the treatment plan. Thus, besides ethical
arguments (cf. Part II), a thorough, prospective, clinical evaluation cannot be contained
within this work, as a full, clinical assessment of an oncological disease requires the strong,
continuous, multidisciplinary expertise of various clinical specialties.

In contrast, the following part is dedicated to the identification of opportunities for using
relevant image information which previously had been unused. As the visual assessment is
a key criterion for the creation of the treatment plan and its adaption over the course of
the disease, the following chapters will analyze how medical image analysis through deep
neural networks can be used in a clinical few data scenario to extract relevant diagnostic
information, such as an estimate on future tumor growth and overall patient survival by
leveraging yet unused image information through a data-driven approach.





5. Liver Lesion Growth Prediction

First, this chapter will analyze the prediction of lesion progression. More specifically, the
scenario of liver lesion growth prediction for patients with metastatic colorectal cancer
(mCRC, cf. Chapter 2.1.2) is chosen. As discussed in Chapter 2.2, a fine-granular assess-
ment of liver lesions is obligatory for mCRC patients, as, while the primarius can often be
resected, liver metastases pose a significant risk to life.

Recent research has shown clear correlations between the visual tumor appearance
in medical imaging data, the future disease progression, and the overall patient survival
(e. g. [Aerts et al. 2014], cf. Chapter 3). For leveraging this potential in a data-driven
fashion, with [Katzmann et al. 2018b] a novel algorithm is proposed, using structural
image information for tumor treatment response prediction, and being able to predict liver
lesion growth with high reliability, thus having the potential to be a relevant step towards a
semi-automatic oncological estimation of future disease progression.

5.1 Introduction
The clinical manual for the radiological assessment of liver lesions is the so-called Response
Evaluation Criteria in Solid Tumors (RECIST, [Eisenhauer et al. 2009]). RECIST contains
multiple criteria and allows for an overall patient assessment over the course of the disease.
Within this work, the so-called RECIST lesion assessment for single lesions will be most
important, is based on the maximum 2D lesion diameter, also called RECIST diameter,
within one slice1. An example is depicted in Fig. 5.1. The single lesion assessment defines
the lesion status by setting the current measurement in contrast to previous time points.
The possible results and their criteria are depicted in Tab. 5.1.

In the clinical assessment, RECIST serves as an indispensable tool. Still, it has several
shortcomings. First, it can be subject to large inter-observer variabilities [Rothe et al.

1RECIST was created to be available for various imaging modalities. As some of these, e. g. X-ray,
generate only 2D images, the RECIST diameter is defined in such a way that it uses a 2D instead of a 3D
measure. It thus assumes isotropic growth of lesions, which typically is approximately given for liver lesions.
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Lesion status Status Code Criterion

Complete Response CR Dissappearance of lesion
Partial Response PR Shrinkage of at least 30%

Stable disease SD Neither significant growth nor shrinkage
Progressive disease PD Growth of at least 20%

Table 5.1: RECIST single lesion assessment criteria and status codes based on a comparison
of the RECIST diameter between two successive timepoints.

Figure 5.1: Liver lesion with manually delineated outline and RECIST lesion diameter.
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2013]. Secondly, being a fully shape-based measure, it cannot leverage structural image
information, such as the lesion heterogeneity, although being a known sign of biological
activity (cf. [Ganeshan et al. 2013]). Finally, it poorly aligns with specific therapies,
such as immuno-oncological treatments, which may show initial growth after treatment
(cf. [Seymour et al. 2017]).

Finally, the RECIST assessment is a purely retrospective measure. Clinically, however,
an estimate of future progression would be highly beneficial, as it would allow for an
anticipatory escalation or de-escalation of the tumor therapy2, by yielding a so-called early
assessment. Therefore, this work will focus on a prediction of future lesion growth, as
indicated by the RECIST lesion status, by using two subsequent time points3.

Like mentioned in Chapter 3, with the work from Aerts et al. [2014], Kumar et al.
[2012], and Lambin et al. [2012], automated tumor assessment using radiomics has become
a highly active research field (e. g. [Bogowicz et al. 2017; Gillies et al. 2015; Leijenaar
et al. 2013; Yip et al. 2016]). As was pointed in Chapter 4, while radiomics focuses on a
combination of hand-crafted image features, deep neural networks, in contrast, can learn
meaningful features in a purely data-driven fashion. Therefore, their value for liver lesion
growth prediction will be assessed in the following.

At the time of its publication (cf. [Katzmann et al. 2018b]), the proposed algorithm
was among the first to predict longitudinal liver lesion progression, presenting:

1. A novel approach for CRC liver lesion growth prediction from single-slice CT
images of two separate time points (before- and within-treatment),

2. A successful demonstration of the applicability for pre-treatment assessment by
using a single time-point only, and finally

3. A thorough evaluation showing superiority over other radiological assessment
measures on the given data, such as the RECIST lesion diameter and volume.

5.2 Methods
Limited data poses a relevant obstacle to successful training. In [Katzmann et al. 2018b]
therefore a two-step approach has been used. First, a convolutional sparse auto-encoder
(cf. [Hinton et al. 2006; Krizhevsky et al. 2011, 2012; Ng et al. 2011]) has been trained for
conditioning the network to create a sparse representation from the dataset. Secondly, the
sparse representation is used for the actual classification task.

5.2.1 Autoencoder Network Architecture
A common way to combat overfitting, which might occur as a result of the imbalance
between the number of model parameters and training data, is data augmentation, i. e. the

2Escalation or de-escalation in terms of tumor treatment describes the intensity of medication or treatment.
The decision about escalation or de-escalation involves a tradeoff between estimated response and patient
life quality. Notably, an oncological treatment plan typically involves an expertise-guided estimate of future
response, naturally taking into account the RECIST measurements.

3It should be noted that subsequent time points may contain information on an actually observed
progression, and thus that on this basis an extrapolation of future progress may partly be possible. The work
in this and the following chapter, therefore, focuses on the additional, rather than absolute value, in the direct
comparison. An in-depth analysis focussing on single-timepoint-based assessment is found in Chapter 8.
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Figure 5.2: Autoencoder used for a training of sparse liver lesion representations. One slice
of baseline and followup images are given as an input, with the model trying to reconstruct
it at the output layer. Source: [Katzmann et al. 2018b] © 2018 IEEE

use of modifications such as image transformations to create virtually new data points. As
discussed in [Katzmann et al. 2018b], the amount to which it can be applied is limited:
“When having classification tasks, especially image transformations like varying rotation,
shear, jittering, etc. can be used. However, even when combined with dropout [Hinton
et al. 2012], batch normalization [Ioffe et al. 2015], 2D or 3D image augmentation, the
degree to which augmentation results in additional performance is limited, as images
are still highly correlated. The limit to data augmentation especially holds true for our
task, as the underlying theory claims that phenotypical manifestations (e. g. specific tissue
structure, size and shape of central necrosis, etc.) correlate with image structures and/or
noise patterns. As these manifestations are currently a field of active research, it can not
be said whether larger transformations are realistic in these terms, too. This reduces the
amount to which image transformations can be done, so augmentation does not fully solve
the problem of few data. Therefore, a main goal of the proposed approach was to keep the
number of parameters as low as possible.”

For this reason, in the following a 2D approach is employed, using axial slices (cf. Ap-
pendix A) in order to keep the amount of model parameters low4. As already pointed
out above, the sparse autoencoder approach from Ng et al. [2011] is used for creating
a meaningful latent space representation despite the low amount of available data. The
autoencoder model architecture consisted of a simple ConvNet (cf. Chapter 9 Fig. 9.2),
downsampling the input using leaky ReLU activation [Maas et al. 2013] and batch nor-
malization [Ioffe et al. 2015], followed by a 20-neuron dense layer, i. e. the later sparse
representation, and finally deconvolutional and upsampling layers in the reverse order to
the initial convolutions. The overall architecture is depicted in Fig. 5.2, details can be
found in the Appendix Tab. B.1.

5.2.2 Predictor Network Architecture
The above autoencoder is trained to create meaningful, low-dimensional representations
of the input-space information. After its training, a second neural network, having only
a very low parameter amount, is appended. Therefore, a very simple, empirically de-
signed 2-layered network architecture is added after the low-dimensional representation
of the autoencoder, which consists of 8 dense neurons followed by a two-neuron softmax
output layer, corresponding to the possible predicted outcomes (growth/non-growth, see
Sec. 5.3.1). This results in a total number of 218 parameters to be trained after autoencoder

4As the longitudinal resolution of CT scans is typically lower than the sagittal and coronal resolutions,
amongst the possible projections using axial slices retains the largest amount of image information.
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pretraining. While more complex architectures of the predictor network have also been
tried, they did not result in a significant advantage over this simple architecture. Possible
reasons for this include a) the low amount of training data (see Sec. 5.3.1), and b) a loss of
information in the encoder part of the autoencoder network. The full predictor network
architecture can be found in the Appendix Tab. B.2.

5.3 Experiments
The above architecture has been trained on a liver lesion dataset of mCRC patients
(Sec. 5.3.1). As a comparison to the presented approach, multiple reference classifiers have
been trained (Sec. 5.3.2–5.3.3), and were finally compared against each other (Sec. 5.3.4).

5.3.1 Dataset
The used dataset consisted of 321 volumetric CT scans from 135 patients, scanned between
12/2009 and 02/2017. It contained a total of 460 unique liver lesions with fully volumetric
segmentations at an average of 2,38 time points per patient. In total, 1,344 liver lesion
volumes were available, of which after pairing (ti, ti+1, ti+2)5, 805 samples remained. 419
samples have been used for training and validation (325 positive, 94 negative) and 386
(304/82) for testing. The splits have been chosen randomly using a grouped split, such
that all samples from the same patient are contained in either the train, the validation,
or the test dataset. The data was acquired within the BMBF project PANTHER6 and
was continuously extended throughout the project. The PANTHER data will also used in
Chapters 6, 7 and 8. As the data was acquired retrospectively, no unified scan protocol has
been used. Thus, the acquired images suffer from a high level of heterogeneity, including
variation in contrast enhancement, noise level, and voxel resolution.

For unification, the dataset has been resampled to an isotropic voxel size of 1x1x1 mm
using cubic interpolation. As mentioned in Sec. 5.1, a 2D approach was used to keep the pa-
rameter amount low7. As most lesion diameters /0 were in the interval

[
/0Pr( /0)≤0.1, /0Pr( /0)≤0.9

]
=

[11.3mm,53.3mm], a window of 80mm x 80mm centered around the lesion center of mass
has been extracted (cf. [Nibali et al. 2017]), using a resolution of 256x256 pixels to assure
that no image information is lost8. To reduce the influence of different contrast enhance-
ments due to non-unified contrast phases, all images underwent a histogram equalization.
An example lesion at two timepoints and their histogram equalized counterpart is depicted
in Fig. 5.3.

In accordance with the RECIST guideline, tumor diameter was measured as the longest
diameter within one slice. The data was labeled according to RECIST lesion assessment
criteria to discriminate lesion progression (PD) from non-progression (CR/PR/SD), i. e.:

yi =

{
1 if di,t+1/di,t ≥ 1.2
0 otherwise

(5.1)

5The method uses two time points for the prediction of future growth, which is derived using a third time
point.

6The PANTHER project was a BMBF project conducted between 2016 and 2020 by a consortium formed
of MeVis Breastcare, the Fraunhofer MEVIS, the KUM Munich, and Siemens Healthineers, with PANTHER
being an acronym for “Patientenorientierte onkologische Therapieunterstützung”, engl. patient-oriented
oncological therapy support.

7Lately Perslev et al. [2019] proposed a method for semi-3D processing with similar benefits.
8Later approaches, such as [Katzmann et al. 2018a], have used smaller image resolutions (see Chapter 6).
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Figure 5.3: Histogram equalization for a lesion baseline (12/2015, left) and followup
(04/2016, right) pair (top) with its respective histogram equalized variant (bottom). Source:
[Katzmann et al. 2018b] © 2018 IEEE

for lesion diameters di,t of lesions i at timepoint t. As the study at hand aimed for an
assessment relative to the current time point, in contrast to the standard RECIST criterion,
the current timepoint has been taken as the reference t for label assignment, rather than the
time point of the best response tBR (cf. [Eisenhauer et al. 2009]).

5.3.2 Classifier Baseline
Treatment response prediction is a relatively new field, and as pointed out in Chapter 1.1.
Therefore, only a few works have yet taken into account tumor disease prognosis using
machine learning, with no system to the time of this study to estimate the per-lesion
progression of liver metastases. Relevant work with respect to the task at hand conducted
a longitudinal analysis of lesions using radiomics features of volumetric CT data [Aerts
et al. 2014], and was discussed in Chapter 3. It aimed, however, at non-small-cell lung
cancer instead of mCRC9. Within this study therefore the clinical RECIST measure has
been used to provide a baseline comparison. As some recent work (cf. [Hayes et al. 2016;
Rothe et al. 2013; Xiao et al. 2015]), has identified lesion volume, rather than diameter, as
more predictive, additionally lesion volume is compared. For each predictor, raw and delta
features are provided based on input sets Xr for measures mr with xr,i,t ∈ Xr as:

xr,i,t =


mr,i,t

mr,i,t−1
mr,i,t−mr,i,t−1

mr,i,t
mr,i,t−1

 (5.2)

with mr,i,t being the measure r (RECIST diameter or lesion volume) for sample i at
timepoint t. For each dataset Xr, one classifier was trained. Hyperparameter optimization
was done using 100 iterations of randomized search cross-validation with inner nested
10-fold grouped cross validation. Train-test split was done using an outer 10-fold grouped
cross-validation using the patient identifier as the grouping parameter.

9A thorough comparison to the radiomics approach can later be found in Chapter 6.
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5.3.3 Deep Network Training
The deep network was trained on an NVIDIA DGX-1 using Keras and Tensorflow [Chollet
et al. 2015; Martín Abadi et al. 2015]. The data was divided into distinct datasets using
label stratification to ensure a comparable label distribution between the training and test
set. The sparse autoencoder for lesion representation was trained using mean absolute error.
Afterward, the actual classification network was appended and trained using categorical
crossentropy. For optimization, the NAdam optimizer10 [Dozat 2016] was used. The
learning rate ηi was annealed exponentially as a function of the current epoch i:

ηi = η0 ·

(
ηn−1

η0

i
n−1

γ
)

(5.3)

with the initial learning rate set to η0 = 3 ·10−4, and the target learning rate ηn−1 =
1 ·10−7, the number of epochs n and γ = 1.2 being the learning rate exponent. For both,
autoencoder and classifier training, adversarial training was used for regularization and
test time performance enhancement as described in [Goodfellow et al. 2014]. Stratified
sampling has been used to account for the faced label imbalance. Thus, for each sample i a
sampling probability pi with m = 2 classes has been assigned as:

pi =

1
Pr(y=yi)

∑
m
k=0

1
Pr(y=yk)

(5.4)

Inputs and outputs were scaled to the interval [−.5, .5] using tanh activation to ensure a
well-defined gradient. Additionally, mean image subtraction was used. Further, a modified
version of the exact importance sampling from [Katharopoulos et al. 2017] was employed,
multiplying the above sampling probabilities with the norm of the error gradient11.

The autoencoder architecture was trained for 1,000 epochs. Due to the low dimen-
sionality of the bottleneck layer, after training, the bias and variance errors did not differ
remarkably. An example of a baseline-followup-pair before and after autoencoder pre-
processing is given in Fig. 5.4. As depicted there, the autoencoder reconstruction quality as
a result of the strong compression may be seen as rather low, implying that the autoencoder
was not able to fully represent the original training data. However, as noted before, a
rather coarse representation was in fact intended to avoid overfitting. As depending on
the time point of treatment not necessarily two CT scans have been acquired already,
two different classification networks have been trained. The first network is based on
the low-dimensional representations of baseline/follow-up pairs as proposed above. The
second network is trained analogously but feeds the duplicated baseline image as the input,
i. e. serving as both baseline and follow-up to the autoencoder simultaneously.

Due to the low amount of available data, the training process of both networks con-
verged after only a few epochs. The autoencoder layers were not fixed during training to
allow for an adaption of network weights for the concrete training goal. Fixing the layers
resulted in a lower performance [Katzmann et al. 2018b].

10NAdam combines the Adam optimizer from Kingma et al. [2014] with a Nesterov momentum.
11The multiplication results in the more frequent sampling of difficult samples, and in [Katzmann et al.

2018b] empirically resulted in improved performance. However, as the improvement was only marginal, this
step has later on been dropped.
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Figure 5.4: Baseline (top) and followup images (bottom) prior to (left) and after (right)
autoencoder preprocessing. Source: [Katzmann et al. 2018b] © 2018 IEEE

5.3.4 Results
All trained classifiers were evaluated using F1-score, informedness (IFD), markedness
(MKD), Matthews correlation coefficient (MCC), and area under the curve (AUC)1213, see
Tab. 5.2. Significance was tested using 5,000 iterations of bootstrapping14.

As was emphasized in [Katzmann et al. 2018b], the results show nearly equal values
for RECIST- and volume-based prediction. Both were signficantly correlated with the
ground-truth labels as stated by the F1, MCC and AUC values, having bootstrapped 95 %
confidence intervals of [.402, .486], [.235, .328], and [.671, .726] for RECIST-based, and
[.398, .482], [.220, .323], and [.652, .714] with volume-based prediction for F1, MCC and
AUC, respectively, with all p < .001 (two-tailed t-test).

When having a look on the deep classifiers, with an F1 of .596, CI 95 % [.450, .726],
an MCC of .520 [.356, .694], and an AUC of .814 [.721, .896], the two-timepoint classifier
clearly outperformed the RECIST diameter- and volume-based approaches. The single-
timepoint classifier performed slightly worse, but still yielded superior results with .581
[.455, .693], .423 [.283, .540], and .787 [.694, .865] for F1, MCC and AUC, respectively.
The receiver operating characteristics (ROC) on the test data for the one- and two-timepoint
classifiers are depicted in Fig. 5.5.

5.4 Discussion
As demonstrated by these results, both classifiers performed superior to, or on par with,
the RECIST-based assessment, implying that lesion images may contain relevant visual
information for the prediction of future tumor growth. Further, the results clearly demon-
strate that structural image information might have additional value for estimating tumor
treatment response over pure diameter- or volume-based assessment.

12The metrics are described in more detail in the Appendix in Tab. C.1.
13In the original study, also true positive and true negative rate, as well as positive and negative predictive

value have been reported. However, due to the label imbalance, these metrics have only limited value for the
concrete scenario and are omitted here.

14For a more detailed discussion on the bootstrapping methodology please refer to Chapter 9.1.
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Classifier (BL+FU) Classifier (single) RECIST Volume

F1 .596 .581 .444 .440
IFD .436 .486 .250 .267

MKD .622 .368 .224 .212
MCC .520 .423 .282 .271
AUC .814 .787 .698 .683

Table 5.2: Performance of the proposed approaches on the mCRC dataset in direct compar-
ison to the predictors based on the radiological measurements. The highest result for each
metric is marked bold. Source: [Katzmann et al. 2018b] © 2018 IEEE

Figure 5.5: Receiver operating characteristics on the test set using the sparse autoencoder-
based predictor with baseline and followup (left) and single-timepoint (right). Source:
[Katzmann et al. 2018b] © 2018 IEEE
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The study, however, also has multiple limitations which have to be noted at this point.
First, this includes the limited amount of data. While the dataset in total consisted of
1,344 samples, these included only 460 different liver lesions stemming from only 135
patients. As a result, the numbers of independent training and test set samples were rather
low. While for the baseline approach a thorough nested cross validation was conducted,
the neural networks were trained using a fixed train/val/test split due to memory and time
consumption, and thus should be repeated on larger datasets15. The need for this procedure,
in particular, becomes clear when having a look at the size of the confidence intervals,
spanning up to 35 % for MCC, and thus strongly relativizing the observed effects, in
particular when taking into account the single-timepoint-based classifier results16. Further,
the used dataset may have limited representativeness, as it was acquired by only one clinic,
and amongst the acquired data only high-quality, thin-slice images have been included. In
clinical practice, however, data may have lower quality, depending on the available scanner
platforms and similar restrictions. Regarding the training procedure, it should be noted
that with some of the meanwhile published works, such as BYOL [Grill et al. 2020] and
PAWS [Assran et al. 2021], effective alternatives for classifier pretraining were proposed,
whose value for the medical imaging domain should be analyzed in further studies.

Future work should make use of the available clinical and demographic data, such as
blood values, age, and similar. Regarding the network architecture, it would be interesting
to see the results of a fully-volumetric assessment. While not feasible within this study
due to the amount of available data, a 3D assessment could include relevant additional
information. However, as pointed out in [Katzmann et al. 2018b], as the extraction of
2D-slices is rather simple and segmentation can easily be done, a 2D-approach might well
constitute an advantage if no fully-automated volumetric assessment is available, as it is
only marginally more time-consuming than RECIST, but might yield significantly better
performance in comparison to pure radiological assessment.

5.5 Conclusion
Treatment response prediction is an important part of early assessment, being a requirement
for fast therapy adaption, which reduces costs and results in a patient-tailored treatment.
Therefore, opening up an additional source of information by taking into account structural
image information might be of considerable clinical value with respect to the highly
important field of precision medicine17. While tumor size is known to be a relevant
predictor of patient survival, having a diagnostic utility that allows for a prediction of
tumor growth might in turn allow for an estimate of patient survival. However, patient
survival is influenced by multiple clinical factors, too, such as age, fatigue, overall patient
condition, comorbidities, etc. Thus, the direct link between both has yet to be established.

15This was done in later studies, and will be discussed in the following chapters.
16While with slightly lower performance, later studies have similarly demonstrated that single timepoints

may allow for a proper estimate of future progression, cf. Chapter 8.
17Precision medicine denotes a medical treatment paradigm, aiming at a case-specific disease treatment,

instead of a unified therapy, based on an in-depth anamnesis as well as thorough diagnostic testing.



6. One-Year Survival Estimation

As demonstrated in Chapter 5, structural image information can be used to predict tumor
treatment response and might allow giving an estimate of the probability of future liver
lesion growth. While treatment response in terms of lesion growth is an interesting
outcome variable in itself, this chapter analyzes whether the structural information can
further be used for predicting patient one-year survival, assuming that the visual lesion
phenotype contains information on the underlying tumor genotype1, and thus is associated
with a specific treatment outcome. In contrast to lesion growth, the one-year survival
chance immediately quantifies the impact of a tumor disease on the estimated lifetime and,
thus, constitutes a complementary source of information for treatment planning, which
may be decisive for the therapy choice or even category, i. e. curative, (neo-)adjuvant or
palliative2. Therefore, its estimation is highly important for life quality and expectancy
and is demonstrated in the following chapter based on [Katzmann et al. 2018a], presented
at the International Conference on Medical Imaging with Deep Learning (MIDL) 2018.

6.1 Introduction
As was demonstrated in Chapter 5, image information can be used for predicting the
treatment response, as measured by lesion growth. However, clinically it could be even
more important to directly assess the expected effects of the disease on the patient survival
time, rather than quantifying the growth or shrinkage of single lesions. In fact, depending on

1Tumor phenotype denotes the visual appearance of the tumor. In contrast, tumor genotype denotes
the genome of the tumor, typically being analyzed as part of the tumor treatment process, as specific gene
expressions have been shown to correlate with growth patterns.

2Curative therapy includes forms of therapy which aim to cure an underlying disease, such as surgical
resection. Adjuvant therapy includes forms of systemic treatment which reduce the risk of progression or
recurrence. Neoadjuvant therapy is conducted before the main treatment, e. g. systemic therapy to reduce
tumor size before surgery. Palliative care, in contrast, aims to improve life quality, prolong life expectancy,
and reduce suffering, but accepts death as the treatment outcome.
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its localization and the patient’s overall status, a singular lesion’s growth is not necessarily
correlated with a lower overall survival rate, while for the underlying tumor genotype a
number of very marked correlations could be verified [Popat et al. 2005; Stoehlmacher
et al. 2002; Teng et al. 2012]. The effect can be observed when taking into account specific
treatments, such as immuno-oncological therapies, which are linked to a pattern called
pseudoprogression and describes a process marked by the temporary growth of a lesion
under treatment response [Chiou et al. 2015]. As pointed out in [Katzmann et al. 2018a]
“[...] Oxnard et al. [2012] conclude that current criteria for progression may not adequately
capture disease biology. Thus, having a high precision early lesion estimate on future
growth would be of high clinical value, allowing to prematurely double-check, and thus
potentially even prepone treatment decisions.”.

In alignment with other work, such as [Aerts et al. 2014], within this work, it is assumed
that the tumor phenotype contains additional information on the underlying tumor genotype,
and therefore might be suitable for the identification of high-risk patients, associated with
lower overall survival rates. Currently, estimating patient survival requires comprehensive
clinical expertise and includes a high level of uncertainty. Therefore, the herein proposed
method might be a relevant step towards a quantitative, better-substantiated estimate. While
there has been recent work on patient survival prediction using deep learning, such as
the work from Nie et al. [2016] and Yao et al. [2016, 2017], they were either trained on
different modalities [Nie et al. 2016], or used histological data [Yao et al. 2016, 2017], and
often employed a combination of deep learning and classical approaches. None of them
has yet covered the assessment of mCRC lesions.

In the following sections thus a novel approach for CT liver lesion assessment is
presented, and compared to the prediction using RECIST lesion diameter-based, as well
as classical radiomics-based prediction. As in the prior study, liver lesion growth will be
predicted, further amending the dataset by linking it to the respective clinical survival data.
As a result, this study allows for an assessment of the performance of deep neural networks
not only for tumor growth but also for patient one-year survival prediction by using a
unified framework, demonstrating its superiority over other methods, such as radiomics- or
RECIST lesion diameter-based prediction3.

6.2 Methods
As pointed out earlier, both analyzed tasks are not yet near use in the clinical routine (see
Chapter 2). Currently, only a few, non-applicable approaches in this direction exist (see
Sec. 6.1). Thus, analogously to Chapter 5, a RECIST-based classifier will be trained. As
no superiority of volume-based prediction could be shown in the previous study, it will be
omitted herein. Further, a radiomics-based approach was added as proposed by Aerts et al.
[2014] to better reflect the capabilities of state-of-the-art image analysis methods.

6.2.1 Preprocessing
The dataset in [Katzmann et al. 2018a] was first unified to reduce the data heterogeneity.
Therefore, isotropic resampling was applied using cubic interpolation to ensure a homo-

3The original study also covered the use of saliency maps for the visual identification of relevant tumor
growth patterns, potentially allowing for new insights in radiological image assessment. To the end of better
consistency, however, decision explanation will instead be discussed in more detail in Chapter 10.
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Figure 6.1: Example lesion (left) with applied histogram equalization (right). Clearly the
image contrast is strongly enhanced, allowing the network to easier identify important
structures while reducing data heterogeneity. Source: [Katzmann et al. 2018a].

geneous voxel size. This is especially important as the underlying hypothesis assumes
specific structures to be predictive of specific outcomes. However, as CNN filter sizes are
static, they always represent same-sized structures in the input space, and additional filters
would have to be learned to represent scale invariance. Hence, heterogeneous voxel sizes
are detrimental to efficient learning if only a few data are available. To this end, the same
preprocessing as in [Katzmann et al. 2018b] was applied, i. e. extracting windows of 80 x
80 mm and segmenting the lesion to reduce the heterogeneity induced by the surrounding
tissue, and final histogram equalization. An exemplary sample is depicted in Fig. 6.1.

6.2.2 Baseline Classifier Design
The baseline classification was conducted using a standard radiomics pipeline (cf. Chap-
ter 3), consisting of feature z-normalization, ANOVA k-best feature selection and subse-
quent classification through a random forest. All hyperparameters have been extensively
optimized by using 10,000 iterations of a randomized search cross validation on the training
data. The pipeline was finally fit using the optimal parameter set and evaluated on the yet
unseen testing data. This pipeline design allows for a wide variety of feature definitions,
and is equally applicable to the RECIST- as well as the radiomics-based approach.

For the RECIST-based classification, the feature definition from Eq. 5.2 was re-used.
The radiomics-based classification was constructed analogously to [Aerts et al. 2014] and
employed the publicly available PyRadiomics reference implementation from [Griethuysen
et al. 2017]. The radiomics features were extracted from the fully-volumetrically segmented
lesions using the datasets A.2 and C.2 for tumor growth prediction and survival estimation,
respectively. For each volume, the library extracted 1,209 features. Using the definition
for delta-features from Eq. 5.2, this leads to a total of 4,836 features per lesion for each
longitudinal pairing.

6.2.3 Sparse Characterization
Again, parameter amount stays an important issue. Thus, a first step was to drastically
reduce the image dimensionality by employing a sparse convolutional neural autoencoder
[Hinton et al. 2006; Krizhevsky et al. 2011, 2012; Ng et al. 2011] as was already done in
Chapter 5. As the first timepoint of each pairing within this study always was a baseline
image before therapy, the images are expected to differ significantly. Therefore, a two-lane
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Figure 6.2: Architecture of the autoencoder network used in [Katzmann et al. 2018a].
Further details can be found in the Appendix in Tab. B.3.

design has been used, encoding the first and the second time point separately, but sharing
a common sparse representation. Again a 2D representation has been chosen. Batch
normalization [Ioffe et al. 2015] was applied after each convolution to accelerate the
training process and preserve a better generalization performance. A structural graphic
of the autoencoder can be found in Fig. 6.2. The complete architecture is depicted in the
Appendix in Tabs. B.3–B.4. After autoencoder pretraining, analogously to [Katzmann et al.
2018b], the network was cut off after the sparse representation layer and a simple neural
network was appended. As in the previous work, a 2-layer network with 8 and 2 neurons,
introducing 218 parameters has been used, as it demonstrated to be reasonable for both
outcome prediction tasks while providing a good generalization performance.

6.3 Experiments

6.3.1 Dataset

Within this study, two datasets have been merged to receive a dataset with both, (A)
radiological images, as well as (B) clinical outcome parameters. As clinical data was
not available for all radiological images and vice versa, the merged datasets (C/C.1/C.2)
were significantly smaller than the original datasets. Analogously to the approach from
[Katzmann et al. 2018b], two successive time points were used to predict the outcome
variable. In contrast to [Katzmann et al. 2018b], only baseline scans, i. e. timepoint t0,
have been used as the first samples of each longitudinal pairing, significantly reducing
the heterogeneity which results from timepoints ti being either before or within therapy,
and thus allowing for better reliability. To further reduce variance, only scans with a slice
thickness of≤3 mm have been used. A detailed overview of the employed datasets is given
in Tab. 6.1.

The labels for tumor growth were assigned analogously to Chapter 5. One-year survival
labels were extracted from the clinical data relative to the radiological scan date. Due to the
one-year survival rate for colorectal cancer being at around 75% [Joachim et al. 2019], the
resulting label distribution was rather imbalanced. An overview of the label distributions
of the final datasets can be seen in Tab. 6.2.
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Dataset Description NNN NNN patients timepoints lesions

A Radiological Data (ti) 1235 116 315 458
A.1 Radiological Data (t0, t1) 777 94 198 360
A.2 Radiological Data (t0, t1, t2) 417 55 104 218

B Clinical Data 135 135 - -

C Combined (ti) 800 78 211 304
C.1 Combined (t0, t1) 496 61 132 231
C.2 Combined (t0, t1, t2) 302 33 78 131

Table 6.1: Overview on the used datasets. Tumor growth prediction was conducted on
dataset A.2, overall survival prediction on C.2. Pairing the radiological with the clinical
data notably reduces the amount of available samples. Source: [Katzmann et al. 2018a]

Dataset NNN Positive Negative

Tumor Growth 417 63 354
One-Year Survival 302 124 178

Table 6.2: Label distribution for tumor growth and one-year survival prediction datasets.
Source: [Katzmann et al. 2018a]

Network Training
The network was trained using the Adam-optimizer with Nesterov momentum [Dozat 2016]
using a batch size of 128 samples. For combatting the label imbalance, the importance
sampling from [Katzmann et al. 2018b] has been used. The network was trained using
a 4-fold cross validation grouped by the patient ID to ensure that all samples of a single
patient are either contained in the train or test set. For each fold, a validation set containing
a third of the training data was randomly split off.

6.3.2 Results
All classifiers were evaluated using a variety of informed and non-informed metrics4. The
results for tumor growth and one-year survival prediction are depicted in Tabs. 6.3 and 6.4.
Rows with a significant superiority of the deep learning-based classifier with respect to
the best available reference classifier are separately highlighted (*; p < 0.05; two-tailed
z-test). Empirical confidence intervals were computed as proposed by Efron [1987] using
10,000 iterations of bootstrapping5. The receiver operating characteristics for growth and
survival prediction are visualized in Fig. 6.3.

As seen in Tab. 6.3, the proposed approach significantly outperformed the other tested
approaches in the tumor growth prediction task for TPR, NPV, F1, IFD, and MCC with
p < .05, and did further provide the best AUC (.784, CI95 = [.735, .833], n.s.). While the
radiomics-based prediction achieved a significantly higher TNR, this seems to be a result
of the class weighting, as implied by the other metrics. Differences in PPV, MKD, and

4The differentiation of informed and non-informed metrics stems from [Powers 2011]. A detailed
description of each used metric can be found in the Appendix C.

5The bootstrapping methodology will be discussed in more detail in Chapter 9.1.
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DL RECIST Radiomics sig.
µµµ CI 95 µµµ CI 95 µµµ CI 95

TPR .743 [.648,.831] .430 [.302,.552] .363 [.245,.483] *
TNR .768 [.730,.806] .864 [.827,.901] .912 [.881,.940]
PPV .366 [.292,.439] .359 [.250,.468] .425 [.292,.560]
NPV .944 [.918,.965] .894 [.861,.926] .890 [.858,.922] *
F1 .490 [.412,.561] .390 [.280,.490] .390 [.268,.505] *

IFD .511 [.405,.606] .296 [.167,.425] .277 [.153,.404] *
MKD .311 [.239,.390] .258 [.148,.383] .318 [.183,.452]
MCC .400 [.314,.480] .273 [.159,.400] .294 [.166,.420] *
AUC .784 [.735,.833] .744 [.674,.810] .737 [.669,.803]

Table 6.3: Results on tumor growth prediction using the deep learning (DL) approach as
proposed in [Katzmann et al. 2018a] in comparison to RECIST diameter- and radiomics-
based prediction. Results are highlighted in bold if they are significantly better than both
other approaches. Significant superiority of the DL approach is depicted as * (p < .05,
two-tailed z-test). Source: [Katzmann et al. 2018a]

DL RECIST Radiomics sig.
µµµ CI 95 µµµ CI 95 µµµ CI 95

TPR .462 [.368,.547] .717 [.593,.638] .566 [.482,.648]
TNR .927 [.882,.963] .612 [.538,.683] .620 [.550,.689] *
PPV .815 [.721,.902] .561 [.482,.646] .507 [.425,.592] *
NPV .712 [.655,.768] .756 [.684,.830] .670 [.599,.739]
F1 .586 [.497,.667] .630 [.557,.695] .534 [.459,.608]

IFD .387 [.290,.484] .332 [.225,.434] .182 [.072,.288]
MKD .528 [.419,.634] .321 [.218,.426] .178 [.069,.277] *
MCC .449 [.344,.541] .321 [.219,.423] .180 [.063,.288] *
AUC .710 [.645,.773] .688 [.629,.740] .568 [.504,.628]

Table 6.4: Results on one-year patient survival prediction using the deep learning (DL)
approach as proposed in [Katzmann et al. 2018a] in comparison to RECIST diameter- and
radiomics-based prediction. Results are highlighted in bold if they are significantly better
than both other approaches. Significant superiority of the DL approach is depicted as *
(p < .05, two-tailed z-test). Source: [Katzmann et al. 2018a]
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Figure 6.3: Receiver Operating Characteristic for tumor growth (left) and survival predic-
tion (right) with the proposed deep learning approach. The shapes imply that both tasks
contain samples of strongly different difficulties.

AUC were non-significant. Both, RECIST and Radiomics achieved comparable MCC and
AUC values with .273/.294 for MCC and .744/.737 for AUC, respectively.

Similar results could be observed for the one-year survival prediction task, with signifi-
cant superiority of the deep learning-based approach for TNR, PPV, MKD, and MCC, each
with p < .05. Further, the method again provided the highest AUC (AUC = .710,CI95 =
[.645, .773], n. s.), and had a significantly higher informedness than the radiomics-based
approach. Both, DL- and RECIST-based predictions clearly outperformed the Radiomics-
based approach in terms of IFD, MKD, MCC, and AUC with p < .05.

6.4 Discussion
As demonstrated by the results in Sec. 6.3.2, the proposed method performed clearly best
for both tumor growth and one-year survival prediction. While significant superiority could
be shown for both target variables in terms of MCC, it was not possible to demonstrate
a significantly higher AUC, which might be caused by the low amount of available data.
However, the significance could be shown for a variety of metrics on both datasets.

Regarding the radiomics approach, it achieved a reasonable performance for lesion
growth prediction, being on par with RECIST diameter-based performance, but was clearly
inferior to RECIST- or DL-based prediction for one-year survival prediction. Although
shown to be beneficial for a variety of tasks (cf. [Aerts et al. 2014; Huang et al. 2016; Li
et al. 2016]), the results were rather unsatisfactorily. However, this might have been a result
of the limited amount of training data, too, as the number of features M was significantly
higher than the number of available samples N (M >> N, cf. multicollinearity), making a
successful feature selection significantly more difficult. Generally, the radiomics approach
would be expected to perform at least on par with RECIST-based assessment, as, as
pointed out in [Katzmann et al. 2018a], the 2D lesion diameter, being equal to the RECIST
diameter, is part of the feature set, and has, in fact, had the highest feature importance
in each of the trained RF classifiers. Radiomics, however, was also shown to be highly
influenced by different scanning protocols, across vendors, and even across models (see
Chapter 3, cf. [Leijenaar et al. 2013; Mackin et al. 2015; Mühlberg et al. 2020]).

The study at hand has some limitations which should be pointed out. First, it suffers
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from a high amount of heterogeneity, including different scanners and scan protocols,
as well as the different therapies, e. g. 5FU, FOLFOX, XELOX, and various surgical
interventions, possibly interfering with both feature-based as well as deep learning-based
approaches. Repeating the study on a more homogeneous and/or significantly larger dataset
therefore might go hand in hand with major improvements in the quality of estimates.

A more general problem of the application of deep neural networks for medical image
classification lies in the low transparency of the decision-making process, being an issue
which is covered in more detail in Chapter 10.

It can be noticed that the achieved performance is slightly lower than in Chapter 5.
This results from multiple factors: First, in this study, it was decided that only baseline
scans and their successor serve as a prediction base. This is relevant as it a) reduces
the amount of available data, and b) might come with a worse baseline quality, as the
follow-up data stems from specialized clinics and thus generally has a higher quality than
the baseline data, which often stems from resident radiologists. Secondly, the limitation
of maximum slice thickness has been added, also reducing the amount of available data.
Both decisions, however, come with a significantly improved reliability of the results, as
they enforce a clearer environment in which the algorithm might be applied. Additionally,
the first study was conducted using a single test set, while the results in this Chapter are
based on cross-validation, and are thus clearly more representative. The shortcomings of a
slightly lower performance are therefore acceptable, as they come with significantly higher
reliability.

6.5 Conclusion
Within this chapter, a method has been proposed which has demonstrated that not only
the growth pattern of liver lesions can be assessed using structural image information, but
that furthermore a direct link to the overall patient survival can be established. It is well
known that lesion growth goes hand in hand with effects such as organ compression and
therefore on average leads to a reduced patient survival (cf. Chapter 2). However, the
results demonstrated that additional criteria over actual growth are involved, too, as pure
size-based measures such as those included in the radiomics feature set or the RECIST
diameter-based assessment are clearly outperformed by the deep learning-based approach.

As concluded in [Katzmann et al. 2018a]: “The results for our proposed deep learning
approach imply that the radiological tumor phenotype itself encodes information beneficial
for predicting tumor progress as well as the patient’s final outcome. [...] It is rather of
clinical value to understand which structural specifics actually are predictive for tumor
growth or the final outcome, and how to practically acquire and interpret these values
within the clinical workflow.” Especially when combined with recent work in the field of
decision explanation (cf. Chapter 10), the proposed work could clearly contribute towards
an automated deduction of visually identifiable biomarkers, e. g. in an educational setting,
and might allow practitioners to apply a patient-centric, specifically tailored medical
treatment. It thus well aligns with the paradigm of precision medicine and could help to
improve oncological healthcare.



7. Deep Survival Regression

In the last chapters, we have seen that structural image information can be used to predict
lesion growth and one-year survival for liver metastases in colorectal cancer patients.
While such a prediction might allow for better treatment planning and an earlier therapy
adjustment, especially the granularity of the yet proposed method has room for improve-
ment. Although being used in a variety of other studies (cf. [Mühlberg et al. 2020, 2021a],
the threshold of one-year survival in fact is mostly arbitrary and introduces an artificial
binarization of the continuous problem. Even if assuming a perfect one-year survival
classification, it would not be possible to differentiate between patient survival times of
only a few days or multiple months. Thus, for fine-granular risk stratification, a continuous
approach is needed.

When using deep networks, the architecture could be modified in such a way that
it represents continuous values, e. g. by using a linear output neuron or some arbitrary
kind of fuzzification, and combining it with a regression loss function, e. g. mean squared
error (MSE). If used on small data, deep regressors tend to show poor performance if not
additionally constrained, choosing one of the two trivial loss-minimizing solutions to either
a) perfectly predict each training sample without generalization (low bias/high variance),
or b) to significantly over-smoothen the outputs, mostly predicting the distribution’s mean
(high bias/high variance).

In classical machine learning, typically, parameterized quantitative models are used
for survival estimation, most notably the so called Cox proportional hazards model (CPH,
[Cox 1972]) for predicting patient survival expectations based on time-dependent hazard
probabilities. Until today this model can be seen as the state-of-the-art for survival
estimation. The CPH models survival times as a result of hazard probabilities h(t|X),
consisting of a time-dependent, but covariate-independent base hazard probability h0,
which is multiplied by a time-independent, but covariate-dependent exponential term
exp(βX):
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h(t|X) = h0(t) · exp(β1x1, ...,βnxn) = h0(t) · exp(β ·X) (7.1)

for a patient at time t with features X and feature weights β . For fitting the model, this term
is decomponized by first fitting the feature weights β , maximizing the rank concordance1

of survival times, and afterwards fitting the base hazard probability h0.
Although providing a practical method for risk stratification, due to this procedure the

CPH does not always provide a good fit for absolute valued predictions. Some of the CPH
assumptions, particularly the non-time-dependence of covariates [Desquilbet et al. 2005]
and the multiplicativity of the hazard term [Aalen 1989], were shown to not be granted in
the general case. Especially to address the latter issue, Aalen [1989] proposed a modified
version of the approach by using an additive hazard term:

h(t|X) = h0(t)+h1(t)x1 + ...+hn(t)xt (7.2)

In contrast to the CPH, Aalen’s approach took into account that covariates might constitute
time-dependent hazard distributions. However, both the CPH as well as Aalen’s model
require hand-crafted feature design, and provide poor generalization performance if the
number of features is high in comparison to the number of samples, being a result of multi-
collinearity. To this end, in [Katzmann et al. 2019b] an image-based architecture for deep
survival regression has been proposed, which particularly addresses the aforementioned
issues2.

