Technische Universitit Ilmenau
. Fakultat fiir Informatik und Automatisierung
Fachgebiet Neuroinformatik und Kognitive Robotik

Contribution to the
Long Term Prediction of Motion Trajectories

Dissertation zur Erlangung des Doktorgrades der Fakultat fiir Informatik und
Automatisierung der Technischen Universitdt Ilmenau

Konrad Schenk

Betreuer: Prof. Dr. H.-M. Grof
Gutachter: Prof. Dr. Hans-Joachim Béhme
Prof. Dr. Christian Wohler

Die Dissertation wurde am 13.10.2017 bei der Fakultdt fiir Informatik
und Automatisierung der Technischen Universitdt Ilmenau eingereicht
und am 11.07.2018 verteidigt.

urn:nbn:de:gbv:ilm1-2018000314

Kurzfassung

Viele Anwendungen in der mobilen und kognitiven Robotik erfordern einen Pradik-
tionsmechanismus, um die zukiinftigen Aufenthaltsorte bewegter Objekte zu schétzen.
Ein autonomes Auto muss beispielsweise die Absichten der anderen Verkehrsteilnehmer
schitzen kénnen, um Kollisionen zu vermeiden und die Verkehrsregeln einzuhalten. Ein
Serviceroboter muss hingegen in der Lage sein, die Bewegungsspuren der Personen in
seiner Umgebung vorherzusagen, um in einer sozial akzeptablen Art und Weise zu
navigieren und die Passanten nicht zu behindern.

Fast alle Pradiktionsalgorithmen, die in der Literatur zu finden sind, beschéftigen sich
mit der Kurzzeitpriadiktion und sind auf spezielle Problemstellungen angepasst. Die
Losung einer neuen Problemstellung, welche eine Langzeitpradiktion benétigt (z.B. ein
personalisierter Shopping-Assistent, oder eine intelligente Stauvorhersage), ist daher
oft mit umfangreichem Forschungs- und Entwicklungsaufwand verbunden.

Das Ziel dieser Dissertationsschrift liegt darin, sich dieses Defizits anzunehmen und
der wissenschaftlichen Gemeinschaft ein vielseitig einsetzbares Langzeitpradiktions-
framework zur Verfiigung zu stellen. Das Framework trifft keine Annahmen iiber
das jeweilige System und kann somit auf einfache Art und Weise an die spezifischen
Anforderungen der individuellen Problemstellung angepasst werden. Das Framework
selbst besteht aus drei Elementen:

e Ein topologisches Modell, welches mit Hilfe eines Clustering Algorithmus anhand
von Beobachtungen erstellt wird. Daraus resultiert ein topologischer Graph,
welcher den Zustandsraum effizient abbildet und eine praktkable Repréisentation
von Trajektorien ermdglicht.

e Ein probabilistisches Modell, welches den topologischen Graphen um
Ubergangswahrscheinlichkeiten und Wahrscheinlichkeitsverteilungen der Uber-
gangszeiten erginzt.

e Das eigentliche Préadiktionsframework, welches beide Modelle integriert. Mit
Hilfe eines flussbasierten Algorithmus errechnet es fiir eine gegebene Eingabe-
trajektorie die zukiinftigen Aufenthaltswahrscheinlichkeitsverteilungen iiber den
gesamten Zustandsraum.

Die im Rahmen dieser Arbeit durchgefithrten Experimente zeigen, dass das vorgestellte
Langzeitpriadiktionsframework fiir Bewegungstrajektorien in der Lage ist, sich mit
mehreren State of the Art Algorithmen zu messen, ohne dabei auf problemspezi-
fische Bewegungsmodelle zuriickzugreifen, physikalische Gesetze zu beachten, oder
einschrinkende Annahmen iiber den Zustandsraum des Systems zu treffen. Weiter-
hin enthalten die Experimente umfangreiche Auswertungen und Ergebnisse, um einen
aussagekraftigen Vergleich mit kiinftigen Pradiktionsalgorithmen zu ermoglichen.

Abstract

Most applications of mobile and cognitive robotics require a prediction mechanism to
estimate the future positions of moving objects. An autonomous car, for example,
needs to determine the intentions of other traffic participants to avoid collisions and
to obey the traffic rules. A service robot, on the other hand, needs to anticipate the
paths of the surrounding pedestrians in order to move in a socially acceptable manner
and to avoid awkward situations.

Almost all prediction algorithms presented in literature mainly focus on the short
term time horizon and usually give a solution tailored to a specific application. Thus,
extensive research and development is necessary if new applications (e.g., a personal-
ized shopping assistant or an intelligent traffic forecast) require a long term prediction
mechanism.

The goal of this thesis is to address this deficit and contribute a versatile long term
prediction framework to the scientific community. It provides an algorithm which can
easily be adapted to the individual task at hand by avoiding system specific assump-
tions such as motion characteristics, physical properties, or spatial restrictions. The
framework consists of three elements:

e A topological model which is based on observations and is created by utilizing
a clustering algorithm. It incorporates a topological graph, sampling the state
space efficiently and enabling a convenient representation of trajectories.

e The topological model is enriched with a probabilistic model by encoding tran-
sitional probabilities and transitional time distributions into the graph.

e Both models are integrated into the main prediction framework. By using a flow
based algorithm, it provides the future probability distribution for a given input
trajectory over the whole state space as a result.

The experiments in this thesis show that the presented long term motion prediction
framework is able to compete with a variety of state of the art algorithms. Further-
more, they include an extensive set of evaluations and results to enable an expressive
comparison to future prediction algorithms.

Acknowledgments

Before addressing the matter of long term motion prediction, I would like to thank
everyone that helped and supported me on my journey of writing this thesis.

First and foremost, I would like to thank my doctoral advisor, Prof. Dr. Horst-Michael
Grofs, for giving me the opportunity to conduct my research at the Neuroinformatics
and Cognitive Robotics Lab on the exciting topic of motion prediction. Without you,
[may never have discovered the fascinating world of robots and neural networks in
the first place.

Thank you to the entire departmental staff for your guidance, assistance, vivid dis-
cussions, and friendship. You all contributed to the positive atmosphere which made
it a pleasure to come to work every morning. I would especially like to acknowledge
my former colleagues and teammates Alexander Kolarow and Markus Eisenbach for
broadening my perspective and for the good times we shared; Dr. Klaus Debes for
keeping as much bureaucratic work off of our shoulders as possible; Ute Schiitz, Katja
Hamatschek, and Anja Zwetkow-Schilling for meticulously organizing the lab; and
Heike Grofs and Sabine Schulz for always keeping the I'T running.

Furthermore, I am grateful for my beloved wife, Kate, who inspired me to write this
thesis in English, diligently checked the grammar and orthography of every new draft
of a section or chapter, and who gave me a backrub when I needed one. Thank you,
Barbara Zand, for proofreading and correcting the text. You taught me a lot about
copy editing.

Finally, I would like to express my gratitude to my parents, Charlotte and Thomas,
and the rest of my family for always believing in me. Your love and unwavering support
encouraged me to pursue my dream of earning a doctoral degree.

Contents

Introduction

1.1 Contributions
1.2 Application Scenarioso
1.3 Publications
1.4 The Thesis’ Outline

Long Term Motion Prediction: State of the Art

21 OVerview e
2.2 Selected Methods
2.2.1 [BENNEWITZ, 2004]
2.2.2 [VASQUEZ GOVEA, 2007]
223 [IKEDA et al,2013]
2.3 Conclusion

Topological Representation of State Space

3.1 Topological Graph

3.2 Grid-based Representation

3.3 Cluster-based Representation
3.3.1 K-Means Decomposition
3.3.2 DBSCAN Partition
3.3.3 Growing Neural Gas
3.3.4 Mean-Shift Clustering,

3.4 Edge Creation

3.5 Conclusion

Tt W N = -

10
10
11
13
13

4 Representation of Transitional Probabilities of Moving Objects

4.1 Transitional Probabilities,
4.2 Markov-Tree e e
4.3 Representation of Time L
4.3.1 Non-Parametric Kernel-based Distribution
4.3.2 Parametric Kernel-based Distribution
4.3.3 Discussion
4.4 Conclusion

Prediction Framework

5.1 Probabilistic Flow
5.1.1 Continuous Timescale
5.1.2 Approximative Solution
5.1.3 Frequency Domain
5.1.4 Tterative Solution

5.2 Model Update

5.3 Conclusion and Summary Lo

Experimental Evaluation

6.1 Databasis
6.2 Error Measure
6.2.1 Euclidean Distance Error
6.2.2 Lock-In Accuracy
6.2.3 Next State Accuracy
6.2.4 Error over Trajectory Lo oL
6.2.5 Prediction ROC and AUC
6.26 Conclusion.
6.3 Topological Representation
6.4 Precision Loss in Frequency Domain
6.5 Comparison to the State of the Art
6.5.1 Comparison to [BENNEWITZ, 2004]
6.5.2 Comparison to [VASQUEZ GOVEA, 2007]
6.5.3 Comparison to [IKEDA et al., 2013
6.6 Long Term Prediction
6.6.1 Prediction ROC and AUC
6.6.2 FEuclidean Distance Error
6.6.3 Lock-In Accuracy Lo

6.6.4 Extended Lock-In Accuracy

28
30
34
35
36
37
38

41
42
43
45
48
o1
23
o4

6.6.0 Lock-In ROC &5

6.6.6 Intermediate Conclusion 86

6.7 Conclusion 87
7 Conclusion and Future Work 91
7.1 Summary e 91
7.1.1 Applications 91
7.1.2 Motivation 95
7.1.3 Framework 96
7.1.4 Evaluation 98

7.1.5 Considerations 99

7.2 Modifications 102
7.2.1 Performance improvements 102
7.2.2 Hierarchical Graph 104

Bibliography 107

Chapter 1

Introduction

Information and communication technology have advanced rapidly within the last few
years. Not only are new consumer electronics and faster computers announced on
a regular basis - vacuum cleaning robots, service robots and autonomous cars have
also been grabbing the media’s attention recently. The abilities of machines have
changed from planning, regulating and inferring capabilities to cognitive, anticipatory
and smart services (e.g., [KOLAROW et al., 2013, GROSS et al., 2014, SCHROETER
et al., 2013, STRICKER et al., 2012]). These aptitudes are necessary for a lot of new
developments. An autonomous car, for example, does not only need to be able to
determine and follow the best route to the destination, it also needs to recognize
traffic signs, pay attention to traffic lights, detect other vehicles on the road, and
estimate their intentions. One necessity for some of these tasks is the ability to predict
movements - not only just a few seconds into the future to prevent collisions but also
several seconds or minutes to determine the right of way in advance |[HERMES et al.,
2009].

1.1 Contributions

This thesis highlights the long term prediction since literature unjustifiably pays little
respect to this issue. The few publications covering this topic only give tailored solu-
tions to specific tasks which cannot be transferred to different problems without hur-
dles. In order to avoid developing a particular algorithm for every new prediction task,
a versatile prediction framework is presented in this thesis. It can be easily adapted to
different specific prediction tasks and provides an assertion over the prospective prob-
ability distributions of moving objects. Unlike several other prediction algorithms, the
probability of finding the object at one place should not be provided for just a single
or a few discrete points, but for the whole attainable state space. It enables us to

Konrad Schenk

2 CHAPTER 1. INTRODUCTION

not only answer the question about the most probable state but also to determine the
probability of a specific state or even of a whole interval of states. It is safe to assume
that it needs many calculations and, therefore, considerable computational capabilities
to provide such a result; but, this thesis will provide a computationally less expensive
solution by transferring the problem into the time domain and an even more efficient
algorithm using an iterative approach.