7.1 Medical Background
When describing patient survival in a clinical environment, there are typically two main
measures of interest, which are a) the overall patient survival (OS), describing the time span
a patient survives, and b) the progression-free survival (PFS), describing the time-span
until a significant disease progression can be observed [American Cancer Society 2017b;
Cohen et al. 2008]. Depending on the used definition, both refer to the time span after the
date of the first diagnosis (DOFD) or after the date of the first treatment (DOFT) [Cohen
et al. 2008; NIH-NCI 2019].

While the PFS better describes the course of the disease and is therefore clinically
more relevant, it typically suffers from a coarser granularity, as the monitoring needed for
progression diagnosis is not frequent enough to allow for a determination to the day.

In contrast, the OS can typically be determined to the day due to the certifiable events
which define it. OS, however, is less closely related to the actual disease than PFS, as
various reasons other than described by the data can cause an event of death, amongst
others, including comorbidities, medication, external factors, and non-disease-related organ
failure, or simply dying of old age. Still, in the following the OS will be used, as only a
few data were available and therefore no additional variance should be induced by using

1Concordance denotes the correctness of the order of the estimated survival times with respect to the
ground truth. It is discussed in more detail in the Appendix C.

2An interesting alternative to the mentioned approaches are the so-called Random Survival Forests
proposed by Ishwaran et. al [Ishwaran et al. 2008] working with handcrafted features, too. However, as this
model is based on the fundamentally different concept of bootstrap aggregation, it will, later on, be covered
in the metamethods part in Chapter 9.3.
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coarse measures such as the PFS. For both, OS and PFS, usually, a cut-off value (often
5 years) is defined, which at best represents the time point at which the disease is likely
not related to a potential event of death anymore. Often, however, practical considerations,
such as the length of the observation period influence the choice of the cut-off value.

7.2 Related Work
Recent work has already addressed the use of deep neural networks for survival prediction,
with the algorithms from Katzman et al. [2016] and Haarburger et al. [2018]3 providing
well-founded deep learning-based variants of the CPH model. In contrast to the classical
method, both approaches are usable with imaging data, and therefore do not require hand-
crafted feature design. Both, however, are also built upon the CPH assumptions, and thus
inherit their shortcomings regarding hazard probabilities (see above). As already pointed
out in [Katzmann et al. 2019b], the definition of the hazard probability as an exponential
term:

h(t|X) = h0(t) · exp(β1x1, ...,βnxn) = h0(t) · exp(β ·X)

implies several limitations:

• The base hazard probability h0 is shared across all individuals. Thus, it is independent
of a-priori differences between subjects, e. g. different timepoints of therapy begin
after the DOFD, etc.,

• The covariates x1, ...,xn affect the base probability as additive exponential factors.
Thus, they cannot have direct interactions,

• Covariates X are applied to the base hazard probability as time-independent, propor-
tional exponential factors, meaning they affect the base hazard probability equally at
every timepoint.

A similar algorithm from Lee et al. [2018] with a comparable intention is built upon a loss
definition focussing on relative event-time order. While not inheriting the above-mentioned
issues, it is therefore comparably prone to large errors when predicting survival times on
an absolute time scale. In contrast, the following approach is explicitly modeled to take
into account both, the event order as well as the absolute time scale, by directly predicting
a patient-specific hazard ratio over time from image data. The predicted hazard ratio can
subsequently be used to predict the expected OS, as will be demonstrated in Chapter 7.4.

7.3 Methods
The approach is motivated by the above-mentioned CPH. As pointed out in [Cox 1972],
the CPH is fitted using a partial likelihood function Li(β ) for individuals with index i, state
vectors (i. e. features) zi, and observation times oi as:

3In their work, Haarburger et al. also proposed a method which is based on over-median survival
classification, using output activations as an indicator of survival times. Using classificational output
activations as regressional values, however, can be highly problematic, as will be discussed in more detail
in Chapter 8. Although being an interesting contribution, the method was finally not able to outperform
CoxPH-based prediction and will thus not further be taken into account within this chapter.
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Li(β ) =
h(oi|zi)

∑ j:o j≥oi h(oi|z j)
=

h0(oi)exp(ziβ )

∑ j:o j≥oi h0(oi)exp(z j)
=

exp(ziβ )

∑ j:o j≥oi exp(z jβ )
(7.3)

Using this partial likelihood definition it is possible to derive feature weights β without
taking into account the base hazard probability h0. In a second step, h0 can be estimated
using standard optimization techniques to minimize the difference between observed and
estimated survival times. In contrast to this, the approach is based on an end-to-end
optimization process to estimate the patient-specific hazard function h(t|zi) for patient i,
allowing for direct inference of features without hand-crafted feature design. No further
assumptions are made regarding the distribution of the hazard function. Especially, the
hazard proportionality assumption is dropped, as it is not capable of representing time-
dependent, interacting, or non-proportional hazards which are often present in real-world
data [Katzmann et al. 2019b; Schemper 1992].

7.3.1 Network Architecture
The framework does not depend on a specific architecture and can therefore be combined
with various models like ConvNets [LeCun et al. 1989], ResNets [He et al. 2016] or even
more complex architectures such as attention-gated networks [Schlemper et al. 2019].
However, as a necessary restriction the output layer has to consist of exactly K output
neurons using sigmoidal activation, analogously to the work from Lee et. al [Lee et al.
2018], with each representing an equally sized discrete timestep. The number of outputs
should be chosen on the basis of the observation period and the desired granularity. K is
thus a metaparameter and specific to the target application scenario. Based on this, first the
event observation times oi with cut-off value vmax, ∀i : oi ≤ vmax are normalized using

yi =
oi

vmax
(K−1) (7.4)

Hazard probabilities at the discretized timepoint k are represented stationary, i. e. time-
independent, assuming survival until k. It has to be noted that individuals might drop
out of the data with no event observed for reasons such as movement, changes in the
clinical institution, or simply due to the incompleteness of the available data. Therefore
an observation variable ωi ∈ {0,1} for patient i is introduced, indicating whether an event
has (ωi = 1) or has not been observed (ωi = 0) within the observation period (so-called
right-censoring).

7.3.2 Loss Definition
As pointed out in [Katzmann et al. 2019b], the model is trained using a combination of
two loss functions L1 and L2. While L1 minimizes the error between the estimated and the
observed events of death, L2 ensures that non-observed deaths can be reasonably explained
with the estimated data distribution. Model parameters Θ are optimized according to

argmin
Θ

L2
1 +L2

2 (7.5)

taking into account that stronger errors in each of the loss functions should be penalized
stronger than smaller errors. First, the estimated complementary hazard function describing
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the chance of no event at time k for patient i is defined as

h(zi) = 1− ĥ(zi) (7.6)

based on the estimated hazard function ĥ(zi), i. e. the network output. The estimated
non-stationary probability h̃(k|zi), i. e. the probability of observing an event exactly within
timestep k (including the whole observation period until k) can now be derived as:

h̃(k|zi) = ĥ(zi) ∏
j:0≤ j<k

h(k|zi) (7.7)

Based on this, the expected survival ŷi for patient i in case of an observed event ωi can
be derived as:

ŷi(zi) =
∑

K−1
k=0 k · h̃(k|zi)

∑
K−1
k=0 h̃(k|zi)

(7.8)

Now, yi and ŷi are normalized by dividing by K− 1, resulting in normalized values
y∗i and ŷ∗i which can be inserted into the binary cross entropy function multiplied by the
observation indicator ωi for deriving the expectation difference loss δ given by:

δ (y∗i , ŷ
∗
i |ωi) =−ωi (y∗i log(ŷ∗i )+(1− y∗i ) log(1− ŷ∗i )) (7.9)

Concordance amongst samples is constrained by adding a concordance term C :

C (y∗i , ŷ
∗
i |ωi) = ∑

i:0≤i<n−1
∑

j:i≤ j<n

{
(ωi ·ω j) ·

max(ŷ∗i−ŷ∗j ,0)
max(ŷ∗i ,ŷ

∗
j)

if y∗i ≤ y∗j
0 else

}
(7.10)

which penalizes non-concordant samples and finally leads to L1 given by:

L1 = ∑
i:0≤i<n

δ (y∗i , ŷ
∗
i |ωi)+C (y∗i , ŷ

∗
i |ωi) (7.11)

For the definition of L2, covering non-observed events, i. e. censored data, the estimation
of observing an event within the observation period yi of sample i can be treated as the
loss itself, yielding:

L2 =−(1−ωi) log(1− ∑
i:0≤i≤yi

h̃(i|zi)) (7.12)

7.4 Experiments
In [Katzmann et al. 2019b], the model was evaluated using three different datasets, com-
prising:

1. The SEER Incidence database - an online database of cancer incidence data with
more than 10 million cases in total. According to the focus of this work, the
evaluation was conducted using the colorectal cancer subset, containing a total of
554,687 samples,
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2. The Rossi Criminal Recidivism dataset - a dataset describing the criminal recidivism
of individuals based on a small study population of 432 cases. The dataset is publicly
available, often used as a benchmark dataset, and is employed as a proof-of-concept
for small sample size applicability,

3. mCRC dataset - the dataset used in Chapters 5 and 6, including the patient metadata,
such as patient demographics, histology and laboratory values (see below).

For the SEER incidence and the Criminal Recidivism datasets, the model was directly
compared with a Cox proportional hazards model. The mCRC dataset, in turn, was
used to assess the incremental value of using an image-based prediction in addition to the
available clinical data. The CPH model was fit using the publicly available lifelines package
[Davidson-Pilon 2019]. Each dataset was evaluated using the concordance index4 (CI), the
mean absolute error (MAE) and the median absolute error (MedAE). Confidence intervals
were calculated using bootstrapping5 until convergence with ε < 10−3, as proposed in
[Efron 1987].

7.4.1 Datasets
SEER incidence dataset
The Surveillance, Epidemiology, and End Results Program (SEER) is a study conducted by
the U.S. National Cancer Institute of the National Institute of Health (NIH NCI), collecting
cancer incidence data from population-based cancer registries, covering approximately
34.6 percent of the U.S. population. It covers patient demographics, e. g. gender and
age, and disease data, such as primary location, morphology, and staging, and precisely
determines the following patient survival. In total, it covers more than 10 million datasets
with approximately 130 variables per patient [NIH-NCI 2017; Ries et al. 1999]. For
matching the final application scenario, the colorectal cancer subset is used, containing
554,687 samples.

Notably, the SEER incidence dataset does not cover any imaging modality but is rather
a collection of various demographic and disease-related information, i. e. consists of scalar
data. While a variety of architectures can perform well in this scenario, it was decided
to use an 8-layer feed-forward fully-connected network, adding residual connections to
improve the gradient flow (cf. [He et al. 2016; Orhan et al. 2018]). The final input consisted
of patient age, sex, year of birth, date of diagnosis, race, tumor laterality, and TNM-staging
based on the TNM staging system [Brierley et al. 2016; Katzmann et al. 2019b] widely
used in oncology.

The mean sojourn time6 for colorectal cancer is approximated with 3 years [Zauber
et al. 2012]. As 5-year survival is a widely employed measure in oncology, too, two
experiments were conducted with 3-year and 5-year thresholds, respectively. In both cases,
the method is compared to the Cox PH model given the same input.

Based on empirical analysis, the model output granularity was set to k = 60 neurons, as
based on the loss formulation from Sec. 7.3.2, the overall performance is expected to only

4The formula for the concordance index as well as a discussion on its interpretation can be found in
Appendix C.

5For a more detailed discussion on bootstrapping, please refer to Chapter 9.1
6The term “mean sojourn time” denotes the time span until a positive outcome can be expected, i. e. as

other causes of death will be dominant again.
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CI MAE MedAE

Cox PH 3-y .689 [.689,.690] 11.8 [11.7,11.8] 9.00 [9.00,9.00]
Deep Model 3-y .653 [.652, .654] 8.49 [8.46,8.51] 7.28 [7.25,7.31]

Cox PH 5-y .682 [.681,.684] 18.2 [18.1,18.3] 13.6 [13.0,14.0]
Deep Model 5-y .660 [.659,.660] 13.3 [13.3,13.4] 11.8 [11.8,11.9]

Table 7.1: Results on SEER incidence dataset with 95% confidence intervals (errors in
months)

slightly depend on k as long as it is chosen reasonably high to cover the desired granularity.
k should generally be chosen in such a way that the expected prediction standard error is
higher than the chosen output granularity so that no additional variance is introduced 7.

Rossi Criminal Recidivism dataset

As pointed out in Sec. 7.4, the criminal recidivism dataset describes the criminal recidivism
of individuals based on a study population of 432 cases. As it is publicly available and
often employed for event time prediction benchmarking (cf. [Fox et al. 2002]), it is used
as a proof of concept for small sample size applicability. More than that, it is also a
good example of sparse observations, as only 26.3% of the data have an observed event
(i. e. criminal recidivism). Each sample has a total of 9 variables, including the observation
interval, the event indicator (i. e. 0=no event; 1=event within the observation interval), as
well as 7 additional covariates, including age, race, level of education, employment status,
work experience, marriage status, and financial aid. All variables were z-normalized.
Training and testing were done analogously to Sec. 7.4.1 and used the same network
architecture.

mCRC dataset

Finally, the model was evaluated using the mCRC dataset C from Chapter 68. As it was
already demonstrated that the lesion phenotype can be predictive for patient survival [Aerts
et al. 2014; Katzmann et al. 2018a,b], baseline/followup-pairs of single lesions have been
used to predict the overall patient survival in days after the first diagnosis. An example of
such a pair was depicted in Fig. 5.4. The lesions were extracted in accordance with the
already presented work (see Chapters 5-6).

The used model was based on ResNet (cf. [He et al. 2016]). The clinical data, i. e. pa-
tient age, tumor grading, RECIST diameters at baseline and follow-up, and scan time after
diagnosis were injected into the pre-output layer. Analogously the same data was used for
training the CoxPH model, but, as already described above, lacked the imaging modality,
for assessing its incremental value in this setup.
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CI MAE MedAE

Cox PH .594 [.539,.646] 28.4 [25.6,31.0] 29.1 [24.0,35.0]
Deep .587 [.530,.644] 20.0 [17.6,22.4] 17.6 [13.7,24.8]

Table 7.2: Rossi Criminal Recidivism dataset results with 95% confidence intervals (errors
in weeks)

CI MAE MedAE

Cox PH .536 [.508,.569] 423 [397,450] 384 [357,403]
Deep .510 [.481,.540] 325 [301,349] 262 [233,291]

Table 7.3: Results the mCRC dataset with 95% confidence intervals (errors in days)

7.4.2 Results
SEER incidence dataset
As depicted in Tab. 7.1, the use of the model for the SEER incidence dataset consistently
reduced the absolute prediction errors while slightly decreasing concordance (3.6/2.2%)
in comparison to the CoxPH model. The relative absolute error reduction was 13.2%,
resp. 26.9% for 5-years, and 19.1%, resp. 28.1% for 3-years survival. All differences were
highly significant with p < .001 (two-tailed t-test).

Rossi Criminal Recidivism dataset
The results for the criminal recidivism dataset are depicted in Tab. 7.2. Similar to the
SEER incidence dataset, the mean and median absolute errors could again be significantly
reduced at the cost of a small reduction of concordance. The relative improvements for
MAE and MedAE were 29.6% and 39.5%. Both reductions were highly significant with
p < .001, while the reduction of the CI was non-significant with p = .849 (two-tailed
t-test).

mCRC dataset
Tab. 7.3 shows the results for the mCRC data. As for the previous datasets, mean and
median absolute errors could be significantly reduced, indicating a superior fit of the overall
distribution. However, both algorithms fail to reasonably reproduce the individual patient
survival differences as shown by CIs of .536/.510 for CoxPH and deep survival prediction.

7.5 Discussion
With the method described in this chapter a framework for survival time prediction has
been presented, fundamentally being inspired by the well-known proportional hazards
model from Cox [1972]. In contrast to the CoxPH model, the presented framework is
theoretically applicable to a wide range of applications without a need for prior data

7It should be noted at this point that a too high granularity might indeed lead to numerical instabilities,
and might require the use of high-precision data types such as float64.

8As the study was conducted as part of an ongoing project, the dataset was meanwhile complemented by
clinical data for two additional patients, so the final dataset consisted of data for 80 instead of 78 patients.
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processing or hand-crafted feature engineering but instead infers meaningful features in a
data-driven fashion.

Recent work such as the methods from Katzman et al. [2016] and Haarburger et al.
[2018] have already demonstrated that deep learning can be applied for survival time
prediction. However, both frameworks are based on the CoxPH model and thus inherit
some of its limitations (cf. Sec. 7.2). In contrast, the herein presented method does not
assume a particular overall or patient-specific hazard or survival time distribution, and thus
provides greater flexibility for feature interaction.

Setting requirements only for output encoding and loss formulation, the method does
not restrict the used network architecture, and thus can be easily applied to a wide variety
of networks, such as ConvNets, ResNets [He et al. 2016], Attention-gated networks
[Schlemper et al. 2019] or even graph-based neural networks [Scarselli et al. 2008] without
requiring larger modifications to the model architecture. For both, the SEER incidence and
the Rossi Criminal Recidivism dataset, the method was able to demonstrate a significantly
reduced mean and median absolute error in direct comparison to the well-known Cox
Proportional Hazards model at the cost of a slight drop in the concordance index.

Regarding the mCRC task, however, the applicability of the method remains unclear.
As shown in the results section, neither the CoxPH nor the deep learning-based model
were able to sufficiently well predict patient survival times. Given the low amount of
patients (N = 80), this is expected to be a result of the high variance, a large number of
parameters, and the various influences on patient survival, which may not be sufficiently
well represented in the given data.

Further limitations of the study at hand comprise, that no systematic optimization of
the meta parameter K has been conducted. While, as discussed in Sec. 7.3.1, the concrete
choice might have only a minor influence, a systematic evaluation of the parameter in
future studies would be desirable. Within this work, the applicability was mainly shown
for ResNet-based architectures. Although due to its definition no major interactions with
the above loss definition are expected, an evaluation of other architectures is desirable.
While this study aimed to provide a proof-of-concept, most notably future studies should
particularly set the method into direct comparison to previous work, such as the approaches
from Katzman et al. [2016] and Haarburger et al. [2018].

7.6 Conclusion
With this contribution, a method for data-driven deep survival estimation was presented.
Although superiority on the image-based task could not be shown, the method might
be an interesting step toward a deep, assumption-free survival estimation, to the best of
knowledge being the first to combine the benefits of deep learning and CoxPH regression
without inheriting the above discussed methodological limitations, and being applicable
to a wide variety of applications using a purely data-driven approach. Another promising
approach with a similar aim, but based on the principles of random forest classification,
will be thoroughly discussed and evaluated in Sec. 9.3.
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Within the last chapters a variety of algorithms for medical image classification have
been discussed, including clinically highly-relevant tasks such as lesion growth (Chapter 5)
and one-year survival prediction (Chapter 6), as well as hazard and survival regression
(Chapter 7). In particular, we have seen that deep learning can successfully be applied
to derive meaningful features from medical imaging data in a purely data-driven fash-
ion, having the potential to lead to a significantly improved classificational performance.
Specifically, it has been demonstrated, that lesion CT phenotype directly corresponds to
a number of clinically highly relevant variables, such as future disease progression and
overall patient survival, and moreover, this correspondence can be approximated using
deep neural networks.

Although the presented approaches overall were highly promising, each of the previous
methods to a certain degree has been specifically tailored in one or the other way to the
characteristics of medical imaging data. Yet, no general framework has been proposed
which is applicable to arbitrary architectures, while simultaneously solving the issues
which arise from an application in the medical imaging domain, and which have been
elaborated on multiple times within this work (cf. Chapter 4).

Addressing the shortcomings arising from an application of deep learning to medical
image analysis, most notably the initially discussed issues of unknown certainty (Chapter 8),
applicability in case of small- or medium-sized datasets (Chapter 9), and finally deep
decision explanation (Chapter 10), the following chapters will present a number of novel,
deep learning-based meta-architectures, significantly contributing towards a resolution
of the aforementioned issues. Each of the following approaches is applicable to a wide
variety of deep architectures, including, but not being limited to, the ones that have been
discussed so far. Most notably, using multiple thorough evaluations and comparing to a
variety of other approaches, it will be demonstrated that the use of the presented methods
may yield superior performance in typical medical imaging scenarios without requiring
additional steps, such as meta parameter optimization, and thus that they particularly can
be used as an out-of-the-box toolset for medical image analysis.





8. Deep Confidence Estimation

In the previous chapters, multiple methods for estimating disease progression based on
deep neural networks have been presented, which have demonstrated promising perfor-
mance in a variety of applications. However, as exemplarily pointed out by Begoli et al.
[2019], computer-assisted clinical decision support similarly requires novel, deep learning-
tailored methods for uncertainty quantification and confidence estimation to fully leverage
its potential. As they particularly emphasized, this becomes highly important due to the
delegation of decisions to machines that are potentially life-threatening, going hand in
hand with considerable psychological implications. Knowing the confidence of an auto-
mated medical assessment is crucial for any clinical application in order to avoid wrong
assessment, mistreatment, or even death.

To better understand classifier decisions, a variety of decision explanation approaches
has been proposed (cf. [Lundberg et al. 2017; Ribeiro et al. 2016; Simonyan et al. 2013]).
However, these methods rely on visualization of decision-relevant regions in the input
space and thus are typically better suited for single-case failure assessment than as a
quantitative measure for failure identification. They will therefore be discussed in more
detail in Chapter 10. Having a simple, quantitative measure of confidence, in contrast, can
give the practitioner valuable information about assessment reliability without requiring
a visual inspection of every single image. It, therefore, allows for a quick overview on
whether additional cross-checks should be conducted on top of the usual workflow.

A naive, but often used approach for confidence estimation is realized by using the
output distribution of a classifier as a measure of confidence itself, i. e. the level of determi-
nation, e. g. by taking the maximum output activation of a softmax classification output. In
fact, higher output activations tend to be associated with higher probabilities of an accurate
estimate [Hendrycks et al. 2016]. Still, however, the procedure has major shortcomings, as
a) it does not allow for a quantification of certainty for out-of-distribution (OOD) samples1,

1A borderline case for this are adversarial samples as proposed by Goodfellow et al. [2014], maximizing
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and b) classification losses, such as categorical crossentropy, hinge loss or focal loss [Lin
et al. 2017], are designed in such a way that already correct classifications contribute
only marginally to the overall loss. As a result, estimated values are uncalibrated and
concordance (cf. Chapter 7) amongst samples is not necessarily given2.

In clinical practice, especially the first of the two factors becomes relevant, as in
particular OOD samples, rather than the typical population, are problematic to assess for a
model trained in a data-driven fashion. This, even more, becomes important as large and
representative datasets are typically rare in the medical imaging domain, i. e. the known
distribution is rather narrow, and thus the chances for a classification outside of the known
distribution increases (cf. Chapter 2).

In their work, Begoli et al. [2019] explicitly point to the training of deep learning-
based solutions to estimate their certainty themselves as being a highly effective way of
addressing some of the mentioned uncertainty quantification problems. Notably, exactly
such a method has been proposed by DeVries et al. [2018]. Within this chapter, an
improved version of this algorithm will be discussed as presented at the International
Symposium on Biomedical Imaging (ISBI) 2019 [Katzmann et al. 2019a]. As will be
shown within the course of this part, it turns out that not only it is possible to estimate
confidence directly, but also that this estimate can further be used to improve the training
quality3 in a psychologically motivated framework called deep metamemory by using
confidence as a measure of difficulty in a curriculum learning-like approach as suggested
by Bengio et al. [2009].

8.1 Introduction
The field of uncertainty estimation deals with the process of a substantiated estimate of the
misclassification rate of a given estimator. Assuming a concrete classifier C, the confidence
ci for a sample i with ci ∈ {0,1} ∈ R is the probability of the classifier giving a correct
estimate with a known misclassification rate mi = (1− ci).

Within the last years, and as a result of the widespread use of deep learning-based
techniques, uncertainty estimation for deep neural networks has recently been a highly
active field of research. As discussed in [Katzmann et al. 2019a], much of this work
is settled in the field of variational inference, including work on Monte-Carlo Dropout
(MCD) [Gal et al. 2016], Stochastic Batch Normalization (SBN) [Atanov et al. 2018] and
model ensembling [Lakshminarayanan et al. 2017]. The basic idea of variational inference
is to use the model posterior distribution upon repeated modification of the network or
input to estimate the parameters of a well-known probability distribution, e. g. normal or
Bernoulli distribution, and to subsequently derive a statistically substantiated estimate of
confidence. A downside of these approaches is their use of repeated inference, leading to
higher computational complexity.

More specifically, SBN and MCD both use a very comparable mechanism, as they both
rely on a stochastization of an originally deterministic network, leading to a variation in the

output activations by an introduction of small, additive OOD patterns.
2To refer back to Chapter 7, this is the main reason that the classification approach for survival time

expectation from Haarburger et al. [2018], while being highly economical, does not necessarily provide a
superior survival time regression.

3The idea of leveraging uncertainty for improved performance has later on been adopted by other authors,
e. g. in [Ghesu et al. 2019]
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output probability distributions. SBN does so by modifying the batch normalization layers
[Ioffe et al. 2015] used throughout the network to not learn fixed values for mean and
standard deviation, but rather to model mean and standard deviation as normal distributions
themselves. As a result, the layer outputs are batch-normalized differently in each iteration,
and thus the network output variation can be used to infer a probability distribution.

MCD works similarly but instead utilizes the dropout (rather than batch normalization)
mechanism, which recently has often been used in deep neural networks, but is now more
and more displaced by batch normalization. With MCD an additional dropout layer is
introduced after each network layer but the output. The model is then trained as usual.
Finally, in contrast to their usual behavior, the dropout layers stay active during inference,
i. e. they randomly drop some of the activations. Just as with SBN, a repeated application
of the network now allows for an estimate of the output distribution. As was shown by
Gal et al. [2016], the repetition during inference can actually be omitted when trained
using the dropout design, as the variation can then be directly approximated by using the
learned weights. However, while this greatly reduces the inference time in comparison to
a repeated application, it clearly increases the training time4 and might even worsen the
network performance, as it reduces the effective network capacity.

Lastly, confidence estimation through model ensembling as suggested by Lakshmi-
narayanan et al. [2017] captivates by its impressive simplicity, training multiple estimators
on randomized subsets of the data. In fact, this approach is directly related to the one
presented in Chapter 9. While the authors can show that such an ensemble is effective and
the results are comparable to MCD and SBN, the method comes at the cost of having a
sufficiently high number of parallelized networks, and thus requires a significantly larger
amount of system resources for training and inference.

Notably, the above-mentioned methods do not specifically take into account the dif-
ference between aleatoric and epistemic uncertainty. While epistemic uncertainty (Greek
episteme: knowledge) describes the uncertainty which results from the limitedness of data,
e. g. due to data amount or data quality, aleatoric uncertainty (Lat. alea: dice, chance)
describes the uncertainty due to the specifically random nature of the data, as it may result
from predicting (partially) random processes, such as quantum positions, with some recent
research particularly accounting for a separate estimate of both. A good introduction to
the topic is provided by Hüllermeier et al. [2021]. However, as within the given clinical
scenario the source of inconfidence is not expected to be relevant for the treatment decision,
the following analyses will not aim to explicitly differentiate between them.

Recent research has also taken into account Bayesian Neural Networks (BNNs) for
uncertainty estimation (cf. [Kendall et al. 2017]). BNNs are modeled analogously to
standard neural networks but realize weights as probability distributions rather than scalar
values, e. g. as normal distributions N (µ,σ2), or by using Monte-Carlo approximations of
more complex ones. As a consequence, BNNs natively support output variance. However,
training and inference are highly costly, often making them computationally inefficient
with respect to the final application.

In contrast to that, this work will aim for a one-shot confidence estimation, requir-
ing neither relevant modifications of the network architecture nor significant additional
resources, and thus being applicable to a wide variety of applications.

4While there are some approaches to greatly reduce the training time when using dropout (e. g. [Wang
et al. 2013]), networks still train significantly faster without it.
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8.1.1 Background
As pointed out in [Katzmann et al. 2019a], confidence estimation is basically a classifier’s
estimate of its own knowledge. In fact, this process is very comparable to the process
of self-assessment in humans. Cognitive psychology deals with this issue under the
term metamemory (i. e. knowledge about knowledge), being a subfield of metacognition
(i. e. thinking about thinking) [Nelson 1990]. Although this type of meta-knowledge
has been theorized about already by classical philosophers like Descartes, the first com-
prehensive theoretical concept of metamemory was proposed by Hart [1965]5, and later
picked up under the name “metamemory” by influential psychologists like Tulving et al.
[1970] and Flavell [1971]. Interestingly, humans seem to be able to reasonably well assess
whether they can answer a question or not, although there might be large differences across
individuals as pointed out by Kruger et al. [1999]6. For example, humans are able to give
a quite precise estimate of a problem’s difficulty before they are given time to solve the
problem itself, as shown by Kelemen [2000].

From a theoretical point of view, this is somewhat counter-intuitive, as such an as-
sessment does not only require knowledge or non-knowledge about the actual answer but
additionally knowledge about familiarity with the topic. The results, however, imply that
the mechanisms for estimating confidence and the ones for giving a correct answer do not
completely overlap. Instead, confidence estimation only requires a general estimate on:

1. whether the just faced data is sufficiently known, as it is similar to previous experi-
ences (e. g. during training time), and

2. whether the subject can typically handle this type of data.

From an evolutionary point of view, confidence estimation in humans and other animals
is of high importance for self-preservation. For low-confidence situations, a generally more
reserved, cautious behavior might be advisable, while on the other hand collecting the
possible benefit in certain or nearly-certain situations using an optimistic behavior might
constitute a significant advantage. In contrast to this, a wrong decision in a dangerous
situation might lead to significant damage or even death, in a Darwinian sense facilitating
a natural selection of accurate confidence estimators. In the following sections, it will be
shown how to induce such knowledge into a computational learning model as an inherent
part of the training process, and subsequently use it for facilitating learning on medical
imaging data with significantly improved test time performance.

8.2 Base approach
The basic confidence estimation framework stems from DeVries et al. [2018]. The approach
is fundamentally based on the assumption that within training the network might learn a
measure of confidence by allowing it to take hints, but has to quantify the measure of hints
it receives. Assuming some arbitrary network architecture, this is done by introducing
an additional output c which serves as a measure of confidence, as depicted in Fig. 8.1.
As shown there, the basic idea is to calculate the network error not on the network output

5In his work, Hart used the term feeling-of-knowing
6The Dunning-Kruger effect describes the fact that high-performers typically underestimate their knowl-

edge while low-performers typically overestimate it.
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probability ŷ itself, but rather to create an augmented output probability function ŷ′,
utilizing the own confidence estimate c for taking exactly the amount of hints, i. e. ground
truth y, that is necessary for minimizing the loss over the already existing estimate ŷ.
Simultaneously, the network is trained to maximize its own confidence, i. e. to use as few
hints as possible. The augmented output probability ŷ′i for a sample i is given by:

ŷ′i = ci · ŷi +(1− ci) · yi (8.1)

In their original work, DeVries et al. trained a classification network with m outputs using
binary crossentropy, i. e. the prediction loss is calculated as:

Lp =−
1
n

n

∑
i=1

m

∑
k=1

(
yi,m · log(ŷ′i,m)+(1− yi,m) · log(1− ŷ′i,m)

)
(8.2)

However, the method does not depend on any specific loss definition and could be applied
similarly using other classification or regression losses, such as the mean squared or mean
absolute error. The only requirement is that the loss function is monotonously decreasing
with respect to the result direction, i. e. Lp(ŷ′i)≤Lp(ŷi). The confidence is maximized by
introducing a binary crossentropy loss Lc against a steady target output of 1, reading:

Lc =−
1
n

n

∑
i=1

log(ci) ·λ (8.3)

The overall loss is formed as L =Lp+Lc. Notably, Eq. 8.3 contains a scaling parameter
λ . The reason for this is as follows:

Eq. 8.1 has two trivial solutions, being c→ 0 and c→ 1:

• The first case (c→ 0) results in ŷ′ = y, meaning that the actual network prediction ŷ
is not taken into account at all, and thus, that in combination with Eq. 8.2 no loss
is forwarded to the network for learning. Due to Eq. 8.3, however, this case will
typically be avoided, as Lc→ ∞ for c→ 0.

• The second case (c→ 1) results in Lc→ 0, and thus in the optimal solution for the
latter of the loss terms of L . As a result, Eq. 8.1 takes the other trivial solution
(i. e. ŷ′ = ŷ). In fact, in this case, the network will learn the problem but cannot
produce a confidence estimate. If now an additional parameter λ is introduced and
dynamically adapted to satisfy Lc ≈ β for any chosen β > 0, the second trivial
solution is ruled out, too.

Within their work, DeVries and Taylor stated that the concrete choice of β is not too
important for the learning process within a range of [0.1,1] ∈ R [DeVries et al. 2018]. In a
later presentation at the International Conference on Medical Imaging and Deep Learning
(MIDL) 2018, however, they demonstrated that the sharpness of the confidence estimate
can largely depend on the choice of β [Taylor 2018]. Therefore, this work aims to improve
upon the original approach by estimating the optimal β as a component of the network and
a result of the optimization process itself.
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Figure 8.1: The basic principle of the confidence learning approach exemplarily demon-
strated with the lesion growth prediction architecture from Chapter 6 (top-left). Confidence
is modeled additionally to the output probability ŷ as a separate one-neuron sigmoid output
c (top-right). During training, the confidence c is used for weighting the network output ŷ
and the ground truth y to yield an augmented probability estimate ŷ′ which is subsequently
used to calculate the training loss. Simultaneously c is tried to be maximized.

8.3 Methods

The above work shall now be utilized to a) give a confidence estimate for lesion growth
prediction based on the approaches from Chapters 5 and 6, as well as the approach from
DeVries et al. [2018], b) to further improve the confidence estimation by automatically
find an optimal parameter β as a result of the training procedure which is evaluated against
the original approach, and c) to improve the overall training by employing a curriculum
learning-like approach, providing the network with the most valuable samples using an
approach denoted as metamemory importance sampling.

8.3.1 Metamemory Importance Sampling

As pointed out in Sec. 8.1.1, humans are reasonably well able to assess whether their skill
set is adequate to solve a specific task. Moreover, in fact, humans use active rehearsal if
they are unconfident, i. e. explicitly repeating examples that they feel unconfident about
(cf. [Waters 1982]). This procedure can easily be transferred into the deep learning setting
and well aligns with the curriculum learning idea from Bengio et al. [2009]. Therefore, the
following procedure is proposed:

1. Estimate confidences ci for samples i,
2. Calculate confidence-based sampling probabilities πi,
3. Train network for one epoch on training pairs (xi,yi), randomly sampled from (X ,Y )

according to sampling probabilities πi.
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For determining the sampling probabilities πi, it is started with a naive approach, setting πi
to the inconfidence (i. e. 1− ci) and subsequently normalizing across samples, yielding:

πi =
1− ci

∑
k=0,..,|X |

(1− ci)
(8.4)

As a side effect of this definition, samples the classifier assumes itself confident with –
mistakenly or not – are not taken into further consideration, as their sampling probability
approaches zero. If the confidence estimate is incorrect, however, this could reduce the
effective training set size and even prohibit successful training. As reweighting is done
only after full epochs, the confidence values computed at the beginning of an epoch can
become less precise for later samples within the same epoch, thus a naive application of
the above sampling probabilities might lead to loss oscillation. Similarly, continuously
estimating confidence before every single batch is computationally inefficient.

Both these issues can be greatly reduced by transforming the resulting probability
distribution Π = π0, ...,πn−1 into a reciprocal (i. e. log-uniform) distribution by using an
inverse transform sampling RSlogeq(πi) (e. g. described in [Devroye 1986]), and clipping
the minimum and maximum sampling probabilities to an interval of [0.1,1], yielding
modified sampling probabilities π ′i :

π
′
i = RSlogeq

 1− ci

∑
k=0,..,|X |

(1− ci)

 : 0.1≤ π
′
i ≤ 1 (8.5)

While the concrete interval borders did not seem to have too much influence, empir-
ically the sampled probability distribution had. Logarithmic equal distribution clearly
outperformed linear resampling, as it better reduced loss oscillation. Further, it was closer
to the error distributions and overall performed more stable. As a thorough evaluation has
not been conducted, however, even better-performing distributions might exist.

8.3.2 Model augmentation
As in the approach from DeVries et al. [2018], first, the network gets augmented by an
additional confidence estimation lane having a single sigmoid output neuron yielding
the confidence estimate, which is appended to the pre-output fully-connected layer (see
Fig. 8.1).

In contrast to the original approach, the choice of β is integrated into the network. For
this purpose, an additional variable β̂ is introduced, being subject to the network weight
optimization process, which is instead used for the confidence loss weighting from Eq. 8.3.
β̂ is adapted with respect to the confidence estimation error with an additional loss term
using the mean squared error between the estimated and a target β parameter:

Lβ = ||ŷβ −β ||2 (8.6)

starting with a target value of β = 1 and adjusting it after each epoch according to:

β
′ = Lp +Lc , β ← β

′ (8.7)

Notably, adjusting β to be correlated to the task loss adjusts the inter-class-margin width
to be correlated to the actual classifier performance, better-aligning confidence estimates
to classification accuracy (cf. [Katzmann et al. 2019a]).
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8.4 Experiments
Three different datasets have been used for evaluation, namely the CIFAR-10 and CIFAR-
100 datasets for demonstrating the applicability for large RGB image datasets with few
and high numbers of classes, as well as the radiological mCRC data which already has
been used in the previous chapters 5–7. The model is trained using Adam [Kingma et al.
2014] with an initial learning rate of lr = 1 ·10−3. lr is reduced by half at plateaus of at
least 15 epochs with no improvement. The training was stopped after 35 epochs without
improvement. As already pointed out by DeVries et al. [2018], modeling confidence
estimation as part of the network itself might lead to interference with the actual training
task. To this end, an initial cooldown period of 20 epochs for confidence estimation is
introduced, as the largest effects are expected within the early training.

Finally, the influence of the confidence estimation on the test time performance has
been quantified using an ablation study, comparing the proposed method (metamemory) to
training without metamemory importance sampling (conf. only) and a baseline classifier
with no confidence estimation at all (BL). Each method was evaluated with respect to
accuracy (ACC), F1 score, positive and negative predictive value (PPV/NPV), matthews
correlation coefficient (MCC) and area under the ROC curve (AUC). For multiclass data,
1-vs-all micro-averaging was used, dropping the binary PPV and NPV metrics. Further,
the alignment of confidence and target class probability were assessed using Spearman’s
rank correlation coefficient rs:

rs =
cov(R(c),R(py))

σR(c)σR(py)
(8.8)

with R(v) denoting the rank transformation of v (cf. Appendix C). Significance was tested
using two-tailed z-tests and 10,000 iterations of bootstrapping7 [Efron 1982].

8.4.1 CIFAR-10
As mentioned above, first an ablation study was conducted using the CIFAR-10 dataset
[Krizhevsky et al. 2009]. Therefore, a ConvNet architecture (cf. Chapter 9 Fig. 9.2) has
been used, consisting of four blocks of 3x3 convolutions (32, 64, 128 and 196 filters), batch
normalization, leaky ReLU activation and 2x2 max-pooling, followed by two additional
fully-connected layers with 128 neurons each, and finally a 10-neuron softmax output
layer. First, a baseline classifier was trained without additional augmentation, such as
confidence estimation or importance sampling. Then the same network was trained using
confidence augmentation but not metamemory importance sampling (conf. only) for an
approximation of the error induced by an additional confidence estimation task. Finally,
both were compared to a model which was trained as described above (metamemory),
including confidence estimation and metamemory importance sampling, to demonstrate
that the importance sampling effectively reduced the errors induced by an additional
confidence estimation task and yields to significantly higher classification performance.

As depicted in Tab. 8.1, the baseline and metamemory approach significantly out-
performed the confidence-augmented classifier with respect to the tested metrics with
all p < .001. There were no significant differences between the baseline and the pro-

7The bootstrapping methodology will be discussed in more detail in Chapter 9.1.
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BL conf. only metamemory sig.

ACC .952 .917 .955 ***
F1 .763 .576 .774 ***

MCC .737 .533 .746 ***
AUC .971 .909 .969 ***

Table 8.1: Results for multiclass classification on the CIFAR-10 dataset using a baseline
classifier BL, an augmented version including confidence estimation without (conf. only)
and with metamemory importance sampling (metamemory). Significance of metamem-
ory importance sampling over pure confidence estimation is denoted in the last column
(***=p < .001, two-tailed z-test).

BL metamemory sig.

ACC .986 .988
F1 .334 .385 *

MCC .332 .380 *
AUC .568 .592 *

Table 8.2: Results for multiclass classification on the CIFAR-100 dataset using a baseline
classifier BL and metamemory importance sampling (metamemory). Significance of
metamemory importance over baseline classification is denoted in the last column (*=p <
.05, two-tailed z-test).

posed metamemory approach (α = .05). Spearman’s rank correlation coefficient between
confidence and target class probability rs was measured with rs = .508.

8.4.2 CIFAR-100
Secondly, applicability to problems with a high number of classes was evaluated. For
this, the CIFAR-100 dataset was used. As depicted in Tab. 8.2, metamemory importance
sampling significantly outperformed the baseline approach with respect to F1, MCC, and
AUC (p < .05). Despite the high number of classes, target class output probability was
still correlated to confidence with rs = .225.

8.4.3 Radiological image data
As the method is expected to be especially beneficial when training data is rare, as it is
typical for medical imaging scenarios, it also has been applied to an extended8 version
of the dataset A.2 for liver lesion growth prediction from [Katzmann et al. 2018a]. An
overview of the data can be found in Tab. 8.3. Each approach was trained using 4-fold
stratified grouped cross validation. The validation set was randomly split from the training
set (2/3 for training, 1/3 for validation).

In contrast to the previous studies, it was aimed at an assessment of the incremental
value rather than the absolute performance, the architecture from Chapter 6 was re-used

8The dataset used within this study has been part of the PANTHER project. It was incrementally acquired
and annotated, thus during the later stages of the project the amount of available data increased.
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samples lesions scans patients

592 320 138 75

Table 8.3: Overview on the used mCRC dataset.

BL Metamemory sig.

F1 .298± .040 .341± .037
PPV .234± .036 .248± .032
NPV .893± .014 .911± .014
MCC .157± .047 .213± .045
AUC .604± .037 .675± .036 *

Table 8.4: Results and bootstrapped standard deviations for liver lesion growth prediction
on the mCRC dataset using the baseline classifier (BL) and metamemory importance
sampling (metamemory). Significant differences between both approaches are denoted in
the last column (*=p < .05, two-tailed z-test).

with a reduced number of convolutional filters by a factor of 4, to make the training less
costly. Subsequently, the training procedure was followed as described in [Katzmann et al.
2018a], first training a sparse autoencoder which then is used to train the final classifier.
Augmenting the model architecture for confidence estimation was done after autoencoder
pre-training.

As shown in Tab. 8.4, using metamemory importance sampling significantly improved
the classification performance of mCRC liver lesion growth prediction with respect to the
AUC (p < .05). The metamemory approach also consistently yielded higher values for F1,
PPV, NPV, and MCC, although these were non-significant. Averaged Spearman’s rank
correlation between confidence and target class probability across all folds was rs = .251.

Finally, it was assessed whether high confidence goes hand in hand with a strong
determination of the classifier class output probabilities, as is assumed by the naive
approach. For this purpose, the class determination was measured by using the Gini
coefficient [Gini 1912]9 given by:

∑
m
i ∑

m
k |pi− pk|

2n∑
m
i pi

(8.9)

and visualized for samples with “highest” (0.9-1.0), “high” (0.7-0.9), “medium” (0.3-0.7),
“low” (0.1-0.3) and “lowest” (0.0-0.1) confidence. The results are depicted in Fig. 8.2,
showing average Gini coefficients of 0.88, 0.72, 0.57, 0.46 and 0.33, respectively. Notably,
only a small fraction of the predictions showed a Gini coefficient below 0.2, although the

9The Gini coefficient is a measure of (in-)equality in distributions, and has for example been used in
the CART algorithm from Breiman et al. [1984]. When applied to discrete probability distributions, a Gini
coefficient of zero indicates a uniform distribution while a coefficient of 1 means that exactly one of the
possible results has a probability of 1 and all others of 0. Other measures of impurity would have been
possible, too, such as the entropy, which has been used in the C4.5 algorithm. However, the Gini coefficient
largely resembles the entropy measure and is computationally more efficient. Overall, the concrete choice is
expected to only have a minor influence on the final result.
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Figure 8.2: Visualization of the classifier output determination on the mCRC dataset as
measured by the Gini coefficient for different confidence levels (see Sec. 8.4.3). Notably,
while high confidence levels show a clear output determination, medium-confidence
samples are hardly identifiable by output determination.

AUC was at only .675, implying that although the output determination correlates with
the classifier confidence, it is not well aligned to it. Medium confidence samples showed
output determinations over the full spectrum.

8.5 Discussion
As implied by the above results, the proposed metamemory importance sampling effectively
reduces interferences of confidence estimation and classification tasks in the original
confidence estimation framework from DeVries et al. [2018]. In each of the tested scenarios,
it performed at least on par (CIFAR-10) or superior (CIFAR-100/mCRC) to the baseline
classifier approach, while preserving a significant correlation of confidence estimate and
test time classification performance. Notably, the largest improvements were observed
when classes were represented by fewer samples, either due to a larger number of classes
(CIFAR-100), or due to a lower number of samples in total (mCRC), which for clinical
decision support is particularly beneficial, as data is typically scarce and difficult to acquire.
Further, The assessment of the correlation between output determination and classifier
confidence demonstrated the difficulties of interpreting output determination as a measure
of confidence.

The process of metamemory importance sampling shows strong similarities to the idea
of curriculum learning [Bengio et al. 2009]. However, there are also major differences.
First, sample difficulty is determined not by a human expert or heuristically, but deduced
as an inherent part of the training process itself by using the classifier confidence. As a
result, the difficulty might vary with respect to the current learning state of the network,
just as the difficulty of tasks in human learning strongly depends on prior knowledge
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and understanding, rather than a global problem difficulty. While curriculum learning
is not bound to a specific schedule, typically the problem difficulty of drawn samples is
monotonically increased over the course of the training. In contrast, problem difficulty
is inherently temporary in the presented approach and is defined by the current network
state rather than a prior estimate. As a result, samples can get omitted or re-introduced
into training as needed to maximize confidence. The approach is thus better comparable to
the work from Houthooft et al. [2016] or Graves et al. [2017], as both suggest choosing
samples according to the expected gain in knowledge. Both methods, however, do not take
into account confidence, but rather task loss, and are therefore subject to the shortcomings
initially discussed.

Major limitations of the study at hand arise from the confidence estimation model
augmentation. In their original work, DeVries et al. did not conduct a systematic analysis
of the optimality of this positioning, as was not done within this study. However, while
using the latent space representation well corresponds to the intuition that it best represents
the problem specifics, it might omit relevant information for OOD detection, and thus other
positionings could be reasonable, too. Similarly, the study does not contain a systematic
evaluation of various confidence estimation networks, which should be included in future
work.

While the achieved confidence estimates within this study were shown to be directly
related to the classifier performance, this study did not conduct a direct comparison of
this particular property to the one achieved by the original approach from DeVries et al.
[2018]. As no major modifications were introduced to the confidence estimation part of
this method, however, the method is expected to perform mostly similar to it. Moreover,
it would be desirable to see an evaluation of the approach on additional medical imaging
datasets and additional architectures, such as ResNet [He et al. 2016] and its variants.

8.6 Conclusion
As pointed out earlier, knowing about classifier confidence is crucial for medical image
classification. Within this chapter, the application of a method for classifier confidence
estimation on medical imaging data was shown, without requiring larger modifications
to the model, and thus being applicable to various architectures. Using a psychologically
motivated framework called deep metamemory, it was demonstrated that these confidence
estimates can successfully be used to improve classifier test time performance when
training data is scarce, being a typical scenario in medical image analysis. With this, it
is hoped that this contribution will be a step toward the transformation of medical image
classification systems into clinical practice. While this chapter covered the estimation of
confidence as a scalar measure and thus might allow the practitioner to identify situations
of classifier uncertainty, the method at hand does not allow for an inspection of the reasons
for this. To this end, Chapter 10 will discuss a method for classifier decision explanation,
allowing the practitioner to visually inspect classifier decisions in the input space.



9. Bootstrapping Methods

In the previous chapters, methods for lesion growth prediction, survival estimation, hazard
regression, and confidence estimation were analyzed. Common to all of them was that
they each introduced ways to combat the overfitting problem which may occur when
training complex classifiers in a small data setup, such as is often faced in the medical
imaging domain. While having seen sparse representations, autoencoder-based approaches,
dimensionality reduction, and manual architecture tuning, so far a general, widely applica-
ble mechanism for training deep networks in a small data environment is missing. This
chapter, therefore, introduces a mechanism based on bootstrapping, being applicable at
multiple granularities in the model design, as well as to a wide variety of different deep
architectures, which is demonstrated to show clear advantages when training deep neural
networks on small datasets, and contributing towards their successful application in these
scenarios.

9.1 Bootstrapping
The term bootstrapping refers to the process of estimating distributions of statistics from
only one set of samples by repeatedly computing the statistics of interest on randomly
generated subsets of the original data. It thus belongs to the broader class of statistical
resampling methods and was originally introduced by Efron [1979]. It is typically applied
if the theoretical distribution F of a statistic is unknown, replacing it with the empiric
distribution F̂ .

Let us assume an m-class classifier f (x) : X→C with classes C and m = |C|, producing
n estimates Ŷ = {ŷ1, ...ŷn} ∈Cn. Given ground truth labels Y , the accuracy across these
estimates can be calculated as:

acc(Y,Ŷ ) =
1
n

n

∑
i
[yi = ŷi] (9.1)
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Figure 9.1: Visualization of the estimation of the accuracy distribution given a paired
sample of ground truth and classifier predictions. The bootstrapping method draws L
sample sets from the original paired data and calculates the accuracy of each. As a result,
a distribution of the probability of different accuracies is generated which can further be
used for the estimation of confidence intervals, statistical testing, etc.

As we do only have one specific realization of the pair (Y,Ŷ ) it is not possible to
calculate derived statistics for acc without experimental repetitions. The idea of bootstrap-
ping is to repeatedly resample the data by drawing n samples from the original data with
replacement and to subsequently calculate the statistic of interest, e. g. acc, on each of
these realizations. A visual example of the process is depicted in Fig. 9.1. By repeating this
process until convergence, bootstrapping is capable of generating an empirical distribution
for acc, which can further be used to calculate additional, derived statistics, such as the
mean, standard deviation, standard error, percentiles, confidence intervals, and others,
proverbially pulling itself up by its own bootstraps. As a result, bootstrapping allows to
generate measures of confidence by employing only a single prediction set, and for this
purpose was shown to even outperform statistics from approximate parameterized distri-
butions (cf. [Efron 1987]). Although having its roots in the field of statistical resampling,
a larger number of later works in the machine learning domain is fundamentally built
upon the bootstrapping concept, with random forest classifiers [Breiman 2001] and their
derivatives probably being the most well-known example.

9.2 Classifier Architectures
Bootstrapping can be applied to deep neural architectures in a variety of ways, all sharing
the property that the bootstrapping mechanism serves as a constraint for the constructed
latent space, in particular only allowing those optimizations which perform well not only
on the overall sample set on average but over its whole estimated distribution. It can thus
be used as a regularization of model parts, as a major determinant of the model architecture,
or as a meta-model itself. In the following, several architectures will be highlighted which
have successfully been applied to small data for medical image classification, yielding an
overall improved performance, and thoroughly discuss their benefits and disadvantages.
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Figure 9.2: Comparison of the basic ConvNet (top) and its respective ResNet architecture
(bottom). Both networks consist of N stages of convolutional blocks, with each stage
being followed by a pooling operation (e. g. maximum pooling). While in the ConvNet
approach, each stage contains K convolutional blocks, the residual network employs M
steps of K convolutional blocks (i. e. residual blocks). Most importantly, the residual
network bypasses former activations using an additive term to enforce a better gradient
flow for deep networks (cf. [He et al. 2016]).

9.2.1 Bootstrapped Path Shaking
First, it will be shown that the bootstrapping procedure can be used as a regularization
mechanism directly within the model architecture, which will be referred to as Bootstrapped
Path Shaking (BPS).

The BPS concept is based on a similar idea like the Shake-Shake and ShakeDrop
regularization approaches from Gastaldi [2017] and Yamada et al. [2018] which will be
briefly discussed in the following. Both Shake-Shake and ShakeDrop are constructed as
an augmentation of residual architectures, such as ResNet [He et al. 2016], Wide ResNet
[Zagoruyko et al. 2016] or ResNeXt [Xie et al. 2017]. The basic concept of ResNets is
explained in Fig. 9.2, the Shake-Shake and ShakeDrop regularizations are depicted in
Fig. 9.3 (top and middle).

Generally, most neural architectures can be easily amended to contain residual connec-
tions by simply replacing convolutional with residual blocks. As a result, the Shake-Shake
and Shake-Drop approach are widely applicable. In the original ResNet (and its derivatives),
convolutions are applied deterministically and equally in each training and/or prediction
step, i. e.:

f (x) = x+ c(x) (9.2)

with f denoting the output of a single ResNet stage for input x and one convolutional lane c
(e. g. BN+Conv+ReLU). The Shake-Shake approach modifies this behavior by introducing
two convolutional lanes c0,c1 and outputting their mixture. During training, this mixture is
given by:

f (x) = x+α · c0(x)+(1−α) · c1(x) (9.3)
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and in the gradient backpropagation step is exchanged by:

f (x) = x+β · c0(x)+(1−β ) · c1(x) (9.4)

with random factors 0≤ α,β ≤ 1. As pointed out by Yamada et al. [2018], the above step
effectively results in a latent-space interpolation and thus an augmentation of the samples
as proposed by DeVries et al. [2017], well-aligned with other recent work (cf. [Verma
et al. 2019]). Yamada et al. [2018] improve on the Shake-Shake method by omitting the
necessity of introducing multiple lanes, proposing a novel stabilization mechanism by
adding a random gating variable g, determining whether the latent-space augmentation is
applied or skipped (cf. Fig. 9.3).

As pointed out by Yamada et al. [2018], Shake-Shake performs best when the same lane
is dominant in both the forward and backward pass, i. e. when (α < .5∧β < .5)∨ (α >
.5∧β > .5), and otherwise might yield only low accuracy. As Shake-Drop lacks a second,
error-correcting branch, it addresses this issue by randomly dropping the augmentation
using the gating parameter g. Both approaches yield good results if the latent space is
well-constrained, being the case if the problem is not too complex and/or a large amount of
training data is available. However, if only a few data are available, i. e. if the latent space
is more rugged, the proposed interpolation can become ineffective, as interpolated samples
may lie outside of the desired latent space distribution1 (cf. Fig. 9.4). Note, that this issue
is thus strongly related to the problem of catastrophic forgetting such as addressed by
Kirkpatrick et al. [2017].

In turn, one might suggest addressing this problem by using a method which is denoted
as Bootstrapped Path Shaking. Instead of randomly dropping or using residual lanes as
in the Shake-Shake and ShakeDrop concepts, the key idea is to use bootstrapped subsets
of the original training set to train k residual pathways with k ≥ 1, following the notion
of bootstrapping as an approximation of the underlying distribution of the available data.
In contrast to the Shake-Shake and similar to the ShakeDrop regularization, BPS does
not require multiple processing lanes (i. e. k ≥ 2), although being combinable to increase
the effective network capacity, which may result in a better test time performance. Each
of the k BPS lanes is trained only on a bootstrapped subset of the original data. This
can be realized by keeping track of the sample indices during training, only forwarding
activations and gradients to each residual path if the sample is contained in its respective
bootstrapped subset. During the test phase, all paths are averaged similarly to the original
bootstrapping idea and as also done in other bootstrapped approaches, such as random
forest classifiers (see below). A comparison to Shake-Shake and Shake-Drop is depicted in
Fig. 9.3. In Sec. 9.2.5, it will be demonstrated that BPS can effectively be used to constrain
the latent space if only a few data are available in order to avoid the above-discussed issues
arising from an application of latent space augmentation methods such as Shake-Shake
and ShakeDrop.

9.2.2 Deep Random Forests
In the previous section, it was shown that bootstrapping can be applied as part of the model
architecture, serving as an effective regularization, and being applicable to a wide range of

1This issue can vividly be expressed in an analogy to an autonomous robotic system driving towards a
wall. While approaching, the robot’s activations for an evasion maneuver towards both left and right would
be increasing. Averaging the activations would be fatal as it results in driving straight into the wall.
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Figure 9.3: Comparison of the Shake-Shake (top) and ShakeDrop (middle) concepts
from Gastaldi [2017] and Yamada et al. [2018], as well as the proposed Bootstrapped
Path Shaking (BPS) algorithm (bottom) for residual convolutions. Blue and red modules
indicate an activation factor applied during the forward or backward pass, respectively,
while grey indicates the weighting during the test phase. Shake-Shake combines two
residual pathways by randomly sampling a factor α in the forward, and a different factor β

in the backward pass of the training. ShakeDrop realizes a comparable behavior but utilizes
only a single pathway, which instead is both trained randomized and non-randomized,
depending on an additional gate variable g. BPS follows a similar approach to Shake-Shake
but randomizes by feeding bootstrapped subsets to the different convolutional lanes.
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Figure 9.4: Visualization of the averaging problem resulting from latent-space augmen-
tation for methods such as Shake-Shake and similar. Assuming two processing lanes
producing activations z0,z1, both lying in a well-constrained latent-space region, euclidean
interpolation of a sample z′ = (z0 + z1)/2 might yield a sample outside of the well-defined
region, and thus might be detrimental to the training process.

architectures. However, as discussed there, introducing changes to the model architecture
might not always be desirable or feasible, e. g. when using pre-trained networks or when a
specific architecture is needed due to task requirements. For this purpose, with [Katzmann
et al. 2020] a method for bootstrapped meta-classification was proposed, called Deep
Random Forests (DRF), using the well-known random forest classifier (RF, see below)
concept from Breiman [2001].

RFs are known to be generally easy to use, require few optimizations and provide
a remarkably robust classification performance. This was for example emphasized by
Parmar et al. [2015], assessing various feature selection and classification methods for
NSCLC radiomics prediction, and including a total of 168 pairings, which concluded:
“[The] majority of feature selection methods gave highest predictive performance when
used with the random forest (RF) classifier.”.

Applying RFs requires the computation of meaningful, hand-crafted features prior
to classification, which, as pointed out in [Katzmann et al. 2020], is often diametrically
opposed to the goals of the application of deep neural networks, explicitly focussing on the
leveraging of information which has previously been unused, and thus is not yet covered.
A combination of both approaches might therefore lead to a synergistic model, benefitting
from both the data analysis capabilities of deep neural networks as well as the remarkable
robustness of random forest classifiers. Again, the presented approach will follow the core
concepts of the bootstrapping methodology.

Random Forest Classifiers
RFs are built as an ensemble of randomized decision trees (RDTs). Similar to classical
decision trees (DT), RDT nodes chose optimal split features in order to partition samples in
such a way that the impurity of the child nodes (e. g. using the Gini coefficient, cf. Eq. 8.9)
is minimized, i. e. at best contain samples of only a single class. In contrast to DTs, RDTs
take into account only a random feature subset. This process is repeated until all nodes are
pure, i. e. consist of samples of only one class, or cannot be further split, e. g. as samples
are identical but have different labels. In the test phase, samples are classified by walking
along the tree until one of the terminal nodes is reached and returning its class.
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Figure 9.5: Left: Example of a simple RF architecture built from samples 1-6, with
samples 1-3 being positive (green) and 4-6 being negative (red). Multiple randomized
trees are grown, each using a bootstrapped subset as depicted above each tree. Right:
Visualization of the bias-variance dilemma. As depicted, RFs basically ensemble multiple
low-bias/high-variance classifiers (i. e. RDTs), leading to approximations nearer to the
classification optimum. Source: [Katzmann et al. 2020] © 2020 IEEE

RFs are created by repeating this procedure for K RDTs, each of them independently
grown from a bootstrapped subset of the original data (cf. Sec. 9.1). During the test phase,
a sample is classified by maximum voting across all RDTs, furthermore providing the
opportunity to express class probabilities as the portion of RDTs choosing this class. In
summary, the idea of RFs is to use bootstrapped ensembles of low-bias/high-variance
estimators to yield estimates nearer to the classification optimum (cf. Fig. 9.5).

Deep Architecture
Analogously to the above RF scheme, DRFs consist of K decision trees, each being trained
on a bootstrapped subset of the original data. Each DT again is trained analogously to
the RF concept. However, different from the RF concept no pre-computed features are
available, but only raw inputs. This is where the deep neural network comes into play:

For each node, a deep model is trained to solve the actual classification task using the
samples within this node. For this, any architecture which is adequate for the task at hand
can be used. While the root node classifier in each tree is randomly initialized, child nodes
get initialized with the weights of their parents, being inspired by the methodology used in
neural architecture search (cf. [Elsken et al. 2019]).

As a result of this training, the pre-output layer now contains a latent-space represen-
tation which is meaningful with respect to the classification goal, and its activations can
further be used as features. Now again analogously to the RF, the samples within each
node are split according to a minimization of the resulting node impurity (see above). To
summarize, the process consists of the following steps:

1. Create K root nodes
2. For each tree, draw N samples with replacement (bootstrapping)
3. Train root nodes Tk to split samples (Xk,Yk) into two sets (Xk,0,Yk,0) and (Xk,1,Yk,1)
4. Train subnodes Tk, j with sets (Xk, j,Yk, j)

Analogously to the construction of RFs, step 4 is applied repeatedly, i. e. subtrees are
created until the node impurity cannot further be reduced. As the node classifiers have
significantly larger computational requirements than the RDT step functions, a maximum
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tree depth d is defined. If a node at the maximum tree depth is not pure, it returns the result
of the classification at this level instead.

An interesting side effect of the RF-like structure of the proposed approach is the
ability to calculate an out-of-bag (OOB) error. This is achieved by evaluating each tree
on its respective unused part of the training data and averaging across trees, effectively
eliminating the need for an additional validation set by yielding a good estimate of the test
time performance.

9.2.3 Bootstrapping Ensembles
When comparing the RF and DRF architectures, the major difference lies in the complexity
of the node classifiers. The RF sample partitioning is conducted using a step function on
a single feature dimension, and thus allows for a binary partitioning in each stage, being
equally true for the DRF concept. In contrast to the features in the RF approach, however,
DRF features are particularly trained to split the samples along their final classification
label, rather than occasionally doing so. As a result, the node impurity reduces much faster
than in RFs, diminishing the value of the tree structure. In fact, in [Katzmann et al. 2020]
it was shown that the test time performance improves only marginally with increasing
tree depth, implying that most of the observed performance boost can be attributed to the
bootstrapped ensembling process, as will be discussed in Secs. 9.2.4 and 9.2.5.

Following this argumentation, it might be promising to reduce the proposed DRF
model to a bootstrapped ensemble, being equivalent to setting a maximum tree depth
of d = 0. However, as now the model can be easily composed into a single, piecewise
differentiable architecture, it can be trained in an end-to-end fashion, solving some of the
issues which have been specifically addressed by the DRF concept, such as the derivation
of sub-classifiers, the optimality of the used split, and finally the optimal initialization
of submodels. Notably, using a single model allows for a continuous evaluation of the
whole model during training, rather than separately for each component, ensuring overall
optimality with respect to the OOB loss. Altogether, using a single model might result in a
significantly better runtime and model efficiency as well as an improved performance. In
the following, this approach will be denoted as Bootstrapped Network, or BTNet.

BTNets are modelled as a meta-model, i. e. being built upon K parallel models mk, all
having the same architecture. Each model mk is assigned a bootstrapped subset (Xk,Yk) of
the original training data with (Xk,Yk) ∈ (XN ,Y N) and |Xk| = |Yk| = |X | = |Y | = N. The
sample indices are kept track of via an additional input I. The overall concept is depicted
in Fig. 9.6. In each training step, the meta-model passes each submodel its respective
subset by applying a filtering step using the sample indices I. Afterwards, the resulting
class probability estimates Ŷk are recombined and averaged in a recombination step to form
an overall estimate

Ŷ =
1
K

K

∑
k=1

Ŷk (9.5)

The losses Lk are computed for each model seperately on its bootstrapped subset only,
resulting in an overall loss function:

Ltotal =
K

∑
k=1

L (Yk,Ŷk) (9.6)
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Figure 9.6: Basic idea of the Bootstrapped Network (BTNet) described in Sec. 9.2.3. An
arbitrary network architecture is replicated K times and composed in a single model. Using
a filtering layer (blue), each subnetwork is trained using a bootstrapped subset (Xk,Yk)
of the original data by keeping track of indices I. Finally, in a recombination step (red),
the network estimates are recombined to yield a per-sample estimate Y as well as an
OOB-classification YOOB, which can be used for internal validation.

The used loss function L is mostly arbitrary and can be chosen according to the classifica-
tion task. However, using a loss function that can handle label imbalance is recommended,
such as correlational loss or focal loss (cf. [Lin et al. 2017]), as the bootstrapping pro-
cess does not give any guarantees on the label distribution, which especially can become
important for smaller datasets.

9.2.4 Experiments
Each of the described architectures is evaluated in comparison with a baseline ConvNet
and its respective residual version (ResNet, see Fig. 9.2). The original ConvNet consisted
of an initial convolutional block with 64 3x3 filters, followed by subsequent blocks of
64, 128, and 256 filters. Each block consisted of a convolutional layer, followed by leaky
ReLU activation [Maas et al. 2013]. Each but the initial block was batch normalized [Ioffe
et al. 2015], and after each but the initial and the last block a 2x2 maximum pooling has
been applied. Finally, a global maximum pooling2 has been applied to the resulting feature
matrices, followed by a m-neuron softmax output layer for the final classification, with m
representing the number of classes of the dataset.

The residual network was built analogously, with the convolutional blocks of the Conv-
Net being replaced by stages of residual blocks like in the original ResNet implementation
from He et al. [2016] (see Fig. 9.2). Each stage consisted of 3 residual blocks, with
each residual block consisting of two subsequent convolutional blocks, which were built
analogously to the above description (Conv+LeakyReLU+BN). For the Shake-Shake
regularization, all residual blocks were duplicated as depicted in Fig. 9.3. The BPS and
ShakeDrop regularization used no replications, i. e. had the same architecture as the ResNet,
and only introduced their respective regularization mechanism.

The BTNet and the DRF, both being based on the original ConvNet model, were built
using a 30-times replication of their respective architecture.

2Global maximum pooling serves a similar need as maximum pooling but returns the global maximum
for each filter, mapping images to scalar values. It is preferable if the concrete location of classification is
irrelevant.
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All methods were evaluated on a variety of datasets3, including:

1. The CIFAR-10 and CIFAR-100 datasets from [Krizhevsky et al. 2009] (N=50,000/
10,000 samples for train/test, each) – Both are widely used and publicly available
benchmark datasets, thus allowing for easily reproducible results. Additionally, the
CIFAR-10 cats-vs-dogs and cars-vs-trucks binary subsets are used4.

2. The publicly available BreastMNIST5 (N=624/156), ChestMNIST (N=89,687/
22,433) and PneumoniaMNIST (N=5,232/624) datasets from the MedMNIST col-
lection [Yang et al. 2021] for breast lesion malignancy, chest disease and pneumonia
classification – These datasets significantly better represent a medical imaging sce-
nario than the above-used RGB image data. The datasets are based on ultrasound
and x-ray imaging, and show a considerable amount of label imbalance.

3. The LIDC-IDRI dataset (N=772) from Armato et al. [2011], Armato III et al. [2015],
and Clark et al. [2013] – As a high-quality and widely-used benchmark dataset in
the medical imaging domain, the LIDC-IDRI dataset for lung lesion malignancy
classification serves as a comparison for the final application domain6.

Where available (CIFAR-10 and subsets, CIFAR-100, BreastMNIST, Pneumoni-
aMNIST, ChestMNIST), the dataset’s original train/test split has been used. If not, it
has been chosen randomly using an 80/20 split. For the non-bootstrapped networks, the
validation set was randomly split from the training data using another 80/20 split. This
could be omitted for the bootstrapped networks due to their inherent capability to validate
on OOB samples (cf. Sec. 9.2.2 and Fig. 9.6). Datasets with less than 10,000 samples
(BreastMNIST, PneumoniaMNIST, LIDC-IDRI) were trained using 5-fold repetition to
increase the result reliability7. Random seeds were identically varied for each method and
repetition to ensure comparability across results.

As an increase in performance is expected by using ensembling methods already due to
the increased network capacity, finally an additional experiment on the CIFAR-10 dataset
is conducted, comparing the BTNet approach with a non-bootstrapped classifier ensemble
of the same capacity. The bootstrapped network is expected to particularly benefit from its
ability to better account for label noise and small to medium-sized training data. Thus, both
the BTNet as well as a non-bootstrapped ensemble are trained using 30 replications of the
original network (a ConvNet architecture as described above), systematically applying label
noise to the training data (i. e. changed labels) with an increasing rate between 0 and 90 %.

3In contrast to the previous studies, the mCRC dataset could not be used in this study due to the data use
policy, unfortunately prohibiting further use of the data. An evaluation of the Deep Random Forest concept
on the mCRC dataset, however, already has been conducted in [Katzmann et al. 2020].

4As will be discussed more thoroughly in Chapter 10, these two represent the most difficult 1-vs-1
classifications within the CIFAR-10 dataset and thus serve as a binarization of the CIFAR problem.

5The BreastMNIST dataset is also used in Chapter 10.
6The preprocessing of the LIDC-IDRI data was conducted analogously to [Nibali et al. 2017], and will

be in the focus of the deep decision explanation in Chapter 10. It will be discussed there in more detail.
7This step was omitted for the ChestMNIST, CIFAR-10, subsets, and CIFAR-100 dataset, as the boot-

strapped estimated standard errors were below 10−3 using a single repetition [Efron 1982].
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Figure 9.7: Comparison of bootstrapped and non-bootstrapped classifiers on various
medical (LIDC-IDRI, BreastMNIST, PneumoniaMNIST, ChestMNIST) and non-medical
(CIFAR-10, its subsets and CIFAR-100) imaging datasets with respect to the matthews
correlation coefficient (MCC) (green is higher). For the color encoding, the results were
z-normalized per dataset to account for varying dataset difficulty, with the original values
being annotated per cell. The classifiers are sorted by their average z-value across all
datasets (decending f.l.t.r).

Additionally, the training set size was varied with N ∈ {50,100,150,200,300,500,1000},
and the performances of both networks were evaluated against each other using the full
CIFAR-10 test set. Each experimental pairing (noise/training set size) was repeated 10-fold
with identically varied seeds across experiments. Finally, direction and significance were
assessed using a two-tailed t-test with t(N−2) = t(8).

9.2.5 Results
A comparison of the results for all evaluated approaches and datasets can be found in
Fig. 9.7. Across datasets, the BootstrapNet (BTNet) overall performed best, on average
yielding the highest MCC values and achieving superiority over all other tested approaches
in 6 out of 8 datasets. It clearly outperformed the other tested approaches on the LIDC-
IDRI, BreastMNIST, Cat-vs-Dog, Car-vs-Truck, CIFAR-10, and CIFAR-100 dataset. For
PneumoniaMNIST it performed average, and only for ChestMNIST provided a slightly
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Figure 9.8: Comparison of the BTNet and plain classifier ensemble results on the CIFAR-
10 dataset for systematically varied label noise and training set sizes as measured by
accuracy (top), pearson correlation (middle) and AUC (bottom). T-values are indicated
as green (higher value for BTNet) and red (higher value for ensemble) and are annotated
each cell. Significance for t(8) is indicated as p < .05*/.01**/.001***
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lower MCC than the other tested approaches, overall resulting in an average improvement
of 0.95σ as measured by dataset-wise z-normalization8.

The overall second-best approach was the Deep Random Forest (DRF), performing
better than average in 7 out of 8 datasets and yielding a mean improvement of 0.47σ ,
followed by Bootstrapped Path Shaking (BPS; 0.24σ ), being the best non-ensembled
method, and performing better than average in 5 out of 8 datasets. In particular, BPS
clearly outperformed the Shake-Shake and ShakeDrop regularization, with both having
a comparable aim. In this order, it follows ResNet with better-than-average results on 4
datasets, Shake-Shake (2), ShakeDrop (2), and finally ConvNet (1).

Regarding the label noise experiment, Fig. 9.8 depicts a comparison of the results
achieved by the BTNet and the plain ensemble approach9. As assumed, using the BTNet
approach particularly resulted in significantly superior performance over plain ensembling
when label noise was present. For medium training set sizes, the BTNet outperformed the
plain ensemble with T -values of up to 3.52 (Pearson correlation, p < .001) and 2.36 (AUC,
p < .05). In contrast, if no label-noise was present, although slightly better aligning to the
distribution as measured by the Pearson correlation, the BTNet was gradually outperformed
by the plain ensemble with increasing training set sizes as measured by accuracy and AUC.

9.2.6 Discussion
As demonstrated by the results, using bootstrapped ensembling as part of the model
architecture can greatly increase classification performance. The largest improvements
were observed when using ensembling techniques. In fact, this was expected, due to the
resulting higher network capacity. However, as was shown by both, the superiority of
the bootstrapped network over plain ensembling, and the superiority of the Bootstrapped
Path Shaking over other methods with similar (ResNet/ShakeDrop) or even higher (Shake-
Shake) network capacity, this superiority can not only be attributed to network capacity,
but rather to a more robust approximation of the underlying latent space distribution.

Notably, as was shown with the label noise experiment, this effect was strongest,
when label noise was present and only small- to medium-sized datasets were available,
which well aligns with the initial assumptions. In contrast, when compared to non-
bootstrapped ensembling, the effect gradually decreased, and is finally inverted, the larger
the available dataset gets. This well fits with intuition, as for large datasets, due to their
high parameter amount, complex neural networks are well-known to successfully handle
noisy or incomplete data, but tend to over-specialize if only a few data are available. In
contrast, bootstrapped ensembling enforces a regularization which is beneficial in small-
data settings, but simultaneously reduces the statistical independence of the data given to
each of its components [Efron et al. 1997].

Interestingly, as demonstrated by the experimental results, bootstrapping can succes-
sively be integrated into the network structure, e. g. by using Bootstrapped Path Shaking
(BPS), and may similarly result in superior performance. In the experiments, it outper-
formed other regularization methods, such as Shake-Shake and ShakeDrop, in particular
being noteworthy as a) BPS reduces the statistical independence of the training data (see
above), and b) especially the Shake-Shake regularization used replications, and thus had a
higher network capacity.

8Similarities between datasets and approaches are depicted in a dendrogram in the Appendix Fig. B.4
9The complete results for all metrics and each of the classifiers can be found in the Appendix Fig. B.2–B.3.
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In fact, both approaches failed to provide a sufficient regularization in our scenario.
There are multiple possible reasons for this: First, the network architecture was rather
small. More complex architectures, and thus more possible paths for the Shake-Shake
and ShakeDrop regularization, might result in a better performance for both methods.
Second, when proposed, both methods were evaluated using data augmentation. As the
inner-network regularization of both methods is undirected, it might be possible that
input space augmentations are important in order to avoid ambiguities. Finally and most
importantly, in their original publications, both methods were shown to be sensitive to the
concrete parameterization and can become unstable if the combination of parameterization
and architecture does not fit. As within this study, no systematic meta-optimization was
conducted, the parameterization might have been suboptimal for the problem at hand.

The study has some further limitations which have to be noted at this point: First,
while being a good baseline, the MedMNIST datasets provide only a limited insight into
algorithmic capabilities within medical image analysis, as with 28x28 pixels they have
a very small resolution, just like the MNIST and CIFAR-10/100 datasets. In this regard,
especially the LIDC-IDRI dataset is much more realistic, as it consists of high-resolution
CT images, with its processing well-aligning with typical clinical algorithms. It is thus
encouraging that the BTNet and DRF approach also performed best on the LIDC-IDRI
data.

The second limitation arises from the invasiveness of methods such as BPS, Shake-
Shake, and Shake-Drop. In a practical setting, there might be situations in which a
change of architecture is impossible or infeasible. This, for example, might happen if
the network architecture itself is a result either of convention or of optimization, such as
the EfficientNet architecture from Yakubovskiy [2020]. Similarly when using transfer
learning, no augmentation of the architecture is possible. However, both the BTNet and
DRF architecture may be applied in these scenarios.

Another limitation of the bootstrapped methods arises from their requirement to keep
track of the training indices. If the training set size is not known in advance, bootstrapped
methods require additional extensions to be applicable. In highly-distributed training
settings, in which the training data is not centrally known, such as in Federated Learning
environments [Rieke et al. 2020], the application of bootstrapped methods might become
infeasible.

Finally, time and computational resources can become an issue. Especially if only a
few computational resources are available (e. g. small GPU and system memory, low CPU
performance, etc.), model ensembling techniques such as the BTNet or DRF approach
might become infeasible, although the BTNet architecture already greatly reduced the
computational effort in direct comparison to the DRF method. Notably, this limitation
similarly applies to any other kind of ensembling technique. However, in these situations,
especially the use of Bootstrapped Path Shaking might be a promising alternative.

Altogether, Bootstrapped Networks and Deep Random Forests can be seen as an out-of-
the-box framework, allowing for an easy-to-use environment without extensive architecture
tweaking, providing reasonable results in most scenarios. Due to the improvements with
respect to computational effort and final classification performance, whenever applicable,
the use of the BTNet approach is recommended.
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9.3 Deep Survival Forests
After demonstrating that bootstrapping can be used as part of the model architecture for
classification, this part should briefly revisit the topic of survival estimation, which was
already discussed in Chapter 7. In the following, a bootstrapped architecture for survival
estimation is proposed, well aligning with recent research from other authors.

The Deep Random Forest (DRF) framework, which has been discussed in the previous
section, is fundamentally based on the random forest (RF) classifier approach. With their
so-called Random Survival Forests (RSF), Ishwaran et al. [2008] have demonstrated that,
by introducing slight modifications to the RF approach, bootstrapping can be used for
survival prediction. To this end, the randomized decision trees (RDTs) in the RF approach
are replaced by so-called randomized survival trees (RST) as following:

First, similar to the RF classifier, for each of the K survival trees, N samples are drawn
from the original data with replacement. Now, each tree is grown by splitting the samples
at each node to maximize the survival difference (rather than node purity) of the child
nodes using a randomly selected feature. It should be noted, that similarly to the RF
approach it is aimed at a binary classification at each node. Moreover, with the exception
of the feature selection criterion, the concept is yet identical to it.

As a second modification, the stopping criterion (i. e. reduced node impurity) is replaced
by the constraint that each terminal node, i. e. leaf, must contain at least one unique event,
i. e. an event of death in case of survival estimation.

The survival trees are trained analogously to the RF concept. Now, for each leaf
a cumulative hazard function (CHF, cf. Chapter 7) Ĥ can be computed by using the
non-parametric Nelson-Aalen estimator [Nelson 1972], reading:

Ĥ(t) = ∑
ti≤t

∑i:yi=ti ωi

N−∑
N
k [yk < ti]

(9.7)

and assuming N individuals i ∈ [1, ...,N] with observation times yi and event indicators
ωi (i. e. death/no death). More intuitively, the equation can be interpreted as the discrete
integral over the hazard function ĥ(t), i. e. the chance to die at a given time ti if an individual
is still under consideration to that time.

During inference, given a concrete sample x, the CHF is estimated with each survival
tree by walking through the tree analogously to the RF classification process and returning
the CHF of the terminal node, i. e. the leaf CHF10. Finally, the CHFs are ensembled across
trees11, returning a single CHF function that can be used to calculate a survival expectation.

In order to create Deep Survival Forests (DSFs), the modifications to the DRF frame-
work are mostly straightforward and correspond to the above modifications of the RF
framework. First, the clustering criterion is changed to maximize the survival difference
between the two resulting subsets. This can be achieved by two ways: First, by a refor-
mulation as a binary classification problem with newly assigned labels y′ ∈ {0,1} derived
from survival times y ∈ Y as:

y′i =

{
0 if yi < T
1 else

(9.8)

10Notably, this CHF must exist due to the above-set constraint
11The CHF ensembling process is equal to the calculation of the CHF on the concatenated original

observations of each of the reached leaves. The process is described in more detail in [Ishwaran et al. 2008].
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and threshold T ∈ Y chosen in order to maximize:

∆ = |Y0| · |Y1| ·

∣∣∣∣∣ 1
|Y0| ∑

y∈Y0

y− 1
|Y1| ∑

y∈Y1

y

∣∣∣∣∣ ,Yk =
{

yi ∈ Y |y′i = k
}

(9.9)

Using this definition, the node classifiers can be trained using binary crossentropy:

L (y′, ŷ′) =−(y′ log ŷ′+(1− y′) log(1− ŷ′)) (9.10)

A second option, which follows the notion of the original RF approach more tightly, is
to use a feature extraction network such as the sparse autoencoder architecture described in
Chapters 5 and 6 to replace the original input at each node by a latent feature representation,
which is conditioned on the samples within this node. This allows leaving the maximization
of ∆ to the RF feature selection. While directly predicting the split better aligns with the
presented DRF approach, using the RF feature selection comes with easier implementation
and, although yielding comparable results, empirically resulted in higher stability if only a
few samples were available12. Thus, the second approach will be used in the experimental
section.

9.3.1 Experiments
For the evaluation, three different approaches were trained, namely the Cox proportional
hazards model (CPH, [Cox 1972]), the Random Survival Forest (RSF, [Ishwaran et al.
2008]) and the above-proposed Deep Survival Forest (DSF). The algorithms were evaluated
using the Rossi Criminal Recidivism (N = 432) and SEER incidence colorectal cancer
datasets (N = 548,496) from Chapter 7, the GBSG2 dataset13 (N = 686) from Sauerbrei
et al. [1999] and Schumacher et al. [1994], and finally the NSCLC dataset1415 (N = 416)
from Aerts et al. [2015, 2014] and Clark et al. [2013]. While the former three datasets
consist of scalar features, the NSCLC dataset is built of lung cancer CT imaging data,
and thus needs further processing. For this, again the preprocessing protocol for the
LIDC-IDRI data was followed which was already used in Sec. 9.2.4. As the CoxPH and
RSF models require scalar input data, radiomics features were extracted by using the
pyradiomics-library analogously to Chapter 6, feeding the scalar data to the CoxPH and
RSF models, and the raw image data to the DSF approach.

None of the datasets provided a train/test split. Thus, train/test splits have been chosen
randomly using an 80/20 split16. Each experiment, but on the SEER dataset, has been
repeated 5-fold. Repetition was omitted for the SEER dataset, as due to a large number of
samples the bootstrapped estimated standard errors were below 10−3 when using a single
fold.

12Using such a feature extraction would be similarly applicable to the DRF approach. However, this was
not systematically evaluated, as the framework was reasonably stable in all tested scenarios.

13The German Breast Cancer Study Group 2 (GBSG2) dataset consists of 8 covariate columns (age, tumor
size, number of breast nodes, ...) and measures the time until reccurence in breast cancer patients.

14The NSCLC dataset is one of the original datasets which has been used in the field-defining radiomics
study from Aerts et al. [2014]. It contains high.quality CT imaging data from non-small-cell lung cancer
(NSCLC) cases and further documents patient survival times.

15As briefly described in Sec. 9.2.2, unfortunately the DSF framework could not be evaluated using the
mCRC datasets from the previous chapters due to its data use policies.

16No validation set was split off as none of the methods requires external validation. While the CoxPH
model uses a training-time regularization, the survival forests use an internal validation by OOB-data.
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The models were evaluated using Harrel’s concordance index, the area under the
AUC17 (AUAUC) and finally mean absolute error (MAE, cf. Appendix C). For the concor-
dance index as well as for fitting the CPH model, the publicly available lifelines package
[Davidson-Pilon 2019] has been used. In analogy to the discussion in Sec. 9.2.3, the DSF
tree depth was limited to 3, accounting for the higher computational effort in comparison
to the RSF. Both the DSF and RSF were trained with K = 10 trees. Additionally, an RSF
with K = 100 trees was trained to assess the value of the number of trees.

9.3.2 Results

A comparison of the results for each method and dataset can be found in Fig. 9.9. Overall,
the DSF was able to successfully yield survival estimates on the non-imaging datasets
(SEER, Rossi, GBSG2), too, being in the same magnitude as the reference approaches,
and, in particular, achieving values of up to 0.74 and 0.67 for AUAUC and concordance
index. Moreover, it yielded the lowest mean absolute error on the GBSG2 dataset (0.73σ ).
Overall, however, it was clearly inferior on these datasets, especially when compared with
the CoxPH and RSF-100 models. The RSF model overall provided reasonable results.
Notably, the number of trees seems to be a highly important determinant of its final
performance, as can be seen by the large differences between the results achieved by the
RSF-10 and RSF-100 estimators. Regarding the CoxPH model, as initially assumed, it
performed clearly best on the largest dataset (SEER). Expectedly, while overall yielding
excellent values for concordance, it, however, provided only mediocre absolute survival
estimates as measured by the MAE.

In contrast, regarding the medical imaging dataset, the DSF model performed consider-
ably better than the radiomics-based approaches, clearly yielding the highest values for
concordance and AUAUC, and similarly providing better than average MAE values. While
the RSF-100 model performed second-best with respect to concordance and AUAUC, it
provided only a poor fit with respect to the absolute survival time expectation as measured
by the MAE. The Cox model provided mediocre results across all metrics on the NSCLC
dataset.