The prediction algorithm will basically consist of three elements. At first, a topolog-
ical state model is needed in order to encode the position of the object or the state
of the system to be more general. The state space is not only restricted to Cartesian
coordinates. It can also, for example, include the temperature, pressure, and propor-
tions of a chemical process, or the trade volume, revenue, and quotation of a stock
which needs to be predicted. The second element of the prediction algorithm provides
a probabilistic model representing the transition probabilities and periods between all
positions or states. Both models, which are dependent on each other, are merged
into the third element - the main prediction framework, which finally calculates the
probability distribution.

1.2 Application Scenarios

The foundation for this thesis was laid during the research project “APFel” (Anal-
yse von Personenbewegungen an Flughifen mittels zeitlich riickwérts- und vorwérts-
gerichteter Videodatenstrome - Analysis of Person Movement at Airports via Temporal
Backward and Forward Video Data Streams) [IKOLAROW et al., 2013]. The goal of
this project was to provide a proof of concept of an intelligent video recorder assisting
security personnel at airports in searching through hours of video footage on multiple
cameras. After selecting a person in one camera image, the system searches for this
person’s every appearance in all video recordings. In order to support the involved
re-identification and to filter the relevant video data, a prediction algorithm was imple-
mented for calculating the most probable appearances of the person on every camera.
Despite the highly specific application, the prediction framework was designed to be
as versatile as possible from the beginning in order to be easily adaptable to a variety
of other prediction tasks:

e In mobile communications for instance, it is useful to know the next cell tower a
user is going to connect to in advance. This knowledge can be used to improve
the hand-off delay and optimize the network utilization [WANALERTLAK et al.,
2011, VERHEIN and CHAWLA, 2006].

e The main application of a prediction for autonomous vehicles is collision avoid-
ance. It is crucial for an autonomous car to estimate the future positions of

Konrad Schenk

1.3. PUBLICATIONS 3

other vehicles and pedestrians in order to avoid accidents and to optimize its
own behavior [WIEST et al., 2012].

e Since mobile service robots are just another type of autonomous vehicle, they
clearly also need a collision avoidance that is ideally based on the prediction of
every other non-static object in its vicinity. Additionally, it enables the robot to
utilize an anticipatory situation assessment in order to change its navigational
strategies from a purely reactive collision avoidance [BURGARD et al., 1999] into
a more socially acceptable navigation policy [GROSS et al., 2014, KUDERER et al.,
2012, WEINRICH et al., 2013].

e In most applications of a service robot (e.g., [GROSS et al., 2014, SCHROETER
et al., 2013, STRICKER et al., 2012]), it is important to estimate the future as
well as the current whereabouts of people. If the robot is not able to observe
them directly (e.g., if the robot is in another room or it is unable/not allowed
to follow the person of interest), it can estimate their current positions based
on previous observations which is equivalent to a prediction [BENNEWITZ et al.,
2005].

e In marketing, several metrics are in existence to describe a possible cus-
tomer [BEARDEN and NETEMEYER, 1999, DEES et al., 2008]. Extensive re-
search is being conducted to anticipate a customers needs and his profitabil-
ity [DRENGNER et al., 2011, MALTHOUSE and BLATTBERG, 2005|. A prediction
algorithm may not only be useful to predict a shoppers spatio-temporal trajec-
tory but also to estimate high-order metrics to describe more abstract properties
of a possible customer.

1.3 Publications

Since the the proposed prediction framework was developed as part of a research
project, some elements of this thesis were already published at international and na-
tional conferences:

e [SCHENK et al., 2011] SCHENK, KONRAD, M. EISENBACH, A. KOLAROW and
H.-M. Gross (2011). Comparison of laser-based person tracking at feet and
upper-body height. In KI 2011: Advances in Artificial Intelligence, pp. 277-288.
Springer Berlin Heidelberg
The proposed tracking mechanism was used to create the Humboldt dataset as
presented in Section 6.1. It transforms LIDAR data into Cartesian coordinates
and tracks human-shaped point clouds with multiple particle filters.

Konrad Schenk

4 CHAPTER 1. INTRODUCTION

e [SCHENK et al., 2012a] SCHENK, KONRAD, A. KOLAROW, M. EISENBACH,
K. DEBES and H. GrROsS (2012a). Automatic calibration of multiple station-
ary laser range finders using trajectories. In Advanced Video and Signal-Based
Surveillance (AVSS), 2012 IEEE Ninth International Conference on, pp. 306
312. IEEE

e |SCHENK et al., 2012b|] SCHENK, KONRAD, A. KOLAROW, M. EISENBACH,
K. DEBES and H.-M. GROss (2012b). Automatic calibration of a stationary
network of laser range finders by matching movement trajectories. In Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp.
431-437. IEEE
The methods presented in [SCHENK et al., 2012a| and [SCHENK et al., 2012b]
were used to automatically align multiple LIDAR sensor units in a Cartesian
coordinate system. It helps significantly in reducing the time needed to set up
the hardware and enables the tracking algorithm of [SCHENK et al., 2011] to
cover the whole Humboldt Foyer.

The following publication was co-authored as part of this work:

e |[KOLAROW et al., 2013] KOLAROW, ALEXANDER, K. SCHENK, M. EISENBACH,
M. DOSE, M. BRAUCKMANN, K. DEBES and H.-M. GROsS (2013). APFel: The
intelligent video analysis and surveillance system for assisting human operators.
In Advanced Video and Signal Based Surveillance (AVSS), 2013 10th IEEE In-
ternational Conference on, pp. 195-201. IEEE
The presented tracking system is able to track people with several non-
overlapping cameras using HOG detectos, a fast object tracking, and a person
re-identification mechanism. If a person leaves a camera viewport, a precursor of
the proposed predcition framework helps in constraining the number of cameras
and time periods for the otherwise time consuming search for that person in the
video footage.

Unrelated to this thesis, the following publications were also co-authored:

e |[HERMES et al., 2009] HERMES, CHRISTOPH, C. WOHLER, K. SCHENK and
F. KUMMERT (2009). Long-term vehicle motion prediction. In Intelligent Vehi-
cles Symposium, 2009 IEEE, pp. 652-657. IEEE
A prediction algorithm using a tree search on motion pattern is presented
in [HERMES et al., 2009] in order to predict car movements at crossings. It
implements a similarity measure which is invariant to transformations and rota-
tions and able to match partial pattern.

Konrad Schenk

1.4.

THE THESIS’ OUTLINE 3

|EISENBACH et al., 2012| EISENBACH, MARKUS, A. KOLAROW, K. SCHENK,
K. DEBES and H. GROSS (2012). View invariant appearance-based person reiden-
tification using fast online feature selection and score level fusion. In Advanced
Video and Signal-Based Surveillance (AVSS), 2012 IEEE Ninth International
Conference on, pp. 184-190. IEEE

A key component used in [KOLAROW et al., 2013] is the person re-identification
algorithm presented in this publication. It uses a fast online feature selection to
reidentify a person regardless of its orientation, occlusions, and lighting.

|[KoLAROW et al., 2012] KOLAROW, ALEXANDER, M. BRAUCKMANN,
M. E1sENBACH, K. SCHENK, E. EINHORN, K. DEBES and H.-M. GrOSS (2012).
Vision-based hyper-real-time object tracker for robotic applications. In Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp.
2108-2115. IEEE

A fast vision-based object tracker is presented in this publication. It utilizes a
small number of simple features which are drawn from homogeneous regions of
the object to be tracked. These features allow for a fast logarithmic search and
enable the tracker to perform significantly faster than real-time on an HD video
stream using consumer hardware.

|EISENBACH et al., 2013] EISENBACH, MARKUS, P. SCHEINER, A. KOLAROW,
K. SCHENK, H.-M. GRroOSS and I. WEINREICH (2013). Learning Illumination
Maps for Color Constancy in Person Reidentification. Workshop Farbbildverar-
beitung, 19

Color constancy is a requirement for most re-identification algorithms in order
to track people across multiple cameras. This publication presents a method to
automatically learn varying lighting situations in a camera viewport in order to
compensate for changes in color and improve the performance of re-identification
algorithms.

1.4 The Thesis’ Outline

This thesis is structured as follows: In Chapter 2, an overview of state-of-the-art pre-

diction algorithms is given followed by a more thorough review of some selected long

term prediction methods. In Chapter 3 to 5, the individual parts of the prediction
framework are explained. In order to evaluate the performance of the prediction frame-

work, different methods are examined with experiments in Chapter 6, and the best

version is compared to the state of the art. The results and the contributions of this

thesis are summarized in Chapter 7 and possibilities for future work are depicted.

Konrad Schenk

6 CHAPTER 1. INTRODUCTION

Pre-
diction
Framework

Topological Probabilistic
Representation Representation
of State Space of State
Transitions

Observed Trajectories

Figure 1.1: The presented prediction framework basically consists of three elements. The
first element incorporates a model which represents the topology of the state space. A second
probabilistic model is affiliated with it which describes the tramsitions between the states
encoded into the topological model. Based on those two modules, the prediction framework as
the third element can then compute the future probability distribution given an observation.
A comprehensive trajectory basis is necessary in order to provide a representative model of
the topology and the state transitions.

The prediction framework itself is assembled as follows: Based on observed trajectories,
a topological model, which is illustrated in Chapter 3, is built first. It is used to
encode the spatial information about the space in which the prediction task needs to
be solved. The topological representations are then extended by a probabilistic model,
as described in Chapter 4, in order to reflect the information gained from previously
taken observations. Both models are finally combined into the prediction framework,
which takes a current observation and calculates the future spatio-temporal probability
distributions. The structure and algorithm of the framework itself is presented in
Chapter 5. An overview of the prediction framework is given in Figure 1.1.

Konrad Schenk

Chapter 2

Long Term Motion Prediction: State
of the Art

In the previous chapter, the long term motion prediction was introduced, examples of
its application were given, and the main contributions of this thesis were highlighted.
The following chapter gives an overview of the state of the art of long term motion
prediction with a main focus on an all-purpose solution.

In order to compare the thesis to the current literature, a categorization is given in
Section 2.1. To unveil a common workflow, a broad overview to different approaches
was chosen. In Section 2.2, the three most versatile approaches are presented and
evaluated to give a motivation for the methods selected in this thesis.

2.1 Overview

In essence, movement prediction can be seen as time series forecasting. Research on
this topic dates back several decades ([KEMENY and SNELL, 1960, MAKHOUL, 1975])
but application specific research has been conducted primarily in recent years.

In the data mining community, the main focus is put on mobile services and traffic
management. The knowledge of the future whereabouts while driving a car can be
used for informing the driver about upcoming gas stations, traffic jams, or points
of interest along the route |[JEUNG et al., 2010, KRUMM, 2008, MONREALE et al.,
2009]. By predicting the movements of not only one, but multiple cars, congestion and
traffic jams can be anticipated and traffic management may be optimized significantly
[BACHMANN et al., 2013].

For pedestrians using smart phones or other wearable devices, movement prediction
can be utilized in location based advertising (e.g., restaurants or shops along the road)
or for optimizing the cell-handover in wireless networks [VERHEIN and CHAWLA, 2006].