9.3.3 Discussion

With the results from the previous section, it was demonstrated that, by using Deep
Survival Forests (DSF), bootstrapped ensembling can successfully be used for deep survival
estimation. In contrast to the CoxPH model or the RSF approach from Ishwaran et al.
[2008], DSFs are trained in a purely data-driven fashion and do not require any hand-
crafted feature engineering. Thus, using DSFs may especially be beneficial if the problem
space can only poorly be modeled, or if the major survival determinants are yet unknown.

In direct comparison to the approach from Chapter 7, the DSF provides a variety of
benefits. First, following the notion of the well-known and widely applied random forest
classifier, the DSF concept is rather easy to understand and involves no complex algebra.
Secondly, it provides a clearly better numerical stability, resulting from its RF-based
definition, using a threshold function, rather than a multiplicative term. Finally, as the
method is based on the bootstrapping methodology, it is inherently able to provide an

17The area under the AUC is defined as the integral over the time-continuous binary application of the
AUC and is described in more detail in Appendix C.
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Figure 9.9: Comparison of the Cox proportional hazards model (CoxPH), the Random
Survival Forest with 10/100 trees (RSF-10/RSF-100) and the Deep Survival Forest (DSF)
approach on the Rossi Criminal Recidivism (Rossi), GBSG2, SEER incidence colorectal
cancer (SEER) and NSCLC dataset with respect to the concordance index (top), the area
under the AUC (middle) and the mean absolute error (in standard deviations, bottom). For
the color encoding (green is better), the results were z-normalized per dataset to account
for varying dataset difficulty. The original values are annotated per cell.
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estimate of its performance without the need for an additional validation set by using OOB
samples. Thus, a larger amount of data can be used for training, which can ultimately
result in a superior performance itself.

In comparison to the CoxPH model, it has to be noted that the DSF results were inferior
on the non-imaging datasets. To a significant degree, this can likely be attributed to the
number of trained survival trees, as on average the DSFs performed on par with RSFs when
trained with the same number of trees. In contrast, when increasing the number of trees,
the RSF showed major improvements, which is similarly expected for the DSF approach,
as a higher number of trees allows for a better-adapted cumulative hazard function, and
thus an improved survival estimate. Therefore, future work should in particular address
the influence of the number of trees on the final performance of the DSF approach.

A major limitation of this study is the choice of evaluated datasets. While all of them
are publicly available and widely used, additional radiological datasets would have been
highly interesting for assessing the capabilities of the DSF approach. Future work should
therefore in particular conduct additional experiments using further radiological datasets.

Finally, it has to be noted that, as an ensembling technique, DSFs underlie the same
limitations regarding computational complexity and memory requirements as the Deep
Random Forest approach (cf. Sec. 9.2.6). Their use is therefore especially encouraged for
small- to medium-sized datasets, assuming a reasonably high computational capability
for the problem at hand. Although yet no such extension has been proposed, similar to
the reduction of computational complexity using BTNets rather than DRFs, the method is
expected to have a strong potential for further optimizations.

9.4 Conclusion
Within this chapter, a variety of methods have been presented which combine deep neural
networks with the statistical method of bootstrapping and the well-known principles of the
widely used random forest classifier. As demonstrated, bootstrapping methods may serve
as an excellent regularization in deep neural networks. They are widely applicable, can be
implemented at multiple granularities, and can finally especially improve performance on
small- and medium-sized datasets while showing strong robustness against label noise.

The bootstrapping methodology has been shown to be applicable to multiple problems,
such as image classification and survival time estimation, and, in particular, in the classifi-
cation setting clearly outperformed other regularization methods, providing a significantly
improved test time performance. With this, bootstrapped methods address a variety of
obstacles that arise from an application of deep neural networks in medical image analysis,
often suffering from small and sparsely annotated imaging data. It is hoped that with this
contribution the scientific community is successfully supported on its way towards a better
and easier development and deployment of algorithms for medical image analysis, and
thus finally for improved overall healthcare.





10. Deep Decision Explanation

As already pointed out in Chapter 4, the two major shortcomings of deep neural networks
for medical image analysis are their unsure accuracy when applied to small datasets, as
well as their generally low comprehensibility. While the previous chapters have intensively
discussed the former point, this chapter is specifically dedicated to the comprehensibility
of deep neural networks. For understandable reasons, practitioners are hesitant to adopt
methods whose decision process is rather complicated to comprehend, as they impede the
identification of error cases, and therefore the understanding of whether the method is
applicable to the case at hand, or not. A variety of potential applications of deep neural
networks go along with a manageable risk in case of algorithmic mistakes. However, wrong
decisions in the medical sector, especially when employed for therapy recommendations,
can have disastrous consequences, possibly even leading to the patient’s death. It is
therefore of crucial importance to create reliable, as well as traceable algorithms, which are
not only able to identify error cases (cf. Chapter 8), but also know and actively communicate
about their own reliability given a specific case. A variety of methods for deep decision
explanation, therefore, have been proposed in the past, with each of them having its own
pros and cons. Therefore, this section covers their application to deep decision explanation
in clinical decision support, and furthermore, based on the work from [Katzmann et al.
2021], proposes a novel method with significantly improved explanatory quality, as will be
demonstrated both quantitatively and qualitatively using a comprehensive user study.

10.1 Introduction
The relevance of deep decision explanation for medical image analysis becomes clear
when having a look at a concrete example. In [Katzmann et al. 2018a] (see Chapter 6), the
authors proposed the application of the guided backpropagation algorithm from [Simonyan
et al. 2013] for the visualization of regions indicative of lesion growth and expected death
within one year from scan date.
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Given a sufficiently well-trained classifier, such as the one proposed in Chapter 6, it
is possible to identify decision-relevant input regions to facilitate an understanding of
whether the network focuses on the right image regions, which in turn allows concluding
whether the estimator’s prediction can be reliable given a concrete case. Moreover, as
the estimator is purely based on data-driven training, the visualization might even allow
gaining greater insight into typical disease phenotypes, and might ultimately lead to the
identification of novel imaging biomarkers and thus to improved patient healthcare. An
example visualization is depicted in Fig. 10.1, highlighting relevant image regions of
segmented mCRC liver metastases.

Figure 10.1: Saliency map-based reasoning of classifier decisions from [Katzmann et al.
2018a] using the decision visualization algorithm from [Simonyan et al. 2013]. Lesion im-
age (top-left) and overlay visualization (bottom-left) of input regions which are predictive
for future tumor growth. Expectedly, lesion marginalization and contrast enhancement are
important predictors for future progress. However, inner structure is marked as predictive,
too. The raw saliency map (top-right) highlights the importance of inner structure, with
only the most inner necrosis being non-predictive for growth, as well as (bottom-right) the
saliency map adjusted by the influence of contrast enhancement, again highlighting the
value of inner structure for prediction. Source: [Katzmann et al. 2018a]

10.1.1 Theoretical Considerations
Despite the deterministic nature of deep neural networks, decision explanation is not only
non-trivial but actually already theoretically limited. Let us consider a deep neural network
which realizes a function y = f (x) : Rn → Rm, with n being the input dimensionality
of images X , and m representing the number of output neurons for outputs Y , typically
following the relationship n≫m. The task of decision explanation g(y) thus is an inversion
of this function: g = f−1 : Rm→ Rn. Unambiguous decision explanations can exactly
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Figure 10.2: Left: An image of the Uros House Armory Show by Grimanesa Amoros,
2011, at the Times Square in New York City. Right: Possible explanations for a classi-
fier deciding whether an image shows a pedestrian. A decision explanation might either
highlight the pedestrians (top), their shadows (middle), or even the Times Square itself (bot-
tom). Source: https://commons.wikimedia.org/wiki/File:Grimanesa-amoros-uros-house-
day-1.jpg ; Licensed under CC BY-SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/

then be given if f and g both realize an injective projection f : X → Y,g : Y → X , and thus
together allow for a bijective projection X ↔ Y (cf. Schröder-Bernstein theorem).

In the discrete case, i. e. the computationally representable, |Ln|> |Lm| holds true for
any n > m and every discrete number of representable states L, thus enforcing collisions,
or explanatory ambiguities, in any real-world scenario.

In fact, this is a desirable property: First, it should be noted that the reduction process
itself is an immediate classification goal, i. e. samples of similar labels should be repre-
sented in nearby or identical latent space positions. Secondly, only a subset of possible
explanations is desirable from a human point of view. Fig. 10.2 (left) shows an image of
the Times Square in 2011. Let us assume a classifier C taking an image X as input and
returning a label Y , stating whether an image shows pedestrians or not. If given the image
in Fig. 10.2, a classifier that is trained based on associative rather than causal learning,
e. g. by employing stochastic gradient descent, will typically utilize a combination of
various classification strategies to find a solution, e. g.:

A The image contains typical shapes of pedestrians, including silhouette, face, and
clothes. → The image contains pedestrians.
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B The image contains shadows with typical silhouettes, implying two legs and an
appended upper body. → The image contains pedestrians.

C The image shows the Times Square, which is typically highly frequented. Taking
into account the color of the sky, the image was taken during the daytime. → The
image contains pedestrians.

Each of these strategies in itself is valid, and without further constraints, none of them can
be expected to be ruled out by the classifier training process. However, while neither of
these strategies is wrong, not all of them are similarly preferable with respect to the final
application scenario.

Decision visualization is often conducted as a guided back-projection of the classifier
decision towards the previous layers. As intermediate layers in deep learning do not
necessarily have an intuitive representation due to the distributed computing scheme and
the activation nonlinearities, the process is repeated layer-by-layer until the input layer is
reached, which in turn can be understood intuitively. Now taking into account the above
scenario, the resulting visualization might emphasize strongly different image components
(cf. Fig. 10.2):

• In the case of A, the result would look rather intuitive. The decision explanation
would highlight all visible pedestrians, well-aligning with the human intuition.

• For B, the algorithm would highlight human shadows. Although not necessarily
matching a typical human-kind explanation, humans in fact tend to have a char-
acteristic shadow, with studies demonstrating that unconscious shadow perception
provides a major clue for scene understanding in humans, too [Mamassian et al.
1998].

• Finally, C is mostly based on a logical argument: Assuming a recognition of the
Times Square, highlighting the sky and the place in fact makes sense for deriving
the true answer. Obviously, this is not the decision strategy the classifier is expected
to have. However, in fact, this behavior does well align with subconscious human
reasoning when given only a limited amount of information, as humans then tend
to employ a significant amount of heuristics, based on their previous experiences
(cf. [Johnson-Laird et al. 1999; Kelley 1973]).

Therefore, it becomes clear that an adequate visualization is one that a) matches the
actual image semantics, b) aligns to the intuitive understanding of a human observer, and
c) should naturally provide an image quality which allows for a visual inspection. In a
nutshell, the perfect explanation is the one which is best understood by a human observer,
highlighting the outstanding importance of human perception when evaluating decision
explanation algorithms.

10.1.2 Related Work
Various methods have been developed to support human insight into deep decision-making,
and multiple categorizations for them have been proposed. In [Linardatos et al. 2021]
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a categorization based on four key dimensions is suggested, including a) globality vs.
locality, b) explanation purpose (e. g. black-box explanation), c) model-specificity and d)
input modality. Within this categorization, we will focus on local black-box explanations
for image input. Amongst these, a method is considered model-specific if it requires a
particular model architecture or is part of the architecture itself, and model-agnostic if it is
applicable to any network architecture.

The former of these groups consist of algorithms such as (Grad)CAM(++) [Chattopad-
hay et al. 2018; Selvaraju et al. 2017; Zhou et al. 2016], DeconvNet [Noh et al. 2015], or
Attention-gated networks [Schlemper et al. 2019]. Their common idea is to modify the
network architecture in such a way that a successful classification requires a localization
of the object, e. g. by predicting additional maps which are used to mask the pre-output
activations. However, these methods typically result in blob-like highlightings, which were
shown to not neccessarily reflect the relevant image structures [Chattopadhay et al. 2018;
Schlemper et al. 2019]. With PAWS and DINO, Assran et al. [2021] and Caron et al. [2021]
have impressively shown that a combination of multiple attention layers in fact can lead to
an impressive explanatory performance. However, both were trained with datasets of sizes
far beyond typical data amounts in medical imaging scenarios.

Similarly, a variety of model-agnostic approaches has been proposed, comprising
methods such as LRP [Bach et al. 2015], DeepLIFT [Shrikumar et al. 2017], DeepTaylor
[Montavon et al. 2017], and SHAP [Lundberg et al. 2017]. As pointed out by Lundberg et al.
[2017], these methods utilize a common mechanism called additive feature attribution,
starting with a fixed amount of decision relevance at the model output, and splitting it by
layer-wise propagation through the model until the input layer is reached. As each of the
methods comprises different relevance splitting constraints, they may result in different
visualization qualities, with user studies indicating the most intuitive results for DeepSHAP,
a deep learning-inspired approximation of SHAP [Lundberg et al. 2017]. Notably, all
these methods precisely follow the weights of the network. As a result of this, the image
quality might become poor and noisy if the classifier was trained on only a few data (cf.
[Adebayo et al. 2018; Kim et al. 2019]). Furthermore, the approaches were shown to
behave sensitively against minor input modifications and adversarial attacks [Ghorbani
et al. 2019; Kindermans et al. 2019]. Other approaches from this domain include LIME
[Ribeiro et al. 2016], Anchors [Ribeiro et al. 2018] and LORE [Guidotti et al. 2018], which
employ local proxy models for which the adequacy for the problem and data at hand is not
guaranteed (cf. [Li et al. 2020]).

Notably, there has been recent research in the field of “visual analytics”, such as
the work from Pezzotti et al. [2017] and Choo et al. [2018]. Visual analytics can be
understood as a framework for network design and processing understanding. Visual
analytics especially targets network designers, allowing them to visually inspect the
activity within the model by depicting network flow, latent space embeddings, samples
of highest activation, convolutional filters, or gradients, and aim to make the training
process better understandable. Additionally, with the work from Ming et al. [2018] an
approach exists that targets the derivation of understandable rules from a fully trained
model through an interactive process, yielding a highly-intuitive ruleset, which can then
further be used as an understandable and easily comprehensible model itself. Each of these
frameworks, however, requires active user interaction and, in turn, cannot readily be used
as an out-of-the-box explanation approach.
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A last relevant group can be considered a sub-group of model-agnostic methods but
differs in that way that it employs an inversion of the problem by creating (semi-)synthetic
images, which both highlight the relevant regions, simultaneously trying to maximize
image realism and quality, as well as align to the given input image. A first approach into
this direction was activation maximization (AM), which maximized class activations by an
optimization on the input image [Erhan et al. 2009; Simonyan et al. 2013]. As AM tends
to create unrealistic images, later approaches such as the work from Nguyen et al. [2016],
Liu et al. [2019] and Singla et al. [2019] have combined AM with generative adversarial
networks (GANs, [Goodfellow et al. 2020]) to improve image realism, but were trained on
significantly larger datasets for achieving a good explanatory quality.

Thus, while recent work has given an enormous impetus to the field of explainable
artificial intelligence (XAI), and strongly contributed to the understandability of deep
neural networks, it was not yet possible to satisfactorily address the particular issues which
arise from an application of deep neural networks in medical imaging scenarios.

10.2 Deep Decision Explanation using Cycle-GANs
To specifically address the aforementioned issues, with [Katzmann et al. 2021] a novel
model architecture for deep decision explanation has been proposed, based on a combina-
tion of activation maximization and Cycle-consistent Generative Adversarial Networks
(CycleGANs, [Zhu et al. 2017]), and is capable of visualizing intuitive, high-quality
decision explanations for trained neural classifiers. The following sections will give an
overview of the method, its components, and their interactions. It will show up the benefits
which arise from this combination, and demonstrate its value both quantitatively and
qualitatively. Finally, a thorough discussion on the limitations of the study at hand is given.

10.2.1 Method
The proposed method is fundamentally based on the idea of combining a GAN-based
architecture with AM in order to yield a higher image quality. It thus well aligns with the
aforementioned work from Liu et al. [2019] and Singla et al. [2019], and following the
notion above can be categorized as an image synthesis-based approach. In both mentioned
publications, GANs have been used to improve the result of AM by increasing the image
realism, thus addressing its most relevant shortcoming. GANs, however, tend to produce
low-quality results themselves if trained on only a few data (cf. [Gurumurthy et al. 2017]),
failing to sufficiently address the medical imaging scenario. Thus, as described above,
our method utilizes a derived architecture called CycleGANs. CycleGANs have lately
caught attention for unpaired high-quality image-to-image translations (see Fig. 10.3), a
mechanism which we will make use of in our scenario.

Architecture
As mentioned above, the decision explanation architecture is based on CycleGANs, which
have derived from GANs. Fig. 10.4 (left) depicts the general architecture of a GAN. GANs
work by employing a combination of two neural networks, a generator and a discriminator,
which are trained alternately. The generator is trained to create synthetic images of a target
domain X . The discriminator in turn is trained to distinguish fake, i. e. synthesized, from
real images. Both networks are appended in such a way that ultimately the discriminator
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Figure 10.3: CycleGANs are capable of creating high-quality image-domain transfers
using only unpaired image data, as exemplarly shown for conversions between photo and
art, horses and zebras, and summer and winter images, as well as for multiple painting
style transfers. Original source: [Zhu et al. 2017] © 2017 IEEE

yields a gradient for the generator to optimize the synthetic image generation process
towards a higher image realism, resulting in a zero-sum game-like training behavior with
continuously improving image quality. GANs, however, tend to show specific problems
when trained on only small datasets, such as mode collapse1 and catastrophic forgetting2

[Thanh-Tung et al. 2020].
In contrast, CycleGANs are based on a combination of two GANs which are cyclically

connected (see Fig. 10.4, right). Each training step always involves a full cycle through
the network. As a result, each generator/discriminator pair serves as a regularization for
the respective other, using a mechanism called cycle-consistency (see below). As a result,
CycleGANs can be trained on smaller datasets, avoiding the shortcomings of catastrophic
forgetting and mode collapse addressed above, while yielding a reasonable performance.

For the method at hand, the idea is now to train a CycleGAN to generate two slightly
modified versions of the original image, each of them maximizing one of the output class
probabilities of the classifier to be explained (see Fig. 10.5), followed by a visualization of
the difference of these modified images. As will be shown, this difference can be used as a
direct measure of decision relevance, and well-fitting human intuition.

Cycle-consistency
A major benefit of CycleGANs lies in their generator’s behavior to constrain each other,
achieved by enforcing the eponymous cycle-consistency. Assuming generators G+ and G−,
cycle-consistency denotes the property that a subsequent application of both generators on
any given image x∈X should yield the original image, i. e.: G+(G−(x))≈G−(G+(x))≈ x,
which can be reached by introducing an additional loss term. While various choices would

1Mode collapse is defined as being a failure state of the generator network in which it produces one or
only a few different images, so-called modes.

2Catastrophic forgetting denotes a situation in which the quality of the generated solutions becomes
worse in the later training, with the network effectively “forgetting” the previous learning progress.
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Figure 10.4: Left: A visualization of a GAN, transforming random vectors v⃗ into fake
samples using a generator. A discriminator tries to identify fake vs. real samples. The
networks are trained alternately, with the generator improving by using the gradient from
the discriminator with inversed labels. Right: The CycleGAN architecture from [Zhu et al.
2017], consisting of two generator-discriminator-pairs (F,DF),(G,DG). Generators F,G
are trained to mimic samples X ,Y by creating fake samples X ′,Y ′. Analogously, discrimi-
nators DF ,DG are trained to recognize fake samples, effectively leading to generators F,G
realizing a domain transfer between domains X and Y . Source: [Katzmann et al. 2021]
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Figure 10.5: Overview on the architecture of the proposed decision explanation, consisting
of two generator/discriminator pairs, for consistency with their aim being denoted as
(G+,D+) and (G−,D−), each maximizing one of the output class probabilities of the
classifier to be explained C by creating slightly modified versions X+,X− of the original
images X . In contrast to the original CycleGAN approach (see Fig. 10.4), only a single
image domain is used. Notably, the process is fully guided by the response of the classifier
C. No ground truth labels are used at any time. After training, the differences between X+

and X− can be used as a measure of decision relevance. Source: [Katzmann et al. 2021]
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be reasonable for this, in [Katzmann et al. 2021] it was decided to use the multiscale
structural dissimilarity loss from Isola et al. [2017], being an extension of the structural
similarity, which takes into account luminance, contrast and image structure, and thus well
fits human perception [Wang et al. 2003]:

LDSSIM(x,y) = 1−
(2µxµy + c1) · (2σxy + c2)

2 · (µ2
x +µ2

y + c1) · (σ2
x +σ2

y + c2)
, (10.1)

with means µx,µy, standard deviations σx,σy, covariance σxy, stabilizing parameters
ci = (ki ·L)2, k1 = .01, k2 = .03 and a dynamic range parameter of L = 1 as suggested by
the original work. Moreover, an L1-term is added to take into account the average image
intensity, yielding:

Lcycle(x,x′) =
∣∣x− x′

∣∣+LDSSIM(x,x′) (10.2)

Patch-GAN architecture
The architecture of the generators G+ and G− was based on the U-Net from Ronneberger
et al. [2015]. For the discriminators it was decided to use the PatchGAN approach from
[Isola et al. 2017]. PatchGANs differ from normal GANs in the way that the discriminators
do not yield a single binary classification, i. e. real vs. false, as it would result from a
ResNet [He et al. 2016] or ConvNet [LeCun et al. 1989] approach, but that the final
classification layers are “cut off” from the network, with the classification being done per
patch on the 2-dimensional likelihood maps. The full architectures can be found in the
Appendix Fig. B.5 and B.6. Using PatchGAN-generators prevents typical issues of GANs,
such as the aforementioned mode-collapse problem, and especially yields a higher image
quality [Isola et al. 2017].

To distinguish false from real images, the discriminators are trained by applying
patch-wise binary crossentropy, reading:

LCE(y, ŷ) = y · log(ŷ)+(1− y) · log(1− ŷ) (10.3)

with y and ŷ indicating the label whether a sample is real and the discriminator’s estimate
of it, respectively.

Activation Maximization
As pointed out above, the concept is based on the maximization of the output activations of
the classifier C to be explained. To this end, each generator is trained including a loss term
for activation maximization on the classifier. For this, the cross-entropy equation from
above is reused:

LAM(l, l̂) = LCE(l, l̂) (10.4)

with l indicating the class to be maximized by the generator, i. e. l = 1 for G+, and l = 0
for G−, and l̂ being the estimate of the classifier for sample x+/x−. Notably, the ground
truth label of the sample is used at no time. To enforce that changes are only introduced
if needed for modifying the classifier’s class activation, an additional loss term Lsim is
added to the optimization for the generators G+ and G−, following the notion of LDSSIM,
i. e. Lsim(x,G+(x)) for G+ and Lsim(x,G−(x)) for G−.
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Overview
Combining the definitions from above, the loss function reads:

Lgen(xa,xb, l,G+,G−,D+,C) =Lcycle(xa,G−(G+(xa))) + Lsim.(xa,G+(xa)) +

LCE(D+(G+(xa),xb),0) + LAM(l,C(xa))

(10.5)

with images xa,xb ∈ X from classifier image domain X , label l to be maximized by the
generator G+, its discriminator D+, and its counterpart generator G−. Both generator/dis-
criminator pairs are trained alternately, inverting + and − for G−,D−. The process is
repeated until convergence. As pointed out in [Katzmann et al. 2021], this definition trains
the generators to:

1. maximize the class activation of the class assigned to each generator (AM loss) by
introducing only slight changes (similarity loss),

2. generate images which are indistinguishable from real images (discriminator loss),
3. be cycle-consistent (cycle-consistency loss)

10.2.2 Relevancy Visualization
Taking an input image x ∈ X and following the procedure above, the generators G+,G−

create modified images x+,x−, each maximizing one of the classifier output class acti-
vations, by introducing as few changes as possible (cf. similarity loss). We define the
differences between the original and the generated images as:

∆
+ = ∆(G+(x),x), ∆

− = ∆(G−(x),x) (10.6)

in which ∆ denotes a local difference metric, such as pixel-wise L1-difference or patch-
wise structural dissimilarity. The choice of the metric may depend on the problem at hand,
e. g. whether there should be a focus on intensity or structural modifications. The resulting
difference images ∆+,∆− now reflect changes that are needed to maximize the positive
or negative class. Thus, within the given context, they indicate decision relevance for the
respective other class. Now, their difference R as given by:

R = ∆(G−(x),x)−∆(G+(x),x)

= ∆
−−∆

+ (10.7)

fulfills the properties of overall decision relevance: It shows low magnitudes in areas with
few introduced changes, as indicated by ∆+ and ∆−, i. e. being neither decision-relevant
for one nor the other class. Similarly, it shows low magnitudes in areas in which equally
strong modifications would be required to change the class activations of the classifier to
be explained within the given context. In contrast, if a change only has to be introduced to
maximize one of the classes but not the other, this results in high values for R, indicating
decision relevance for the respective other class.

10.3 Experiments
For the evaluation, three different publicly available datasets have been employed, namely
LIDC-IDRI [Armato et al. 2011; Armato III et al. 2015; Clark et al. 2013], BreastMNIST
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[Yang et al. 2021] and CIFAR-10 [Krizhevsky et al. 2009], each representing a different
imaging modality. For multiple classifier architectures, the decision explanation approach
was compared to three state-of-the-art (SoA) algorithms, namely DeepSHAP [Lundberg
et al. 2017], DeepTaylor [Montavon et al. 2017] and LRP [Bach et al. 2015]. For each
of these methods, the publicly available reference implementations from Lundberg et al.
[2017] (DeepSHAP) and Alber et al. [2019] (DeepTaylor, LRP) were used.

The evaluation was done in two steps: First, a quantitative evaluation is conducted,
assessing the performance of the classifier to be explained using various classification met-
rics, and testing whether the introduced model architecture actually modifies the classifier’s
class output probabilities. Secondly, a double-blind, thorough user study is conducted,
comparing the method to the results of the SoA algorithms, and evaluating a total of
9,792 answers, including 34 different participants. Statistical tests were conducted using
two-tailed t-tests with t(N−2), confidence intervals were computed using bootstrapping
[Efron 1987].

10.3.1 Datasets
LIDC-IDRI
For the first study, the well-known LIDC-IDRI dataset has been used, containing a total of
1,018 low-dose lung screening CT images, in combination with a ConvNet as proposed in
Chapter 9. The data was preprocessed according to the protocol from [Nibali et al. 2017],
yielding 772 lung lesion images (348 malignant/423 benign), each being extracted at a
resolution of 64x64 pixels representing a 45x45 mm window centered around the lesion.
A 70/30 split was used, dividing the data into 537 samples (236/301) for training and
validation, and 135 samples (112/123) for testing.

BreastMNIST
The second study was conducted on the BreastMNIST dataset, containing 780 breast
ultrasound images with or without malignant lesions. The predefined train/test splits were
used, resulting in 624 samples for training and validation (456 malignant/168 benign) and
156 samples for testing (114/42). The images were nearest neighbor-padded to 32x32
pixels. As a classifier, the ResNet reference implementation from [Chollet et al. 2015] was
used.

CIFAR-10
Finally, the CIFAR-10 dataset is used to show that the method can also be applied to large
RGB imaging datasets. The dataset consists of 50,000 training samples of 32x32 pixel
patches from 10 classes (5,000 per class) and an additional test set of 10,000 images (1,000
per class). As the method is restricted to binary classification tasks, the two most difficult
one-vs.-one tasks were identified, being cat-vs.-dog and car-vs.-truck (cf. [Katzmann et al.
2021] for more details). For the classification, we used the EfficientNet-B0 implementation
from Yakubovskiy [2020] which is based on the work from Tan et al. [2019], and fine-tuned
it on the CIFAR-10 dataset.

10.3.2 Quantiative Evaluation
First, each classifier was assessed to ensure a sufficiently high classification performance.
Therefore, a variety of metrics was evaluated, comprising accuracy, sensitivity, specificity,
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positive and negative predictive value (PPV/NPV), informedness, markedness, Matthews
correlation coefficient (MCC), and the area under the curve (AUC)3. Secondly, it was
evaluated whether an application of the method actually leads to modified class output
probabilities for each classifier. Therefore, the class activation shift was assessed for each
classifier with samples G−(x), x and G+(x).

10.3.3 User Study
In the user study, the method was double-blindly compared to the three SoA approaches
(see Sec. 10.3). For each dataset, 24 samples (12 positive/12 negative) were randomly
drawn from the data, and the classifier decisions were visualized by each method. The
different explanations were shuffled by a computer program so that no identification of
the generating method was possible. The resulting questionnaire was given to multiple
participants (8/6/9/11 for LIDC-IDRI, CIFAR-10 trucks-vs.-cars, CIFAR-10 cats-vs.-dogs,
and BreastMNIST). For the medical imaging datasets, it was ensured that each participant
had working experience with medical imaging data (6.5 years on average). All participants
were asked to evaluate three criteria for each sample and method, namely:

a) intuitive validity (“Does it look reasonable at first glance?”)
b) semantic meaningfulness (“Does it make sense with respect to the image context?”)
c) image quality (“Does it look good?”)

yielding 288 questions per questionnaire. Each criterion was assessed by assigning an
integral score between -4 and 4. After collecting and reordering using the above-mentioned
computer program, the scores were analyzed both raw as well as z-normalized for each
sample and criterion (see 10.3.4). Further, the inter-observer reliability was assessed using
pairwise Pearson correlation (cf. Appendix C). Finally, the factor structure of the criteria
was analyzed using principal component analysis.

10.3.4 Results
Classifier performance
The quantitative evaluation demonstrated a reasonable classification performance for each
of the tasks and classifiers. For the medical imaging datasets, the overall accuracy was
at .809/.802 for the LIDC-IDRI and BreastMNIST datasets, respectively. The MCC and
AUC values were at .617/.809 for LIDC-IDRI, and at .453/.822 for the BreastMNIST
classifiers, respectively (see Tab. 10.1). The CIFAR-10 classifiers, based on the EfficientNet
architecture, expectedly performed even better, yielding a 10-class MCC of .956, and binary
MCCs of .874 and .960 for the cats-vs.-dogs and cars-vs.-trucks subsets, respectively
(Tab. 10.2). Thus, all classifiers provided a reasonable performance for training the
proposed decision explanation framework.

Domain transfer
After training the architecture, it was assessed whether it successfully realize a domain
transfer as was theoretically assumed. As discussed in [Katzmann et al. 2021], this
assessment yielded positive results:

3All metrics are described in detail in Appendix C
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LIDC-IDRI BreastMNIST

Accuracy .809 [.757,.860] .802 [.737,.859]
F1 .801 [.737,.856] .871 [.824,.913]

Sensitivity .813 [.737,.884] .921 [.869,.966]
Specificity .805 [.729,.866] .477 [.326,.629]

PPV .790 [.715,.861] .827 [.760,.890]
NPV .826 [.757,.894] .690 [.515,.851]

Informedness .618 [.514,.719] .398 [.239,.557]
Markedness .616 [.511,.718] .517 [.329,.691]

MCC .617 [.511,.718] .453 [.285,.607]
AUC .809 [.757,.860] .822 [.740,.895]

Table 10.1: Classification performance on test set for malignancy classification networks
on LIDC-IDRI and BreastMNIST with 95 % CI. Source: [Katzmann et al. 2021]

CIFAR-10 Cats-vs.-Dogs Trucks-vs.-Cars

Accuracy .960 [.959,.963] .937 [.926,.947] .980 [.974,.985]
F1 .937 [.926,.947] .979 [.974,.985]

Sensitivity .943 [.929,.957] .970 [.959,.980]
Specificity .931 [.914,.946] .988 [.983,.994]

PPV .932 [.917,.947] .988 [.982,.994]
NPV .942 [.927,.957] .971 [.960,.980]

Informedness .874 [.853,.895] .959 [.948,.970]
Markedness .874 [.852,.894] .960 [.948,.970]

MCC .956 [.954,.959] .874 [.853,.894] .960 [.948,.970]
AUC .978 [.977,.979] .987 [.984,.991] .997 [.995,.999]

Table 10.2: Test set performance on CIFAR-10 (overall) as well as on the cats-vs.-dogs
and trucks-vs.-cars subsets. For the overall set, binary metrics have been omitted. For the
subsets, the first class was encoded as positive. Source: [Katzmann et al. 2021]
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Intuitivity Semantics Quality

LIDC-IDRI

Ours 2.84 [ 1.50, 3.98] 2.78 [ 1.39, 4.10] 2.04 [ 0.50, 3.41]
DeepSHAP -0.64* [-2.00, 0.86] -0.52* [-1.97, 1.05] -1.02* [-2.12, 0.16]
DeepTaylor -0.60* [-2.16, 1.10] -0.71* [-2.23, 1.00] 0.14 [-1.32, 1.57]

LRP -1.61** [-2.72,-0.33] -1.55** [-2.73,-0.11] -1.16* [-2.24,-0.02]

BreastMNIST

Ours 1.66 [ 0.65, 2.57] 1.67 [ 0.63, 2.62] 1.76 [ 0.70, 2.71]
DeepSHAP -1.56** [-2.63, 0.39] -1.62** [-2.70,-0.43] -1.38** [-2.47,-0.20]
DeepTaylor 1.11 [-0.26, 2.37] 1.24 [-0.12, 2.49] 0.78 [-0.53, 1.99]

LRP -1.21** [-2.33, 0.02] -1.29** [-2.41,-0.07] -1.15** [-2.29, 0.04]

CIFAR-10 - cats-vs.-dogs

Ours 0.83 [-0.47, 2.03] 0.85 [-0.58, 2.13] 0.08 [-1.18, 1.36]
DeepSHAP -1.25 [-2.60, 0.16] -1.35 [-2.71, 0.07] -0.03 [-1.83, 1.69]
DeepTaylor 2.07 [ 0.75, 3.12] 2.29 [ 0.96, 3.32] 0.90 [-0.58, 2.28]

LRP -1.65* [-2.88,-0.32] -1.79* [-3.07,-0.36] -0.95 [-2.39, 0.48]

CIFAR-10 - cars-vs.-trucks

Ours 1.10 [-0.28, 2.30] 1.55 [ 0.33, 2.54] 0.77 [-0.67, 2.10]
DeepSHAP -1.64* [-3.30, 0.18] -1.91* [-3.54,-0.04] -1.22* [-3.01, 0.67]
DeepTaylor 2.58 [ 1.25, 3.58] 2.76 [ 1.53, 3.60] 2.03 [ 0.31, 3.51]

LRP -2.05* [-3.65,-0.18] -2.40** [-3.78,-0.72] -1.58* [-3.27, 0.30]

Table 10.3: Average z-adjusted questionnaire results (higher is better) per algorithm on the
LIDC-IDRI, BreastMNIST and CIFAR-10 cats-vs.-dogs and cars-vs.-trucks datasets with
95 % CI. p-values for two-tailed t-test are indicated as p < .05*, p < .01**, p < .001***.
The best result is marked bold. Modified tables based on [Katzmann et al. 2021]. The full
tables are found in the Appendix B.5–B.6.

For the LIDC-IDRI dataset, the average malignancy rating was at .470, 95 % CI
[.418,.522] on the original data x. After the positive transfer G+(x) it increased to .820
[.788, .848], and after negative transfer G−(x) it reduced to .289 [.250,.330]. Simi-
larly, for the BreastMNIST dataset, the average malignancy rating changed from .656
[.604,.707] to .871 [.835,.904] and .337 [.294,.383], and for the CIFAR-10 datasets from
.504 [.482,.525]/.491 [.469,.513] before, to .920 [.911/.930]/.863 [.850,.876] after pos-
tive and .152 [.138,.165]/.179 [.165,.194] after negative transfer, for cats-vs-dogs and
cars-vs-trucks, respectively.

By using a paired t-test, each of these transfers was shown to be highly significant
with 10.2 < t(|X |−2)< 33.3, and all p≪ 10−5. Thus, the domain transfer as proposed
in the framework in fact led to a significant maximization of the classifier class output
probabilities.
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User Study
The z-adjusted questionnaire results of the user study can be found in Tab. 10.3. The
detailed results including raw questionnaire results and rank evaluation can be found in
the Appendix Tabs. B.5–B.8. Figs. 10.6–10.8 depict qualitative comparisons between our
method, DeepSHAP, DeepTaylor and LRP for the LIDC-IDRI, CIFAR-10 and BreastM-
NIST datasets, respectively. Notably, on both medical imaging datasets the approach
outperformed the SoA approaches, clearly yielding the highest z-adjusted (and raw, see
Appendix) scores. It ranked best across all tested criteria with average ranks of 1.28, 1.36,
and 1.52 for intuitive validity, semantical meaningfulness, and image quality, respectively,
on the LIDC-IDRI, and 1.75, 1.77, and 1.64 on the BreastMNIST dataset (cf. Appendix
Tabs. B.5–B.6). For the significantly larger CIFAR-10 datasets, leading to a better-adapted
classifier, however, the DeepTaylor algorithm was superior (n.s.), with the presented
algorithm placing second.

The inter-observer reliabilities on the medical datasets were in the range .386≤ ρ ≤
.639, implying a fair to substantial agreement (cf. [Landis et al. 1977]). For the CIFAR-
10 subsets, although the reliabilities for intuitivity and semantic meaningfulness were
in the range .61− .85, they were unexpectedly low for image quality with .09− .20,
forming two clusters with one preferring color overlays and the other preferring rather
parsimonious explanations. Depending on the dataset, the criteria showed correlations
between r = .51− .90 (cf. Appendix Fig. B.1), with the strongest correlations forming
between intuitive validity and semantic meaningfulness. Using PCA, it was thus possible
to extract an overall preferability-factor Φ which accounted for 77-88 % of the observed
variance (Fig. 10.9), showing a comparable structure across all datasets and highlighting
the importance of each of the measured criteria.

10.4 Discussion
As discussed in previous chapters, visualizing network decisions is a crucial step toward
a clinical application of deep neural networks, as it allows both the clinician as well as
the developer to gain insight into the strategies and shortcomings of trained networks. As
was successfully reproduced with the study at hand, previous methods already perform
reasonably well when applied to classifiers that were trained on large and comprehensive
datasets. Similarly, it could be shown that SoA methods fail to provide a reasonable
explanation if data is scarce or if the decision process contains more ambiguities.

In turn, it was possible to demonstrate that an architecture based on cycle-consistent
activation maximization is able to produce decision explanations of much higher quality,
clearly outperforming recent SoA approaches. With this, it is hoped that a significant
contribution towards the understanding of deep learning-based clinical decision support
could be made.

10.4.1 Limitations
First, it should be noted that as a result of the model architecture, a successful deci-
sion explanation requires an evenly successful training of the CycleGAN architecture
behind it. Although CycleGANs are less prone to some of the issues faced with GANs
(cf. Sec. 10.2.1), their training still requires a careful parameterization, and due to their
iterative behavior, their training requires a considerable amount of time. Although in this
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study the CycleGAN architecture was not systematically varied to assess its influence, there
might be scenarios in which other generator architectures could be required to introduce
decision-relevant changes.

Secondly, the method specifically aims for scenarios in which a decision visualization
is needed for classifiers trained on small- to medium-sized imaging datasets. As was shown
on the CIFAR-10 dataset, consisting of 10,000 training samples on both of the conducted
experiments, classifiers that are trained on very large datasets are typically easier to explain
using SoA methods, which in turn, however, often cannot be applied to medical imaging
datasets, as they yield dissatisfying quality.

Finally, an even larger user study would be desirable. While the results contained
nearly 10,000 answers and many of the comparisons yielded significant results despite
the low number of degrees of freedom, a user study with a significantly larger amount of
participants, especially when conducted in a radiological setting, would clearly help to
further improve the method. Future studies should especially cover unguided assessments
in which the alignment of decision-relevant regions as defined by the classifier, as well as
decision-relevant image positions as manually set by a radiologist is compared.

10.5 Conclusion
Clinical decision support using deep neural networks requires new ways of decision
explanation. While large and publicly available datasets are accessible for typical image
vision tasks, medical imaging data is typically sparse and underlies strict regulations. As a
result, classifiers which are trained on medical imaging data are often not satisfactorily
explainable by SoA decision explanation methods.

As was shown in this chapter, CycleGANs can successfully be used as an effective
method for medical decision explanation, yielding results that outperform various SoA
methods in terms of intutivity, semantic meaningfulness, and image quality, to the best of
knowledge being the first method to employ such a combination. Notably, the method does
not require any specific classifier architecture, and thus serves as a black-box explanation
module, which can easily be combined with any other of the approaches presented within
this work. With decision explanation being a highly-relevant step towards the application
of deep learning-based clinical decision support in the daily routine, this architecture in
the future may thus contribute to improved patient healthcare.
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LIDC-IDRI BreastMNIST Cats-vs.-Dogs Trucks-vs.-Cars

Φ coefficients

Intuitivity .358 .341 .356 .340
Semantics .367 .343 .377 .357

Quality .274 .316 .267 .303

Figure 10.9: Histogram of preferability (bars) and kernel density estimation (line) by
algorithm across images, as measured by extracting a general factor Φ using PCA on the
LIDC-IDRI (top-left), BreastMNIST (top-right), Cats-vs.-Dogs (bottom-left) and Trucks-
vs.-Cars (bottom-right) dataset, accounting for 84.6/86.5/76.6/88.0 % of the observed
variance, respectively. The table, showing the factor load, demonstrates a similar factor
structure for each dataset. Source: [Katzmann et al. 2021]
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11. Summary & Critical Evaluation

In the beginning, it was pointed out that deep learning is on its way to becoming an indis-
pensable tool for clinical decision support and medical image analysis. It has demonstrated
highly promising results in a variety of subdomains, sometimes even surpassing human
gold-standard assessment (cf. Part I). Mainly arising from its data-driven nature, the use of
deep learning has major obstacles which necessarily have to be overcome for achieving
this goal. Next to its rather low comprehensibility, the data available for training deep
approaches sustainably remains an issue, typically being sparse and often containing a
relevant degree of data or label noise, which in turn results in practical implications for
result quality and trainability. This work particularly addressed these issues, proposing
methods for clinical decision support settled in the field of oncology. While being specifi-
cally tailored to this application, it was further demonstrated that these methods provide
value beyond this scenario. Still, however, some open issues remain. Thus, the following
chapter will briefly summarize the scientific contributions of this thesis, and relate them to
the clinical requirements.

11.1 Outcome Prediction in Oncology
In Chapter 5, 6 and 7 methods for predicting lesion growth and patient survival in an
oncological environment were discussed. The achieved results clearly indicate that the
quantitative disease information gathered by using a combination of deep learning and
radiological imaging data can be a highly promising source of additional information, and
provides incremental value beyond size- or volume-based assessment, as it is currently
used in clinical practice, as well as radiomics-based assessment. It has thus the potential
to significantly enhance the clinical capabilities towards a quantitative, early assessment,
reducing the risk of mistreatment, leading to higher efficiency, and improving overall
healthcare quality.

Each of the presented methods, however, also has particular limitations. While these
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have been discussed in more detail in the respective chapters already, this part will identify
the key points to be addressed in future research.

First, while successfully addressing the issue of data sparsity, none of the approaches
in Chapters 5–7 have addressed the issues of low transparency and comprehensibility for
the treating practitioner, which arise from using deep-learning-based algorithms. While
the results on lesion growth and one-year survival prediction clearly outperformed state-of-
the-art (SoA) approaches, such as radiomics-based assessment, the latter has a clear benefit
by being better comprehensible and easier to explain, being crucial factors in a clinical
application. In fact, the algorithm’s low comprehensibility can restrict the application of
these approaches to scenarios with a fine-granular cross-check, or serving as a cross-check
themselves, and to some degree limits possibilities for a transition into clinical practice.
Their combination with methods for confidence estimation (cf. Chapter 8), or decision
explanation (cf. Chapter 10) might therefore be highly beneficial in future applications.

Secondly, it has to be noted that patient survival prediction from radiological imaging
data remains a rather difficult field, as patient survival is dependent on a variety of variables,
such as age, gender, and comorbidities. Additionally, even lifestyle changes within therapy
can lead to an increased or decreased survival expectancy (cf. [Parsons et al. 2010; Zutphen
et al. 2017]). Notably, these factors can only partly be quantified using radiological imaging
data, as was exemplarily shown by the insufficient results for continuous patient survival
estimation in Chapter 7. Therefore, while such a prediction might be of highest clinical
interest for the purpose of risk stratification and therapy adaption, a prediction of patient
survival which is accurate to the day would require a wide range of additional modalities,
will generally be unlikely within the near future, and even if possible would be highly
debatable, as it goes hand-in-hand with a variety of ethical questions. This has impressively
become clear by the widespread media attention in reaction to the work of Avati et al.
[2017], which tried to predict patient mortality within the next 3-12 months for proactively
reaching out to patients for palliative care [Mukherjee 2018]. In fact, it is reasonable to
request that any approach for survival estimation has to be embedded into a workflow that
ensures that estimates will always and only be used for the very best of the patient’s health.
This especially means that while such an algorithm might be used to compute the concrete
risk of a given case, this information should never be used for deciding about access to
medical care.

As this work has focused on the shape and textural lesion features, it did not take
into account the multiplicity of lesions and their spatial distribution. In fact, the spatial
distribution, i. e. dispersion, does contain valuable information for the disease outcome,
as has exemplarily been shown in [Mühlberg et al. 2021a]. Future work should analyze a
combination of both sources of information.

It has to be noted that the work proposed herein has primarily been evaluated in the
field of oncological CT image classification, and so far is specific to it. However, the
methods are expected to be easily transferable to different modalities, such as MRI or
PET, as well as lesion types, e. g. renal or hepatocellular carcinomas. It would be highly
desirable if this would be specifically addressed by future studies.

The algorithms presented within this work have served as a prototypical framework for
outcome prediction as part of the BMBF1 project “PANTHER”. For a clinical application
beyond this implementation, however, a significantly larger amount of data as well as a

1“Bildungsministerium für Bildung und Forschung”, engl. Federal Ministry of Education and Research



11.2 Meta-Methods and Decision-Explanation 117

thorough clinical evaluation is required and should be aimed for in the near future.
Finally, this work has focussed on radiological imaging data, thus aiming to assess

the information which can be found within an image. In clinical practice, however, an
interdisciplinary approach is crucial in order to achieve the best treatment response. Future
work should thus additionally take into account the multimodality of clinical sources of
information, as well as the interaction with other clinical practitioners.

11.2 Meta-Methods and Decision-Explanation
While Part III has focussed on the successful application of deep learning for clinical
decision support, in contrast, Part IV specifically addressed the issues which arise from this
application, proposing methods particularly aiming for an improvement of classification
performance as well as human comprehensibility, and being applicable when trained on
medical imaging datasets, i. e. small datasets containing label noise and label imbalance
(cf. Chapter 1.1).

First, providing a measure of classifier confidence is clinically highly important. It
allows practitioners to interpret results according to their degree of confidence in a more
targeted manner, and thus is a key criterion for clinical decision making and resulting
treatment quality, as it allows an assessment of the algorithmic reliability. For this, a
method has been proposed, based on a SoA algorithm, which not only provides an estimate
of classifier confidence but can further be used for an improved training efficiency, yielding
higher test-time performances. While both are beneficial for the final application, it should
be noted that the approach alone cannot satisfactorily address all comprehensibility issues,
as it only allows for a very limited view into the reasons for potential inconfidence.

To contend with this more specifically, further, a method for decision explanation has
been proposed, aiming for a visualization of the network’s understanding of an image, and
outperforming recent SoA approaches when applied to two medical imaging datasets. In
contrast to recent approaches, the network also provides reasonable explanations when
only a few data are available, as this is often the case with medical imaging data. Although
providing the best results in this scenario, it should be noted that even with this approach,
however, the criteria in the user study had average raw values between 1.04 and 1.92 on
a scale of -4 to 4, meaning that there is still considerable room for improvement. Future
work should therefore even more focus on better comprehensibility for deep learning-based
clinical decision support, as it is a key criterion for the transition into a clinical workflow.
It is hoped that the approach presented herein can serve as a basis for this work.

Finally, data efficiency remains a topic of highest interest within the community.
In Chapter 9 multiple methods for data efficiency enhancement have been proposed,
each of them fundamentally based on the bootstrapping methodology from Efron [1979].
Although it was possible to clearly demonstrate the benefits of these architectures in few
data scenarios, it should be noted that with increasing dataset sizes the incremental value of
these methods diminishes. They are thus a temporary toolbox for the successful application
of deep learning-based techniques for medical imaging data. Ultimately, however, the
solution to superior clinical assessment lies in large and publicly available databases,
providing the potential to reliably identify even rare medical conditions, and allowing the
whole community to work together towards better healthcare for everyone.





12. Outlook

It was possible within this work to demonstrate a variety of applications for deep neural
networks in clinical decision support. Including algorithms for lesion growth and patient
survival prediction, the work presented within this thesis is among the first to use deep
learning for computer-aided disease assessment in metastatic colorectal cancer patients.
With the contributions to data efficiency and classifier comprehensibility enhancement, it
addressed key factors for a translation of deep learning into clinical practice.

Still, clinical outcome prediction is at its very beginning, and likely future successes
will clearly outperform current solutions. For now, clinical decision support will mainly
serve as a cross-check, helping to prioritize cases, reduce the risk of mistreatment, and to
accelerate everyday clinical tasks, leading to better availability of high-quality treatment
for many patients. Fully-automated computer-aided diagnosis, however, will for now stay a
topic of the future, and likely will be until its performance nearly exceptionless outperforms
gold-standard human assessment. Next to the very practical reasons, such as legal liability,
there are notable ethical and sociological reasons for this, as was discussed earlier in this
work. Using a trade-off, such as the clinician-in-the-loop strategy [Tang et al. 2020], might
help to overcome obstacles on this course. However, inevitably future research will, even
more, have to focus on specific fields, some of which are briefly outlined in the following:

1. Comprehensibility - Future methods should even better explain classifier decisions.
This especially may include a verbal description of decision processes in an interac-
tive question-answer scheme, but also utilizing other means, such as the input-space
visualizations presented in this work.

2. Out-of-distribution (OOD) detection - As the work from Goodfellow et al. [2014]
impressively demonstrated, OOD samples, whether mistakenly or viciously intro-
duced, can have a devastating influence on deep learning-based algorithms, with
highly relevant implications for the medical imaging domain [Finlayson et al. 2019],
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although recent research has identified ways to partly combat these issue (cf. [De-
Vries et al. 2018; Madry et al. 2018]). However, OOD errors do not align with
human intuition. They are thus unexpected and may lead to serious consequences.
Reliability in these scenarios, therefore, is of highest importance for clinical accep-
tance, creating a need for future research to address this issue more thoroughly.

3. Data availability - As pointed out above, finally, data availability is key for high-
quality clinical decision support algorithms. As for now the lack of large and publicly
available datasets should be addressed, to this end future research will have to find
ways to allow for continuous learning through automated data-mining in a fully-
integrated IT landscape, while preserving data privacy and security when training on
highly-sensitive patient data. A key technology towards this aim will be Federated
Learning [Rieke et al. 2020].

Within the near future, highly dynamic progress in the field of medical image analysis
is to be expected. With the work presented in this thesis, some of the major obstacles on
the way there have been addressed, and may hopefully be used by future work, aiming
toward even better treatment and globally improved patient healthcare.
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A. Additional Background

Anatomical Orientations

Figure A.1: The figure shows the anatomical planes and direction terms, most notably
depicting the transversal (or axial), saggital and coronal planes, which are typically used
to described image orientations in CT images. Source: [Edoarado 2021]
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Computed Tomography Imaging
A short overview of the process of computed tomography imaging was already given
in Chapter 2. Revisiting the figure from the beginning (see Fig. A.2) the process in the
following will be described in some more detail.

In order to create a computed tomography image, the patient is slowly moved through
a tube, containing a ring construction which is commonly denoted as gantry. The gantry
holds both the X-ray source and detectors. Source and detectors are exactly opposed to
each other, in order for the radiation to pass the human body before hitting the detectors.
When passing the human body, the radiation is attenuated, depending on the characteristics
of the crossed tissue. This attenuation can be measured on the opposite side by the
detectors, if slice-wise concatenated yielding a so-called sinogram. The sinograms are
collected over the scanning process, and can finally be transformed, i. e. reconstructed,
into a volume by using an image transformation called Radon transform [TOFT 1996],
which is related to the Fourier transformation. More specifically, in practice commonly an
inverse transformation is used called filtered backprojection [Brooks et al. 1975]. Lately,
other techniques, such as the iterative reconstruction [Willemink et al. 2013a,b] have been
employed. Modern CT-scanners can acquire multiple slices at once (e. g. up to 384 with
a Siemens SOMATOM Force) and achieve up to 4 full rotations a second [Healthineers
2021].

Figure A.2: This figure shows the basic concept of CT imaging. The patient is slowly
moved through a gantry, holding X-ray source and detectors, being opposed to each other.
The gantry is revolving around the patient, yielding linewise attenuation curves which
are concatenated to a sinogram, which can finally be transformed into a volumetric array,
i. e. the final CT image, by using an image reconstruction technique. Source: [FDA 2018]



B. Tables & Figures

In the following, additional tables and figures are depicted which are not necessarily needed
for the understanding of the work, but which may give interesting additional information
to the work presented. At multiple points within this work, it is referred to these figures if
adequate.
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type filter size strides regularization output # params

in BN 2×256×256×1

conv3d 2×1×1 1×1×1 BN 256×256×32 224

conv2d 5×5 1×1 BN 256×256×32 25760
pool 4×4 4×4 — 64×64×32

conv2d 5×5 1×1 BN 64×64×48 38640
pool 4×4 4×4 — 16×16×48

conv2d 3×3 1×1 BN 16×16×64 27968
pool 2×2 2×2 — 8×8×64

conv2d 3×3 1×1 BN 8×8×96 55776
pool 2×2 2×2 — 4×4×96

conv2d 3×3 1×1 BN 4×4×128 111232
flatten (2048)
dense (20) L1+BN (20) 41060
dense (2048) BN (2048) 51200

reshape (2048) — 4×4×128
dconv2d 3×3 1×1 BN 4×4×96 111072

up 2×2 1×1 — 8×8×96
dconv2d 3×3 1×1 BN 8×8×64 55616

up 2×2 1×1 — 16×16×64
dconv2d 3×3 1×1 BN 16×16×48 27888

up 4×4 1×1 — 64×64×48
dconv2d 5×5 1×1 BN 64×64×32 38560

up 4×4 1×1 — 256×256×32
dconv2d 5×5 1×1 BN 256×256×32 25760
dconv3d 2×1×1 1×1×1 BN 2×256×256×1 69

Table B.1: Network architecture of the sparse convolutional autoencoder used for pretrain-
ing the liver lesion growth predictor from [Katzmann et al. 2018b] which was used in
Chapter 5. The table is based on the original work from [Katzmann et al. 2018b].
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type filter size strides regularization output # params

in 2×256×256×1

conv3d 2×1×1 1×1×1 BN 256×256×32 224

conv2d 5×5 1×1 BN 256×256×32 25760
pool 4×4 4×4 — 64×64×32

conv2d 5×5 1×1 BN 64×64×48 38640
pool 4×4 4×4 — 16×16×48

conv2d 3×3 1×1 BN 16×16×64 27968
pool 2×2 2×2 — 8×8×64

conv2d 3×3 1×1 BN 8×8×96 55776
pool 2×2 2×2 — 4×4×96

conv2d 3×3 1×1 BN 4×4×128 111232
flat (2048)
fc (20) L1+BN (20) 41060

dense (8) BN (8) 200
dense (2) — (2) 18

Table B.2: Predictor network architecture from [Katzmann et al. 2018b] used for liver
lesion growth prediction in Chapter 5. Notably, all layers before the final dense layers are
shared with the sparse autoencoder (see Tab. B.1). As dense layers tend to easily overfit,
both are dimensioned with very few neurons, enforcing a latent space seperation in the
convolutional layers. The table is based on the original work from [Katzmann et al. 2018b].
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type filters stride regularization output # parameters

input – – BN 2x64x64x1 0

lambda – – BN

0:
64x64x1
1:
64x64x1

0

2x

conv 5x5 1x1 BN 64x64x32 960
pool 2x2 2x2 – 32x32x32 –
conv 5x5 1x1 BN 32x32x48 38640
pool 2x2 2x2 – 16x16x48 –
conv 3x3 1x1 BN 16x16x64 27968
pool 2x2 2x2 – 8x8x64 –
conv 3x3 1x1 BN 8x8x96 55776
pool 2x2 2x2 – 4x4x96 –
conv 3x3 1x1 BN 4x4x128 111232

reshape – – – 4096 –
dense – – BN 20 82020

2x

dense – – BN 2048 51200
reshape – – – 4x4x128 –
deconv 3x3 1x1 BN 4x4x96 111072

up 2x2 2x2 – 8x8x96 –
deconv 3x3 1x1 BN 8x8x64 55616

up 2x2 2x2 – 16x16x64 –
deconv 3x3 1x1 BN 16x16x48 27888

up 2x2 2x2 – 32x32x48 –
deconv 5x5 1x1 BN 32x32x32 38560

up 2x2 2x2 – 64x64x32 –
deconv 5x5 1x1 BN 64x64x1 932

out – – – 2x64x64x1 –

Table B.3: Network architecture of the used sparse convolutional autoencoder in Chapter
6 which was used for lesion growth and patient survival prediction. In contrast to the
architecture from [Katzmann et al. 2018b], the network uses two separate processing lanes
for baseline and followup images (cf. Tab. B.1). The table is based on the original work
from [Katzmann et al. 2018a].
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type filters stride regularization output # parameters

input – – BN 2x64x64x1 0

lambda – – BN

0:
64x64x1
1:
64x64x1

0

2x

conv 5x5 1x1 BN 64x64x32 960
pool 2x2 2x2 – 32x32x32 –
conv 5x5 1x1 BN 32x32x48 38640
pool 2x2 2x2 – 16x16x48 –
conv 3x3 1x1 BN 16x16x64 27968
pool 2x2 2x2 – 8x8x64 –
conv 3x3 1x1 BN 8x8x96 55776
pool 2x2 2x2 – 4x4x96 –
conv 3x3 1x1 BN 4x4x128 111232

reshape – – – 4096 –
dense – – BN 20 82020
dense – – BN 8 200

softmax – – – 2 18

Table B.4: Predictor network architecture for prediction lesion growth and patient survival
as presented in Chapter 6 based on the sparse convolutional autoencoder which was
described in Tab. B.3. The table based on the original work from [Katzmann et al. 2018a].
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Intuitivity Semantics Quality

Questionnaire results (raw)

Ours 1.92 [ 0.50, 3.13] 1.76 [ 0.25, 3.13] 1.04 [-0.63, 2.50]
DeepSHAP -1.56* [-3.13, 0.13] -1.54* [-3.13, 0.25] -2.02* [-3.25,-0.63]
DeepTaylor -1.52* [-3.25, 0.38] -1.72* [-3.38, 0.13] -0.85 [-2.50, 0.75]

LRP -2.53** [-3.63,-1.25] -2.57** [-3.75,-1.13] -2.16* [-3.38,-0.75]

Questionnaire results (z-adjusted)

Ours 2.84 [ 1.50, 3.98] 2.78 [ 1.39, 4.10] 2.04 [ 0.50, 3.41]
DeepSHAP -0.64* [-2.00, 0.86] -0.52* [-1.97, 1.05] -1.02* [-2.12, 0.16]
DeepTaylor -0.60* [-2.16, 1.10] -0.71* [-2.23, 1.00] 0.14 [-1.32, 1.57]

LRP -1.61** [-2.72,-0.33] -1.55** [-2.73,-0.11] -1.16* [-2.24,-0.02]

Average rank

Ours 1.28 [1.00,1.75] 1.36 [1.00,1.88] 1.52 [1.06,2.19]
DeepSHAP 2.78** [2.19,3.38] 2.75* [2.13,3.31] 3.04* [2.50,3.50]
DeepTaylor 2.71* [2.06,3.31] 2.75* [2.06,3.38] 2.36 [1.75,3.00]

LRP 3.23*** [2.75,3.63] 3.14** [2.63,3.56] 3.07* [2.50,3.56]

Table B.5: Average questionnaire results (higher is better) and rank (lower is better)
per algorithm on the LIDC-IDRI dataset from Chapter 10 with 95 % CI. p-values for
two-tailed t-test with t(6) are indicated as p < .05*, p < .01**, p < .001***. The best
result is marked bold. Source: [Katzmann et al. 2021]
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Intuitivity Semantics Quality

Questionnaire results (raw)

Ours 1.45 [ 0.36, 2.45] 1.33 [ 0.27, 2.36] 1.72 [ 0.64, 2.64]
DeepSHAP -1.77** [-2.82,-0.64] -1.95** [-3.00,-0.82] -1.42** [-2.55,-0.27]
DeepTaylor 0.91 [-0.55, 2.18] 0.90 [-0.55, 2.18] 0.75 [-0.64, 2.00]

LRP -1.41** [-2.55,-0.18] -1.63** [-2.73,-0.45] -1.19** [-2.36, 0.00]

Questionnaire results (z-adjusted)

Ours 1.66 [ 0.65, 2.57] 1.67 [ 0.63, 2.62] 1.76 [ 0.70, 2.71]
DeepSHAP -1.56** [-2.63, 0.39] -1.62** [-2.70,-0.43] -1.38** [-2.47,-0.20]
DeepTaylor 1.11 [-0.26, 2.37] 1.24 [-0.12, 2.49] 0.78 [-0.53, 1.99]

LRP -1.21** [-2.33, 0.02] -1.29** [-2.41,-0.07] -1.15** [-2.29, 0.04]

Average rank

Ours 1.75 [1.36,2.23] 1.77 [1.32,2.32] 1.64 [1.23,2.14]
DeepSHAP 3.26** [2.82,3.64] 3.23** [2.77,3.64] 3.12** [2.59,3.59]
DeepTaylor 1.99 [1.41,2.64] 1.99 [1.45,2.64] 2.27 [1.73,2.86]

LRP 3.00** [2.45,3.45] 3.02* [2.50,3.45] 2.97* [2.36,3.50]

Table B.6: Average questionnaire results (higher is better) and rank (lower is better) per
algorithm on the BreastMNIST dataset from Chapter 10 with 95 % CI. p-values for two-
tailed t-test with t(6) are indicated as p < .05*, p < .01**. The best result is marked bold.
Source: [Katzmann et al. 2021]
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Intuitivity Semantics Quality

Questionnaire results (raw)

Ours 0.67 [-0.67, 1.89] 0.72 [-0.78, 2.11] -0.12 [-1.44, 1.22]
DeepSHAP -1.41 [-2.78, 0.00] -1.48 [-2.89, 0.00] -0.23 [-2.00, 1.44]
DeepTaylor 1.91 [ 0.56, 3.00] 2.16 [ 0.78, 3.22] 0.70 [-0.78, 2.11]

LRP -1.81* [-3.00,-0.44] -1.91* [-3.22,-0.44] -1.45 [-2.56, 0.33]

Questionnaire results (z-adjusted)

Ours 0.83 [-0.47, 2.03] 0.85 [-0.58, 2.13] 0.08 [-1.18, 1.36]
DeepSHAP -1.25 [-2.60, 0.16] -1.35 [-2.71, 0.07] -0.03 [-1.83, 1.69]
DeepTaylor 2.07 [ 0.75, 3.12] 2.29 [ 0.96, 3.32] 0.90 [-0.58, 2.28]

LRP -1.65* [-2.88,-0.32] -1.79* [-3.07,-0.36] -0.95 [-2.39, 0.48]

Average rank

Ours 2.13 [1.61,2.72] 2.15 [1.61,2.72] 2.61 [1.94,3.27]
DeepSHAP 3.04 [2.50,3.50] 3.06 [2.50,3.56] 2.30 [1.61,3.00]
DeepTaylor 1.52 [1.06,2.17] 1.50 [1.06,2.11] 2.16 [1.50,2.89]

LRP 3.30* [2.83,3.72] 3.29* [2.78,3.67] 2.92 [2.39,3.44]

Table B.7: Average questionnaire results (higher is better) and rank (lower is better) per
algorithm on the CIFAR-10 cats-vs.-dogs dataset from Chapter 10 with 95 % CI. p-values
for two-tailed t-test with t(7) are indicated as p < .05*. The best result is marked bold.
Source: [Katzmann et al. 2021]
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Intuitivity Semantics Quality

Questionnaire results (raw)

Ours 0.95 [-0.67, 2.33] 1.49 [ 0.00, 2.67] 0.49 [-1.00, 1.83]
DeepSHAP -1.78* [-3.33, 0.00] -1.97* [-3.50,-0.17] -1.51 [-3.33, 0.33]
DeepTaylor 2.43 [ 0.66, 3.50] 2.70 [ 1.17, 3.67] 1.75 [-0.17, 3.33]

LRP -2.20* [-3.66,-0.33] -2.46** [-3.83,-0.83] -1.87 [-3.50,-0.00]

Questionnaire results (z-adjusted)

Ours 1.10 [-0.28, 2.30] 1.55 [ 0.33, 2.54] 0.77 [-0.67, 2.10]
DeepSHAP -1.64* [-3.30, 0.18] -1.91* [-3.54,-0.04] -1.22* [-3.01, 0.67]
DeepTaylor 2.58 [ 1.25, 3.58] 2.76 [ 1.53, 3.60] 2.03 [ 0.31, 3.51]

LRP -2.05* [-3.65,-0.18] -2.40** [-3.78,-0.72] -1.58* [-3.27, 0.30]

Average rank

Ours 2.12 [1.67,2.67] 1.94 [1.58,2.33] 2.39 [1.75,3.08]
DeepSHAP 3.16 [2.67,3.58] 3.24* [2.75,3.58] 2.83 [2.00,3.50]
DeepTaylor 1.32 [1.00,2.00] 1.31 [1.00,1.92] 1.72 [1.08,2.50]

LRP 3.40* [2.83,3.83] 3.51** [3.17,3.83] 3.05 [2.33,3.67]

Table B.8: Average questionnaire results per algorithm (higher is better) and rank (lower is
better) on the CIFAR-10 trucks-vs.-cars dataset from Chapter 10 with 95 % CI. p-values
for two-tailed t-test with t(4) are indicated as p < .05*, p < .01**. The best result is
marked bold. Source: [Katzmann et al. 2021]
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Figure B.1: Dendrogram of the pairwise Pearson correlation matrices for the analyzed
criteria on the LIDC-IDRI (top-left), BreastMNIST (top-right), cats-vs.-dogs (bottom-left)
and trucks-vs.-cars (bottom-right) datasets in Chapter 10. Source: [Katzmann et al. 2021]
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Figure B.2: Raw results on the CIFAR-10 dataset for the classifier ensemble evaluated in
Chapter 9.2.5 with respect to (f.l.t.r.) accuracy, recall, inverse recall (top), informedness,
markedness, matthews correlation coefficient (middle), AUC, Pearson product-moment
and Spearman correlation (bottom).
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Figure B.3: Raw results on the CIFAR-10 dataset for the BTNet evaluated in Chapter 9.2.5
with respect to (f.l.t.r.) accuracy, recall, inverse recall (top), informedness, markedness,
matthews correlation coefficient (middle), AUC, Pearson product-moment and Spearman
correlation (bottom).
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Figure B.4: Dendrogram showing the results of the bootstrapped and non-bootstrapped
classifiers from Chapter 9.2.4 on medical (LIDC-IDRI, BreastMNIST, PneumoniaMNIST,
ChestMNIST) and non-medical (CIFAR-10, its subsets, and CIFAR-100) imaging datasets
with respect to the Matthews correlation coefficient (MCC). Results are z-normalized per
dataset to account for varying dataset difficulty. Original values are annotated per cell.
As shown by the linkage, BTNet and DRF, both being bootstrapped ensembling methods,
follow a similar pattern across all datasets. Similarly, all residual approaches are linked
together, with the strongest similarities between the Shake-Shake and ShakeDrop as well
as the BPS and plain ResNet approach. PneumoniaMNIST and ChestMNIST, both being
low-quality, high sample amount
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Figure B.5: Generator architecture used for the cycle-consistent deep decision explanation
from Chapter 10 based on the UNet architecture from Ronneberger et al. [2015]. Source:
[Katzmann et al. 2021]
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Figure B.6: Discriminator architecture used for the cycle-consistent deep decision expla-
nation from Chapter 10 based on the UNet architecture from Ronneberger et al. [2015]
(cf. Fig. B.5) and the PatchGAN approach from [Isola et al. 2017]. Source: [Katzmann
et al. 2021]





C. Metrics & Measures

Throughout this work, a variety of algorithms has been introduced and quantitatively
evaluated. As partly different goals have to be achieved by the proposed architectures, a
variety of evaluation measures has been employed. These will briefly be discussed within
this part.

Binary Classification Metrics
An overview of all used classification metrics within this work is found in Tab. C.1. First,
it should be noted that the meaning of a value for one specific metric can largely depend on
the context. Accuracy, for example, is a widely used metric that provides a highly intuitive
understanding. It is, however, highly prone to misinterpretations due to label imbalance,
and thus only applicable to balanced datasets. This similarly applies to other widely used
metrics, such as sensitivity (true positive rate), specificity (true negative rate), positive,
and negative predictive value (precision/inverse precision). As pointed out multiple times
within this thesis, medical imaging data often have highly unequal label distributions
(cf. Chapters 5 and 6), creating a need for using balanced measures if possible.

One of these measures is the F1 coefficient (see Tab. C.1), also known as Sørensen-Dice
or Dice-similarity coefficient. A major downside, however, is that it does not take into
account the number of true negatives, giving equal weight to precision and recall. First,
depending on the concrete use case, this weighting is highly debatable (cf. [Hand et al.
2018]). Secondly, in nearly all of the application scenarios assessed within this work,
e. g. lesion growth prediction, the true negative class is in fact highly important. Finally,
it should be noted, that the formula of the F1 makes it prone to changes in the problem
definition (e. g. prediction of growth vs. prediction of non-growth formulated as being the
positive class).

The concrete class weight in a clinical setting is mostly problem-dependent and is
related to the costs and/or acceptance problems resulting from false positives and negatives,
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respectively. As a trade-off, one could suggest using balanced metrics where possible, such
as informedness, markedness, or the Matthews correlation coefficient (MCC). Especially
the latter has a variety of benefits, as it combines the former two, is zero-centered, and has
an intuitive interpretation, which is that a value of zero corresponds to guessing, while a
value of one corresponds to a perfect correlation1.

Measure Equation

true positive rate,
sensitivity, recall T PR = t p

t p+ f n

true negative rate,
specifity,
inverse recall

T NR = tn
tn+ f p

positive predictive value,
precision PPV = t p

t p+ f p

negative predictive value,
inverse precision NPV = tn

tn+ f n

F1 score F1 =
2·t p

2·t p+ f p+ f n

Informedness
Youden’s J statistic

IFD = T PR+T NR−1

Markedness MKD = PPV +NPV −1

Matthews correlation
coefficient/φ -coefficient MCC =

√
IFD ·MKD

Table C.1: Overview on the classification metrics which are used within this work. The
variables t p, tn, f p, f n represent the numbers of true positives, true negatives, false posi-
tives and false negatives given predictions and ground truth labels in a binary classification
problem.

Non-binary Classification, Micro and Macro Averaging
In case of non-binary classification problems, binary metrics can be applied if the mul-
ticlass properties of the problem are explicitely taken into account. To achieve this, two
possible ways are the use of micro- and macro-averaging. The basic idea of both is to
binarize the problem and to apply the metrics accordingly. The main difference is the point
of aggregation. More specifically, assuming a metric m which takes true positives t p, true
negatives tn, false positives f p, and false negatives f n, applying macro averaging corre-
sponds to first class-wise counting t pc, tnc, f pc, f nc and then to subsequently calculate mc

1In fact, as the so-called φ -coefficient the Matthews correlation coefficient is widely used in statistics and
for binary classification reduces to the Pearson’s product-moment correlation coefficient.
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for each class c ∈C with

mc = m(t pc, tnc, f pc, f nc) (C.1)

and deriving the final metric value mmacro as:

mmacro =
1
|C|

C

∑
c

mc (C.2)

Micro-averaging follows a similar approach, but aggregates at the counting level
(i. e. micro), rather than averaging after calculating the metrics (macro), i. e.:

mmicro = m(
C

∑
c

t pc,
C

∑
c

tnc,
C

∑
c

f pc,
C

∑
c

f nc) (C.3)

Generally, both options are valid but are somewhat different in their interpretation.
While macro averaging provides a better overview of the accuracy for each class, it is
more prone to outliers, e. g. classes that are very well or only poorly recognized. Micro
averaging, on the other hand, better takes care of the number of samples in each class, as
aggregation is applied only once. It is thus less prone to outliers and can be applied to
imbalanced data without creating misleading results. It is, however, less applicable when
the distributions between the evaluation and the final application differ, as it can happen
when stratifying training or validation data. It is thus important that the used averaging is
explicitly denoted for multiclass problems.

Regressive Evaluation Metrics
Pearson correlation coefficient
The Pearson correlation coefficient2 r is a measure of the linear dependency of two
variables. It can take values in the interval [−1,1], with -1 representing a perfect negative,
and +1 a perfect positive correlation, respectively. No (linear) correlation is given if the
coefficient is 0. It is calculated as:

r(X ,Y ) =
cov(X ,Y )

σX σY
=

E[(X−E[X ])(Y −E[Y ])]√
E[(X−E[X ])2]E[(Y −E[Y ])2]

(C.4)

i. e. for two vectors x,y as:

r(x,y) =
∑i(xi− x)(yi− y)√

∑i(xi− x)2 ∑i(yi− y)2
(C.5)

Spearman’s rank correlation coefficient
Spearman’s rank correlation coefficient rs (or ρ) is defined analogously to the Pearson
correlation coefficient, but uses the rank transformations R(x),R(y) of the variables x,y:

rs = r(R(x),R(y)) =
cov(R(c),R(py))

σR(c)σR(py)
(C.6)

2The Pearson, or rarely Bravais-Pearson correlation coefficient, is named after Karl Pearson and Auguste
Bravais. Its first use dates back to at least 1844 [Bravais 1844].
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Mean squared / Mean absolute / Median absolute error
Assuming ground truth samples y and predictions ŷ, the mean squared error is given by:

MSE =
1
N

N

∑
1
||y−ŷi| |2 (C.7)

with N = |Y | being the number of samples. The mean absolute error is constructed
analogously as

MAE =
1
N

N

∑
1
|yi− ŷi|=

1
N

ei (C.8)

Finally, the median absolute error MedAE is the median ẽ.
While there are a variety of metrics that are much more common for regression, such

as the R2 measure, these were not relevant with respect to the work at hand, as regression
was mainly conducted as a side-topic of survival regression.

Survival Metrics
For survival estimation, such as in Chapter 7, the most commonly used evaluation metric
is Harrel’s concordance index (CI, or C-index) CI, which is calculated by counting con-
cordant and discordant pairs of survival estimates. Concordance denotes the correctness
of the order of the estimated survival times with respect to the ground truth. Assuming
estimated survival times Ŷ = {ŷ1, ..., ŷN} and ground truth data Y = {y1, ...,yN} the CI can
be calculated as:

CI =
∑i̸= j |{(i, j)|(yi < y j)∧ (ŷi < ŷ j)}|

∑i ̸= j |{(i, j)|(yi < y j)}|
(C.9)

More intuitively, it represents the fraction of concordant pairs, i. e. pairs that have the
same time order in both the predicted as well as the ground truth data, and takes into
account each of these possible pairings (Ti,Tj). A major downside of the C-index is that it
only takes into account time order, but not absolute times. It is thus an ordinal measure and
does not give any information beyond this scale level. If exemplarily an algorithm would
predict the double survival times for each patient, the resulting CI would be unchanged as
long as the order is kept. This would even then be the case if the time differences between
the patients would be completely arbitrary, being the main reason for the downsides of the
Cox proportional hazards model (cf. Chapter 7).

Of course, regression metrics, such as the mean (MAE) or median absolute error
(MedAE), can be applied to the problem of survival estimation as with standard regression.

Area under the AUC
A major downside of Harrel’s C-index is that it only takes into account relative order.
While it is therefore practical for risk stratification, i. e. by answering which patient has
the higher survival in direct comparison, it does not allow the assessment of the absolute
prediction quality over time. The area under the AUC (AUAUC), analogously to the AUC,
binarizes the problem at each timepoint {yi, ŷi} for ground truth and estimated survival
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times Y,Ŷ , respectively. All patients k are assigned a temporary label yk and a temporary,
binary prediction ŷk for each time step as:

yk,i =

{
1 Tk ≥ yi
0 else (C.10)

ˆyk,i =

{
1 ŷk ≥ yi
0 else (C.11)

This temporary prediction can now be used to calculate an AUC for each timestep. Finally,
an integral over the resulting curve can numerically be calculated, e. g. using trapezoid or
Simpon’s rule. This integral is then normalized by the range (ymax−ymin), yielding a value
which, analogously to the original AUC, is in the range [0,1] ∈ R.

Distributional inequality
Gini coefficient
Several times within this work, a measure for distributional inequality was needed, e. g. for
the quantification of the confidence estimation quality in Chapter 8 and the split calculation
in Chapter 9. For this purpose, the use of the Gini coefficient is widely common. The
Gini coefficient takes values in the range [0,1] ∈ R, with a value of 0 indicating an equal
distribution and a value of 1 indicating a distribution in which all but one bin have a
probability of zero with this one bin having a probability of one. As already described in
Eq. 8.9, the Gini coefficient for a discrete probability distribution p can be calculated as:

∑
m
i ∑

m
k |pi− pk|

2n∑
m
i pi

(C.12)
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{\Large{Abstract}}~\\\vspace{1em}\newline
Over the last decades, medical imaging methods, such as computed tomography (CT), have become an indispensable tool of modern medicine, allowing for a fast, non-invasive inspection of organs and tissue. Thus, the amount of acquired healthcare data has rapidly grown, increased 15-fold within the last years, and accounts for more than 30\,\% of the world's generated data volume. In contrast, the number of trained radiologists remains largely stable. Thus, medical image analysis, settled between medicine and engineering, has become a rapidly growing research field. Its successful application may result in remarkable time savings and lead to a significantly improved diagnostic performance. Many of the work within medical image analysis focuses on radiomics, i.\,e.~the extraction and analysis of hand-crafted imaging features. Radiomics, however, has been shown to be highly sensitive to external factors, such as the acquisition protocol, having major implications for reproducibility and clinical applicability.

Lately, deep learning has become one of the most employed methods for solving computational problems. With successful applications in diverse fields, such as robotics, physics, mathematics, and economy, deep learning has revolutionized the process of machine learning research. Having large amounts of training data is a key criterion for its successful application. These data, however, are rare within medicine, as medical imaging is subject to a variety of data security and data privacy regulations. Moreover, medical imaging data often suffer from heterogeneous quality, label imbalance, and label noise, rendering a considerable fraction of deep learning-based algorithms inapplicable.

Settled in the field of CT oncology, this work addresses these issues, showing up ways to successfully handle medical imaging data using deep learning. It proposes novel methods for clinically relevant tasks, such as lesion growth and patient survival prediction, confidence estimation, meta-learning and classifier ensembling, and finally deep decision explanation, yielding superior performance in comparison to state-of-the-art approaches, and being applicable to a wide variety of applications. With this, the work contributes towards a clinical translation of deep learning-based algorithms, aiming for an improved diagnosis, and ultimately overall improved patient healthcare.
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{\Large{Zusammenfassung}}~\\\vspace{1em}\newline
In den letzten Jahrzehnten sind medizinische Bildgebungsverfahren wie die Computertomographie (CT) zu einem unersetzbaren Werkzeug moderner Medizin geworden, welche eine zeitnahe, nicht-invasive Begutachtung von Organen und Geweben ermöglichen. Die Menge an anfallenden Daten ist dabei rapide gestiegen, allein innerhalb der letzten Jahre um den Faktor 15, und aktuell verantwortlich für 30\,\% des weltweiten Datenvolumens. Die Anzahl ausgebildeter Radiologen ist weitestgehend stabil, wodurch die medizinische Bildanalyse, angesiedelt zwischen Medizin und Ingenieurwissenschaften, zu einem schnell wachsenden Feld geworden ist. Eine erfolgreiche Anwendung verspricht Zeitersparnisse, und kann zu einer höheren diagnostischen Qualität beitragen. Viele Arbeiten fokussieren sich auf "Radiomics", die Extraktion und Analyse von manuell konstruierten Features. Diese sind jedoch anfällig gegenüber externen Faktoren wie dem Bildgebungsprotokoll, woraus Implikationen für Reproduzierbarkeit und klinische Anwendbarkeit resultieren.

In jüngster Zeit sind Methoden des ``Deep Learning'' zu einer häufig verwendeten Lösung algorithmischer Problemstellungen geworden. Durch Anwendungen in Bereichen wie Robotik, Physik, Mathematik und Wirtschaft, wurde die Forschung im Bereich maschinellen Lernens wesentlich verändert. Ein Kriterium für den Erfolg stellt die Verfügbarkeit großer Datenmengen dar. Diese sind im medizinischen Bereich rar, da die Bilddaten strengen Anforderungen bezüglich Datenschutz und Datensicherheit unterliegen, und oft heterogene Qualität, sowie ungleichmäßige oder fehlerhafte Annotationen aufweisen, wodurch ein bedeutender Teil der Methoden keine Anwendung finden kann.

Angesiedelt im Bereich onkologischer Bildgebung zeigt diese Arbeit Wege zur erfolgreichen Nutzung von Deep Learning für medizinische Bilddaten auf. Mittels neuer Methoden für klinisch relevante Anwendungen wie die Schätzung von Läsionswachtum, Überleben, und Entscheidungkonfidenz, sowie Meta-Learning, Klassifikator-Ensembling, und Entscheidungsvisualisierung, werden Wege zur Verbesserungen gegenüber State-of-the-Art-Algorithmen aufgezeigt, welche ein breites Anwendungsfeld haben. Hierdurch leistet die Arbeit einen wesentlichen Beitrag in Richtung einer klinischen Anwendung von Deep Learning, zielt auf eine verbesserte Diagnose, und damit letztlich eine verbesserte Gesundheitsversorgung insgesamt.
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\section*{A Preface To Be Carefully Read}
\textit{
	The following dissertation analyses the application of artificial intelligence
	and deep learning to medical image analysis and clinical decision support. Within the last years, artificial intelligence for clinical decision support has been a topic of steadily growing research interest. The applications range from lung cancer analysis, over cardiac and stroke assessment. This work is therefore dedicated to an assessment of the current state of knowledge on this area.}

\vspace{-.8em}
\subsection*{Background / Context}
\vspace{-.3em}
\textit{Artificial agents play an important role in many areas such as medical images
	and health (i.e. healthcare) [1], information retrieval or diagnosis [2]. However, it remains unclear which problems are best solved by such applications [3]. The reason behind the lack of good solutions lies primarily with computational
	complexity: it is difficult to find algorithms that can tackle many real-world
	problems successfully [4]--with the notable exception of medical image evaluation
	[5]. In the case of medical image processing, there exist only a handful of robust
	methods used within the field [6]. Most of these methods have proven effective
	in the past but still fall far short of what would be needed for efficient use
	in practical tasks [7].
}


\textit{
	It was found that the problem could be overcome through new approaches to statistical learning, based on deep neural networks. With these methods, the system learns to distinguish various classes (e.\,g.~brain lesions or tumors) by building models of individual features from sparse and sparsely labeled data sets. These ``feature architectures'' can then give an approximate representation of
	the target feature space via deep feedforward circuits without training.
}

\textit{
	Because it does not require extensive preprocessing of images, these models
	do not require additional memory for intermediate values between the image and
	previous ones and thus do not require more computational power compared to existing
	techniques. Another benefit is that while classification systems require extensive
	memory for small datasets, deep networks also scale up well to large datasets. The author developed several systems under different optimization parameters using various learning algorithms. As the number of training examples grows, these models converge at an adequate level of performance. These results suggest that deep learning is a promising tool for biomedical
	imaging classification.
}
%~\newline
\vspace{.5em}~\newline
--\\
\textbf{The above lines have been written by the Generative Pre-trained Transformer architecture GPT-2} \cite{radford2019language}, including paragraphing and references. GPT-2\index{Model architectures!GPT-2} is a natural language processing model for text generation and prediction. It was given the beginning of the first paragraph and continued with a well-structured text demonstrating a profound knowledge of the subject as well as scientific writing. Obviously, this is an impressive example of what current artificial intelligence\footnote{The used model \emph{only} had 1.5 billion parameters, with its successor GPT-3 already having 175 billion (117x) and the currently largest model Wu Dao 2.0 being at 1.75 trillion parameters (1,167x).} is already able to achieve, leading us to the highly important question of how this potential can be leveraged for improving human life. While within the scope of this thesis it will not be possible to fully fathom out every single aspect, this work aims for giving at least a part of the answer to this highly important and valuable question by focussing on the subfield of \emph{medical image analysis}.
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\chapter{Introduction}
\label{Chapter_Introduction}

Deep Learning has become one of the most employed methods for solving computational problems of any kind. At the latest with the high-profile successes in image recognition \cite{krizhevsky2012imagenet}, Computer Chess and Computer Go \cite{silver2016mastering, silver2017mastering, silver2018general}, convolutional neural networks have become a topic of steadily growing interest and were applied to a variety of applications, including complex board \cite{anthony2020learning} and video games \cite{torrado2018deep}, face recognition \cite{sun2015deepid3}, person detection \cite{eisenbach2016cooperative} and re-identification \cite{ahmed2015improved}, e-commerce \cite{shankar2017deep}, fluid dynamic simulation \cite{wang2020towards}, and even exoplanet \cite{shallue2018identifying} \& galaxy discovery \cite{gonzalez2018galaxy} as well as planetary defense \cite{nvidiaplanetary}. %https://www.in.tum.de/cg/teaching/winter-term-1819/deep-learning-in-physics/
%https://www.google.com/search?q=deep+learning+planetary+defense&rlz=1C1GCEA_enDE868DE868&oq=deep+learning+planetary+defense&aqs=chrome..69i57.3694j0j4&sourceid=chrome&ie=UTF-8 https://conferences.oreilly.com/strata/strata-ca-2018/public/schedule/detail/63437
While some approaches are mostly academic, deep learning \emph{is applied} to a number of very interesting daily, as well as highly specialized engineering environments. It is employed for automated solutions in fields previously considered \emph{non-automatable}, thus steadily redefining this term \cite{rao2018deep,santos2021artificial,jumper2021highly}.