Konrad Schenk

8 CHAPTER 2. LONG TERM MOTION PREDICTION: STATE OF THE ART

Long Term Motion Prediction

— T

Category 1: Category 2: Category 3: Category 4:
Prediction Model Temporal/Spatial Prediction
Model Specifity Resolution Result
1.a Markov 2.a0ne 3.a Discrete (or 4.aTraj. w/o
Chain Model spec.) Time
1.b Motion 2.b Model 3.b Grid 4.b Traj. with
Pattern Groups Based Time

2.c Specific 3.c Density 4.c Prob.
Models Based Distribution
Figure 2.1: Categories and aspects for comparing prediction algorithms as stated

in [BACHMANN et al., 2013] and described in Section 2.1. The last item in category 4 was
added since none of the options available in [BACHMANN et al., 2013] suited the prediction
method presented in this thesis.

In mobile robotics, movement prediction is a key element in navigation and path
planning. Estimating the future positions of moving objects (e.g., other cars for au-
tonomous vehicles or pedestrians for service robots) does not only improve collision
avoidance but also helps in avoiding congested areas and finding routes optimal for
the robot and other participants [IKEDA et al., 2013, VASQUEZ GOVEA, 2007].

Most prediction algorithms found in literature can be compared according to four
different categories, as stated in [BACHMANN et al., 2013]. Figure 2.1 shows the main
categories and their different aspects. A comprehensive comparison of the current
literature regarding these aspects is shown in Figure 2.2.

First, the prediction model can be separated between Markov chains or equivalent
methods (see 1.a in Figure 2.1 and 2.2) and motion patterns (1.b). While the former
is based on the assumption that only the last n observations are relevant for estimating
the future positions with probabilistic methods, the latter uses the distance of input
trajectories to observed trajectories to give a prediction about the future state.
Another criterion to differentiate between the models is the specificity of their move-
ment models. The most common approach (2.a) is to use one model for all objects.
It is often based on the assumption that only one class of objects is present in the
state space (e.g., every object on a road is deemed a car - regardless of weather it is
a person or a bicycle). On the other hand, a model for every individual object can
be learned (2.b). Intermediate approaches with different models for different kinds of

Konrad Schenk

2.1. OVERVIEW 9

o
IS
il 2| |
& 2| & 2| 2| 5| 3| =
- = S| 2 I o Bl] B =
Sl &l <] g % =l 8| 2] S E| L . 2
|| R o A = o = 8| S NS o= <>C T 2 2| ¥ =1
sl S S = o= =2 8 8 = °] © o | g 3 = «
=] gl 9 = 2| 8| g || = = | <] B <| 9 & 3 by
= IS I 5] . =) 5] ol = 3 - o 9| =
b N| o — : S < gl 8| m| =| B g Bl G o 3| N S|
ol ¥ 2| = E| =| 2| | % 2| = < s < S| i 2| =&
<| of| 2| || &| ©| T < <] = S| x| oz| Bl gl S N F| 2| @
< o &l Z| 8| =| 8| ©| © | = Zlal & & 8l 2| 8| 2| Bl g| 8
S| 2| 82zl 4 < g g g 2] 2| 2| 2| 2| 8| | = 8| 2| S
ZIEl 231 %| 3| 23| 28| 2| B 2| %l E| 2| &l &| 5| 2 2| =
! = S 4l 2| B Z| 2| -3
w|l nl A o 2| B Al = =] g <] = ISR =
[Bl BNl M) +
L 2 alalo|m = Sl S| &S| S =z 85 S|
l.a Markov chain X | x X X X | x X | x X | x X | x
1.b Motion pattern X X | x X x| x| x
2.a One model X X | x X X | x X | x| x X X | x
2.b Model groups X X (X)
2.c Spec. models X X X (x)
3.a Discrete (or spec.) x | x x | x X x)
3.b Grid based X X | x X X x| x| x|
3.c Density based X X | x| X X X | x X | x X | x X
4.a Traj. w/o time X | x X X X | x X
4.b Traj. with time X X X X X X X X X X X X X X
4.c_Prob. distribution X

Figure 2.2: A comparison of different prediction methods found in literature. The rows
represent the different categories for comparing prediction algorithms, as shown in Fig-
ure 2.1, and the columns show into which category each algorithm falls. As can be seen,
the method presented in this thesis uses a prediction model equivalent to Markov chains and
specifies one movement model for all objects. However, it may also use one model for differ-
ent groups of objects or even one model for every object. The spatial resolution corresponds
to the data density but custom designed or grid-based resolutions are also possible. The final
result the prediction method presented in this thesis provides is a probability distribution -
a result no other method found in literature is able to give as an output.

objects (e.g., one model for cars and another one for persons) are also possible (2.c).
The temporal and spatial resolution may be another distinctive feature. It can be
divided between discretized or custom-designed resolutions like street segments, sen-
sor nodes, or cell towers (3.a), equidistant or grid-based representations (3.b), and
continuous or density-based subdivisions (3.c).

The last criterion may be the type of prediction result. Some algorithms only provide
future trajectories without any temporal information (4.a), whereas other methods
give one or few time-discrete sequences of states, which are considered to be the most
probable trajectories (4.b).

Aside from a few exceptions, a lot of these algorithms have strong similarities in their
workflow. At first, a topological representation of movement trajectories is determined:
either by motion pattern or by a discretized state space. Furthermore, a model is
learned, which encodes probabilistic state transitions or similarities to observed move-
ments. Both parts are usually dealt with in a learning phase and processed by an
algorithm in an on-line phase in order to predict an observation.

Konrad Schenk

10 CHAPTER 2. LONG TERM MOTION PREDICTION: STATE OF THE ART

The prediction method presented in this thesis can be categorized under the first crite-
rion as Markov-based. Since only one model is used for every object, the classification
under the second criterion is obvious. However, it should be mentioned that specific
models for every object or class of objects are not precluded. The spatial resolution
can be categorized as density-based. But, grid-based and application specific subdivi-
sions may also be applied. Based on the fourth criterion, the proposed algorithm falls
under the time-discrete sequence of states category though, in contrast to comparable
publications, it does not predict only one or a few states per time step. Instead, it pro-
vides a probability distribution over the entire state space. This achievement enables
the computation of probabilities for specific states or intervals in the state space.

2.2 Selected Methods

Most of the above mentioned prediction algorithms are restricted to their specific
application and are, therefore, not easily adaptable to other problems. Only a few
publications pursue a versatile approach. Promising methods were presented in [BEN-
NEWITZ, 2004|, [VASQUEZ GOVEA, 2007|, and [IKEDA et al., 2013|, and they will now
be surveyed in the following paragraphs.

2.2.1 [BENNEWITZ, 2004]

The thesis written by Bennewitz [BENNEWITZ, 2004| deals with the path planning for
swarms of robots and with the navigation of individual service robots in the presence
of people. The main focus lies on motion patterns of people representing typical trajec-
tories between resting places. The robot must learn the pattern based on observations.
It obtains the positions of the person with sensors and clusters similar trajectories into
motion pattern based on an expectation-maximization-algorithm [MCLACHLAN and
KRISHNAN, 2007|. After procuring the patterns, the robot can use them to perform
a socially acceptable navigation or to predict the current positions of people by com-
paring the previously observed trajectory with all motion patterns and calculating the
probabilities that this observation results from each pattern. Based on the probabil-
ities for each motion pattern, a probabilistic statement about the whereabouts of a
person can be made.

Although it is not claimed to provide a versatile prediction algorithm, the applied
methods lead one to assume that they could also be applied to solve different problems.
For example, the creation and utilization of motion pattern does not make any people-
specific assumptions and merely follows probabilistic aspects which makes it possible to
model different systems in the same manner. Furthermore, the thesis explicitly points
out that the motion pattern are not restricted to two dimensions. Thus, the state space

Konrad Schenk

2.2. SELECTED METHODS 11

__F

o2 =

(a) No inference (b) Redundancy (¢) Prone to errors

Figure 2.3: Overview of the drawbacks of motion pattern (MP). The MP are shown in
top view as blue lines, and obstacles are depicted in gray. The inability of MP to infer new
behaviors is shown in (a). The learned MP are modeling two movements crossing each other
in a narrow corridor. A trajectory from the upper left to the upper right is not represented
though it could have been modeled due to the overlap in the middle. In (b) the redundancy of
MP is shown. Although they are similar, all 16 possible combinations from left to right have
their own representation in the middle corridor. The deficits of interrupted observations
are shown in (¢). If an observation is interrupted, the MP cannot be continued and a new
one is created as soon as further observations are available. This results in multiple small
MP which could have been connected based on spatial information.

can be extended with a temporal dimension or additional parameters. Yet despite all of
these advantages, the utilization of motion pattern should be questioned in the context
of a general purpose prediction algorithm. Since they are goal-oriented, an intention in
the movement is implicated and stochastic or reactive movements cannot be modeled.
Additionally they are only able to predict already observed trajectories and cannot
infer new movements by combining different observations (see Fig. 2.3(a)). Another
disadvantage is the redundancy in motion pattern partially covering the same areas.
Regions in which several motion patterns are similar to each other are encoded in each
individual pattern. This can result in a tremendous amount of redundant data, as
shown in Fig. 2.3(b). As depicted in Fig. 2.3(c), a database with several broken tracks
will result in an unusable set of motion patterns. If an observation is interrupted,
the corresponding motion pattern will also be interrupted and a new, unrelated one
is created as soon as new observations are available. Due to these drawbacks, motion
patterns are not pursued in this thesis and a more suitable approach will be utilized
in order to implement a versatile prediction algorithm.

2.2.2 [VASQUEzZ GOVEA, 2007]

Dizan Vasques brought similar arguments forward against the use of motion pattern
in his thesis [VASQUEz GOVEA, 2007] and introduced an alternative approach for

Konrad Schenk

12 CHAPTER 2. LONG TERM MOTION PREDICTION: STATE OF THE ART

predicting the movements of people and vehicles. In order to implement an itera-
tively expendable prediction framework, a modification of the Hidden Markov Model
(HMM - see [RABINER, 1989]), called Growing Hidden Markov Model (GHMM) was
developed. This model is able to adapt its topology with the help of an Instanta-
neous Topological Map (published in [JOCKUSCH and RITTER, 1999]) according to
new observations without the need to recalculate the whole topology in a batch. The
parameters of GHMM are obtained with an incremental version of the Baum-Welch-
Algorithm [BAUM et al., 1970] exactly like a regular HMM. Also similar to HMM, a
prediction based on GHMM is made by using observations to calculate its belief and
propagating it into the future by the desired time horizon.

The thesis by Vasquez calls for the prediction framework not to be restricted to people
and vehicles, but to be versatile due to the use of GHMM which can be learned it-
eratively. However, the use of HMM or one of its modifications as a multi-purpose
approach can be questioned. Justifiably, the wide usage of HMM is given as an
advantage. A lot of optimized methods for learning the parameters exist in litera-
ture, and HMMs were successfully applied for classification (e.g., [KOLLER-MEIER
and VAN GooL, 2002, MAKRIS and ELLIS, 2002, OLIVER et al., 2000]) and prediction
(i.e., |BENNEWITZ et al., 2005, FULGENZI et al., 2009, PRASAD and AGRAWAL, 2010])
several times. But, the basic assumption of Hidden Markov Models is that the states
of the underlying system are not directly observable (i.e., hidden) and they can only
be estimated by indirect observations. But, in the proposed prediction framework,
HMM is not suitable since the ‘hidden’ states are directly observable and ordinary
Markov chains |[KEMENY and SNELL, 1960| can be utilized. If different object states,
indirectly resulting from observations, are used as hidden states, system specific knowl-
edge (e.g., the object dynamics, the intended goal, the influence of the environment,
etc.) is needed and a versatile prediction method is precluded.