This work aims to shed some light on recent applications of machine learning\index{Machine learning} in one of the most challenging, while interesting, fields of application. While known to be traditionally conservative\footnote{Medicine requires high standards for the introduction of new methods. E.\,g.~is any kind of human trial, including the use of automated decision systems for diagnosis, internationally subject to a variety of highly-strict regulations. The Helsinki declaration, the ethical codex of the World Medical Association (WMA), explicitly demands to not do any medical research with humans in case of non-predictable risks or unsure benefits. \cite{10.1001/jama.2013.281053}}, in recent years deep learning has evenly found its way into this domain. Thankfully, it is a field that can strongly benefit from it, while creating a significant and highly valuable contribution to human wellbeing. With a special focus on exemplary applications, this work aims to demonstrate some of the most outstanding opportunities of \textbf{Deep Learning in Medical Image Analysis}. 

\section{Motivation}
\label{Introduction_Introduction_Overview}

Medical image analysis has become one of the most rapidly growing fields in medicine. Medical imaging allows the practitioner to inspect organs and tissue, i.\,e.~the inner workings of the body, while simultaneously being only minimally invasive. Over the last century, medical imaging has become an indispensable tool in modern medicine. The amount of acquired healthcare data\index{Healthcare data} has grown from 153 exabytes in 2013 to 2,314 exabytes by 2020, i.\,e.~15-fold (\cite{statistamedicaldatagrowth}, cf. Chapter \ref{Clinical_Workflow}), currently being responsible for around 30\,\% of the world's generated data volume, and having an estimated annual growth of 36\,\% \parencite{rbccapitalmarketsdatasharehealthcare}. Simultaneously, the number of trained radiologists who are needed for clinical interpretation has remained largely stable. As a result of this imbalance, medical image analysis has become more and more important for the automation of the clinical reading process, specifically taking care of simple and repetitive tasks, which in turn allows the radiologist to focus on the assessment of clinical manifestations which are less simple to automate.

As was shown by \textcite{cowan2013measuring}, the median reading times for abdominal computed tomography scans, although typically containing multiple hundreds of image slices, currently lie as low as only 14 minutes, including the creation of a clinical reading report. 25\,\% of all clinical pelvis/abdomen scans are read and reported in less than only 9 minutes\footnote{Assuming a slice thickness of 1\,mm over a range of approximately 50\,cm, this is equal to the assessment of around one full image per second, not including the time for reporting.}.
As is demonstrated by these low turnaround times, an automated case preparation by the means of medical image analysis, e.\,g.~by segmenting clinically relevant findings, highlighting suspicious image regions, or even triaging cases by urgency, can significantly help radiologists to save valuable time, resulting in lower error rates, higher throughput and ultimately improved patient healthcare. % cite da gab es die studie, die zeigte, dass beides zusammen am besten funktioniert!

With the rise of increasing computational capabilities, the role of medical image analysis in clinical assessment has become significantly larger and is now involved in many clinical imaging tasks. Still, most clinical decision support software is based on static algorithms, using the fixed parameterizations which proved to be valuable during their implementation and evaluation process.

In contrast, this work will emphasize the role and potential of data-driven clinical decision support using deep neural networks (\textbf{DNNs}). Using purely data-driven approaches, such as deep neural networks, allows for a variety of highly interesting advantages, taking into account the current technological developments, such as the continuous capability of using steadily growing data pools, scalability with respect to the available hardware, a known tolerance against missing and incomplete data in case of sufficiently large datasets, and finally: the possibility of learning problems \textit{without any need for hand-crafted problem engineering} \parencite{shen2017deep}.\index{Hand-crafted feature design}

Unfortunately, medical imaging data is often sparse due to data privacy, data security, and regulatory issues. Thus, due to the enormous amount of model parameters in data-driven approaches, many of the above-mentioned advantages do only partly apply, or can even turn around, which may ultimately lead to an unknown result quality. This is especially true if classes are irregularly (\textbf{label imbalance}\index{Label imbalance})\index{Label imbalance} or only weakly (\textbf{small data}\index{Small data}) \index{Small data}represented, or if the provided labels are sparse or contain errors (\textbf{label noise}\index{Label noise}). Although medical imaging datasets often suffer from these problems, the outstanding prospects of a clinical application clearly overweigh. This work will therefore specifically address these issues and will aim to show up ways for researchers to handle typical issues with medical imaging data. Moreover, it will present approaches for confidence estimation\index{Confidence estimation} and decision explanation\index{Decision explanation}, being integral components for a translation into clinical practice. Although a concluding analysis of all possible approaches would be far beyond the scope of this work, this thesis will aim to highlight the outstanding importance of the field, as well as its potential for improving the wellbeing of millions of people all over the world, encouraging current and future researchers to engage in exploring and illuminating this highly important topic.

\section{Outline}
This work is structured in five parts (I--V), each of them tackling a specific segment of the above-mentioned points. While each part will illuminate the general topic from a different perspective, they are organized in such a way that it is possible to read each of them independently, and refer to each other where adequate:\\

\begin{itemize}
	
	\item \textbf{Part \ref{Part_Introduction}} will be a general introduction into the topic. It will give an overview, point out the innovative contributions\index{Innovative contributions} of this thesis, and lists the relevant work that was published during its creation, and which was fundamental for the contents of this thesis.\\
	
	\item \textbf{Part \ref{Part_TheoreticalFundament}} dives into the concrete field of application. It specifically gives an introduction to relevant clinical terms in the field of CT oncology and the clinical workflow, as well as an outline of the field of classical radiomics based on multivariate statistics, and the application of deep neural networks to medical imaging.\\
	
	\item \textbf{Parts \ref{Part_OncologicImageClassification}--\ref{Part_MetaMethodsAndDecisionExplanation}} cover the methodological contributions of this thesis and thus will be the main part of this work (see Fig. \ref{Fig:Introduction_GeneralStructure} for an outline of the discussed applications within this thesis).\\
	
	\begin{itemize}
		\item More specifically, \textbf{Part \ref{Part_OncologicImageClassification}} introduces algorithms for lesion growth and one-year survival prediction\index{One-year survival}, as well as a novel architecture for deep survival regression\index{Survival regression}. All algorithms are analyzed and discussed thoroughly regarding performance, limitations, and applicability in a clinical environment.\\
		
		\item \textbf{Part \ref{Part_MetaMethodsAndDecisionExplanation}} will tackle the specific issues which arise from an application of deep learning on medical imaging data, such as the few data and unknown-certainty issues which were briefly discussed in the previous section. First, a method for confidence estimation is proposed, which can be used to improve training on small- to medium-sized datasets. Secondly, model ensembling techniques are discussed, resulting in an algorithm for significantly improved performance on small to medium-sized data sets by utilizing ideas from the well-known random forest classifier architecture. Third, a novel approach for decision explanation on medical imaging data is proposed and compared to various state-of-the-art algorithms, showing the superiority of the approach for medical imaging data in comparison to existing methods.\\
	\end{itemize}
	
	\item Finally, \textbf{Part \ref{Part_Conclusion}} contains a critical evaluation of the achievements of this work. In particular, it will be discussed to which extent open issues in current research could successfully be addressed, where it was possible to make a significant contribution, and which issues could not yet be satisfactorily covered, and thus need further investigation. Finally, the ethical implications of an application of neural networks to clinical decision support are examined, aiming to conclude with a preliminary answer to the question of what can be expected in this highly interesting field of research within the near future, and how the work presented in this thesis may actively contribute to it.
\end{itemize}


%\section{General Structure}
\begin{figure}[h!]
	\centering
	%\fbox{\rule[-.5cm]{0cm}{4cm} \rule[-.5cm]{4cm}{0cm}}
	\includegraphics[width=\textwidth]{MainImage/Strukturgrafik.pdf}
	\caption{Overview on the topics of this thesis. First, a variety of deep learning-based methods for clinical decision support is presented (top-right), including methods for lesion growth and patient survival prediction. Subsequently, this work discusses meta-methods and advanced architectures (bottom-right), yielding improved classifier performance as well as relevant additional information in medical imaging scenarios. Finally, this work will present a method for classifier decision explanation (bottom-middle), being a key component towards a better comprehensibility of deep learning-based solutions in clinical decision support.}
	\label{Fig:Introduction_GeneralStructure}
\end{figure}

\newpage\section{Innovative Contributions}
\begin{samepage}
	The main scientific contributions\index{Innovative contributions} of this work comprise:\\\vspace{-.3em}
	\begin{itemize}
		\item A successful application of \textbf{deep learning-based} methods for \textbf{lesion growth and one-year survival prediction} in metastatic colorectal cancer patients, being amongst the first realized solutions within this direction (see Chapters \ref{katzmann2018tumorencode} and \ref{katzmann2018predicting}),
		\item \textbf{A method for non-proportional hazards-based deep survival regression} (Chapter \ref{katzmann2019computed}) building on the results of the previous method,
		\item A successful application of \textbf{confidence estimation of deep image classifiers in medical imaging few-data scenarios}, and a demonstration of how it can be used for curriculum learning\index{Curriculum learning} schedules for improved test time performance (Chapter \ref{katzmann2019deep}),\index{Confidence estimation}
		\item An innovative \textbf{combination of meta-classifier methods and deep neural networks} for efficient classification, regression and survival time estimation in few-data scenarios with enhanced accuracy (Chapter \ref{DeepRandomForests}),
		\item \textbf{A novel method for the high-quality visualization of classifier decisions} in few-data scenarios by using cycle-consistent activation maximization (Chapter \ref{DeepDecisionExplanation}).
	\end{itemize}
\end{samepage}

\vspace{-0.5em}\section{Publications}
\newlist{arrowlist}{itemize}{1}
\setlist[arrowlist]{label=$\Rightarrow$}
Some of the ideas discussed in this work have been presented in international journal and conference contributions, comprising:\\\vspace{-.3em}
\begin{itemize}
	\item \textbf{Katzmann, A., Mühlberg, A., Sühling, M., Nörenberg, D., Holch, J. W., \& Groß, H. M. (2018, July). TumorEncode - Deep Convolutional Autoencoder for Computed Tomography Tumor Treatment Assessment.} In 2018 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.\\
	\begin{arrowlist}\item This paper analyzes the application of deep convolutional autoencoders for liver lesion growth prediction\index{Model architectures!Autoencoder} (Chapter \ref{katzmann2018tumorencode}).\index{Lesion growth prediction}\\ \end{arrowlist}
	%\vspace{.5em} \newline $\rightarrow$ This paper analyzes the application of deep convolutional autoencoders for liver lesion growth prediction (Chapter \ref{katzmann2018tumorencode}).\\
	\item \textbf{Katzmann, A., Muehlberg, A., Sühling, M., Noerenberg, D., Holch, J. W., Heinemann, V., \& Groß, H. M. (2018). Predicting lesion growth and patient survival in colorectal cancer patients using deep neural networks.} In 2018 International Conference on Medical Imaging with Deep Learning.\\
	\begin{arrowlist}\item This publication extends the former ideas to an application for patient overall survival prediction (Chapter \ref{katzmann2018predicting}).\index{Cancer!Colorectal cancer}\\ \end{arrowlist}
	\item \textbf{Katzmann, A., Mühlberg, A., Sühling, M., Nörenberg, D., Maurus, S., Holch, J. W., ... \& Groß, H. M. (2019, October). Computed Tomography Image-Based Deep Survival Regression for Metastatic Colorectal Cancer Using a Non-proportional Hazards Model.} In International Workshop on PRedictive Intelligence In MEdicine (pp. 73-80). Springer, Cham. \\
	\begin{arrowlist}\item Within this paper an implementation of a fully deep convolutional survival estimator is analyzed, which extends on the ideas of the commonly employed Cox proportional hazards model (Chapter \ref{katzmann2019computed}).\\ \end{arrowlist}
	\item \textbf{Katzmann, A., Mühlberg, A., Sühling, M., Nörenberg, D., \& Groß, H. M. (2019, April). Deep Metamemory-A Generic Framework for Stabilized One-Shot Confidence Estimation in Deep Neural Networks and its Application on Colorectal Cancer Liver Metastases Growth Prediction.} In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) (pp. 1298-1302). IEEE.\\
	\begin{arrowlist}\item In this publication an application of confidence estimation in medical imaging scenarios is discussed, demonstrating the potential to be used for curriculum learning-inspired training schedules for improved test time performance (Chapter \ref{katzmann2019deep}).\\ \end{arrowlist}
	\item \textbf{Katzmann, A., Muehlberg, A., Suehling, M., Nörenberg, D., Holch, J. W., \& Gross, H. M. (2020, April). Deep Random Forests for Small Sample Size Prediction with Medical Imaging Data.} In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) (pp. 1543-1547). IEEE.\\\index{Bootstrapping architectures!Deep Random Forests (DRF)}
	\begin{arrowlist}\item Within this publication, a novel meta-training framework for handling small and medium-sized datasets is presented, showing wide applicability across multiple medical imaging scenarios, which is going to be discussed in Chapter \ref{DeepRandomForests}.\\ \end{arrowlist}
	\item \textbf{Katzmann, A., Taubmann, O., Ahmad, S., Mühlberg, A., Sühling, M., \& Groß, H. M. (2021). Explaining clinical decision support systems in medical imaging using cycle-consistent activation maximization.} In Neurocomputing, 458, 141-156.\\
	\begin{arrowlist}\item This paper proposes a novel framework for medical decision explanation based on Cycle-Consistent Activation Maximization, and will be further explained in Chapter \ref{DeepDecisionExplanation}.\\ \end{arrowlist}
\end{itemize}
Clinical evaluations of the above results have been presented at international conferences, including:\\
\begin{itemize}
	\item \textbf{Nörenberg, D., Huber, T., Maurus, S., Jäger, N., Katzmann, A., Mühlberg, A., Moltz, J., Heinemann, V. \& Holch, J.. (2019). Deep learning based radiomics and its usage in prediction for metastatic colorectal cancer.} European Congress on Radiology (ECR) 2019.\\
	\item \textbf{Nörenberg, D., Huber, T., Maurus, S., Kazmierczak, P., Jäger, N., Katzmann, A., Moltz, J., Ricke, J., Heinemann, V. \& Holch, J.. (2018). Deep Learning Based Radiomics and Its Usage in Prediction for Metastatic Colorectal Cancer.} Annual Meeting of the Radiologic Association of North America (RSNA) 2018.\\
\end{itemize}
\newpage \noindent Throughout this work, it was furthermore possible to file patents for some of the implemented systems, including\footnote{Additional patents have been filed for work with relation to this thesis (3 US, 3 EP, and 1 CN), but at the time of this publication have not yet been published.}:\\\vspace{-.4em}
\begin{itemize}
	\item \textbf{Feature-Enhanced Computed Tomography for Deep Learning yielding Quantitative Imaging Biomarkers.} Muehlberg, A., Kaergel, R., Katzmann, A., Suehling, M., EP 3570288, US 2019/0355114. Published: 20.11.2019\\
	\item \textbf{Sparse Lung Nodule Characterization for Differential Diagnosis from CT images.} Katzmann, A., Kratzke, L. Muehlberg, A., Suehling, M., EP 3576020, US 2019-0370969. Published: 04.12.2019\\
	%\item Katzmann, A., Ahmad, S., Muehlberg, A., Suehling, M. (2020) Cycle-consistent Generative Adversarial System for Deep Decision Explanation, European Patent\\
	\item \textbf{Dispersion-based Tumor Analytics System.} Muehlberg, A., Katzmann, A., Durlak, F., Suehling, M., EP 3792871, US 2021/0082569. Published: 17.03.2021\\
	\item \textbf{Geometric Deep Learning-based Whole Tumor Burden Analytics System.} Muehl\-berg, A., Taubman, O., Katzmann, A., Suehling, M., EP 3836157, US 2021/0183514. Published: 16.06.2021\\
\end{itemize}
\vspace{-.4em}While this thesis has a focus on deep learning-based methods for medical image processing, more classical machine learning-based\index{Machine learning} techniques can and have been similarly applied to the medical imaging datasets found in this work. They typically have specific pros and cons, which will be discussed in more detail in Chapter \ref{Chapter_Radiomics}. While these works have strong interconnections with the work discussed in this thesis or do even include parts of it, the contributions below either have a more classical and/or medical, rather than methodological focus than this work and therefore can not be covered in detail within this thesis. Notable work which was created in parallel to this thesis includes:\\\vspace{-.4em}
\begin{itemize}
	\item \textbf{Muehlberg, A., Katzmann, A., Heinemann, V., Kaergel, R., Wels, M., Taubmann, O., ... \& Rémy-Jardin, M. (2020). The Technome - A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research.} Scientific Reports 10(1) (Nature Publishing Group), 1-15.\\
	\begin{arrowlist}
		\item Within this work, a novel system for automated biomarker calibration is presented, taking into account application-specific external factors which are compensated, leading to a higher reproducability\\ 
	\end{arrowlist}% \fullcite{alexander2020technome}
	
	\item \textbf{Mühlberg, A., Holch, J.W., Heinemann, V., Huber, T., Moltz, J., Maurus, S., Jäger, N., Liu, L., Froelich, M.F., Katzmann, A. and Gresser, E., 2021. The relevance of CT-based geometric and radiomics analysis of whole liver tumor burden to predict survival of patients with metastatic colorectal cancer.} European Radiology, 31(2), pp.834-846.\\
	\begin{arrowlist}
		\item This paper proposes new biomarkers and highlights the role of geometric radiomics features for the prediction of patient survival in metastatic colorectal cancer patients.\\
	\end{arrowlist}
	
	\item \textbf{Muehlberg, A., Kaergel, R., Katzmann, A., Suehling, M., et al. (2021) Unraveling the Interplay of Image Formation, Data Representation and Learning in CT-based COPD Phenotyping Automation: The Need for a Meta-Strategy}. Medical Physics\\
	\begin{arrowlist}
		\item Within this paper, state-of-the-art approaches for COPD phenotyping are analyzed and complemented by novel classical, as well as deep learning-guided methods.\\
	\end{arrowlist}	
	% TODO add additionals and ensure this is correct
\end{itemize}
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\label{Chap:Medical}

\textbf{``The science dealing with the preserving of health and with preventing and treating disease or injury''} -- according to the Cambridge Online Dictionary, this definition constitutes a comprehensive specification of the term \emph{medicine} \parencite{cambridgeonlinedictmedicine}. Evidently, if taking this wide definition, there is an overwhelming amount of potential medical applications which could be the subject of a doctoral thesis on medical image analysis. Although none of them can be quantified as more or less important, this work should aim for a clinical scenario that addresses as many people as possible, while having the potential of a large positive impact on their life quality. 

With more than 17 million cases and over 9.5 million deaths per year, cancer\index{Cancer} currently poses the second leading cause of death after cardiovascular diseases, by 2040 is expected to even have a total number of 27.5 million cases and over 16.3 million deaths yearly. In 2018, the estimated years of life lost due to cancer were estimated to be as high as 15.3 years per case, and can cause treatment costs of as high as 150,000 USD per patient, contributing to overall healthcare costs of more than four times the amount of any other common health condition \parencite{accglobalcancerfacts,nihnci,aarptreatmentcosts}.
As clearly demonstrated by these numbers, a successful \emph{early-stage treatment} of cancer would not only result in significant growth in life expectancy and quality of millions of people but could also reduce the consequential health costs by up to hundreds of billions of dollars globally, which in turn would be available for fighting other diseases.

\begin{figure}[h!]
	\centering
	%\fbox{\rule[-.5cm]{0cm}{4cm} \rule[-.5cm]{4cm}{0cm}}
	%\includegraphics[width=.5\textwidth]{MainImage/CT_explained_toreplace.png}
	\includegraphics[width=.4\textwidth]{MainImage/publicDomainCTConcept.png}
	\caption{This figure shows the basic concept of CT imaging. The patient is slowly moved through a ring construction, called \emph{gantry}, holding X-ray source and detectors, being opposed to each other. The gantry, and thus X-ray source and detectors, are revolving around the patient, yielding linewise attenuation curves which are concatenated to a \emph{sinogram}. After collecting multiple sinograms, they can be transformed into a volumetric array, i.\,e.~the final CT image, by using an image reconstruction technique, such as the Radon transform \parencite{toft1996radon}, the filtered backprojection \parencite{brooks1975theory} or the iterative reconstruction \cite{willemink2013iterative1,willemink2013iterative2}. Source: \cite{fdaCTImagingImage}}
	\label{Fig:MedicalBackground_CT_MRI}
\end{figure}

From a medical image analysis perspective, cancer-related diseases are a rather promising target: Most cancer forms are routinely monitored by continious and fine-granular applications of non-invasive imaging techniques, such as ultrasound (US), and magnetic resonance (MRI), or computed tomography (CT) imaging\index{Imaging modalities!Computed tomography (CT)}\index{Imaging modalities!Magnetic resonance (MRI)}\index{Imaging modalities!Ultrasound (US)}. Furthermore, imaging data is routinely archived, and the strongly normed clinical treatment protocols require comprehensive documentation of the treatment process, which in turn can be used as information for the estimation of clinically relevant variables through classification and regression\index{Regression}. Although utilizing a different physical mechanism, and in contrast to US imaging, MRI and CT both yield volumetric images by slice-wise scanning of the patient (cf.~Fig.~\ref{Fig:MedicalBackground_CT_MRI}). If available, volumetric data is generally to be preferred, due to the significantly larger amount of usable information. Amongst these two, computed tomography is particularly promising, as CT images are normed to a common scale called ``Hounsfield Units'', or \textit{HU values}\footnote{Hounsfield units are named after Sir Godfrey Hounsfield who suggested the scale, and who for developing the computed tomography imaging technique together with Allan MacLeod Cormack received a Nobel Prize for Physiology or Medicine. He was later honored as a Commander of the Order of the British Empire (CBE) and a Fellow of the Royal Society (FRS) of London.}. HU values are a measure of radiodensity and are normed in such a way that an HU value of -1000 represents the attenuation of air, and 0 represents the attenuation of distilled water at standard pressure and temperature (i.\,e.~273.15\, K at an absolute pressure of 1\, bar). In contrast to other imaging techniques, such as US or MRI, CT images can thus be interpreted as \emph{absolute}, neglecting the influence of patient position and geometry, measurement apparatus positioning, the imaging device or scanning parameterization, etc., i.\,e.~the \textit{scanning protocol}\footnote{In fact, the scanning protocol \textit{is} important for the finally measured HU values to a relevant degree, as was demonstrated by Muehlberg, Katzmann, et al.~\cite{muhlberg2020technome}. However, especially in comparison to other scanning modalities, such as MRI or US, these variations are rather low, and within a wide range of applications can be neglected.}. While MRI in direct comparison generally provides better soft-tissue contrast, devices are significantly more costly, and thus generally less affordable and available in smaller clinics, rural areas, or emerging and developing countries. US imaging, on the other hand, being rather inexpensive, is subject to strong variations across views, such as beam width, side lobe, reverberation, and comet tail artifacts \cite{feldman2009us}, generally non-quantitative, and thus less suitable for an automated image analysis process. Thus, in the course of this work, CT imaging data is used. However, most of the approaches discussed in this work can likely be transferred to other imaging modalities, too.%TODO Michaels Argumentation, PANTHER project

In the following chapters, various methods will be proposed for a mostly automated clinical decision support, leading to estimates and diagnoses regarding cancer growth, treatment response and recovery chances, and even patient survival expectations. Clearly, these methods are currently far off from an actual clinical application. Next to the ethical implications (see Chapter \ref{Critical_Evaluation}) it would be possible to list a vast variety of reasons for this, but the two most prominent, also being the strongest market barriers, are the unsolved questions of:
\begin{enumerate}[label=(\alph*)]
	\item the consequences of potentially resulting treatment errors, and,
	\item the questions of liability in case of such an event.\\
\end{enumerate}
In clinically approved products, a common way to combat this is to provide multiple proposals, but require the clinician to actively take the final decision, e.\,g.~by choosing specific presentation styles which enforce this. While the automation of non-diagnosis-related tasks, such as simple measurements or contouring, is less strictly regulated and thus can be seen as state of the art already, the legal framework for more sophisticated solutions, slowly follows the state of the art, reflected by the FDA Artificial Intelligence and Machine Learning-based Software as a Medical Device (SaMD) Action Plan \parencite{fda2021aiaction}. However, quality is a highly important factor: There are demonstrated cases of deep learning-based systems clearly outperforming even experienced practitioners, which have consequently received FDA approval \parencite{benjamens2020state}.

It has to be noted that any diagnostic proposal might finally influence the clinician's decision and may thus have the potential of inducing harm to the patient. Within the context of this work therefore \emph{all} evaluations have been conducted on retrospectively acquired data for which an ethical council approval was given in advance.
%Overall, this work will be settled in the field of oncology, most of the algorithms will focus on tumors and lesions\footnote{The term ``lesion'' describes any abnormality within tissue. In contrast to this, the term ``tumor'' describes a histopathologically confirmed genetic mutation. As most of this work discusses radiological findings, i.~e.~without a histopathological confirmation neccessarily available, most of the tiem the term lesion will be used. However, in clinical practice both terms are often used synonymously.}. Generally, the term ``tumor'' describes an uncontrolled growth of tissue forming a localized mass of tissue within the body \footnote{If not forming a centered mass, the term tumor is usually not used. Instead the term neoplasm is to be preferred.}. Tumors can form from various tissues by spontaneous genetic mutation, typically impairing cell functions for programmed cell death, called apoptosis. Based on the type of tissue the tumor has formed of, tumors are categorized into different ``tumor entities'', e.\,g.~hepatocellular carcinoma when evolved from hepatic tissue, lung cancer for lung tissue, etc. Within this work, most of the approaches will focus on non-small-cell lung cancer (see Sec. \ref{Theo_Medical_LungCancer}), as well as colorectal cancer and especially its liver metastases (Sec. \ref{Theo_Medical_ColorectalCancer}). 

\section{Cancer Statistics}
Amongst the various tumor entities, lung and colorectal cancer \index{Cancer!Colorectal cancer}(\textbf{CRC}) are of particular interest, as they are the two leading causes of cancer-related deaths in modern societies. In the U.S. alone, lung and colorectal cancer were responsible for more than 140,000 and 50,000 deaths, respectively, in 2019 only \cite{AmericanCancerSociety}. 
Both, lung and colorectal cancer, tend to show significantly reduced survival rates especially if distant metastases are present. Commonly metastases can be found in the lung, brain, and liver, where they may lead to organ compression, organ failure, and ultimately death \cite{misiakos2011current,holch2017pattern}. Both clinical entities go hand in hand with a significantly reduced patient lifetime, i.\,e.~14.9 and 15.6 years of life lost on average for lung and colorectal cancer, respectively \parencite{nihnci}.

\begin{figure}[h]
	\centering\includegraphics[width=0.45\linewidth]{MainImage/IncidenceLungOverTime.png}\includegraphics[width=0.45\linewidth]{MainImage/PrevalenceColorectalOverTime.png}
	\caption{\textbf{Left:} Incidence of lung cancer per 100,000 inhabitants for man, women and both over time, averaged over 175 countries for which data was available. As can be clearly seen, the lung cancer incidence steadily drops for men and rises for women, both being directly linked to smoking behavior. \textbf{Right:} Prevalence of colorectal cancer cases over time, evidently showing a significant increase globally. Data from \cite{owidcancer}.}
	\label{fig:MedicalBackground:worldCancerIncidencePrevalence}
\end{figure}


\subsection{Lung Cancer}
\label{Theo_Medical_LungCancer}
Lung cancer can be clinically categorized into multiple sub-classes. The most important classification is small-cell (\textbf{SCLC}) vs. non-small-cell lung cancer (\textbf{NSCLC}), as the clinical treatment between both differs. \index{Cancer!Lung cancer!Non-small-cell (NSCLC)}\index{Cancer!Lung cancer!Small-cell (SCLC)}
Due to its much higher prevalence, NSCLC is the clinically most relevant form, accounting for 80-85\,\% of all lung cancers, in contrast to only 10-15\,\% with SCLC. SCLC, however, is significantly more deadly. While the average 5-year survival rate for \emph{localized} NSCLC lies at around 61\%, it reduces to only 27\% for \emph{localized} SCLC. More than that, SCLC tends to metastasize early, i.\,e.~becomes \emph{non-localized}, leading to an average 5-year survival rate over all stages of only 7\,\%, compared to 25\,\% percent for NSCLC \parencite{acclungsurvival,acclungnsclc,acclungsclc,acclungstats}. 
Globally lung cancer numbers remain mostly stable, although incidence on average starts to decrease with a strong imbalance between male and female persons, largely due to a change in the number of smoked cigarettes (\cite{flanders2003lung}, cf.~Fig.~\ref{fig:MedicalBackground:worldCancerIncidencePrevalence}).
Within this work, automated lung cancer assessment is mostly discussed in the Chapters \ref{DeepRandomForests} and \ref{DecisionExplanationUsingCycleGANs}.

\subsection{Colorectal Cancer}

\label{Theo_Medical_ColorectalCancer}
In contrast to lung cancer, localized colorectal cancer (\textbf{CRC}) can typically be treated very successfully. This is usually done by a full resection of the primarius.\index{Cancer!Primarius} Unfortunately, however, only 39\% of all colorectal cancer patients are diagnosed at an early, non-metastatic stage, as at the beginning of the disease colorectal cancer tends to show only a few unspecific or even no symptoms at all.\index{Cancer!Colorectal cancer}\index{Cancer!Colorectal cancer!Metastatic (mCRC)}


For metastatic colorectal cancer (\textbf{mCRC}), i.\,e.~if distant metastases are present, these can typically be found in organs such as the liver, brain, and lung, leading to a significantly reduced life expectancy. This is clearly expressed by numbers: While the average 5-year survival for localized CRC lies at around 90\,\%, it drops to 71\,\% if locally spreading, and to only 14\,\% if distant metastases are present \cite{ASCOColorectal}. 
Globally, the amount of colorectal cancer cases is steadily increasing (see Fig. \ref{fig:MedicalBackground:worldCancerIncidencePrevalence}). While multiple authors suggest a link to changed lifestyle (e.\,g.~\cite{zur2012red,thanikachalam2019colorectal}) for which recent research also implies an influence on the treatment outcome after diagnosis (cf.~\cite{van2017lifestyle}), other reasons also include a significant increase in life expectancy, as well as larger screening efforts and a better diagnosis. 
Within this work, colorectal cancer data will in particular be used in Chapters \ref{katzmann2018tumorencode}, \ref{katzmann2018predicting}, \ref{katzmann2019computed}, \ref{katzmann2019deep} and \ref{DeepRandomForests}.






\section{Clinical Workflow}
\label{Clinical_Workflow}
\index{Cancer!Clinical workflow}Depending on the tumor entity, the clinical workflow may differ. For both, lung and colorectal cancer, the disease is regularly monitored via computed tomography imaging, with typical intervals being 8 to 12 weeks between two subsequent scans.\index{Imaging modalities!Computed tomography (CT)}
For colorectal cancer, whenever possible the first step of treatment is the full resection of the primarius.\index{Cancer!Primarius} However, as mentioned above, over 60\,\% of all CRC patients already have metastases at the date of first diagnosis (\textbf{DOFD})\index{Date of first diagnosis (DOFD)}. The most common site of mCRC metastases is the liver, being particularly susceptible as the main filter organ of the human body, followed by the lung and brain. Around 50\,\% of all CRC patients develop liver metastases in contrast to 15-20\,\% with lung and only 1-4\,\% with brain metastases \parencite{mongan2009brain,damiens2012clinical}. As a result, treating colorectal cancer typically involves at least half-year scans over three years even if resection was successful and if no metastases are present. 
As liver metastases are common, a fine-granular assessment of the liver is obligatory. If metastases are present, these are usually treated by local or systemic chemotherapy, radiation, or resection, if possible. Advanced therapy options may include hyperthermia, radiofrequency ablation, or cryotherapy. 

Similarly, the primary treatment for non-small-cell lung cancer is the resection of the primarius and infiltrated tissue, although an interventional resection is significantly less likely, which is clearly reflected by the statistics above. Generally, treatment of lung cancer is more difficult and typically involves less surgical, but instead systemic treatment.

\begin{figure}
	\centering\includegraphics[width=0.75\textwidth]{MainImage/DataRadiologists.eps}
	\caption{Number of active radiologists in the U.S. (blue) and amount of acquired healthcare data (red) per year. Notably, while the number of trained radiologists remains largely stable, the amount of healthcare data is rapidly increasing, clearly creating a need for algorithmically supporting and automating tasks for increasing the clinical throughput, while simultaneously ensuring an equal or even improved level of treatment quality. Data from \cite{rbccapitalmarketsdatasharehealthcare,aamcAmountRadiologists}}
	\label{fig:MedicalBackground:numCTScans_Doctors}
\end{figure}

For both entities, all lesions are monitored in regular follow-ups. This includes the scanning, measurement, registration, and re-identification of each lesion. Each of these tasks provides considerable potential for automation, which is currently only partly leveraged. The subsequent clinical assessment involves an estimate of future progression, which -- although being based on treatment protocols and clinical experience -- is qualitative in its nature, meaning that similar to the previous processes it may significantly vary in interpretation, reliability, and quality. This was for example underlined by \textcite{de2014clinician}, demonstrating that the clinical outcome of cancer patients is significantly influenced by the practitioner's psychological constitution, and \textcite{waite2019analysis}, demonstrating that radiologists mostly automatically focus on relevant regions in medical images by using video-oculography and that this process was faster, more precise and more accurate for experienced radiologists.

As shown in Fig.~\ref{fig:MedicalBackground:numCTScans_Doctors}, the amount of medical imaging data is steadily increasing, and clearly surpasses the amount of newly trained radiologists. As was discussed in Sec.~\ref{Introduction_Introduction_Overview}, a typical radiological assessment for a CT scan comprising multiple hundred images on average is conducted in less than 15 minutes. %addressing the following points:\\
%\begin{enumerate}
%	\item How to automate measuring tasks and other routine activities, such as registration, lesion re-identification, and clinical protocol evaluation?
%	\item How to automatically conduct change characterization and anomaly detection?
%	\item How to prepare diagnoses and treatment decisions?
%	\item How to choose the best order of images in assessment, sorting by urgency if resources are limited, and how to sufficiently understandable visualize the reasons for it?\\
%\end{enumerate} 
Thus, as already pointed out at the beginning of Chapter \ref{Chapter_Introduction}, both throughput and quality could strongly benefit from an automated case preparation\index{Case preparation} which independently composes a diagnostic draft by the means of computer vision and deep learning. With the automation of clinical tasks, these algorithms have the potential to significantly improve healthcare by enabling the radiologist to spend more time on the actual case assessment, with broad automation especially due to the increasing amount of data becoming more and more needed.

\index{Small data}As discussed initially, deep learning has had its largest successes when trained on equally large amounts of \emph{well-structured} training data. In contrast to this, the amount of publicly available and especially well-structured data in medical imaging is typically scarce, as these data are difficult to obtain, and often have heterogeneous quality (cf.~Chapter \ref{Introduction_Introduction_Overview}). Therefore, this work will focus on the successful implementation of deep learning-based solutions for medical imaging when only a few data are available. It will propose novel architectures for working with this data, analyze their strengths and shortcomings, and finally demonstrate how to even get a deeper insight into highly complex decision-making processes if only small datasets are available.


%----------------------------------------------------------------------------------------
%	CHAPTER 1
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\chapter{Radiomics}
\label{Chapter_Radiomics}

\begin{figure}[t]
	\centering
	%\fbox{\rule[-.5cm]{0cm}{4cm} \rule[-.5cm]{4cm}{0cm}}
	\includegraphics[width=.6\textwidth]{MainImage/RadiomicsProcess.png}
	\caption{Overview on the basic radiomics process, consisting of the systematic application of image filtering, feature extraction, feature selection and finally predictor training.}\vspace{-.5em}\index{Feature selection}
	\label{Fig:RadiomicsProcess}
\end{figure}

\index{Radiomics}While this work will focus on deep learning-based systems, it has to be noted that especially in the field of \textbf{radiomics}\footnote{While often the term is written with a capital letter (``Radiomics'')\index{Radiomics}, with becoming more widespread the capital is typically omitted and the word is written in lowercase only. In the following, the lowercase writing will be used.} has given a new thrust to the research in medical image analysis, and will at multiple times serve as a comparison within this work. The term ``radiomics'' was originally introduced by Kumar and Aerts \cite{kumar2012radiomics}. Radiomics is a neologism built upon ``radiology'' and ``-omics'', chosen in analogy to other disciplines such as genomics and proteomics, and expressing the \emph{systematic} analysis of radiological imaging data. While the impact was only limited at that time, after the later ``Nature Communications'' publication \cite{aerts2014decoding}, radiomics became one of the most active fields in medical research. In a nutshell, as depicted in Fig.~\ref{Fig:RadiomicsProcess}, given a set of images $\bm{X}$, radiomics is characterized by the successive application of:\\
\begin{enumerate}
	\item \textbf{Filtering} - Apply a set of predefined preprocessing operations $\bm{P}$ independently to each input image (typically image filters),\\
	\item \textbf{Feature extraction} - For each image and each filter, extract a set of predefined image features $\bm{F}$, using an image mask if given,\\
	\item \textbf{Feature selection} - Select several features based on a predefined selection criterion, or by systematically varying selection criteria,\\
	\item \textbf{Predictor training} - Train a predictor based on the selected subset of the $|\bm{P}|\times|\bm{F}|$ features of the $|\bm{X}|$ images, either using a predefined machine learning model or by systematically varying models.\\\index{Feature selection}
\end{enumerate}\index{Machine learning}

\index{Hand-crafted feature design}Radiomics is thus not a novel methodology itself, but instead describes relevant tools for the process of a \emph{systematic} analysis, rather than case-to-case feature design, selection, and classifier training. Radiomics provides a variety of benefits, most prominently, the possibility of a combination of hand-crafted, potentially meaningful features on one side, and a simple and easily-understandable machine learning model, e.\,g.~logistic regression, on the other.\index{Hand-crafted feature design} Such a combination allows for analysis with strong human comprehensibility, thus being a striking advantage over deep learning-based classifiers, which tend to be difficult to explain and understand. %TOBO cite
In many cases, the combination of simple features can yield a comparable or even equally good quality\footnote{A prominent example for this is the so-called Apgar-Score for health assessment in newborn \cite{apgar1952proposal}. For radiology, similar approaches exist, such as the LA950 threshold for lung emphysema detection \parencite{hueper2015pulmonary}.}. 
Similarly, with a small known and successfully reproduced feature set, such as the 4-feature Aerts signature \cite{aerts2014decoding}, radiomics can be applied to very small datasets for which deep learning might be infeasible, too.\index{Small data}

Although radiomics captivates with an easier understanding and comprehensibility, the adequacy of the chosen features remains unsure yet. First, there is no general guarantee that radiomics features are sensible for the problem at hand. In contrast to pure, data-driven methods, radiomics features are extracted in advance, thus important information might have been erased in the feature extraction step already. Secondly, radiomics typically comprises a large amount of hundreds or even thousands of features, many of them highly correlated, making the model prone to false discovery, and unstable model parameters (cf. multicollinearity\footnote{Multicollinearity describes the situation that multiple predictor variables are strongly correlated and thus can predict each other. As a result, model parameters are unstable, as an indefinite number of model parameterizations would yield similar results.})\index{Multicollinearity}, and overfitting. If region-based features are used\footnote{Radiomics is often applied to a particular region-of-interest (ROI) within the image, which is typically defined by a binary mask and allows to infer features such as the compactness or sphericity, with the former also being part of the 4-feature signature from \textcite{aerts2014decoding}.}, the region annotation itself may pose a major source of variance. In summary, radiomics results have shown to vary strongly, depending on the used modality, the scanning protocol, the patient geometry, and many more factors \cite{moltz2019stability,muhlberg2020technome,muhlberg2021unraveling}, and were often found to be non-reproducible. This is underlined by meta-studies demonstrating that positive results are highlighted and negative findings downplayed in as high as 97.8\,\% of the published work on radiomics \cite{song2020review}.
Lastly, in contrast to the above-mentioned advantage, the comprehensibility problem is mainly redirected towards the feature construction process. Especially for more advanced but often used features, such as the Haralick gray level co-occurrence matrix (GLCM) or the neighboring gray level dependence matrix (NGLDM), an intuitive understanding of the features is not necessarily given. This especially becomes relevant when radiomics is not only used for feature candidate exploration but when a larger amount of features is combined for classification, yielding a model complexity that can become evenly difficult to understand like other machine learning models such as deep neural networks.

\label{Radiomics_Summary}
In summary, radiomics has been demonstrated to be a powerful toolbox for the automated analysis of medical imaging data. Its advantages especially lie in the comparatively higher comprehensibility and its potential for simple and feasible clinical application when only a few features are used and few data are available. Radiomics has successfully demonstrated its applicability to a large variety of medical imaging scenarios and even clinical products. It has indisputably given an enormous new impetus to the field of medical image analysis.

A major downside of radiomics is its very strong sensitivity to environmental parameters, such as the used acquisition protocol\index{Acquisition protocol}, the scanner physics, the patient geometry, and similar \parencite{muhlberg2020technome}. Its comprehensibility only stays high as long as the number of used features stays low. As radiomics uses pre-defined hand-crafted features\index{Hand-crafted feature design}, however, the features do not necessarily represent the full, clinically important image variance, often making the use of a larger number of features obligatory, and thus the applicability to small datasets more difficult. Finally, radiomics mostly represent the classical machine learning domain\index{Machine learning!Classical}. In the last years, however, deep learning has started to become the state of the art in most machine learning applications, with a demonstrably higher performance on a variety of problems. In accordance, the increase in publication numbers on deep learning for medical image analysis has clearly surpassed that of radiomics, with over 90\,\% of submissions on the \emph{International Conference on Medical Image Computing and Computer Assisted Intervention} (MICCAI), the largest conference in the field, being about deep learning since 2020. %TOBO Sicherstellen, Zahlen in Ordnung bringen, echte Zahlen hinzufügen.

\chapter{Deep Neural Networks}
\label{Background_DeepNeuralNetworks}
\index{Small data}\index{Deep Neural Networks}In recent years, as for example pointed out in \cite{katzmann2018tumorencode}, Deep Neural Networks\index{Deep Neural Networks} (\textbf{DNNs}) have been employed for a variety of medical imaging applications, such as tumor \cite{havaei2017brain}, multiple sclerosis \cite{brosch2015deep} and whole-organ segmentation \cite{roth2015deeporgan}, vessel tracking \cite{wu2016deep}, and many more. 
Some of the proposed architectures even found a larger distribution outside of the medical domain, such as the well-known U-Net\index{Model architectures!U-Net} from \cite{ronneberger2015u}, now being a standard approach for image segmentation in very different fields, such as robotics. As emphasized in Part \ref{Part_Introduction}, most breakthroughs in the field of artificial intelligence in the last decade can be attributed to deep learning-based approaches. Notably, its power to infer meaningful latent variables in a pure, data-driven fashion allows it to extract relevant information from images by constructing the most informative features itself, which in direct comparison to radiomics is likely the largest advantage, as it can leverage arbitrary information, and may ultimately lead to a significantly improved estimation accuracy (cf. \cite{muhlberg2020technome}).