A further disadvantage of HMMs is their assumption of a first order Markov Process
(i.e., the current state is only dependent on the previous state). It restricts their
ability to learn more complex dynamics resulting in a mediocre prediction accuracy
on challenging problems. This disadvantage was circumvented in [VASQUEZ GOVEA,
2007] by extending the state space with a dimension representing the intended goal.
Unfortunately, this approach severely restricts the applicability since the intended
goal is usually not known beforehand or the database for learning GHMM may not
always yield this information due to gaps and interruptions in the trajectories. Due
to these reasons, HMMs were not shortlisted in this thesis and another approach as
in [VASQUEZ GOVEA, 2007| was taken which bears a resemblance to the following
method.

Konrad Schenk

2.3. CONCLUSION 13

2.2.3 [IKEDA et al., 2013]

In |[IKEDA et al., 2013|, a prediction mechanism was presented enabling a service
robot to navigate around a shopping mall in a socially acceptable manner and to
approach people in order to offer them services. The algorithm is based on the concept
of sub-goals which are points in space people tend to approach frequently. They
are determined by observations and enriched by a transition model incorporating the
transition probabilities between the sub-goals. In order to predict a currently observed
trajectory, the sequence of already approached sub-goals is determined and the current
velocity is calculated. Both sets of information are combined into the transition model,
similar to Markov chains, which infers the future positions of the observed person.
Using such a transition model is feasible since it only considers probabilistic aspects
and no further assumptions about the system are made except that the future state
is only dependent from the last n states (in [IKEDA et al., 2013|, n = 6 was chosen,
resulting in a sixth order Markov chain). Unfortunately, there was a strong focus on
person movements which is reflected in the sub-goals and their topology. For instance,
if a person approaches the current sub-goal, it is assumed that the person changes
towards the next sub-goal as soon as it is visible. Therefore, explicit knowledge about
the environment is needed in order to calculate the lines of sight. Furthermore, the
algorithm for calculating the sub-goals needs to be provided with a suitable number
of nodes which, in turn, also requires knowledge about the environment. As men-
tioned in the previous paragraph, the prediction assumes a constant velocity for the
person disregarding influences of the surroundings like different surfaces, slopes, or
narrows. Thus, only the probabilistic transition model is suited for a versatile pre-
diction framework and different methods for the overall prediction algorithm and for
finding a topology need to be chosen.

2.3 Conclusion

The state of the art is currently focusing on long term prediction in specific applications
and is, therefore, using tailored algorithms, which cannot be transferred to different
problems without hurdles. This thesis takes this deficit and presents a generic algo-
rithm which can be adapted to different problems dealing with long term prediction. A
suitable topological model that does not make any assumptions about the state space
will be presented, and a proper probabilistic transition model capable of inferring new
behaviors out of old observations and providing a probability distribution over the
whole state space will also be developed. Both models are described in detail in the
next two chapters.

Konrad Schenk

14 CHAPTER 2. LONG TERM MOTION PREDICTION: STATE OF THE ART

Konrad Schenk

15

Chapter 3

Topological Representation of State
Space

An overview of the state of the art in long term motion prediction and the common
workflow in most publications was presented in the previous chapter. Three promising
prediction methods were evaluated concerning their versatility showing some insuffi-
ciencies for providing a comprehensive long term motion prediction. A topological
representation of the state space, a probabilistic representation of state transitions,
and an algorithm for processing both representations on-line were identified as the
three main elements of a prediction framework.

This chapter focuses on the first element: the topological representation of the state
space. Its characteristics and use are explained in detail in Section 3.1, leading to
a representation based on a graph. A simple solution for such a graph is given in
Section 3.2 followed by a complex but more suitable method for representing the state
space in Section 3.3. Since it is based on clustering observations, different clustering
algorithms are examined and finally a recommendation is given in Section 3.5.

3.1 Topological Graph

The main use of a topological model for a prediction task is to provide a suitable
sampling of the state space. Since most state spaces are continuous (e.g., the two-
dimensional positions of cars and pedestrians), a discretized representation needs to
be found which enables a computer to process it efficiently by only predicting the
system for a few representative states. Furthermore, the topological model has to
encode and reflect all possible transitions of the system. The most evident solution
to a topological model with these properties is a topological graph to be described in
detail in the following paragraphs.

Konrad Schenk

16 CHAPTER 3. TOPOLOGICAL REPRESENTATION OF STATE SPACE

yd

TANVANNAY /
(a) Rectangular grid (b) Sixfold neighborhood

Figure 3.1: Ezample of different grid representations. The nodes are depicted as red and
green dots, and the connecting edges are shown as black lines. An unreachable region in state
space (e.g., an obstacle in the Euclidean space) is plotted as a gray rectangle. It is encoded
into the graph by omitting nodes at the corresponding positions. An observed movement
trajectory (shown as a green line) can be encoded as a sequence of nodes (colored green). It
is apparent in both figures that a sizfold neighborhood provides a better representation of the
trajectory in an R?-space with a lower discretization error.

For the topological graph, only one obvious assumption is made: instead of randomly
alternating between distant states by skipping its intermediate states, the system needs
to change continuously, which is the case in most applications. The dimension of the
state space does not need to be restricted but, for the sake of simplicity, it is assumed
to be a two-dimensional spatial space (e.g., GPS trajectories) for the rest of this thesis.
In general, a topological graph G = (N, E) consists of nodes N = {n;,i=1,...,N}
and edges E = {e;,i = 1,..., E'}. Each node n; represents a discrete state n; = (z;,v;),
and an edge e; = (a,b) represents a directed connection from node n, to n,. An
observed trajectory can then be represented as a sequence of connected nodes (see
Fig. 3.1).

In several applications, a topological graph can be explicitly designed. For predicting
the next base station of a user in a mobile network, the layout of the graph is straight-
forward. The base stations themselves can be encoded as the nodes of the graph,
whereas the edges are placed between neighboring base stations (see Fig. 3.2(a)). In
the example of traffic prediction, crossroads and turns can be represented by nodes,
whereas the connecting roads can be represented by edges (one for each direction in
the case of directed edges). Such an example is shown in Fig. 3.2(b). If a coarse
spatial resolution is sufficient, a similar approach can be applied for predicting the
whereabouts of people in buildings (see Fig. 3.2(c)). But, if more precise information
about the position is required or the state space is enormous, modeling the graph by
hand may prove impractical and an automated method would be more suitable. Au-
tomating the process of graph construction also adds to the versatility of the presented

Konrad Schenk

3.2. GRID-BASED REPRESENTATION 17

N
N%
()

%

(a) Wireless network (b) Road net (c) Building

Figure 3.2: Ezemplary two-dimensional topological graphs with the nodes shown as red
dots (or as Wi-Fi-icons in Fig. 3.2(a)) and the transitional edges shown as black arrows. In
all three examples, the graph can be explicitly constructed due to the knowledge of the state
space. It should be noted, that the topology of the graph is strongly related to the problem.
If the task is the prediction of the next base station in a mobile network, a graph similar to
the one shown in Fig. 8.2(a) would be feasible. It might prove inefficient for predicting car
movements, whereas the graph in Fig. 3.2(b) is more suitable. By using directed edges, it
is also possible to represent one-way roads. In the case of a person movement prediction in
buildings, the floor plan can be used to construct a graph by hand, like in Fig. 3.2(c).!

prediction framework since no prior knowledge of the state space is required. But, it
should be noted, that a manual design is not prohibited as long as it is feasible for the
problem at hand.

3.2 Grid-based Representation

A basic approach for constructing a topological graph for representing a continuous
space is to discretize it by superimposing a regular grid. Each grid cell is covered by
a node, and edges are created between nodes that share a border. A rectangular grid,
defined by its base length b, is the simplest approach (see Fig. 3.1(a)). A sixfold neigh-
borhood grid adds more complexity in order to minimize the error of the trajectories
encoded into the respective topological graph (see Fig. 3.1(b)) and also pays respect
to the neurobiological representation of spatial maps [HAFTING et al., 2005].

The benefit of such a simple topology is its convenience in construction since the
positions of the nodes and their connecting edges are easily computed. It can also deal
with obstacles (such as walls or buildings) by omitting the nodes at the corresponding
grid cells. Furthermore, the approximation error is guaranteed to be below a certain

!The map in the background of Fig. 3.2(a) and Fig. 3.2(b) was taken from openstreetmap.org
“(© OpenStreetMap contributors”

Konrad Schenk

18 CHAPTER 3. TOPOLOGICAL REPRESENTATION OF STATE SPACE

e

H=

(a) Big grid with 21 nodes (b) Small grid with 457 nodes (c) Data driven graph with 16
nodes

Figure 3.3: A comparison of grid-based graphs with different sizes and a topological graph
created by a clustering algorithm. The observed trajectories are shown as green lines, and ob-
stacles are shown as gray rectangles. If the chosen grid is too coarse, the transitions through
the narrow between the obstacles cannot be modeled as can be seen in Fig. 3.3(a). A smaller
grid size can cover the narrow in Fig. 8.3(b) but it overrepresents the regions in which no
observations were made. Placing the nodes at observations while sparing empty spaces (as
in Fig. 8.3(c)) would provide a memory-efficient and even more precise representation of
the state space.

threshold (for example below b/+/2 for a rectangular grid with a base length of b).
One problem which is accompanied by such a space decomposition is the uniform
distribution of nodes over the whole state space: densely covered manifolds of the
state are underrepresented with just a few nodes, and sparsely populated areas are
overrepresented by many nodes. This sacrifices precision in regions of interest and
wastes memory in uninformative parts of the state space. By changing the grid size,
one can only mitigate the problem of a precision that is too coarse by increasing the
memory needs at the same time or vice versa (see Fig. 3.3(a) and Fig. 3.3(b)). A more
suitable discretization of the state space would try to approximate the manifold in
which states evolve according to observed data (see Fig. 3.3(c)). Such a topological
graph can be found by clustering algorithms as described in the next sections.

3.3 Cluster-based Representation

As shown in Fig. 3.3(c), a topology which considers the observed states should be
preferred for a topological graph. Manifolds in the state space in which observations
are frequent can be construed as dense regions while regions with only few or no
observations can be regarded as sparse. In order to pay respect to the information
content, the density of sampling must be proportional to the density in the state space.
Such a sampling can be achieved by clustering algorithms, of which a vast variety can

Konrad Schenk

3.3. CLUSTER-BASED REPRESENTATION 19

be found in literature [XU et al., 2005]. Almost every algorithm takes a set of points
in combination with specific parameters and returns a set of clusters. Since observed
states also represent points in state space, the observations can be directly used for
input and the resulting cluster-centers can be taken as nodes for the topological graph.
Four promising methods for clustering point sets are now contemplated in the following
subsections. Although they are not restricted to a two-dimensional space, it helps in
grasping the main idea of these methods, if a Euclidean state space (like the positions
of people on a floor plan) is assumed.

3.3.1 K-Means Decomposition

K-means [LLOYD, 1982]| is a common algorithm for clustering point clouds. Aside
from the dataset, it only needs one parameter: the number n of clusters which should
be found. On a given point set the algorithm iterates two steps in order to find a
suitable partitioning. First, before the iteration starts, the algorithm randomly picks
n samples from the point set and defines them as the preliminary cluster centers. In
the first iteration step, it assigns every data point to their nearest cluster based on its
Euclidean distance. In the second step, it recalculates the center of each cluster as the
mean of all assigned data points. Those two steps are repeated until a stop criterion
is met (e.g., a maximum number of iterations) or the cluster centers are stable.

The benefits of this algorithm lie in its simplicity and requirement of just one pa-
rameter. Unfortunately, those two properties are also its greatest disadvantage. The
number of clusters must be known beforehand, which is only given for a few problems.
Advanced implementations avoiding this parameter are known [PELLEG et al., 2000]
but they do not compensate for the second drawback: it usually finds spherical clusters
instead of paying respect to the density distribution of the point set. Furthermore,
it is prone to outliers and noise, which often give counterintuitive or even incorrect
results.

Due to these drawbacks, the K-means algorithm is not well suited for generating a
topological graph. The necessity of knowing the number of clusters threatens the
thesis’ intention of providing a versatile prediction algorithm. Instead of assuming a
spherical partition, a clustering algorithm that considers the density distribution of
the given point set should be favored.

3.3.2 DBSCAN Partition

The “Density-Based Spatial Clustering of Applications with Noise” (DBSCAN) [ESTER
et al., 1996] is a widely used clustering algorithm in data mining. The key idea of this
algorithm is that a point in a cluster has to have at least a minimum number minPts

Konrad Schenk

20 CHAPTER 3. TOPOLOGICAL REPRESENTATION OF STATE SPACE

of neighbors in its neighborhood radius €. These points of a cluster can be found by
the concept of “density reachability”. A point p is “directly density-reachable” from
point ¢ if their distance is below € and if ¢ has more than minPts — 1 neighbors in
its e-neighborhood. Hence, a point p is density-reachable from ¢ if a chain of directly
density-reachable points between p and ¢ exists. By following the tree of density-
reachable points from every point of the data set, all of the clusters can then be
calculated.

One reason why the algorithm obtains wide acceptance is that it disregards noise and
outliers due to the restriction introduced by minPts. Furthermore, it is capable of
finding concave and elongated clusters (see Fig. 3.4(a)). It is a well-suited clustering
algorithm to find objects in point sets (for example cars in radar scans [KELLNER
et al., 2012]).

At first glance, the algorithm might be opportune for generating a topology graph, but
since it puts very elongated point groups into one cluster, it can cover states that are
very different from each other (see Fig. 3.4(a)). Furthermore, if two clusters intersect
each other, they are merged into one. Considering that the goal of the topological graph
is to represent the state space, it is counterproductive to encode a long, continuous
series of points into one cluster and, therefore, into one node. Instead, a fragmentation
into equally sized clusters would be more expedient.

3.3.3 Growing Neural Gas

In the fields of neural networking, a once common but outmoded clustering algorithm
is Growing Neural Gas (GNG) |[FRITZKE et al., 1995]. It can be seen as an extension
to Self-Organizing Map [KOHONEN, 1990| and Neural Gas [MARTINETZ et al., 1991].
Like its predecessors, GNG has a set of nodes which is iteratively modified. On a
given input signal, the nearest node and its connected neighbors are moved towards
it and, if the signal lies between two unconnected nodes, an edge is placed between
them. Edges of nodes which have not been modified for a certain number of nearby
inputs are deleted and, if a node is no longer connected to another one, it is removed
as well. In order to balance the deletion of nodes, the algorithm also has a mechanism
for adding nodes in areas with a high discretization error resulting in an unsupervised
adaption of the number of nodes.

The GNG algorithm provides all necessary properties for creating a topological graph,
like the ability to adjust the number of nodes and distribution to the density of the
input data or the inherent mechanism for connecting neighboring nodes with edges (see
Fig. 3.4(c)). Furthermore, its iterative approach enables a life-long learning and an
on-line adjustment to a changing topology. Outliers also pose no serious problem due
to the deletion of unused edges. The fact that GNG needs at least six parameters in

Konrad Schenk

3.3. CLUSTER-BASED REPRESENTATION 21

(a) DBSCAN (b) Mean-Shift (¢) Growing Neural Gas

Figure 3.4: An example of clustering a point set with DBSCAN (Fig. 3.4(a)), Mean-Shift
(Fig. 3.4(b)) and GNG (Fig. 3.4(c)). Points with the same color belong to the same cluster.
DBSCAN is able to separate all point clouds in an intuitive manner as seen in Fig. 3.4(a).
But, in terms of a discrete representation of the state space, such a clustering result is not
suitable. For example, the center of the green cluster (and, therefore, the position which
refers to the region in state space which is covered by the green point cloud) is almost in
the center of the red point cloud and, thus, does not provide a correct representation of
the state space. The Mean-Shift algorithm does not provide a correct result in terms of
clustering since it splits all contiguous point clouds into smaller clusters (the center of each
cluster is shown as a black dot) in Fig. 3.4(b). But, it provides a better partitioning of the
state space since widespread point clouds are split up into a sequence of clusters. GNG is
able to cluster the pointset according to its underlying density distribution as can be seen in
Fig. 8.4(c). The dense pointcloud in the upper right is clustered tightly, whereas the sparse
circular pointset is covered by fewer clusters. Due to the mechanics in the GNG algorithm,
the clusters are already connected by edges. Unfortunately, it is not guaranteed to provide
an extensive and optimal linking (please refer to Section 3.4 for an explanation of ’optimal’)
as can be seen a number of times in Fig. 3.4(c) (e.g., in the upper right with one missing
edge in each of the two four-sided structures or the missing edges between the center, middle
and outer point cloud).

order to work properly is its main disadvantage. Since detailed information about the
state space and characteristics of the observations are needed to tune them accurately,
GNG may not be the best choice for generating a topology graph in an unknown
setting. If the prediction framework presented in this thesis should be tailored to
a specific application and the environment is known in advance, GNG is definitely
a well suited algorithm for modeling the state space but, for the sake of a versatile
prediction framework, another method for generating a topology graph would be more
appropriate.

Konrad Schenk

22 CHAPTER 3. TOPOLOGICAL REPRESENTATION OF STATE SPACE

Input
1 p,i=1,...,N //N observations
2 G (x) //Derivative of Mean-Shift kernel, e.g., G' (x) = —x - e
3 v //kernel size
Algorithm
N N
4 pi= _21 pi -G (BBl)/ '21 G’ (‘ BB) ; //move the points along the gradient
5 d= njlaxi Ilpi — Pl ’ //find the biggest movement
6 pi < P} //update the point set
7 if d> 1J5, then //are there still significant movements?
8 goto 4;
Return
9 pii=1,...,N //condensed points

Figure 3.5: Mean-Shift algorithm

3.3.4 Mean-Shift Clustering

The Mean-Shift clustering algorithm was first introduced in |[FUKUNAGA and
HOSTETLER, 1975] and is based on the idea that each point is a sample of a local
density distribution which is represented by a kernel. It aims to find the clusters in
the form of local maxima in the overall density distribution by an iterative gradient
ascend. A kernel (usually a Gaussian function) is placed at each point in the dataset,
and the overall density distribution is formed by the sum of all kernels. The points are
then iteratively moved along the gradient, and the density estimation is recalculated.
The algorithm is shown in Fig. 3.5.

The final clusters are determined by assigning all of the points that have gathered at
the same position to the same cluster.

This algorithm has the benefit of only having one parameter 7 (see Fig. 3.5) which
determines the width of the kernel function. A wide kernel results in large clusters and
a small kernel provides us with clusters of a smaller extent (see Fig. 3.6). It can be
used to configure the resolution of the resulting graph and, therefore, the resolution of
the final prediction result.

Furthermore, elongated clusters with a roughly uniform density distribution along
their dilation are split into smaller clusters, which helps in the task to find a good
approximation of the state space (see Fig. 3.4(b)).

It should be noted that this algorithm does not distribute the clusters onto the state
space according to the density of the observations like GNG, which would give an
optimal sampling of the state space. Nevertheless, it provides us with a representative
discretization (a good example can be seen in Fig. 3.6(c)) with an adjustable resolution
and no need to configure additional parameters. Unfortunately, as can be seen in

Konrad Schenk

3.4. EDGE CREATION 23

(a) Observations (b) Small kernel (¢) Medium kernel (d) Big kernel

Figure 3.6: Clustering the point set in Fig. 8.6(a) with Mean-Shift and different kernel
sizes. The observed points (sampled from GPS trajectories) are colored green, and the
centers of the found clusters are shown as red dots. It is apparent from these figures that
Mean-Shift provides a good coverage of areas with a lot of observations. Another important
property of Mean-Shift can be seen at regions where frequent trajectories cross each other:
due to the higher point density, clusters are placed at these crossings. It improves the quality
of the final graph by minimizing the mean discretization error and results in a more intuitive

topology.

Fig. 3.6, it does not deal with outliers like DBSCAN and GNG but a similar noise
reduction can be achieved by omitting nodes which were created by only a small
number of observations.

One might argue that K-Means gives similar results and also has only one parameter
to choose. However, finding a suitable number of clusters is far more crucial than
configuring a proper kernel width. Small changes in the number of clusters often gives
entirely different and even incorrect results with K-Means, whereas Mean-Shift pro-
vides proper results over a broad range of kernel widths, as shown in Fig. 3.6. There-
fore, the Mean-Shift algorithm was chosen to calculate the position of the nodes N of
the topological graph G = (N, E). Now the connecting edges E between neighboring
nodes must be calculated in order to complete the graph.

3.4 Edge Creation

The previously mentioned clustering algorithms (except GNG) only provide a node set
with no connectivity information. Therefore, the edge creation has to be dealt with
separately.

The input data of the clustering algorithm is usually provided in the form of a time
series, which would enable us to use the temporal information for associating every
pair of successive points in the input data to each other. Since the clustering relates
every input point to a cluster (or as in our case to a node), we can use this informa-
tion to create edges between nodes which are connected by such a pair of associated
input points. The advantage of such a procedure would be the direct incorporation
of observations into the process of creating edges. Unfortunately, this also means

Konrad Schenk

24 CHAPTER 3. TOPOLOGICAL REPRESENTATION OF STATE SPACE

(a) Clustering result (b) Delaunay triangulation (¢) Voronoi regions

Figure 3.7: Graph creation on a point set taken from GPS trajectories. The points
are colored green, and the nodes resulting from the Mean-Shift algorithm are shown as red
dots. In order to connect these nodes, a Delaunay triangulation (as shown in Fig. 3.7(b))
is performed. It results in a dual graph to Voronoi parceling, which is shown in Fig. 3.7(c).
The Delaunay triangulation connects nodes whose Voronoi regions share a border. It can be
seen that the graph is able to cover the main trajectories with its nodes and edges.

that outliers and noisy data result in a noisy topological graph. Furthermore, such a
method strongly relies on a set of trajectories or sequential observations, which are not
always given, and the implementation of a versatile prediction framework is thwarted.

Another possible procedure would be to simply connect neighboring nodes to each
other. It provides a valid state space representation since states change continuously
and do not skip intermediate states (which was the only assumption about the system
made in Section 3.1). Therefore, if the state of the system changes, it can only change
from the node representing the current state to one of its neighbors. A suitable algo-
rithm for creating edges in such a manner is the Delaunay triangulation [DELAUNAY,
1934]. Tt takes a point set and creates a triangle mesh such that no point is in the
circumscribed circle of any triangle. Several algorithms for calculating the Delaunay
triangulation have been developed [SU and DRYSDALE, 1995|, and the fastest imple-
mentation is able to compute the triangulation in O (n log log n) [DWYER, 1987|. An
algorithm for performing a triangulation in higher state spaces also exists [CIGNONI
et al., 1998].