On the other hand, training DNNs comes with some disadvantages, most of them being a result of model complexity. DNNs typically contain hundreds of thousands, millions, or even billions \cite{radford2019language} of parameters that have to be trained prior to a successful prediction by the model. In classical statistics, the so-called ``One in ten rule'' \parencite{harrell1984regression}\index{One in ten rule} states that the number of samples should be typically at least ten times the number of parameters that are to be estimated from the distribution at hand -- a requirement which in the deep learning domain is rarely met in practice. While datasets in some computer vision domains contain at least some thousands of samples, acquiring these amounts for medical scenarios is rather difficult. Even in medical specialization centers the amount of patients with a specific medical condition does rarely exceed the number of hundreds per year, typically with only a subset of these patients being eligible for the question at hand (cf.~Chapters \ref{katzmann2018tumorencode} and \ref{katzmann2018predicting}). As described in Chapter \ref{Introduction_Introduction_Overview}, further reasons include data security, data regulation, and data privacy issues, which -- although having outstandingly relevant reasons -- are an obstacle to the collection of large and freely accessible multicentric medical imaging databases from a data scientist's point of view, reinforcing the problem of finding optimal model parameters, from a mathematical perspective being an underdetermined problem. In turn, the model provides no guarantee that solutions are optimal or even near to being optimal. In fact, recent studies have emphasized that deeper networks tend to generalize better than shallow networks with comparable parameter amounts (e.\,g.~\cite{szegedy2015going}), and, for the particular case of natural language processing architectures, it could be shown that models with an extremely large parameter space even perform well in few-shot learning environments (e.\,g.~\cite{brown2020language}). However, while this can reduce the issue at hand, it still needs explicit addressing. As a result, many of the algorithms presented in this work either directly address (cf. Chapters \ref{katzmann2018tumorencode} and \ref{katzmann2018predicting}) or even explicitly focus (cf. Chapter \ref{katzmann2019deep}) on the trainability of DNNs with only small datasets. 

As pointed out above, one of the largest issues for the application of DNNs in medical applications is the overall low comprehensibility. While many applications do not necessarily require an in-depth understanding of the actual processing as long as possible mistakes are limited in their consequences, this is clearly not the case in a medical scenario, in which wrong decisions can easily lead to a significantly shortened patient survival or death. In fact, even the top-5 strongest research university hospitals in the US \emph{do not employ} a single fully-automatic machine learning-based system in clinical practice, particularly mentioning skepticism as a reason \parencite{kumbatophospitalsai}. 
Thus, creating comprehensible systems is therefore seen as a major goal toward a market transition of DNN-based algorithms into the daily clinical workflow (cf. explainable artificial intelligence, \textbf{XAI} \parencite{linardatos2021explainable}).\index{Explainable AI (XAI)} For this reason, multiple chapters within this work will explicitly take into account algorithmic comprehensibility. Finally, with Chapter \ref{DeepDecisionExplanation}, a whole section is specifically dedicated to this highly important issue.

\part{Oncological Decision Support}
% Motivation
\label{Part_OncologicImageClassification}
In Chapter \ref{Chap:Medical}, we have already discussed a variety of reasons that oncological image classification is one of the most promising targets for medical image analysis (cf.~Chapter \ref{Chap:Medical}), e.\,g.~as data is quantitative, and major parts of the clinical assessment can be automated, such as lesion measurement and re-identification. The latter arguments both aim at patient throughput. While turnaround times are a clinically highly relevant factor, however, quality is even more important. As already discussed in Chapter \ref{Clinical_Workflow}, the clinical expertise across practitioners may vary. For example, shown in a study from \textcite{moltz2011analysis}, manual liver lesion delineation in CT images can easily result in a high inter-observer variability\index{Inter-observer variability}, showing volume differences of up to 35\,\% across annotators. Recent research has further demonstrated that both accuracy and performance in complex human decision-making processes can depend on a variety of highly non-related factors, such as daytime, shift, fatigue, and even the presence or absence of the expectation of a full meal (cf.~\cite{cowley1997time,alshabibi2020effects,danziger2011extraneous}). Thus, as pointed out in \cite{katzmann2018tumorencode}, a reliable estimation based on deep neural networks ``may enable better therapy planning, deeper insight into tumor growth dynamics, [and] a greater patient turnover''. Taken together, there is a clear need for an automated, quantitative and deterministic assessment. The following part will therefore cover multiple applications of deep neural networks for automated treatment outcome prediction in oncology using computed tomography imaging data.\index{Imaging modalities!Computed tomography (CT)}

Like also pointed out in \cite{katzmann2018tumorencode}, it should be noted that within a clinical workflow\index{Cancer!Clinical workflow}, as emphasized by \textcite{glimelius2013rectal,van2016esmo}, a radiological assessment amongst other information typically includes an evaluation of:\\
\begin{itemize}
	\item visual lesion appearance (e.\,g.~shape, size, density),
	\item a histopathological assessment,
	\item oncologically relevant blood values and biomarkers, such as haemoglobin, antibodies, tumor markers (CA19.9, ...), etc.,
	\item the patient's demographic data (age, gender, ...),
	\item the patient's medical history.\\
\end{itemize}

The design of a clinical treatment plan comprises the collection of these and other information, as each may strongly influence the treatment plan. Thus, besides ethical arguments (cf.~Part \ref{Part_TheoreticalFundament}), a thorough, prospective, clinical evaluation cannot be contained within this work, as a full, clinical assessment of an oncological disease requires the strong, continuous, multidisciplinary expertise of various clinical specialties. 

In contrast, the following part is dedicated to the identification of opportunities for using relevant image information which previously had been unused. As the visual assessment is a key criterion for the creation of the treatment plan and its adaption over the course of the disease, the following chapters will analyze how medical image analysis through deep neural networks can be used in a clinical few data scenario to extract relevant diagnostic information, such as an estimate on future tumor growth and overall patient survival by leveraging yet unused image information through a data-driven approach. \index{Deep Neural Networks}
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\part{Meta-Methods \& Decision-Explanation}
\label{Part_MetaMethodsAndDecisionExplanation}

Within the last chapters a variety of algorithms for medical image classification have been discussed, including clinically highly-relevant tasks such as lesion growth\index{Lesion growth prediction} (Chapter~\ref{katzmann2018tumorencode}) and one-year survival prediction\index{One-year survival} (Chapter~\ref{katzmann2018predicting}), as well as hazard and survival regression (Chapter~\ref{katzmann2019miccai})\index{Survival regression}. In particular, we have seen that deep learning can successfully be applied to derive meaningful features from medical imaging data in a purely data-driven fashion, having the potential to lead to a significantly improved classificational performance. Specifically, it has been demonstrated, that lesion CT phenotype\index{Cancer!Tumor phenotype} directly corresponds to a number of clinically highly relevant variables, such as future disease progression and overall patient survival, and moreover, this correspondence can be approximated using deep neural networks.

Although the presented approaches overall were highly promising, each of the previous methods to a certain degree has been specifically tailored in one or the other way to the characteristics of medical imaging data. Yet, no general framework has been proposed which is applicable to arbitrary architectures, while simultaneously solving the issues which arise from an application in the medical imaging domain, and which have been elaborated on multiple times within this work (cf.~Chapter~\ref{Background_DeepNeuralNetworks}).

Addressing the shortcomings arising from an application of deep learning to medical image analysis, most notably the initially discussed issues of \emph{unknown certainty} (Chapter~\ref{katzmann2019isbi}), applicability in case of \emph{small- or medium-sized} datasets (Chapter~\ref{DeepRandomForests}), and finally \emph{deep decision explanation} (Chapter~\ref{DeepDecisionExplanation}), the following chapters will present a number of novel, deep learning-based meta-architectures\index{Meta-architectures}, significantly contributing towards a resolution of the aforementioned issues. Each of the following approaches is applicable to a wide variety of deep architectures, including, but not being limited to, the ones that have been discussed so far. Most notably, using multiple thorough evaluations and comparing to a variety of other approaches, it will be demonstrated that the use of the presented methods may yield superior performance in typical medical imaging scenarios without requiring additional steps, such as meta parameter optimization, and thus that they particularly can be used as an out-of-the-box toolset for medical image analysis.
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\part{Conclusion}
\label{Part_Conclusion}
\chapter{Summary \& Critical Evaluation}
\label{Critical_Evaluation}
%TOBO This is the place for other work to be briefly mentioned, too. (WITHOUT ANY DETAIL! But is it worth mentioning then?)

In the beginning, it was pointed out that deep learning is on its way to becoming an indispensable tool for clinical decision support and medical image analysis. \index{Clinical decision support}\index{Medical image analysis}It has demonstrated highly promising results in a variety of subdomains, sometimes even surpassing human gold-standard assessment (cf.~Part \ref{Part_Introduction}). Mainly arising from its data-driven nature, the use of deep learning has major obstacles which necessarily have to be overcome for achieving this goal. Next to its rather low comprehensibility\index{Comprehensibility}, the data available for training deep approaches sustainably remains an issue, typically being sparse and often containing a relevant degree of data or label noise, which in turn results in practical implications for result quality and trainability. This work particularly addressed these issues, proposing methods for clinical decision support settled in the field of oncology. While being specifically tailored to this application, it was further demonstrated that these methods provide value beyond this scenario. Still, however, some open issues remain. Thus, the following chapter will briefly summarize the scientific contributions of this thesis, and relate them to the clinical requirements. \index{Label noise}\index{Innovative contributions}

\section{Outcome Prediction in Oncology}
In Chapter~\ref{katzmann2018tumorencode}, \ref{katzmann2018predicting} and \ref{katzmann2019computed} methods for predicting lesion growth and patient survival in an oncological environment were discussed. The achieved results clearly indicate that the quantitative disease information gathered by using a combination of deep learning and radiological imaging data can be a highly promising source of additional information, and provides incremental value beyond size- or volume-based assessment, as it is currently used in clinical practice, as well as radiomics-based\index{Radiomics} assessment. It has thus the potential to significantly enhance the clinical capabilities towards a quantitative, early assessment, reducing the risk of mistreatment, leading to higher efficiency, and improving overall healthcare quality.\index{Early assessment}

Each of the presented methods, however, also has particular limitations. While these have been discussed in more detail in the respective chapters already, this part will identify the key points to be addressed in future research.

First, while successfully addressing the issue of data sparsity\index{Data sparsity}, none of the approaches in Chapters \ref{katzmann2018tumorencode}--\ref{katzmann2019computed} have addressed the issues of low transparency and comprehensibility for the treating practitioner, which arise from using deep-learning-based algorithms. While the results on lesion growth and one-year survival\index{One-year survival} prediction clearly outperformed state-of-the-art (SoA) approaches, such as radiomics-based assessment, the latter has a clear benefit by being better comprehensible and easier to explain, being crucial factors in a clinical application. In fact, the algorithm's low comprehensibility can restrict the application of these approaches to scenarios with a fine-granular cross-check, or serving as a cross-check themselves, and to some degree limits possibilities for a transition into clinical practice. Their combination with methods for confidence estimation (cf.~Chapter~\ref{katzmann2019isbi}), or decision explanation (cf.~Chapter~\ref{DeepDecisionExplanation}) might therefore be highly beneficial in future applications.\index{Confidence estimation}

Secondly, it has to be noted that patient survival prediction\index{Survival estimation} from radiological imaging data remains a rather difficult field, as patient survival is dependent on a variety of variables, such as age, gender, and comorbidities. Additionally, even lifestyle changes within therapy can lead to an increased or decreased survival expectancy (cf.~\cite{parsons2010influence,van2017lifestyle}). Notably, these factors can only partly be quantified using radiological imaging data, as was exemplarily shown by the insufficient results for continuous patient survival estimation in Chapter~\ref{katzmann2019computed}. Therefore, while such a prediction might be of highest clinical interest for the purpose of \emph{risk stratification} and \emph{therapy adaption}\index{Risk stratification}\index{Therapy adaption}, a prediction of patient survival which is accurate \emph{to the day} would require a wide range of additional modalities, will generally be unlikely within the near future, and even if possible would be highly debatable, as it goes hand-in-hand with a variety of ethical questions. This has impressively become clear by the widespread media attention in reaction to the work of \textcite{avati2017improving}, which tried to predict patient mortality within the next 3-12 months for \textit{proactively} reaching out to patients for palliative care \parencite{mukherjee2017catdeath}. In fact, it is reasonable to request that any approach for survival estimation has to be embedded into a workflow that ensures that estimates will always and only be used for the very best of the patient's health. This especially means that while such an algorithm might be used to compute the concrete risk of a given case, this information should never be used for deciding about access to medical care. 

As this work has focused on the shape and textural lesion features, it did not take into account the multiplicity of lesions and their spatial distribution. \index{Spatial distribution}\index{Dispersion}In fact, the spatial distribution, i.\,e.~\emph{dispersion}, \emph{does contain} valuable information for the disease outcome, as has exemplarily been shown in \cite{muhlberg2021relevance}. Future work should analyze a combination of both sources of information.

It has to be noted that the work proposed herein has primarily been evaluated in the field of oncological CT image classification, and so far is specific to it. However, the methods are expected to be easily transferable to different modalities, such as MRI or PET, as well as lesion types, e.\,g.~renal or hepatocellular carcinomas. It would be highly desirable if this would be specifically addressed by future studies.\index{Imaging modalities!Computed tomography (CT)}\index{Imaging modalities!Magnetic resonance (MRI)}

The algorithms presented within this work have served as a prototypical framework for outcome prediction as part of the BMBF\footnote{``Bildungsministerium für Bildung und Forschung'', engl. Federal Ministry of Education and Research} project ``PANTHER''\index{PANTHER}. For a clinical application beyond this implementation, however, a significantly larger amount of data as well as a thorough clinical evaluation is required and should be aimed for in the near future.

Finally, this work has focussed on radiological imaging data, thus aiming to assess the information which can be found within an image. In clinical practice, however, an interdisciplinary approach is crucial in order to achieve the best treatment response. Future work should thus additionally take into account the multimodality of clinical sources of information, as well as the interaction with other clinical practitioners.

\section{Meta-Methods and Decision-Explanation}
While Part \ref{Part_OncologicImageClassification} has focussed on the successful application of deep learning for clinical decision support, in contrast, Part \ref{Part_MetaMethodsAndDecisionExplanation} specifically addressed the issues which arise from this application, proposing methods particularly aiming for an improvement of classification performance as well as human comprehensibility, and being applicable when trained on medical imaging datasets, i.\,e.~small datasets containing label noise and label imbalance\index{Label imbalance} (cf.~Chapter~\ref{Introduction_Introduction_Overview}).

First, providing a measure of classifier confidence is clinically highly important. It allows practitioners to interpret results according to their degree of confidence in a more targeted manner, and thus is a key criterion for clinical decision making and resulting treatment quality, as it allows an assessment of the algorithmic reliability. For this, a method has been proposed, based on a SoA algorithm, which not only provides an estimate of classifier confidence but can further be used for an improved training efficiency, yielding higher test-time performances. While both are beneficial for the final application, it should be noted that the approach alone cannot satisfactorily address all comprehensibility issues, as it only allows for a very limited view into the \emph{reasons} for potential inconfidence. 

To contend with this more specifically, further, a method for decision explanation \index{Decision explanation}has been proposed, aiming for a visualization of the network's understanding of an image, and outperforming recent SoA approaches when applied to two medical imaging datasets. In contrast to recent approaches, the network also provides reasonable explanations when only a few data are available, as this is often the case with medical imaging data. Although providing the best results in this scenario, it should be noted that even with this approach, however, the criteria in the user study had average raw values between 1.04 and 1.92 on a scale of -4 to 4, meaning that there is still considerable room for improvement. Future work should therefore even more focus on better comprehensibility for deep learning-based clinical decision support, as it is a key criterion for the transition into a clinical workflow. It is hoped that the approach presented herein can serve as a basis for this work.

Finally, data efficiency\index{Data efficiency} remains a topic of highest interest within the community. In Chapter \ref{DeepRandomForests} multiple methods for data efficiency enhancement have been proposed, each of them fundamentally based on the bootstrapping methodology from \textcite{efron1979bootstrap}. Although it was possible to clearly demonstrate the benefits of these architectures in few data scenarios, it should be noted that with increasing dataset sizes the incremental value of these methods diminishes. They are thus a temporary toolbox for the successful application of deep learning-based techniques for medical imaging data. Ultimately, however, the solution to superior clinical assessment lies in large and publicly available databases, providing the potential to reliably identify even rare medical conditions, and allowing the whole community to work together towards better healthcare for everyone.%TODO Anmerkung Michael: You may also want to mention federated learning which may solve the data issue to some extend but brings own challenges such as label noise and biases or distributed training.


\chapter{Outlook}
\index{Deep Neural Networks}It was possible within this work to demonstrate a variety of applications for deep neural networks in clinical decision support. Including algorithms for lesion growth and patient survival prediction, the work presented within this thesis is among the first to use deep learning for computer-aided disease assessment in metastatic colorectal cancer patients.\index{Cancer!Colorectal cancer} With the contributions to data efficiency and classifier comprehensibility enhancement, it addressed key factors for a translation of deep learning into clinical practice. 

%With algorithms for It contributed to contributions regarding the field of outcome prediction and survival estimation in an oncological setting using novel machine learning algorithms. It was furthermore possible to provide a completely new approach for deep decision explanation utilizing cycle-consistent generative adversarial networks (CycleGANs), allowing for a more intuitive understanding of decision-relevant regions, which was demonstrated both qualitatively as well as quantitatively by conducting a thorough user study, and which finally has been published in a high-quality journal.

%	\item A successful application of \textbf{deep learning-based} methods for \textbf{lesion growth and one-year survival prediction} in metastatic colorectal cancer patients, being amongst the first realized solutions within this direction (see Chapters \ref{katzmann2018tumorencode} and \ref{katzmann2018predicting}),
%\item \textbf{A method for non-proportional hazards-based deep survival regression} (Chapter \ref{katzmann2019computed}) building on the results of the work before,
%\item A successful application of \textbf{confidence estimation of deep image classifiers in medical imaging few-data scenarios}, and a demonstration of how it can be used for curriculum learning schedules for improved test time performance (Chapter \ref{katzmann2019deep}),
%\item An innovative \textbf{combination of meta-classifier methods and deep neural networks} for efficient classification, regression and survival time estimation in few-data scenarios with enhanced accuracy (Chapter \ref{DeepRandomForests}),
%\item \textbf{A novel method for the high-quality visualization of classifier decisions} in few-data scenarios by using cycle-consistent activation maximization (Chapter \ref{DeepDecisionExplanation}).

%\section{Outlook}
Still, clinical outcome prediction is at its very beginning, and likely future successes will clearly outperform current solutions. For now, clinical decision support will mainly serve as a cross-check, helping to prioritize cases, reduce the risk of mistreatment, and to accelerate everyday clinical tasks, leading to better availability of high-quality treatment for many patients. Fully-automated computer-aided diagnosis, however, will for now stay a topic of the future, and likely will be until its performance nearly exceptionless outperforms gold-standard human assessment. Next to the very practical reasons, such as legal liability, there are notable ethical and sociological reasons for this, as was discussed earlier in this work. Using a trade-off, such as the clinician-in-the-loop\index{Clinician-in-the-loop} strategy \cite{tang2020clinician}, might help to overcome obstacles on this course. However, inevitably future research will, even more, have to focus on specific fields, some of which are briefly outlined in the following:\\
\begin{enumerate}
	\item \textbf{Comprehensibility}\index{Comprehensibility} - Future methods should even better explain classifier decisions. This especially may include a verbal description of decision processes in an interactive question-answer scheme, but also utilizing other means, such as the input-space visualizations presented in this work.\\
	\item \textbf{Out-of-distribution (OOD) detection}\index{Out-of-distribution (OOD)} - As the work from \textcite{goodfellow2014explaining} impressively demonstrated, OOD samples, whether mistakenly or viciously introduced, can have a devastating influence on deep learning-based algorithms, with highly relevant implications for the medical imaging domain \parencite{finlayson2019adversarial}, although recent research has identified ways to partly combat these issue (cf.~\cite{madry2018towards,devries2018learning}). However, OOD errors do not align with human intuition. They are thus unexpected and may lead to serious consequences. Reliability in these scenarios, therefore, is of \emph{highest importance} for clinical acceptance, creating a need for future research to address this issue more thoroughly.\\\index{Adversarial samples}
	\item \textbf{Data availability} - As pointed out above, finally, data availability is key for high-quality clinical decision support algorithms. As for now the lack of large and publicly available datasets should be addressed, to this end future research will have to find ways to allow for continuous learning through automated data-mining in a fully-integrated IT landscape, while preserving data privacy and security when training on highly-sensitive patient data. A key technology towards this aim will be \emph{Federated Learning} \parencite{rieke2020future}.\\\index{Federated learning}\index{Continious learning}
\end{enumerate}
%Anmerkung Michael S: You may want to add continuous learning as another topic for future research.

Within the near future, highly dynamic progress in the field of medical image analysis is to be expected. With the work presented in this thesis, some of the major obstacles on the way there have been addressed, and may hopefully be used by future work, aiming toward even better treatment and globally improved patient healthcare.

%While this work could contribute towards both an automated analysis usable as a double-check mechanism as well as for clinical triage, as well as towards a better clinical understanding of these automated decisions, visions of a fully-automated clinical workflow are still a long way to go. Recent work has addresses this issue a variety of times, including most notably the publications of <TODO> <TODO> and <TODO>, and there are a lot of obstacles to take to get to this point <TODO reformulieren>. Future work in particular will have to address:\\
%- more data\\
%- better visualization\\
%- deeper insight\\
%- clearer understanding\\
%- out of distribution detection - when applicable when not?\\
%- stronger acceptance\\
%- clinician within the loop\\
%- reinforcement\\
%- fully-integrated IT landscapes, more automation, easier access to data while preserving strong data-security and anonymity measures\\

%A first step towards a broader acceptance of AI in medicine, especially when used for image classification or outcome predicition, might be the integration of AI into the daily clinical workflow in simple tasks, a path that is currently being follow by most big healthcare companies, such as GE, Siemens Healthineers, Canon Medical Solutions, and similar. Subsequent work will especially focus on the clinical transformation of the proposed methods towards a better clinical acceptance, an improved patient care, and ultimately an improved healthcare system.


\begin{comment}
%------------------------------------------------

\section{Citation}\index{Citation}

This statement requires citation \cite{article_key}; this one is more specific \cite[162]{book_key}.

%------------------------------------------------

\section{Lists}\index{Lists}

Lists are useful to present information in a concise and/or ordered way\footnote{Footnote example...}.

\subsection{Numbered List}\index{Lists!Numbered List}

\begin{enumerate}
\item The first item
\item The second item
\item The third item
\end{enumerate}

\subsection{Bullet Points}\index{Lists!Bullet Points}

\begin{itemize}
\item The first item
\item The second item
\item The third item
\end{itemize}

\subsection{Descriptions and Definitions}\index{Lists!Descriptions and Definitions}

\begin{description}
\item[Name] Description
\item[Word] Definition
\item[Comment] Elaboration
\end{description}

%----------------------------------------------------------------------------------------
%	CHAPTER 2
%----------------------------------------------------------------------------------------

\chapter{In-text Elements}

\section{Theorems}\index{Theorems}

This is an example of theorems.

\subsection{Several equations}\index{Theorems!Several Equations}
This is a theorem consisting of several equations.

\begin{theorem}[Name of the theorem]
In $E=\mathbb{R}^n$ all norms are equivalent. It has the properties:
\begin{align}
& \big| ||\mathbf{x}|| - ||\mathbf{y}|| \big|\leq || \mathbf{x}- \mathbf{y}||\\
&  ||\sum_{i=1}^n\mathbf{x}_i||\leq \sum_{i=1}^n||\mathbf{x}_i||\quad\text{where $n$ is a finite integer}
\end{align}
\end{theorem}

\subsection{Single Line}\index{Theorems!Single Line}
This is a theorem consisting of just one line.

\begin{theorem}
A set $\mathcal{D}(G)$ in dense in $L^2(G)$, $|\cdot|_0$. 
\end{theorem}

%------------------------------------------------

\section{Definitions}\index{Definitions}

This is an example of a definition. A definition could be mathematical or it could define a concept.

\begin{definition}[Definition name]
Given a vector space $E$, a norm on $E$ is an application, denoted $||\cdot||$, $E$ in $\mathbb{R}^+=[0,+\infty[$ such that:
\begin{align}
& ||\mathbf{x}||=0\ \Rightarrow\ \mathbf{x}=\mathbf{0}\\
& ||\lambda \mathbf{x}||=|\lambda|\cdot ||\mathbf{x}||\\
& ||\mathbf{x}+\mathbf{y}||\leq ||\mathbf{x}||+||\mathbf{y}||
\end{align}
\end{definition}

%------------------------------------------------

\section{Notations}\index{Notations}

\begin{notation}
Given an open subset $G$ of $\mathbb{R}^n$, the set of functions $\varphi$ are:
\begin{enumerate}
\item Bounded support $G$;
\item Infinitely differentiable;
\end{enumerate}
a vector space is denoted by $\mathcal{D}(G)$. 
\end{notation}

%------------------------------------------------

\section{Remarks}\index{Remarks}

This is an example of a remark.

\begin{remark}
The concepts presented here are now in conventional employment in mathematics. Vector spaces are taken over the field $\mathbb{K}=\mathbb{R}$, however, established properties are easily extended to $\mathbb{K}=\mathbb{C}$.
\end{remark}

%------------------------------------------------

\section{Corollaries}\index{Corollaries}

This is an example of a corollary.

\begin{corollary}[Corollary name]
The concepts presented here are now in conventional employment in mathematics. Vector spaces are taken over the field $\mathbb{K}=\mathbb{R}$, however, established properties are easily extended to $\mathbb{K}=\mathbb{C}$.
\end{corollary}

%------------------------------------------------

\section{Propositions}\index{Propositions}

This is an example of propositions.

\subsection{Several equations}\index{Propositions!Several Equations}

\begin{proposition}[Proposition name]
It has the properties:
\begin{align}
& \big| ||\mathbf{x}|| - ||\mathbf{y}|| \big|\leq || \mathbf{x}- \mathbf{y}||\\
&  ||\sum_{i=1}^n\mathbf{x}_i||\leq \sum_{i=1}^n||\mathbf{x}_i||\quad\text{where $n$ is a finite integer}
\end{align}
\end{proposition}

\subsection{Single Line}\index{Propositions!Single Line}

\begin{proposition} 
Let $f,g\in L^2(G)$; if $\forall \varphi\in\mathcal{D}(G)$, $(f,\varphi)_0=(g,\varphi)_0$ then $f = g$. 
\end{proposition}

%------------------------------------------------

\section{Examples}\index{Examples}

This is an example of examples.

\subsection{Equation and Text}\index{Examples!Equation and Text}

\begin{example}
Let $G=\{x\in\mathbb{R}^2:|x|<3\}$ and denoted by: $x^0=(1,1)$; consider the function:
\begin{equation}
f(x)=\left\{\begin{aligned} & \mathrm{e}^{|x|} & & \text{si $|x-x^0|\leq 1/2$}\\
& 0 & & \text{si $|x-x^0|> 1/2$}\end{aligned}\right.
\end{equation}
The function $f$ has bounded support, we can take $A=\{x\in\mathbb{R}^2:|x-x^0|\leq 1/2+\epsilon\}$ for all $\epsilon\in\intoo{0}{5/2-\sqrt{2}}$.
\end{example}

\subsection{Paragraph of Text}\index{Examples!Paragraph of Text}

\begin{example}[Example name]
\lipsum[2]
\end{example}

%------------------------------------------------

\section{Exercises}\index{Exercises}

This is an example of an exercise.

\begin{exercise}
This is a good place to ask a question to test learning progress or further cement ideas into students' minds.
\end{exercise}

%------------------------------------------------

\section{Problems}\index{Problems}

\begin{problem}
What is the average airspeed velocity of an unladen swallow?
\end{problem}

%------------------------------------------------

\section{Vocabulary}\index{Vocabulary}

Define a word to improve a students' vocabulary.

\begin{vocabulary}[Word]
Definition of word.
\end{vocabulary}

%----------------------------------------------------------------------------------------
%	PART
%----------------------------------------------------------------------------------------

\part{Part Two}

%----------------------------------------------------------------------------------------
%	CHAPTER 3
%----------------------------------------------------------------------------------------
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\chapter{Presenting Information}

\section{Table}\index{Table}

\begin{table}[h]
\centering
\begin{tabular}{l l l}
\toprule
\textbf{Treatments} & \textbf{Response 1} & \textbf{Response 2}\\
\midrule
Treatment 1 & 0.0003262 & 0.562 \\
Treatment 2 & 0.0015681 & 0.910 \\
Treatment 3 & 0.0009271 & 0.296 \\
\bottomrule
\end{tabular}
\caption{Table caption}
\label{tab:example} % Unique label used for referencing the table in-text
%\addcontentsline{toc}{table}{Table \ref{tab:example}} % Uncomment to add the table to the table of contents
\end{table}

Referencing Table \ref{tab:example} in-text automatically.

%------------------------------------------------

\section{Figure}\index{Figure}

\begin{figure}[h]
\centering\includegraphics[scale=0.5]{placeholder.jpg}
\caption{Figure caption}
\label{fig:placeholder} % Unique label used for referencing the figure in-text
%\addcontentsline{toc}{figure}{Figure \ref{fig:placeholder}} % Uncomment to add the figure to the table of contents
\end{figure}

Referencing Figure \ref{fig:placeholder} in-text automatically.
\end{comment}
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\chapter{Additional Background}
\section*{Anatomical Orientations}
\label{Appendix_AnatomicalOrientation}

\begin{figure}[h!]
	\centering
	%\fbox{\rule[-.5cm]{0cm}{4cm} \rule[-.5cm]{4cm}{0cm}}
	%\includegraphics[width=.5\textwidth]{MainImage/CT_explained_toreplace.png}
	\includegraphics[width=.5\textwidth]{MainImage/AnatomicalOrientations.png}
	\caption{The figure shows the anatomical planes and direction terms, most notably depicting the \emph{transversal} (or \emph{axial}), \emph{saggital} and \emph{coronal} planes, which are typically used to described image orientations in CT images. Source: \cite{figAnatomicalDirections}}
	\label{Fig:AppendixOrientations}
\end{figure}

\section*{Computed Tomography Imaging}
A short overview of the process of computed tomography imaging was already given in Chapter \ref{Chap:Medical}. Revisiting the figure from the beginning (see Fig.~\ref{Fig:Appendix_MedicalBackground_CT_MRI}) the process in the following will be described in some more detail.

In order to create a computed tomography image, the patient is slowly moved through a tube, containing a ring construction which is commonly denoted as \emph{gantry}. The gantry holds both the X-ray source and detectors. Source and detectors are exactly opposed to each other, in order for the radiation to pass the human body before hitting the detectors.
When passing the human body, the radiation is attenuated, depending on the characteristics of the crossed tissue. This attenuation can be measured on the opposite side by the detectors, if slice-wise concatenated yielding a so-called \emph{sinogram}. The sinograms are collected over the scanning process, and can finally be transformed, i.\,e.~\emph{reconstructed}, into a volume by using an image transformation called \emph{Radon transform} \parencite{toft1996radon}, which is related to the Fourier transformation. More specifically, in practice commonly an inverse transformation is used called \emph{filtered backprojection} \parencite{brooks1975theory}. Lately, other techniques, such as the iterative reconstruction \cite{willemink2013iterative1,willemink2013iterative2} have been employed.
Modern CT-scanners can acquire multiple slices at once (e.\,g.~up to 384 with a Siemens SOMATOM Force) and achieve up to 4 full rotations a second \cite{siemens2021somatom}.

\begin{figure}[h!]
	\centering
	%\fbox{\rule[-.5cm]{0cm}{4cm} \rule[-.5cm]{4cm}{0cm}}
	%\includegraphics[width=.5\textwidth]{MainImage/CT_explained_toreplace.png}
	\includegraphics[width=.4\textwidth]{MainImage/publicDomainCTConcept.png}
	\caption{This figure shows the basic concept of CT imaging. The patient is slowly moved through a \emph{gantry}, holding X-ray source and detectors, being opposed to each other. The gantry is revolving around the patient, yielding linewise attenuation curves which are concatenated to a \emph{sinogram}, which can finally be transformed into a volumetric array, i.\,e.~the final CT image, by using an image reconstruction technique. Source: \cite{fdaCTImagingImage}}
	\label{Fig:Appendix_MedicalBackground_CT_MRI}
\end{figure}

%Using the inverse Radon transform, the sinogram can be \textit{reconstructed} to the original image $f(x,y)$ using an inverse \textbf{Radon transform} \cite{radon1986determination}. However, as the inverse problem does not necessarily have to have an unequivocal solution, modern CT scanners either use the so called \textit{filtered back projection}\footnote{Filtered back projection creates a one-step approximation of the inverse Radon transform by first filtering the Radon transformed and subsequentially integrating over the angle.%TOBO klarstellen, was mit integrating over the angle gemeint ist!
%} (FBP), or an \textit{iterative reconstruction}\footnote{Iterative reconstruction refers to an iterative optimization of the output image from the input data, with most approaches using statistical knowledge and additional assumptions to improve the image quality.} approach to reconstruct the original image. A comparison of both approaches can be seen in Fig. \ref{fig:fieldOfApplication:FBP_ITRECON}.

%\begin{figure}[h]
	%TOBO das ist voll quatsch hier ein MRI-Bild zu verwenden, such ein CT-Bild heraus!
	%\centering\includegraphics[width=0.7\linewidth]{Heart-direct-vs-iterative-reconstruction.png}
	%\caption{Comparison of the archieved results using (a) a FBP and (b) an iterative reconstruction (modality: MRI) with remarkable artifacts in the FBP image. \cite{uecker2010real}}
	%\label{fig:fieldOfApplication:FBP_ITRECON} % Unique label used for referencing the figure in-text
%\end{figure}
%
%By definition, computed tomography includes the processing of the acquired data with a computer system (though it is obvious that a manual execution of these steps is impractical). 
%
%As demonstrated in Fig. \ref{fig:fieldOfApplication:FBP_ITRECON}, the image acquisition process contains simplifications and noise, and might create artifacts which hinder the visual observation of the images and therefore the disease diagnostic. A major goal of applying machine learning to computed tomography is therefore to improve the image quality %TOBO Cite
%and/or to directly retrieve diagnostic information which might be noisy, blurred, or obscured by imaging artifacts.

%\chapter{Advanced Network Components}
%The following part will cover specific information on advanced losses, architectures, and activation functions which have been discussed within this work. Unfortunately, an in-depth introduction or even a thorough review of various deep architectures would be beyond the scope of this work and has been conducted by other authors very professionally, already. %TODO Cite

\chapter{Tables \& Figures}
%\addcontentsline{toc}{chapter}{\textcolor{ocre}{Tables \& Figures}}
%\section*{Sparse Autoencoders for Lesion Growth Prediction}

In the following, additional tables and figures are depicted which are not necessarily needed for the understanding of the work, but which may give interesting additional information to the work presented. At multiple points within this work, it is referred to these figures if adequate.

\begin{table}
	%% increase table row spacing, adjust to taste
	%\renewcommand{\arraystretch}{1.3}
	% if using array.sty, it might be a good idea to tweak the value of
	% \extrarowheight as needed to properly center the text within the cells
	\centering
	%% Some packages, such as MDW tools, offer better commands for making tables
	%% than the plain LaTeX2e tabular which is used here.
	\begin{tabular}{ccccccc}
		\toprule
		\textbf{type} & \textbf{filter size} & \textbf{strides} & \textbf{regularization} & \textbf{output}& \textbf{\#\,params}\\
		\midrule
		\midrule
		in & & & BN& 2$\times$256$\times$256$\times$1 & \\
		\midrule
		\midrule
		conv3d & 2$\times$1$\times$1 & 1$\times$1$\times$1 & BN&256$\times$256$\times$32 & 224\\
		\midrule
		conv2d & 5$\times$5 & 1$\times$1 & BN& 256$\times$256$\times$32& 25760\\
		pool & 4$\times$4 & 4$\times$4 & ---& 64$\times$64$\times$32& \\
		\midrule
		conv2d & 5$\times$5 & 1$\times$1 & BN& 64$\times$64$\times$48 & 38640\\
		pool & 4$\times$4 & 4$\times$4 & ---& 16$\times$16$\times$48& \\
		\hline
		conv2d & 3$\times$3 & 1$\times$1 & BN& 16$\times$16$\times$64 & 27968\\
		pool & 2$\times$2 & 2$\times$2 & ---& 8$\times$8$\times$64 & \\
		\hline
		conv2d & 3$\times$3 & 1$\times$1 & BN& 8$\times$8$\times$96 & 55776\\
		pool & 2$\times$2 & 2$\times$2 & ---& 4$\times$4$\times$96 & \\
		\hline
		conv2d & 3$\times$3 & 1$\times$1 & BN& 4$\times$4$\times$128 & 111232\\
		flatten & & & & (2048) & \\
		\hline
		\hline
		dense & (20) & & L1+BN & (20) & 41060\\
		\hline
		\hline
		dense & (2048) & & BN& (2048) & 51200\\
		reshape & (2048) & & ---& 4$\times$4$\times$128 & \\
		\hline
		dconv2d & 3$\times$3 & 1$\times$1 & BN& 4$\times$4$\times$96 & 111072\\
		up & 2$\times$2 & 1$\times$1 & ---& 8$\times$8$\times$96 & \\
		\hline
		dconv2d & 3$\times$3 & 1$\times$1 & BN& 8$\times$8$\times$64 & 55616\\
		up & 2$\times$2 & 1$\times$1 & ---& 16$\times$16$\times$64 & \\
		\hline
		dconv2d & 3$\times$3 & 1$\times$1 & BN& 16$\times$16$\times$48 & 27888\\
		up & 4$\times$4 & 1$\times$1 & ---& 64$\times$64$\times$48 & \\
		\hline
		dconv2d & 5$\times$5 & 1$\times$1 & BN& 64$\times$64$\times$32 & 38560\\
		up & 4$\times$4 & 1$\times$1 & ---& 256$\times$256$\times$32 & \\
		\hline
		dconv2d & 5$\times$5 & 1$\times$1 & BN& 256$\times$256$\times$32 & 25760\\
		dconv3d & 2$\times$1$\times$1 & 1$\times$1$\times$1 & BN& 2$\times$256$\times$256$\times$1 & 69\\
		\bottomrule
	\end{tabular}
	\caption{Network architecture of the sparse convolutional autoencoder used for pretraining the liver lesion growth predictor from \cite{katzmann2018tumorencode} which was used in Chapter \ref{katzmann2018tumorencode}. The table is based on the original work from \cite{katzmann2018tumorencode}.}
	\label{Tab:IJCNN_Tab_NetworkArch}
\end{table}

\begin{table}
	\centering
	\begin{tabular}{ccccccc}
		\toprule
		\textbf{type} & \textbf{filter size} & \textbf{strides} & \textbf{regularization} & \textbf{output} & \textbf{\#\,params}\\
		\midrule
		\midrule
		in & & & & 2$\times$256$\times$256$\times$1 & \\
		\midrule
		\midrule
		conv3d & 2$\times$1$\times$1 & 1$\times$1$\times$1 & BN&256$\times$256$\times$32 & 224\\
		\midrule
		conv2d & 5$\times$5 & 1$\times$1 & BN& 256$\times$256$\times$32& 25760\\
		pool & 4$\times$4 & 4$\times$4 & ---& 64$\times$64$\times$32& \\
		\hline
		conv2d & 5$\times$5 & 1$\times$1 & BN& 64$\times$64$\times$48 & 38640\\
		pool & 4$\times$4 & 4$\times$4 & ---& 16$\times$16$\times$48& \\
		\hline
		conv2d & 3$\times$3 & 1$\times$1 & BN& 16$\times$16$\times$64 & 27968\\
		pool & 2$\times$2 & 2$\times$2 & ---& 8$\times$8$\times$64 & \\
		\hline
		conv2d & 3$\times$3 & 1$\times$1 & BN& 8$\times$8$\times$96 & 55776\\
		pool & 2$\times$2 & 2$\times$2 & ---& 4$\times$4$\times$96 & \\
		\hline
		conv2d & 3$\times$3 & 1$\times$1 & BN& 4$\times$4$\times$128 & 111232\\
		flat & & & & (2048) & \\
		\hline
		\hline
		fc & (20) & & L1+BN & (20) & 41060\\
		\hline
		\hline
		\hline
		dense & (8) & & BN& (8) & 200\\
		dense & (2) & & ---& (2) & 18\\
		\bottomrule
	\end{tabular}
	\caption{Predictor network architecture from \cite{katzmann2018tumorencode} used for liver lesion growth prediction in Chapter \ref{katzmann2018tumorencode}. Notably, all layers before the final dense layers are shared with the sparse autoencoder (see Tab.~\ref{Tab:IJCNN_Tab_NetworkArch}). As dense layers tend to easily overfit, both are dimensioned with very few neurons, enforcing a latent space seperation in the convolutional layers. The table is based on the original work from \cite{katzmann2018tumorencode}.}
	\label{Tab:IJCNN_NetworkPred}
\end{table}

%\section*{MIDL}
\begin{table}
	\centering
	\begin{tabular}{cc|cccccc}
		\toprule
		\multicolumn{2}{c}{} & 	type 	& filters	& stride 	& regularization 	& output 			& \#\,parameters \\
		\midrule
		
		\multicolumn{2}{c}{} & input		& 	--		&	--		& BN				& 2x64x64x1 	& 0				\\
		\multicolumn{2}{c}{} & lambda		& 	--		&	--		& BN				& \parbox{45pt}{0: 64x64x1\\ 1: 64x64x1} 	& 0				\\
		\midrule
		
		\multirow{9}{*}{\centering 2x} 
		&  &conv& 5x5 & 1x1 & BN & 64x64x32	& 960 		\\
		&  &pool& 2x2 & 2x2 & -- & 32x32x32 & --			\\
		&  &conv& 5x5 & 1x1 & BN & 32x32x48 & 38640		\\
		&  &pool& 2x2 & 2x2 & -- & 16x16x48 & --			\\
		&  &conv& 3x3 & 1x1 & BN & 16x16x64 & 27968		\\
		&  &pool& 2x2 & 2x2 & -- & 8x8x64   &--			\\
		&  &conv& 3x3 & 1x1 & BN & 8x8x96   & 55776		\\
		&  &pool& 2x2 & 2x2 & -- & 4x4x96   & --			\\
		&  &conv& 3x3 & 1x1 & BN & 4x4x128  & 111232	\\
		