The Delaunay triangulation corresponds to the dual graph of a Voronoi diagram [AU-
RENHAMMER, 1991]. The main property of a Voronoi diagram is that it divides the
space into regions based on a set of points (called sites) in such a way that every point
in a region has the site corresponding to that region as its closest one (see Fig. 3.7(c)).
In our case, these sites are the nodes created by a clustering algorithm and their re-
gions are those states in the state space which get assigned to that node based on
its Fuclidean distance. Since the Delaunay triangulation places edges between nodes
which share a border in their Voronoi diagram, it provides the optimal solution for
connecting the nodes (see Fig. 3.7(b)) because it is guaranteed that after mapping a

Konrad Schenk

3.5. CONCLUSION 25

continuously changing state onto the graph, it can only change nodes along the con-
nected edges since it can only transit from one region to a neighboring, thus, connected
region.

3.5 Conclusion

The sum and substance of Chapter 3 is that a topological graph G = (N, E) can
be created based on a set of observed states (e.g., sequences of GPS positions) by
first determining the nodes N = {n;,i =1,..., N} with the Mean-Shift algorithm.
Afterward, they can be connected with edges E = {e;;i =1,..., E} by applying a
Delaunay triangulation onto these nodes. The resulting graph can be used to encode
states in the continuous space into a discretized representation which pays respect
to observations and their coverage in the state space. The graph can be created with
Mean-Shift by providing observed states and only one parameter v (see Fig. 3.5) which
configures the resolution of the topological graph. Unfortunately, the graph creation
can only be done batch-wise (but that only poses a problem, if the environment is not
static).

If the topology changes or if information about the environment is available to provide
the necessary parameters, Growing Neural Gas is also a suitable method for represent-
ing the topology. It has the advantage of placing the nodes according to the underlying
density distribution and enables the implementation of an adaptive, iterative, and life-
long learning. Although it connects the nodes with edges, they do not provide an
optimal linking as can be seen in Fig. 3.4(c). Therefore, the additional step of recon-
necting the nodes as described in Section 3.4 is advised. The performance of GNG is
dependent on six parameters and their adjustment is only feasible if the characteristics
of the state space and the observed trajectories are previously assessable, thus making
GNG the second method of choice.

A topological graph without any additional information can only provide spatial in-
formation about the system and encoded representations of spatial observations. In
order to predict trajectories, not only is a suitable representation of the state space
required but conditional probabilities of transitions between states are also vital. The
next chapter shows an elegant way of including these probabilities into the topological
graph.

Konrad Schenk

26 CHAPTER 3. TOPOLOGICAL REPRESENTATION OF STATE SPACE

Konrad Schenk

27

Chapter 4

Representation of Transitional
Probabilities of Moving Objects

The last chapter presented a method for creating a topological representation of the
state space based on the Mean-Shift algorithm and a Delaunay triangulation. It pro-
vides us with a spatial description of observations better suited for processing than a
simple sequence of states.

Since this thesis claims to provide a comprehensive statement about all possible fu-
ture occurrences of a given observation, the entire event tree emerging from a current
observation needs to be taken into account. Therefor, the use of a prediction method
similar to wavefront based algorithms [LENGYEL et al., 1990| would be appropriate.
The main prediction method will be explained in Chapter 5 but several basic elements
enriching the topological representation with probabilistic information need to be de-
scribed beforehand. First, the transitional probability is introduced in Section 4.1
in order to encode observations into the topological map and to enable a calculation
of spatial probabilities. To provide information about the prior route of a flow, the
Markov-tree is presented in Section 4.2. Both elements do not take temporal informa-
tion into account so transition times between the nodes of the topological graph must
be dealt with separately, as described in Section 4.3.

All three elements can then be used together with the topological graph to predict the
future states of a system by providing the probability o, (n) for every node n and every
time step ¢, denoting that the system is in the respective state at the respective time
step. The character o was chosen as the variable for this special probability instead
of the usual p for two main reasons: first, to provide a visual delimitation to the
transitional probabilities in intermediate calculations and to emphasize it as the main
result of the prediction framework - the observational probability. The second reason
is due to the initial application of the prediction framework for predicting human
movements at airports, as mentioned in Section 1.2. The goal was to estimate future

Konrad Schenk

28 CHAPTER 4. REPRESENTATION OF TRANSITIONAL PROBABILITIES

Figure 4.1: Representing a trajectory (green line) as a sequence of nodes (red dots) by
simply collecting the indices of nodes whose Voronoi regions are traversed by the trajectory.
The sequence can be obtained by determining the nearest node for each data point of the
trajectory. Each time the nearest node (e.g., A) changes to another one (B), the index of the
last node (A) is stored in the sequence. In case of noisy data, the application of a smoothing
algorithm on both the input trajectory and the output sequence can help in improving the
result.

The depicted trajectory would be encoded as A-B-C-D-E-F-G-F-E-H-1.

occurences of a person of interest or the probability that the person is occupying a
certain area; hence, the o, (n). It helps in understanding the following chapter to use
the example of predicting the movement of a person on a two-dimensional floor plan
but, as stated several times in the previous chapters, the presented solutions are not
restricted in their application to human motions or movements in spatial state spaces.
They can also be used to predict most other systems as well (see Section 1.2 and 3.1).

4.1 Transitional Probabilities

Since the nodes N = {n;,i = 1,..., N} of the topological graph represent discretized
regions in the state space, an observed sequence of states S = {(z;,v;),i=1,...,5}
of a continuous trajectory through the state space can be encoded as a sequence of
nodes Ng = {n;,,s = 1,..., Ns} (see Fig. 4.1). Due to the edge creation by a Delauny
triangulation, it is ensured that every node in Ng is connected to the successive node
by an edge (as explained in Section 3.4). By representing every trajectory as a sequence
of nodes, statistics of the transitions from one node to another node can be calculated
in a learning phase and updated in the application phase.

In the simplest approach, the statistics for every node n,, may consist of a counter f,, ,,
for every neighboring node n,,. Every time a transition from node m to n was observed,
the counter f,,, is incremented. After obtaining enough observations, the probability
to move to node n under the condition that node m was currently observed can be

Konrad Schenk

4.1. TRANSITIONAL PROBABILITIES 29

approximated by the relative frequency p (n|m) = fom/fm Wwith f,, = > fum being
the total number of observed transitions from node m to any other node ([VON MISES,
1928]).

Using such an approach for calculating the transition probabilities, the next state only
depends on the current state resulting in a first order Markov chain [KEMENY and
SNELL, 1960|. The prediction using this approach can be conducted by setting the
probability for the node of the last known observation to one and letting it flow through
the graph based on the previously calculated probabilities like a wavefront.

A computationally less demanding method is the application of a Monte Carlo method
(introduced in [METROPOLIS and ULAM, 1949]) to obtain the probabilities for each
node: a set of H hypotheses is placed at the last known node and each hypothesis
traverses the graph by choosing the next node from the current node m randomly with
respect to p (n|m). For each node n, a counter h,, is incremented if it was visited by a
hypothesis at least once. The final probability for each node can then be approximated
by the relative frequency which is obtained by just dividing its counter with the total
number of hypotheses o (n) ~ h,,/H.

Using a first order Markov chain provides an easy approach since no information
about the previous path needs to be stored. For example, if a person is walking along
a corridor and reaches a crossing, it is only important to know its current node in
the topological graph in order to estimate the subsequent node. Clearly, the lack
of memory is also a severe downside to this approach since it yields more imprecise
results than the consideration of the previous path the person has taken. For example,
if half of the observed persons at a crossing have taken the route to the exit, one
quarter has taken the turn to the escalator, and the remaining quarter has taken
the route to the staircase, the same distribution would be the result of the motion
prediction for every person approaching this crossing. Even if the person was coming
from the exit, the first order Markov approach would estimate that the person will
go back to the exit with a probability of 50%. If the transitional probability also
pays respect to the previous node, a second order Markov chain is utilized. The first
order probability p (n|m) becomes p (n|m,l) = fum1/ fms with [being the index of the
node observed previous to m. If a first order Markov chain is depicted as knowing the
current position, the second order Markov chain can be seen as knowing the current
position and momentum.

In the previous example, only observations coming from the exit to the crossing would
be used for the calculation and the probabilities for the escalator and staircase pre-
sumably would be higher than the probability that the person reverts to the exit.
Following this thought leads to using the complete previous sequence of visited nodes
¢ = {c1,...,¢j} as the condition for the transitional probabilities p (n|c). Unfortu-
nately, the combinations for ¢ (and, therefore, the number of counters for each node)

Konrad Schenk

30 CHAPTER 4. REPRESENTATION OF TRANSITIONAL PROBABILITIES

Input
1 c={nm,e1,...,ck—1} //Observed sequence from current node m to node n
2 k //Length of observed node sequence up to node m
3 U //Root vertex of Markov-tree M,, for node m
Algorithm
4 Vg = U s //Set vertex for recursion
5 1=0; //Initialize level for recursion
Label 1: recursion
6 increment counter f, of vertex v,;
7 if [>=(k—1), then
8 terminate;

9 find child v, of v, with index cj41;
10 if no child found, then

11 create child v, with index ci41;
12 set v, to v.;
13 increment [;

14 goto Label 1;

Figure 4.2: Updating the Markov-tree on a given observation

are infinite if no restrictions to its length are given. But, even if the length is restricted
to a number [(resulting in an [-th order Markov chain), the complexity may be too
high to provide accurate estimations for the transitional probabilities with a given set
of observations. For instance, if c is restricted to the last ten nodes and every node
has four neighbors, at least four million (4 - 4!°) observations are needed for every
node to cover each possible condition for each transition at least once. But, in order
to estimate transitional probabilities, more than one sample is needed for each con-
dition. Tt becomes clear that a Markov chain of a high order requires an enormous
database and a Markov chain of a low order may waste useful information. A solution
which provides a dynamic trade-off between available information and accuracy will
be presented in the next section.

4.2 Markov-Tree

As stated in the previous section, the order of the Markov chain should be chosen
neither too high, nor too low. It would also be a waste of memory if, for example, a
10-th order Markov chain is assumed and the necessary counters are stored for each
node but no observation has covered more than 5 nodes. The Markov-tree, a novel
method using a tree-like data structure to store observations and to calculate the
transitional probabilities for the nodes, was developed for this thesis in order to deal
with such problems.

Konrad Schenk

4.2. MARKOV-TREE 31

(a) Previous observations (b) New observation

Figure 4.3: Illustration of a Markov-tree for an exemplary graph and observations. The
seven nodes of the topological graph are shown as red circles with black edges between them,
and observed trajectories are depicted as blue lines with an arrow representing their direction.
The Markov-tree of node A is shown in (a) after enriching it with four observations with
the algorithm in Fig. 4.2. The vertices of the Markouv-tree are depicted as green circles and
connected by brown lines. They are labeled with their index as a black capital letter (e.g.,
the root vertex has the index A since it represents the Markov-tree for node A) and their
individual counter fx, fy, and fg for the number of observed transitions to the neighboring
nodes X, Y, and B in white. In (b), a fifth observation (the single blue path going from node
E to D, C, B, A, and finally Y) is inserted into the tree of node A. The descent through
the tree and changes in the counter variables (i.e., fy since the observed trajectory headed
to node Y after visiting node A) are highlighted in red. The algorithm for updating the
Markov-tree with new observations is described in Section 4.2 and Fig. 4.2 in more detail.