		\midrule
		
		\multicolumn{2}{c}{} & reshape		& 	--		&	--		& --				& 4096 	& --				\\
		
		\multicolumn{2}{c}{} & dense		& 	--		&	--		& BN				& 20 	& 82020				\\
		
		\midrule
		
		\multirow{11}{*}{\centering 2x} 
		&  &dense	& --	& -- & BN & 2048		& 51200 		\\
		&  &reshape	& --	& -- & -- & 4x4x128		& --				\\
		&  &deconv	& 3x3	& 1x1 & BN & 4x4x96		& 111072		\\
		&  &up		& 2x2	& 2x2 & -- & 8x8x96		& --			\\
		&  &deconv	& 3x3	& 1x1 & BN & 8x8x64		& 55616			\\
		&  &up		& 2x2	& 2x2 & -- & 16x16x64	& --			\\
		&  &deconv	& 3x3	& 1x1 & BN & 16x16x48	& 27888			\\
		&  &up		& 2x2	& 2x2 & -- & 32x32x48	& --			\\
		&  &deconv	& 5x5	& 1x1 & BN & 32x32x32	& 38560			\\
		&  &up		& 2x2	& 2x2 & -- & 64x64x32	& --			\\
		&  &deconv	& 5x5	& 1x1 & BN & 64x64x1	& 932			\\
		
		\midrule
		
		\multicolumn{2}{c}{} & out		& 	--		&	--		& --				& 2x64x64x1 	& --				\\
		
		\bottomrule
		
	\end{tabular}
	\caption{Network architecture of the used sparse convolutional autoencoder in Chapter \ref{katzmann2018predicting} which was used for lesion growth and patient survival prediction. In contrast to the architecture from \cite{katzmann2018tumorencode}, the network uses two separate processing lanes for baseline and followup images (cf.~Tab.~\ref{Tab:IJCNN_Tab_NetworkArch}). The table is based on the original work from \cite{katzmann2018predicting}.}
	\label{Tab:Methods_DL_Tab_AE}
\end{table}

\begin{table}
	\centering
	\begin{tabular}{cc|cccccc}
		\toprule
		\multicolumn{2}{c}{} & 	type 	& filters	& stride 	& regularization 	& output 			& \#\,parameters \\
		\midrule
		
		\multicolumn{2}{c}{} & input		& 	--		&	--		& BN				& 2x64x64x1 	& 0				\\
		\multicolumn{2}{c}{} & lambda		& 	--		&	--		& BN				& \parbox{45pt}{0: 64x64x1\\ 1: 64x64x1} 	& 0				\\
		\midrule
		
		\multirow{9}{*}{\centering 2x} 
		&  &conv& 5x5 & 1x1 & BN & 64x64x32	& 960 		\\
		&  &pool& 2x2 & 2x2 & -- & 32x32x32 & --			\\
		&  &conv& 5x5 & 1x1 & BN & 32x32x48 & 38640		\\
		&  &pool& 2x2 & 2x2 & -- & 16x16x48 & --			\\
		&  &conv& 3x3 & 1x1 & BN & 16x16x64 & 27968		\\
		&  &pool& 2x2 & 2x2 & -- & 8x8x64   &--			\\
		&  &conv& 3x3 & 1x1 & BN & 8x8x96   & 55776		\\
		&  &pool& 2x2 & 2x2 & -- & 4x4x96   & --			\\
		&  &conv& 3x3 & 1x1 & BN & 4x4x128  & 111232	\\
		
		\midrule
		
		\multicolumn{2}{c}{} & reshape		& 	--		&	--		& --				& 4096 	& --				\\
		
		\multicolumn{2}{c}{} & dense		& 	--		&	--		& BN				& 20 	& 82020				\\
		
		
		\multicolumn{2}{c}{} & dense		& 	--		&	--		& BN				& 8 	& 200				\\		
		\multicolumn{2}{c}{} & softmax		& 	--		&	--		& --				& 2 	& 18				\\		
		
		\bottomrule
		
	\end{tabular}
	\caption{Predictor network architecture for prediction lesion growth and patient survival as presented in Chapter \ref{katzmann2018predicting} based on the sparse convolutional autoencoder which was described in Tab.~\ref{Tab:Methods_DL_Tab_AE}. The table based on the original work from \cite{katzmann2018predicting}.}
	\label{Methods_DL_Tab_Classifier}
\end{table}

%\section*{Deep Decision Explanation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
% LIDC IDRI
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
%TODO Text noch einmal überarbeiten
\begin{table}[]
	\centering
	\begin{tabular}{cccc}
		\toprule
		& \textbf{Intuitivity}               & \textbf{Semantics}                 & \textbf{Quality}                  \\
		%\hline\hline
		\midrule
		\midrule
		\multicolumn{4}{c}{Questionnaire results (raw)}\\
		\midrule
		\textbf{Ours}       & \textbf{1.92}~~ {[}~0.50,~3.13{]}      & \textbf{1.76}~~ {[}~0.25,~3.13{]}      & \textbf{1.04}~~ {[}-0.63,~2.50{]}    \\
		DeepSHAP   & -1.56*~ {[}-3.13,~0.13{]}   & -1.54*~ {[}-3.13,~0.25{]}   & -2.02*~ {[}-3.25,-0.63{]} \\
		DeepTaylor & -1.52*~ {[}-3.25,~0.38{]}   & -1.72*~ {[}-3.38,~0.13{]}   & -0.85~~ {[}-2.50,~0.75{]} \\
		LRP        & -2.53** {[}-3.63,-1.25{]} & -2.57** {[}-3.75,-1.13{]} & -2.16*~ {[}-3.38,-0.75{]}\\
		\midrule
		\multicolumn{4}{c}{Questionnaire results (z-adjusted)}\\
		\midrule%\hline\hline
		\textbf{Ours}       & \textbf{2.84}~~ {[}~1.50,~3.98{]}      & \textbf{2.78}~~ {[}~1.39,~4.10{]}      & \textbf{2.04}~~ {[}~0.50,~3.41{]}      \\
		DeepSHAP   & -0.64*~ {[}-2.00,~0.86{]}   & -0.52*~ {[}-1.97,~1.05{]}   & -1.02*~ {[}-2.12,~0.16{]}   \\
		DeepTaylor & -0.60*~ {[}-2.16,~1.10{]}   & -0.71*~ {[}-2.23,~1.00{]}   & 0.14~~ {[}-1.32,~1.57{]}     \\
		LRP        & -1.61** {[}-2.72,-0.33{]} & -1.55** {[}-2.73,-0.11{]} & -1.16*~ {[}-2.24,-0.02{]}\\
		\midrule
		\multicolumn{4}{c}{Average rank}\\
		\midrule%\hline\hline
		\textbf{Ours}       & \textbf{1.28}~~~ {[}1.00,1.75{]}    & \textbf{1.36}~~ {[}1.00,1.88{]}   & \textbf{1.52}~ {[}1.06,2.19{]}  \\
		DeepSHAP   & 2.78**~ {[}2.19,3.38{]}  & 2.75*~ {[}2.13,3.31{]}  & 3.04* {[}2.50,3.50{]} \\
		DeepTaylor & 2.71*~~ {[}2.06,3.31{]}   & 2.75*~ {[}2.06,3.38{]}  & 2.36~ {[}1.75,3.00{]}  \\
		LRP        & 3.23*** {[}2.75,3.63{]} & 3.14** {[}2.63,3.56{]} & 3.07* {[}2.50,3.56{]}\\
		\bottomrule
	\end{tabular}
	\caption{\label{Tab:DeepDecisionExplanation_UserStudy_LIDC} Average questionnaire results (higher is better) and rank (lower is better) per algorithm on the LIDC-IDRI dataset from Chapter \ref{DeepDecisionExplanation} with 95\,\% CI. $p$-values for two-tailed $t$-test with $t(6)$ are indicated as $p<.05$*, $p<.01$**, $p<.001$***. The best result is marked bold. Source: \cite{katzmann2021explaining}}
\end{table}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
% BreastMNIST
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
%TODO Text noch einmal überarbeiten
\begin{table}[]
	\centering
	\begin{tabular}{cccc}
		\toprule
		& \textbf{Intuitivity}               & \textbf{Semantics}                 & \textbf{Quality}                  \\
		%\hline\hline
		\midrule
		\midrule
		\multicolumn{4}{c}{Questionnaire results (raw)}\\
		\midrule
		\textbf{Ours}       & \textbf{~1.45}~~ {[}~0.36,~2.45{]}      & \textbf{~1.33}~~ {[}~0.27,~2.36{]}      & \textbf{~1.72}~~ {[}~0.64,~2.64{]}    \\
		DeepSHAP   & -1.77** {[}-2.82,-0.64{]}   & -1.95** {[}-3.00,-0.82{]}   & -1.42** {[}-2.55,-0.27{]} \\
		DeepTaylor & ~0.91~~ {[}-0.55,~2.18{]}   & ~0.90~~ {[}-0.55,~2.18{]}   & ~0.75~~ {[}-0.64,~2.00{]}   \\
		LRP        & -1.41** {[}-2.55,-0.18{]} & -1.63** {[}-2.73,-0.45{]} & -1.19** {[}-2.36,~0.00{]}\\
		\midrule
		\multicolumn{4}{c}{Questionnaire results (z-adjusted)}\\
		\midrule
		\textbf{Ours}       & \textbf{~1.66}~~ {[}~0.65,~2.57{]}      & \textbf{1.67}~~ {[}~0.63,~2.62{]}      & \textbf{1.76}~~ {[}~0.70,~2.71{]} \\
		DeepSHAP   & -1.56** {[}-2.63,~0.39{]}   & -1.62** {[}-2.70,-0.43{]}   & -1.38** {[}-2.47,-0.20{]}   \\
		DeepTaylor & ~1.11~~ {[}-0.26,~2.37{]}   & ~1.24~~ {[}-0.12,~2.49{]}   & 0.78~~ {[}-0.53,~1.99{]}     \\
		LRP        & -1.21** {[}-2.33,~0.02{]} & -1.29** {[}-2.41,-0.07{]} & -1.15** {[}-2.29,~0.04{]}\\
		\midrule
		\multicolumn{4}{c}{Average rank}\\
		\midrule
		\textbf{Ours}       & \textbf{1.75}~~ {[}1.36,2.23{]}    & \textbf{1.77}~~ {[}1.32,2.32{]}   & \textbf{1.64}~~ {[}1.23,2.14{]}  \\
		DeepSHAP   & 3.26** {[}2.82,3.64{]}  & 3.23** {[}2.77,3.64{]}  & 3.12** {[}2.59,3.59{]} \\
		DeepTaylor & 1.99~~ {[}1.41,2.64{]}   & 1.99~~ {[}1.45,2.64{]}  & 2.27~~ {[}1.73,2.86{]}  \\
		LRP        & 3.00** {[}2.45,3.45{]} & 3.02*~ {[}2.50,3.45{]} & 2.97*~ {[}2.36,3.50{]}\\
		\bottomrule
	\end{tabular}
	\caption{\label{Tab:DeepDecisionExplanation_UserStudy_Breast}Average questionnaire results (higher is better) and rank (lower is better) per algorithm on the BreastMNIST dataset from Chapter \ref{DeepDecisionExplanation} with 95\,\% CI. $p$-values for two-tailed $t$-test with $t(6)$ are indicated as $p<.05$*, $p<.01$**. The best result is marked bold. Source: \cite{katzmann2021explaining}}
\end{table}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
% CIFAR-10 Cats vs. Dogs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
%TODO Text noch einmal überarbeiten
\begin{table}[]
	\centering
	\begin{tabular}{cccc}
		\toprule
		& \textbf{Intuitivity}               & \textbf{Semantics}                 & \textbf{Quality}                  \\
		%\hline\hline
		\midrule
		\midrule
		\multicolumn{4}{c}{Questionnaire results (raw)}\\
		\midrule
		Ours       & ~0.67~ {[}-0.67,~1.89{]}      & ~0.72~ {[}-0.78,~2.11{]}      & -0.12 {[}-1.44,~1.22{]}    \\
		DeepSHAP   & -1.41~ {[}-2.78,~0.00{]}   & -1.48~ {[}-2.89,~0.00{]}   & -0.23 {[}-2.00,~1.44{]} \\
		\textbf{DeepTaylor} & \textbf{~1.91}~ {[}~0.56,~3.00{]}   & \textbf{~2.16}~ {[}~0.78,~3.22{]}   & \textbf{~0.70} {[}-0.78,~2.11{]}   \\
		LRP        & -1.81* {[}-3.00,-0.44{]} & -1.91* {[}-3.22,-0.44{]} & -1.45 {[}-2.56,~0.33{]}\\
		\midrule
		\multicolumn{4}{c}{Questionnaire results (z-adjusted)}\\
		\midrule
		Ours       & ~0.83~ {[}-0.47,~2.03{]}      & ~0.85~ {[}-0.58,~2.13{]}      & ~0.08 {[}-1.18,~1.36{]}      \\
		DeepSHAP   & -1.25~ {[}-2.60,~0.16{]}   & -1.35~ {[}-2.71,~0.07{]}   & -0.03 {[}-1.83,~1.69{]}   \\
		\textbf{DeepTaylor} & \textbf{~2.07}~ {[}~0.75,~3.12{]}   & \textbf{~2.29}~ {[}~0.96,~3.32{]}   & \textbf{~0.90} {[}-0.58,~2.28{]}     \\
		LRP        & -1.65* {[}-2.88,-0.32{]} & -1.79* {[}-3.07,-0.36{]} & -0.95 {[}-2.39,~0.48{]}\\
		\midrule
		\multicolumn{4}{c}{Average rank}\\
		\midrule
		Ours       & 2.13~ {[}1.61,2.72{]}    & 2.15~ {[}1.61,2.72{]}   & 2.61 {[}1.94,3.27{]}  \\
		DeepSHAP   & 3.04~ {[}2.50,3.50{]}  & 3.06~ {[}2.50,3.56{]}  & 2.30 {[}1.61,3.00{]} \\
		\textbf{DeepTaylor} & \textbf{1.52}~ {[}1.06,2.17{]}   & \textbf{1.50}~ {[}1.06,2.11{]}  & \textbf{2.16} {[}1.50,2.89{]}  \\
		LRP        & 3.30* {[}2.83,3.72{]} & 3.29* {[}2.78,3.67{]} & 2.92 {[}2.39,3.44{]}\\
		\bottomrule
	\end{tabular}
	\caption{\label{Tab:DeepDecisionExplanation_UserStudy_CifarCD}Average questionnaire results (higher is better) and rank (lower is better) per algorithm on the CIFAR-10 cats-vs.-dogs dataset from Chapter \ref{DeepDecisionExplanation} with 95\,\% CI. $p$-values for two-tailed $t$-test with $t(7)$ are indicated as $p<.05$*. The best result is marked bold. Source: \cite{katzmann2021explaining}}
\end{table}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
% CIFAR-10 Trucks vs. Cars
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
%TODO Text noch einmal überarbeiten
\begin{table}[]
	\centering
	\begin{tabular}{cccc}
		\toprule
		& \textbf{Intuitivity}               & \textbf{Semantics}                 & \textbf{Quality}                  \\
		%\hline\hline
		\midrule
		\midrule
		\multicolumn{4}{c}{Questionnaire results (raw)}\\
		\midrule
		Ours       & ~0.95~ {[}-0.67,~2.33{]}      & ~1.49~~ {[}~0.00,~2.67{]}      & ~0.49 {[}-1.00,~1.83{]}    \\
		DeepSHAP   & -1.78* {[}-3.33,~0.00{]}   & -1.97*~ {[}-3.50,-0.17{]}   & -1.51 {[}-3.33,~0.33{]} \\
		\textbf{DeepTaylor} & \textbf{~2.43}~ {[}~0.66,~3.50{]}   & \textbf{~2.70}~~ {[}~1.17,~3.67{]}   & \textbf{~1.75} {[}-0.17,~3.33{]}   \\
		LRP        & -2.20* {[}-3.66,-0.33{]} & -2.46** {[}-3.83,-0.83{]} & -1.87 {[}-3.50,-0.00{]}\\
		\midrule
		\multicolumn{4}{c}{Questionnaire results (z-adjusted)}\\
		\midrule
		Ours    & ~1.10~ {[}-0.28,~2.30{]}      & ~1.55~~ {[}~0.33,~2.54{]}      & ~0.77~ {[}-0.67,~2.10{]}      \\
		DeepSHAP   & -1.64* {[}-3.30,~0.18{]}   & -1.91*~ {[}-3.54,-0.04{]}   & -1.22* {[}-3.01,~0.67{]}   \\
		\textbf{DeepTaylor} & \textbf{~2.58}~ {[}~1.25,~3.58{]}   & \textbf{~2.76}~~ {[}~1.53,~3.60{]}   & \textbf{~2.03}~ {[}~0.31,~3.51{]}     \\
		LRP        & -2.05* {[}-3.65,-0.18{]} & -2.40** {[}-3.78,-0.72{]} & -1.58* {[}-3.27,~0.30{]}\\
		\midrule
		\multicolumn{4}{c}{Average rank}\\
		\midrule
		Ours       & 2.12~ {[}1.67,2.67{]}    & 1.94~~ {[}1.58,2.33{]}   & 2.39 {[}1.75,3.08{]}  \\
		DeepSHAP   & 3.16~ {[}2.67,3.58{]}  & 3.24*~ {[}2.75,3.58{]}  & 2.83 {[}2.00,3.50{]} \\
		\textbf{DeepTaylor} & \textbf{1.32}~ {[}1.00,2.00{]}   & \textbf{1.31}~~ {[}1.00,1.92{]}  & \textbf{1.72} {[}1.08,2.50{]}  \\
		LRP        & 3.40* {[}2.83,3.83{]} & 3.51** {[}3.17,3.83{]} & 3.05 {[}2.33,3.67{]}\\
		\bottomrule
	\end{tabular}
	\caption{\label{Tab:DeepDecisionExplanation_UserStudy_CifarTC}Average questionnaire results per algorithm (higher is better) and rank (lower is better) on the CIFAR-10 trucks-vs.-cars dataset from Chapter \ref{DeepDecisionExplanation} with 95\,\% CI. $p$-values for two-tailed $t$-test with $t(4)$ are indicated as $p<.05$*, $p<.01$**. The best result is marked bold. Source: \cite{katzmann2021explaining}}
\end{table}


\begin{figure}
	\centering
	\includegraphics[width=.49\textwidth]{MainImage/factorsLIDC.eps}\includegraphics[width=.49\textwidth]{MainImage/factorsBreast_nolegend.eps}\\
	\includegraphics[width=.49\textwidth]{MainImage/factorsCatDog_nolegend.eps}\includegraphics[width=.49\textwidth]{MainImage/factorsTruckCar_nolegend.eps}
	\caption{Dendrogram of the pairwise Pearson correlation matrices for the analyzed criteria on the LIDC-IDRI (top-left), BreastMNIST (top-right), cats-vs.-dogs (bottom-left) and trucks-vs.-cars (bottom-right) datasets in Chapter \ref{DeepDecisionExplanation}. Source: \cite{katzmann2021explaining}}
	\label{Fig:DeepDecisionExplanation_CriteriaCorr}
\end{figure}

%TODO Farbschema anpassen für folgende zwei
\begin{figure}
	\centering
	\includegraphics[width=\textwidth]{MainImage/DeepRandomForests/BTEnv_RawResEns.eps}
	\caption{Raw results on the CIFAR-10 dataset for the classifier ensemble evaluated in Chapter \ref{DeepRandomForests_Results} with respect to (f.l.t.r.) accuracy, recall, inverse recall (top), informedness, markedness, matthews correlation coefficient (middle), AUC, Pearson product-moment and Spearman correlation (bottom).}
	\label{Fig:BTNetVsEnsemble_RawResEns}
\end{figure}

\begin{figure}
	\centering
	\includegraphics[width=\textwidth]{MainImage/DeepRandomForests/BTEnv_RawResBTNet.eps}
	\caption{Raw results on the CIFAR-10 dataset for the BTNet evaluated in Chapter \ref{DeepRandomForests_Results} with respect to (f.l.t.r.) accuracy, recall, inverse recall (top), informedness, markedness, matthews correlation coefficient (middle), AUC, Pearson product-moment and Spearman correlation (bottom).} %TODO Sicherstellen
	\label{Fig:BTNetVsEnsemble_RawResBTNet}
\end{figure}

\begin{figure}
	\centering
	\includegraphics[width=\textwidth]{MainImage/DeepRandomForests/DRFBTNetComparisonClfLinkage.eps}
	\caption{Dendrogram showing the results of the bootstrapped and non-bootstrapped classifiers from Chapter \ref{Results_DRF} on medical (LIDC-IDRI, BreastMNIST, PneumoniaMNIST, ChestMNIST) and non-medical (CIFAR-10, its subsets, and CIFAR-100) imaging datasets with respect to the Matthews correlation coefficient (MCC). Results are z-normalized per dataset to account for varying dataset difficulty. Original values are annotated per cell. As shown by the linkage, BTNet and DRF, both being bootstrapped ensembling methods, follow a similar pattern across all datasets. Similarly, all residual approaches are linked together, with the strongest similarities between the Shake-Shake and ShakeDrop as well as the BPS and plain ResNet\index{Model architectures!ResNet} approach. PneumoniaMNIST and ChestMNIST, both being low-quality, high sample amount}
	\label{Fig:BTClf_Results_Linkage}
\end{figure}

\begin{figure}
	\centering
	\includegraphics[width=\textwidth]{MainImage/generator.eps}
	\caption{Generator architecture used for the cycle-consistent deep decision explanation from Chapter \ref{DeepDecisionExplanation} based on the UNet architecture from \textcite{ronneberger2015u}. Source: \cite{katzmann2021explaining}} 
	\label{Fig:DeepDecisionExplanation_generator}
\end{figure}

\begin{figure}
	\centering
	\includegraphics[width=.7\textwidth]{MainImage/discriminator.eps}
	\caption{Discriminator architecture used for the cycle-consistent deep decision explanation from Chapter \ref{DeepDecisionExplanation} based on the UNet architecture from \textcite{ronneberger2015u} (cf.~Fig.~\ref{Fig:DeepDecisionExplanation_generator}) and the PatchGAN approach from \cite{isola2017image}. Source: \cite{katzmann2021explaining}} 
	\label{Fig:DeepDecisionExplanation_discriminator}
\end{figure}

\chapter{Metrics \& Measures}
%\addcontentsline{toc}{chapter}{\textcolor{ocre}{Metrics \& Measures}}
%TODO Dice irgendwo erklären (nutze ich den denn? sonst nicht!)
\label{MetricsAndMeasures}
Throughout this work, a variety of algorithms has been introduced and quantitatively evaluated. As partly different goals have to be achieved by the proposed architectures, a variety of evaluation measures has been employed. These will briefly be discussed within this part.

%TODO Das hier irgendwo sinnvoll einarbeiten:
% As described in \cite{katzmann2018predicting}, Within the medical domain high-quality demands and precisely known error bars are expected, as erroneously classified samples can have serious consequences for the patient. Thus, choosing the right classifier is a crucial task and we expect this decision to be taken case-by-case. Therefore we provide a variety of measures with different properties (Table \ref{tab_methods_metrics}). The expressiveness of algorithmic metrics depends on a variety of variables. Accuracy, being one of the most often used metrics, is only applicable to problems with equal label distributions. As described in sec. \ref{Data}, we face highly unequal label distributions, dismissing the use of unbalanced metrics. The F1-/S\o rensen-Dice coefficient is widely common, but overweights the positive class, making it prone to changes in the problem definition. Within the clinical setting often sensitivity ($TPR$) and specificity ($TNR$) are preferred. However, these metrics are highly influenced by the classifier's class weight, as an algorithm can be more conservative, hence preferring the negative class, or more optimistic, which in turn privileges the positive class. As a metric with high invariance regarding class imbalances and problem formulation is highly preferable, we propose the use of the $\phi$-/Matthews correlation coefficient, as it a) provides these invariances, b) is robust over a wide range of class-weight choices, and c) is highly common in various scientific domains, as for dichotomous problems it reduces to Pearson's product-moment correlation coefficient $r$.
%\begin{table}[b]
%	\caption{Determined classifier metrics}
%	\label{tab_methods_metrics}
%	\centering
%	\begin{tabular}{lcc}
%		\toprule
%		metric & abbreviation & formula \\
%		\midrule
%		true positive rate, sensitivity, recall 		& $TPR$ & $\frac{tp}{tp + fn}$\\
%		true negative rate, specifity, inverse recall	& $TNR$ & $\frac{tn}{tn + fp}$\\
%		positive predictive value, precision 			& $PPV$ & $\frac{tp}{tp + fp}$\\
%		negative predictive value, inverse precision	& $NPV$ & $\frac{tn}{tn + fn}$\\
%		F1 score/S\o rensen-Dice coefficient			& $F1$  & $\frac{2 \cdot tp}{2 \cdot tp + fp + fn}$ \\
%		Informedness, Youden's J statistic 				& $IFD$ & $TPR + TNR - 1 $\\
%		Markedness 										& $MKD$ & $PPV + NPV - 1 $\\
%		Matthews correlation coefficient/r/$\Phi$-Score & $MCC$ & $\sqrt{IFD \cdot MKD}$\\
%		\bottomrule
%	\end{tabular}
%\end{table}

\section*{Binary Classification Metrics}
\label{Theoretical_Metrics_Classification}

An overview of all used classification metrics within this work is found in Tab.~\ref{Tab_Measures_Overview}. First, it should be noted that the meaning of a value for one specific metric can largely depend on the context. Accuracy, for example, is a widely used metric that provides a highly intuitive understanding. It is, however, highly prone to misinterpretations due to label imbalance, and thus only applicable to balanced datasets. This similarly applies to other widely used metrics, such as sensitivity (true positive rate), specificity (true negative rate), positive, and negative predictive value (precision/inverse precision). As pointed out multiple times within this thesis, medical imaging data often have highly unequal label distributions (cf.~Chapters \ref{katzmann2018tumorencode} and \ref{katzmann2018predicting}), creating a need for using balanced measures if possible.

One of these measures is the F1 coefficient (see Tab.~\ref{Tab_Measures_Overview}), also known as S\o rensen-Dice or Dice-similarity coefficient. A major downside, however, is that it does not take into account the number of true negatives, giving equal weight to precision and recall. First, depending on the concrete use case, this weighting is highly debatable (cf.~\cite{hand2018note}). Secondly, in nearly all of the application scenarios assessed within this work, e.\,g.~lesion growth prediction, the true negative class is in fact highly important. Finally, it should be noted, that the formula of the F1 makes it prone to changes in the problem definition (e.\,g.~prediction of \emph{growth} vs. prediction of \emph{non-growth} formulated as being the positive class). 

The concrete class weight in a clinical setting is mostly problem-dependent and is related to the costs and/or acceptance problems resulting from false positives and negatives, respectively. As a trade-off, one could suggest using balanced metrics where possible, such as informedness, markedness, or the Matthews correlation coefficient (MCC). Especially the latter has a variety of benefits, as it combines the former two, is zero-centered, and has an intuitive interpretation, which is that a value of zero corresponds to guessing, while a value of one corresponds to a perfect correlation\footnote{In fact, as the so-called $\phi$-coefficient the Matthews correlation coefficient is widely used in statistics and for binary classification reduces to the Pearson's product-moment correlation coefficient.}.

\begin{table}[!th]
	%% increase table row spacing, adjust to taste
	\renewcommand{\arraystretch}{2}
	% if using array.sty, it might be a good idea to tweak the value of
	% \extrarowheight as needed to properly center the text within the cells
	\centering
	%% Some packages, such as MDW tools, offer better commands for making tables
	%% than the plain LaTeX2e tabular which is used here.
	\begin{tabular}{p{50mm}p{50mm}}
		\toprule
		\textbf{Measure} & \textbf{Equation} \\
		\midrule
		\midrule
		\begin{minipage}{\textwidth}
			true positive rate, \newline sensitivity, recall
		\end{minipage}& $TPR=\frac{tp}{tp+fn}$\\
		\midrule
		\begin{minipage}{\textwidth}
			true negative rate,\newline specifity,\newline inverse recall
		\end{minipage}& $TNR=\frac{tn}{tn+fp}$\\
		\midrule
		\begin{minipage}{\textwidth}
			positive predictive value,\newline precision
		\end{minipage}& $PPV=\frac{tp}{tp+fp}$\\
		\midrule
		\begin{minipage}{\textwidth}
			negative predictive value,\newline inverse precision
		\end{minipage}& $NPV=\frac{tn}{tn+fn}$\\
		\midrule
		\begin{minipage}{\textwidth}
			F\textsubscript{1} score
		\end{minipage}& $F_1=\frac{2\cdot tp}{2\cdot tp+fp+fn}$\\
		\midrule
		\begin{minipage}{\textwidth}
			Informedness\\Youden's J statistic
		\end{minipage}& $IFD=TPR+TNR-1$\\
		\midrule
		\begin{minipage}{\textwidth}
			Markedness
		\end{minipage}& $MKD=PPV+NPV-1$\\
		\midrule
		\begin{minipage}{\textwidth}
			Matthews correlation\newline coefficient/$\phi$-coefficient
		\end{minipage}& $MCC=\sqrt{IFD\cdot MKD}$\\
		\bottomrule
	\end{tabular}
	\caption{Overview on the classification metrics which are used within this work. The variables $tp$, $tn$, $fp$, $fn$ represent the numbers of true positives, true negatives, false positives and false negatives given predictions and ground truth labels in a binary classification problem.}
	\label{Tab_Measures_Overview}
	
\end{table}

\section*{Non-binary Classification, Micro and Macro Averaging}
In case of non-binary classification problems, binary metrics can be applied if the multiclass properties of the problem are explicitely taken into account. To achieve this, two possible ways are the use of micro- and macro-averaging. The basic idea of both is to binarize the problem and to apply the metrics accordingly. The main difference is the point of aggregation. More specifically, assuming a metric $m$ which takes true positives $tp$, true negatives $tn$, false positives $fp$, and false negatives $fn$, applying macro averaging corresponds to first class-wise counting $tp_c$, $tn_c$, $fp_c$, $fn_c$ and then to subsequently calculate $m_c$ for each class $c\in C$ with\\
\begin{equation}
m_c = m(tp_c,tn_c,fp_c,fn_c)
\end{equation}
and deriving the final metric value $m_\mathrm{macro}$ as:\\
\begin{equation}
m_\mathrm{macro} = \frac{1}{|C|}\sum_c^C m_c
\end{equation}

Micro-averaging follows a similar approach, but aggregates at the counting level (i.\,e.~micro), rather than averaging after calculating the metrics (\emph{macro}), i.\,e.:\\
\begin{equation}
m_\mathrm{micro} = m(\sum_c^C tp_c, \sum_c^C tn_c, \sum_c^C fp_c, \sum_c^C fn_c)
\end{equation}

Generally, both options are valid but are somewhat different in their interpretation. While macro averaging provides a better overview of the accuracy for each class, it is more prone to outliers, e.\,g.~classes that are very well or only poorly recognized. Micro averaging, on the other hand, better takes care of the number of samples in each class, as aggregation is applied only once. It is thus less prone to outliers and can be applied to imbalanced data without creating misleading results. It is, however, less applicable when the distributions between the evaluation and the final application differ, as it can happen when stratifying training or validation data. It is thus important that the used averaging is explicitly denoted for multiclass problems.

\section*{Regressive Evaluation Metrics}
\subsection*{Pearson correlation coefficient}
\label{Appendix_Metrics_Pearson}
The Pearson correlation coefficient\footnote{The Pearson, or rarely Bravais-Pearson correlation coefficient, is named after Karl Pearson and Auguste Bravais. Its first use dates back to at least 1844 \parencite{bravais1844analyse}.} $r$ is a measure of the linear dependency of two variables. It can take values in the interval $[-1,1]$, with -1 representing a perfect negative, and $+1$ a perfect positive correlation, respectively. No (linear) correlation is given if the coefficient is $0$. It is calculated as:
\begin{equation}
r(X,Y) = \frac{cov(X,Y)}{\sigma_{X}\sigma_{Y}} = \frac{
	\mathbb{E}\lbrack
	(X-\mathbb{E}\lbrack
	X
	\rbrack)(Y-\mathbb{E}\lbrack
	Y
	\rbrack)
	\rbrack
}{
	\sqrt{\mathbb{E}\lbrack(X-\mathbb{E}\lbrack X\rbrack)^2\rbrack
		\mathbb{E}\lbrack(Y-\mathbb{E}\lbrack Y\rbrack)^2\rbrack}
}
\end{equation}
i.\,e. for two vectors $x,y$ as:
\begin{equation}
r(x,y) = \frac{\sum_{i}(x_i - \overline{x})(y_i - \overline{y})
}{\sqrt{\sum_{i}(x_i-\overline{x})^2\sum_{i}(y_i-\overline{y})^2}}
\end{equation}

\subsection*{Spearman's rank correlation coefficient}
\label{Appendix_SpearmansRank}
%TODO Vermutlich raus, oben schon drinnen (ISBI2019 glaube)
Spearman's rank correlation coefficient $r_s$ (or $\rho$) is defined analogously to the Pearson correlation coefficient, but uses the rank transformations $R(x),R(y)$ of the variables $x,y$:
\begin{equation}
r_s = r(R(x),R(y)) = \frac{cov(R(c),R(p_y))}{\sigma_{R(c)}\sigma_{R(p_y)}}
\end{equation}

\subsubsection*{Mean squared / Mean absolute / Median absolute error}
Assuming ground truth samples $y$ and predictions $\hat{y}$, the mean squared error is given by:
\begin{equation}
\mathrm{MSE}=\frac{1}{N}\sum_1^N \left||y_-\hat{y}_i\right||^2
\end{equation}

with $N=|Y|$ being the number of samples. The mean absolute error is constructed analogously as
\begin{equation}
\mathrm{MAE}=\frac{1}{N}\sum_1^N \left|y_i-\hat{y}_i\right|=\frac{1}{N}e_i
\end{equation}

Finally, the median absolute error $\mathrm{MedAE}$ is the median $\tilde{e}$.

While there are a variety of metrics that are much more common for regression, such as the $\mathrm{R}^2$ measure, these were not relevant with respect to the work at hand, as regression was mainly conducted as a side-topic of survival regression.

\section*{Survival Metrics}
\label{Appendix_Metrics_Survival}
For survival estimation, such as in Chapter \ref{katzmann2019miccai}, the most commonly used evaluation metric is Harrel's concordance index (CI, or C-index) $CI$, which is calculated by counting concordant and discordant pairs of survival estimates. Concordance denotes the correctness of the order of the estimated survival times with respect to the ground truth. Assuming estimated survival times $\hat{Y}=\{\hat{y}_1,...,\hat{y}_N\}$ and ground truth data $Y=\{y_1,...,y_N\}$ the $CI$ can be calculated as:\index{Metrics!Concordance index}
\begin{equation}
CI = \frac{
	\sum_{i\ne j}|\{(i,j)|(y_i < y_j) \land (\hat{y}_i < \hat{y}_j)\}|
}{
	\sum_{i\ne j}|\{(i,j)|(y_i < y_j)\}|	
}
\end{equation}

More intuitively, it represents the fraction of concordant pairs, i.\,e.~pairs that have the same time order in both the predicted as well as the ground truth data, and takes into account each of these possible pairings $(T_i,T_j)$. A major downside of the C-index is that it only takes into account time order, but not absolute times. It is thus an ordinal measure and does not give any information beyond this scale level. If exemplarily an algorithm would predict the double survival times for each patient, the resulting CI would be unchanged as long as the order is kept. This would even then be the case if the time differences between the patients would be completely arbitrary, being the main reason for the downsides of the Cox proportional hazards model (cf.~Chapter \ref{katzmann2019miccai}).

Of course, regression metrics, such as the mean (MAE) or median absolute error (MedAE), can be applied to the problem of survival estimation as with standard regression.

\subsubsection*{Area under the AUC}
A major downside of Harrel's C-index is that it only takes into account relative order. While it is therefore practical for \emph{risk stratification}, i.\,e.~by answering which patient has the higher survival in direct comparison, it does not allow the assessment of the absolute prediction quality over time. The area under the AUC (AUAUC), analogously to the AUC, binarizes the problem at each timepoint $\{y_i,\hat{y}_i\}$ for ground truth and estimated survival times $Y,\hat{Y}$, respectively. All patients $k$ are assigned a temporary label $y_k$ and a temporary, binary prediction $\hat{y_k}$ for each time step as:
\begin{eqnarray}
y_{k,i} = \left\{
\begin{array}{ll}
1 & T_k \ge y_i \\
0 & \, \textrm{else} \\
\end{array}
\right. \\
\hat{y_{k,i}} = \left\{
\begin{array}{ll}
1 & \hat{y}_k \ge y_i \\
0 & \, \textrm{else} \\
\end{array}
\right. 
\end{eqnarray}
This temporary prediction can now be used to calculate an AUC for each timestep. Finally, an integral over the resulting curve can numerically be calculated, e.\,g.~using trapezoid or Simpon's rule. This integral is then normalized by the range ($y_\mathrm{max}-y_\mathrm{min}$), yielding a value which, analogously to the original AUC, is in the range $[0,1]\in\mathbb{R}$.

\begin{comment}
\end{comment}

\section*{Distributional inequality}
\subsubsection*{Gini coefficient}
Several times within this work, a measure for distributional inequality was needed, e.\,g.~for the quantification of the confidence estimation quality in Chapter \ref{katzmann2019isbi} and the split calculation in Chapter \ref{DeepRandomForests}. For this purpose, the use of the Gini coefficient is widely common. The Gini coefficient takes values in the range $[0,1]\in\mathbb{R}$, with a value of 0 indicating an equal distribution and a value of 1 indicating a distribution in which all but one bin have a probability of zero with this one bin having a probability of one. As already described in Eq.~\ref{Eq:ISBI2019_gini}, the Gini coefficient for a discrete probability distribution $p$ can be calculated as:
\begin{equation}
\frac{\sum_i^m \sum_k^m |p_i-p_k|}{2n\sum_i^m p_i}
\end{equation}

\begin{comment}
\chapter*{Trash-Bin}
This part contains formulations, parts, formattings, and anything else which was removed from the original manuscript. It mainly serves as a trash bin for the later ressurection of small parts of it.


\section*{Publication Stuff for scientific vita}
Also, it would not have been possible to finish this thesis without the help of the supervised student works, notably:\\
\newcolumntype{m}{>{\hsize=.2\hsize}X}
\newcolumntype{n}{>{\hsize=.17\hsize}X}
{
	\renewcommand{\arraystretch}{2}
	\begin{tabularx}{\textwidth}{mnX}
		2017/08-- 2018/02& M.Sc. \newline Thesis & \textbf{Automatic Deep Learning Lung Lesion Characterization with Combined Application of State-of-the-Art Transfer Learning and Image Augmentation Techniques}\newline Lisa Kratzke, M.Sc., FAU Erlangen-Nürnberg \\
		2018/09-- 2019/02& B.Sc. \newline Internship & \textbf{Tumor Segmentation for Automatic Liver Lesion Classification}\newline Marc-Steffen Seibel, B.Sc., TU Ilmenau\\
		2019/02-- 2019/07& B.Sc. \newline Thesis & \textbf{Total Tumour Burden Estimation for Clinical Decision Support in Colorectal and Pancreatic Cancer Patients}\newline Marc-Steffen Seibel, B.Sc., TU Ilmenau\\
		2019/07-- 2020/04& M.Sc. \newline Thesis & \textbf{Stabilized Training for Improved Clinical Decision Support and Computer Aided Diagnosis for Colorectal and Pancreatic Cancer Patients}\newline Stephen Ahmad, M.Sc., TU Ilmenau\\
		2019/09-- 2020/02 & B.Sc. \newline Internship & \textbf{Continuous and Distributed Deep Learning for Computer Aided Diagnosis in Oncology}\newline Wenke Karbole, B.Sc., TU Ilmenau\\
		2020/02-- 2020/08 & B.Sc. \newline Thesis & \textbf{Federated Deep Learning for Computer Aided Diagnosis in Oncology}\newline Wenke Karbole, B.Sc., TU Ilmenau\\
		2021/04-- 2021/06 & M.Sc. \newline Internship & \textbf{CycleGANs for Unpaired Image-to-Image Translation}\newline Julian Jendryka, B.Sc., FAU Erlangen-Nürnberg\\
		2021/08-- 2022/03 & M.Sc. \newline Thesis & \textbf{CycleGANs for Vascular Segmentation Improvement}\newline Julian Jendryka, B.Sc., FAU Erlangen-Nürnberg\\
	\end{tabularx}
}


Finally, scientific work does not only consist from publishing own results, but also from giving and receiving feedback. Much of the scientific rigor within this work is a result of the reviewing activities that journals and conferences gave me the chance to participate in. This significantly helped me to build up knowledge on scientific publishing, as well as to better understand and use the feedback that I was given over the course of this work. Therefore, a special thanks belongs to:\\
\begin{itemize}
	\item The IEEE International Joint Conference on Neural Networks (IJCNN) for allowing me to serve as a reviewer in 2019, 2020 and 2021\\
	\item The IEEE International Symposium on Biomedical Imaging (ISBI) for the interesting insights from being a reviewer in 2020 and 2021\\
	\item The International Conference on Medical Image Computation and Computer Assisted Intervention (MICCAI) for being a reviewer in the years 2020 and 2021\\
	\item The IEEE Transactions on Medical Imaging (TMI) for having the chance to serve as a reviewer in 2021
\end{itemize}





\section*{Medical Image Analysis}

This work will focus on an application in the field of \textit{Medical Image Analysis} within the scope of Clinical Decision Support. Computer Aided Detection (CADe) and Diagnosis (CADx). Castellino refers to CADe as "[...] a technology designed to decrease observational oversights [...]", more specifically a "[...] pattern recognition software that identifies suspicious features on the image and brings them to the attention of the radiologist, in order to decrease false negative readings" \cite{castellino2005computer}. CADe typically comprises tasks like lesion detection or organ segmentation.

While CADe typically has a supportive role only \textbf{CADx} comprises the automated assessment of patients with a resulting diagnosis or recommendation of diagnosis. CADx comprises tasks like lung lesion malignancy estimation, lesion growth prediction or survival estimation. While CADe is typically subject to less strict regulatory restrictions, CADx suffers from very strong regulatory restrictions due to its direct impact on patient health. In practice, fully-automated diagnoses are rarely existing. Instead, CADx systems typically communicate statistical estimates only, but leaves the final diagnosis to the practitioner. Most of this work will focus on CADx-solutions. %TODO Cites

Within medicine, there exists a wide range of potential applications for machine learning approaches. This comprises tasks like histopathologic classification and tumor marker identification [CITE], gene expression analysis, DNA sequencing, patient positioning, organ segmentation and many more. However, while many of the proposed approaches should be transferable to a variety of scenarios, this work will focus on the classification and analysis of computed tomography imaging data. %TODO should be ist eine gefährliche Formulierung

With their emerging use for repetitive work within medicine, deep neural networks have been making a significant contribution towards high-content/high-throughput systems, allowing clinicians to spend more time with each single case, resulting in a higher-quality assessment, and therefore contribute to an overall improved patient healthcare. %see sentence in intro
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