The basic idea of the Markov-tree is that every possible sequence of previously visited
nodes (i.e., the reachability) can be encoded into a tree structure. The Markov-tree
M, consists of vertices which correspond to nodes of the topological graph according to
their index ¢;. Each vertex of the tree branches into vertices representing the neighbors
of the node to which it corresponds. The root vertex of the tree of a node m has the
index ¢; = m. On the example of the graph in Fig. 4.3, node m = A can only be
directly reached from node B, Y and X. Thus, its Markov-tree has the root vertex
with index A which branches into the vertices B, Y, and X. These branches are also
ramifying to the neighbors of their corresponding nodes (e.g., A, C, and E for the
vertex of node B or just A for the vertex of node Y). Each vertex of the Markov-tree of
node m does not only contain the index ¢; of its corresponding node but also a counter
fn for every direct neighbor n of node m. As depicted as pseudocode in Fig. 4.2,
information of a given observation ¢ = {n,m,¢y,...,cx,_1} can be encoded into the
Markov-tree of node m by incrementing the counter f, of all touched vertices while
descending into the tree by matching the indices to the visited nodes: starting at the
root vertex m, continuing to the next vertex c¢;, and ending after £ — 1 branches in

Konrad Schenk

32 CHAPTER 4. REPRESENTATION OF TRANSITIONAL PROBABILITIES

the vertex with the label ¢;_;. Using the example in Fig. 4.3(b), the observation went
from node A to node Y after passing the nodes B, C, D, and E. Thus, the Markov-tree
of node A gets traversed along the vertices of node A, B, C, D, and finally E with
the counter fy incremented by one on every vertex to incorporate the information
that the observation headed towards node Y, after visiting the current node A. In
order to save memory, the branches of an initially empty Markov-tree are only created
if a corresponding observation is made. It is unfeasible to initialize the tree to its
full extend since it might be of infinite size if the topological graph contains loops.
Furthermore, vertices with all counter f, set to zero and their branches do not add
any useful information to the tree.

By learning the Markov-trees of all nodes of the topological graph, it becomes
easy to estimate the transitional probabilities for an arbitrary observation ¢ =
{n,m,cy,...,c;} arriving at a node m following the algorithm as shown in Fig. 4.4 as
pseudocode. The tree is traversed, starting at the root vertex, by descending into the
branch with the index ¢, followed by the vertex with the index ¢y, and so on until
either no further branch is available or the vertex for the last index ¢; is reached. Once
the final vertex in the tree M, is ascertained, its counters f; can be used to estimate
the transitional probability from node m to every neighboring node n as the relative
frequency f./> . fi.

A good assessment for the quality of the probability estimation is given by Chebyshev’s
inequality [CHEBYSHEV, 1867|, shown in Eq. 4.1.

P[X{?fi_p‘<€]21_é (4.1)
For a random experiment, it states that probability P, that the relative frequency
fn/ > ; fi is within the margin e around the expectation p, is bigger than the right hand
side of Eq. 4.1. If for example s = 100 observations contributed to the current vertex
of the Markov-tree of a node, we can assume that the estimation of the transitional
probability is within a margin of € = 10% with a probability greater than 75% (0.75 =
1—1/(4-100-0.12)).
Eq. 4.1 can be rewritten as Eq. 4.2 to provide the minimal number s of samples needed
to be sure that the estimated transitional probability is within an error margin of €
with the probability P.
o>+ (4.2)
~4(1-P)e
Since the leaf vertices of a Markov-tree tend to represent only a few samples, Eq. 4.2
can be used to define a further stop criterion for traversing the tree based on a current
observation (see line 13 to 15 in Fig. 4.4). Once a minimal number of s samples is

Konrad Schenk

4.2. MARKOV-TREE 33

Input
1 c={m,c1,...,cp-1} //Observed sequence to current node m
2 k //Length of observed node sequence up to node m
3 U //Root vertex of Markov-tree for node m
4 n //Target node for which the transitional prob. should be calculated
5 s //Minimal desired number of samples according to Eq. 4.2
Algorithm
6 Uy =Un; //Set vertex for recursion
7 1=0; //Initialize level for recursion
Label 1: recursion
8 if [>=(k—1), then
9 return;

10 find child v, of v, with index cj41;

11 if no child found, then

12 return;

13 set a to the sum Zl fi of all counter of wv.;
14 if a < s, then

15 return;

16 set v, to v.;

17 increment [;

18 goto Label 1;
Return

19 p(n|c) = fn/>_, fi using the counter of vertex v,

Figure 4.4: Calculating the transitional probability on a given observation

chosen (e.g., s = 100 would provide a 75% security to be within a 10% margin of
the real transitional probability and s = 1000 gives a 97.5% security), the last vertex
which provides enough samples (i.e., >, fi > s) is used to estimate the transitional
probability as stated above.

Using an individual Markov-tree for every node of the topological graph provides an
easy and adaptive mechanism for encoding observations and calculating transitional
probabilities. Its accuracy can be assessed with Eq. 4.1 and, in order to improve the ac-
curacy, the Markov-tree enables an on-line updating to incorporate new observations.
In Chapter 4, it was claimed that the prediction framework will provide the proba-
bility distribution o, (n) of the system for every node n and every time step ¢t. With
the topological graph and the transitional probabilities, it is possible to provide the
probability distribution for every node but without temporal information. In order to
incorporate the time domain into the prediction result, the transitional time between
every node needs to be taken into account, too. The following section will present
two possible methods of extending the Markov-trees with the temporal information of
observations.

Konrad Schenk

34 CHAPTER 4. REPRESENTATION OF TRANSITIONAL PROBABILITIES

%Mt >0

Om‘ On‘ /\/_/\f

t

Figure 4.5: The temporal distribution T is used to compute the observational probability
oy, for node n, based on the probability o,, of node m. In the depicted example, the person
was directly observed at node m and, thus, the corresponding observational probability is a
single peak at the respective point in time. In combination with the given distribution of the
transitional time, an observational probability at node n can be computed. It is apparent
that it has a shape similar to the transitional time but with an offset. As will be explained
in Chapter 5, it results from the convolution of o, and .

4.3 Representation of Time

Until now, only spatial information was used to construct the prediction framework.
But, in order to predict when a system might be in a specific state, when a person
may be observed at a certain location, or where a car can be found at a specific time
in the future, the temporal information of previous observations needs to be taken into
account.

In the process of computing the sequence of visited nodes of an observation, as de-
scribed in Section 4.1, the transitional time between each pair of nodes can also be
extracted easily. The sequence of nodes Ng = {n;_,s = 1,..., Ng} becomes a sequence
of tuples Ng = {(n;_,t5),s = 1,..., Ng} with ¢, being the transitional time from node
n;, to n,; . While learning the transitional probabilities for every node m by updat-
ing its Markov-tree M, as explained in the previous section, the transitional time also
needs to be stored in the respective vertices of the tree. Similar to the counter f, of a
vertex, additional data is stored in each vertex. It contains the temporal information
7; (n|m) resembling a probability distribution over time, giving for each transitional
time ¢ a probability 7 that such duration is needed to get from node m to node n
(see Fig. 4.5). Two options for representing the temporal distribution are described in
detail in the following sections.

Konrad Schenk

4.3. REPRESENTATION OF TIME 35

(a) Original distribution b) Histogram-based) Kernel-based

Figure 4.6: Two methods for representing a temporal distribution, as shown in (a). The
non-parametric approximation depicted in (b) has an inherent discretization error, which
can only be countered by using bins with a smaller width. In the shown example, 22 values
(bin width and 21 bins, starting from t = 0) need to be stored in order to represent the
underlying distribution. The non-parametric distribution can easily be computed by counting
observations. By approzimating the distribution with a sum of Gaussian kernels as shown
in (c), a smaller error can be achieved and only 12 values need to be stored (four times the
mean, variance and height). Unfortunately, the computation of these parameters are more
complez.

4.3.1 Non-Parametric Kernel-based Distribution

A simple method to represent a temporal distribution on a computer is to discretize
the time scale into a data array with bins of a fixed width w and map the probabilities
onto these bins (see Fig. 4.6(b)) like a histogram. Each bin 7; (n|m) with i = [t/w]
represents a counter for the occurrences of the respective transitional time (or time
interval to be precise) and the probability for a given time ¢ can be computed as the
relative frequency 7 (n|m) = 74/ (nlm) />, 7i (n|m). Since observations are usually
obtained by sampling with a fixed frequency and therefore discretized in time, it is
advisable to set the bin width to the sampling rate (or to a multitude for cases with
an extremely high sampling rate). This way, the number s of observed samples of the
current observation between the nodes m and n can directly be used as the index for
determining the corresponding bin ¢ = s in the data array. For each new observation,
the transitional time distribution is updated by simply incrementing the corresponding
bin, enabling a computationally inexpensive and lifelong learning.

In the case of only a few available observations and long transitional durations, the
data array may be sparse. If, for example, a bin width of w = 1s was chosen and
only two observations with ¢t = 9.2s and ¢t = 999.8s are stored in the array, a total
of 1,000 bins are needed and only two have a value bigger than zero. It also implies
that the transitional time between ¢ = 9.0s and ¢ = 10.0s (the time interval the tenth
bin represents) has a probability of 50%, whereas a transitional time of ¢ = 10.1s is
never expected to occur. That would be a rather bold assumption considering that
only a small number of samples were used to estimate the distribution. This problem
can be mitigated by not incrementing the value of the respective bin but to diffuse the
observation according to a kernel function. This procedure resembles a non-parametric

Konrad Schenk

36 CHAPTER 4. REPRESENTATION OF TRANSITIONAL PROBABILITIES

Kernel Density Estimation (KDE) [SILVERMAN, 1986]. One popular option for a kernel
is the Gaussian function but the binomial distribution (shown in Eq. 4.3 with k being
the kernel width and r the index of the center bin of the kernel) is better suited for a

discretized representation.
2k
ATy = < ,) - 0.5% i=0,---,2k (4.3)
i

Since the binomial coefficient is expensive in calculation, the iterative version in Eq. 4.4
should be favored.

A7 = 0.5%F as initialization

U —i—+1 (4.4)

A% i = AFo_prio - i=1,-- 2k

]

The choice of the kernel width £ depends on the underlying distribution. If it is
chosen too wide, a multimodal distribution may only be represented as unimodal. If
it is chosen too narrow and only a few observations are available, the data array will
be sparse. In order to avoid a manual choice, a suitable width can be estimated based
on a set of observations. According to Silverman’s rule of thumb [SILVERMAN, 1986,
the optimal kernel width %, for a Gaussian kernel is

A 1
ky = (5) 0,5 5~ 1.06-0,575. (4.5)
with o, being the standard deviation of the samples and s the total number of samples.
Since the width k; of a Gaussian kernel is defined as its standard deviation o, and
the binomial distribution converges to the normal distribution for large widths £ with
kg =04 =0.25-k-w and mean p = 0.5k, we can use Eq. 4.5 to calculate the optimal
width k of the binomial kernel with Eq. 4.6.

kz{a%-%Jz{a-%J (4.6)

The parameter a can be used to stretch or compress the kernel in case of additional
knowledge about the transitional time (e.g., if it is almost constant, a can be set close
to zero) but a value of a = 1 has proven to be convenient.

After learning the distribution with the initial set of observations and the above men-
tioned binomial kernel, it can be iteratively improved with new observations.

4.3.2 Parametric Kernel-based Distribution

A similar approach to the non-parametric Kernel Density Estimation, as explained in
Section 4.3.1, is to approximate the underlying distribution with a set of functions

Konrad Schenk

4.3. REPRESENTATION OF TIME 37

in their parametric form. Extensive research was conducted in the fields of computer
vision where a parametric representation of a color distribution is often needed for
background subtraction [PICCARDI, 2004|. In order to decide if a pixel belongs to
background or foreground, its color and intensity is compared to a previously learned
color distribution of the background. Different lighting situations, shadows, and re-
flections usually result in distributions with more than one mode, which need to be
reproduced adequately by the approximation. Non-parametric representations (e.g.,
multidimensional histograms) are not feasible since a distribution needs to be learned
and stored for each pixel resulting in extensive memory requirements. Several different
methods for solving the background subtraction with a parametric representation exist
like Gaussian Mixture Models (GMM) [Z1ivKovic, 2004] and Kernel Density Approx-
imation (KDA) [HAN et al., 2004]. GMM usually uses a fixed number of Gaussians or
needs a sensitive adjustment of parameters, whereas KDA is able to cope with more
complex distributions and adjusts the number of kernels dynamically.

The method presented in [HAN et al., 2004| takes an initial set of samples and applies
a variable bandwidth Mean-Shift algorithm [COMANICIU et al., 2001]| to find the main
modes of the underlying distribution. At each mode, a Gaussian kernel is placed and
its covariance is computed by curvature fitting using the Hessian matrix at that mode.
Afterwards, new observations are used to sequentially update the set of kernels on-line
by applying the variable bandwidth Mean-Shift to them plus an additional Gaussian
kernel representing the new observation. If multiple Gaussians are distributing to the
same mode, they are merged into one kernel and the covariance is recomputed. As
stated in [HAN et al., 2004], KDA is robust in finding the modes of the distribution
with only few memory requirements but it yields a higher approximation error than
the non-parametric Kernel Density Estimation.

4.3.3 Discussion

The main advantage of representing a temporal distribution with a parametric method
(like GMM or KDA) over a non-parametric method (like KDE) lies in its modest
memory requirements (see Fig. 4.6). Despite the extensive computations needed while
learning the distribution, GMM and KDA enable a faster prediction since the pre-
diction framework relies on multiple convolutions of temporal distributions (as will
be explained in Chapter 5), which are much faster to compute on two small sets of
Gaussian functions than on two long data arrays. But, since the main memory and
the computing power of nowadays personal computers (as of 2015) are more than suffi-
cient for processing the non-parametric representation even for large-scale state spaces
(e.g., the Beijing scenario in Chapter 6), the non-parametric KDE is recommended for
representing the temporal probability distribution 7; (n|m). As stated in [HAN et al.,

Konrad Schenk

38 CHAPTER 4. REPRESENTATION OF TRANSITIONAL PROBABILITIES

2004] and implied in [P1ccArDI, 2004], GMM and KDA follow the assumption that
the underlying distribution consists of well-separated Gaussians. Therefore, they are
tuned to accurately model the main modes of the distribution while paying less atten-
tion to minimizing the overall approximation error, which is reasonable for background
subtraction or object tracking. But, unfortunately, such an assumption may not be
true for a distribution of transitional times. Additionally, they may resemble functions
which are not easily approximated by Gaussians, such as uniform, x2, or more complex
distributions.

The transitional time distribution was stated as 7, (n|m) denoting that the distribution
is only dependent on the current node m and the target node n, disregarding any
history. Tt would assign one distribution to every edge. But, following the same
reasoning as in Section 4.1, it is advantageous to account for all the previously visited
nodes c, resulting in 7; (n|c). It enables concepts like momentum, which makes the the
transitional time (or speed) dependent on the previously taken path. For example, a
car at a crossing will most likely need less time to drive across it than to take a turn
left for which it needs to decelerate first. Also, influences of traffic lights or preference
roads can be taken into account intrinsically. The distribution for every variant of c
can be stored into the respective Markov-tree using the same storing and updating
mechanisms of the transitional probabilities p (n|c).

But in case of limited memory, it is advisable to restrict the transitional time distri-
bution 7; (n|c) for each pair of nodes to a [-th order Markov chain (e.g., with [= 2) by
only taking the last [observed nodes ¢ = {cy, ..., ¢} into account. This would result
in a Markov-tree having a distribution only stored in the vertices up to a level of [— 1
instead of every vertex. Only if the memory requirements are still too high, KDA may
provide a reasonable alternative to the non-parametric representation of a temporal
distribution as the last resort.

4.4 Conclusion

This chapter presented a novel procedure to enrich a topological graph with transi-
tional probabilities and temporal information. The transitional probabilities for each
node are extracted from observations by storing the relative frequencies of transitions
to neighboring nodes into structures specially designed for this task and introduced as
Markov-trees. They enable a lifelong learning and account for the complete history of
every observation with very few memory requirements. Since the transitional proba-
bilities are estimates based on a finite number of observations, a method to assess and
tune the confidence of the estimation based on Chebyshev’s inequality was introduced.
For instance, if a high confidence is desired, more observations with a shorter history

Konrad Schenk

4.4. CONCLUSION 39

are used for calculation resulting in a more diffuse prediction result. If a small confi-
dence is allowed, the few observations with a longer history are used and a spatially
more distinct but statistically less certain result can be given.

In order to provide temporal information, the Markov-trees are extended by transi-
tional time distributions for each pair of nodes. A non-parametric representation of
the distribution, similar to KDE, was presented and compared to parametric repre-
sentations like GMM and KDA. The non-parametric version is recommended because
it does not make any assumptions about the underlying distribution and no param-
eters need to be tuned by hand. After an initial learning phase, the parameters can
be updated iteratively with new observations. In order to save memory, the calcula-
tion of transitional time distributions can be limited to the topmost vertices of the
Markov-tree by only accounting for the last few nodes of observed trajectories.

A representation of the state space was introduced in Chapter 3, and a method for
calculating the probabilities of transitions between states was defined in Section 4.1.
The time needed to transit from one state to another can be estimated, as explained
in Section 4.3 and all of this information can be easily stored and accessed by using
Markov-trees, as introduced in Section 4.2. The following chapter will present the
main prediction framework, which processes all of the transitional probabilities and
transitional time distributions to provide a spatio-temporal probability distribution
for a given observation.

Konrad Schenk

40 CHAPTER 4. REPRESENTATION OF TRANSITIONAL PROBABILITIES

Konrad Schenk

41

Chapter 5

Prediction Framework

Three main concepts were presented in Chapters 1 through 4. First, the state space
is discretized with a graph G = (N, E) in order to represent it adequately for further
processing. Observed trajectories were then used to enhance the graph with conditional
transitional probabilities p (n|c) between each ordered pair of connected nodes (n, ¢;),
encoding the spatial information of observations. Furthermore, the same observed
trajectories contribute to conditional transitional time distributions 7; (n|c), which
are linked to the respective transitional probabilities by their condition c. Whereas
the transitional probability states the likeliness of a transition to node n under the
condition c, the transitional time distribution describes the time needed for such a
transit.

This chapter will present an algorithm for processing the learned transitional probabil-
ities and transitional time distributions into a spatio-temporal probability distribution
for a given observation of an object. For every state represented by the topological
graph and for each time step, it provides the probability for observing the object at
that specific spatio-temporal point.

First, the motivation and central idea of the prediction algorithm will be presented
in Section 5.1. Tts formal definition for a continuous timescale will be given in Sec-
tion 5.1.1 followed by a practical implementation in Section 5.1.2. The most time
consuming part of the algorithm is the computation of multiple convolutions. In order
to circumvent this complex operation, an alternative and much faster implementation
using the frequency domain instead of the time domain is described in Section 5.1.3. A
more effective implementation, using an iterative approach on a discretized timescale,
is presented in Section 5.1.4. The proposed procedure to incorporate new data into
the topological and probabilistic model is given in Section 5.2.

Konrad Schenk

42 CHAPTER 5. PREDICTION FRAMEWORK

1m
i . n
i
1o
L

| s

o

Figure 5.1: Exzample showing the flow of the occupancies on a simple graph. In (a),
the involved parameters and the initial state are depicted with a person observed at node
n. In (b) to (f), the flow along the edges is shown in red and the bins contributing to
them are colored blue, green, and orange according to the individual fractions involved in
the current time step (i.e., the flow caused by a T colored blue involves occupancies which
are also colored blue). The occupancies o at time step t are resulting from the previous
occupancies at time step t —1 plus the the inflow minus the outflow along the edges. A more
detailed description is given in Section 5.1, and the method used for calculating the flows is
presented in Section 5.1./

5.1 Probabilistic Flow

Inspired by several path planning algorithms (like Dijkstra’s algorithm [DIJKSTRA,
1959|, A* [HART et al., 1968|, D* [STENTZ, 1994|, E* |PHILIPPSEN, 2004]| and many
more |[LAVALLE, 2006|), the prediction algorithm was developed based on the idea of
spreading an initial belief from one node throughout the entire graph like a wavefront.
The basic concept in its iterative approach is depicted with an example in Fig. 5.1.
The last observation of the person was made at node n and, therefore, the probability
to observe the person (or the occupancy) o(n) at node n for time step ¢ = 0 is one.
This occupancy is now spilling into neighboring nodes with a dispersal relative to the
transitional probabilities p and a speed according to the transitional time distribution
7. In other words, the transitional probability determines how much of the occupancy
gets distributed to each neighboring node, whereas the time distribution defines how
this proportion is spread across the time scale.

In order to enable the distribution of occupancies across the graph, a new concept

Konrad Schenk

5.1. PROBABILISTIC FLOW 43

must be introduced: the probabilistic flow f; (n|c). The flow traverses the graph,
diverges at nodes, and gets delayed at edges. It can be described as the derivative of
the occupancy which is raised by an inflow and decreased by an outflow over time.
Thus, the in- and outflows are always positive. Another viewpoint is to regard the
flow as a means to “transport” the occupancy from one node to another. Since the
transitional probabilities are dependent on the sequence of previously visited nodes
c, the origins of each fraction of a flow need to be known, also. In the example of
Fig. 5.1, the person was observed at node n with no prior route c. It results in an
inflow of f;—o (n) =1 at node n which in turn results in an occupancy of 0, (n) = 1.
Two fractions (f (a|n) and f (b|n)) of the inflow now disperse to node a and b with a
proportion according to the transitional probabilities p (a|n) = 0.2 and p(bjn) = 0.8
and with a delay according to 7 (a|n) and 7 (b|n). Those two fractions are outflows of
node n and become inflows to node a and b, at which they are once again dispersed
in the same fashion. The occupancies at each node result from integrating over the
difference of their in- and outflows.

The next sections give formal definitions of this procedure under different aspects of
their implementation. An overview of the variables used in this chapter is given in
Table 5.1. Only the following section slightly deviates from these definitions by using
continuous timescales f (n|c) (t), o(n) (t), and 7 (n|c) (¢) in contrast to the discretized
formalization f; (n|c), o; (n), and 7 (n|c), as used in the table.

Table 5.1: Definitions

Symbol | Description

n, m Indices of nodes
Discrete point in time ¢t = 0,. .., e
c Sequence of visited nodes (condition, chain) ¢ = {ci,...,¢;} with ¢;

as the first and ¢; as the most recently visited node

o (n) | Occupancy or observational probability at n for time ¢

t
fi (n|c) | Flow from c to n at time ¢
(n|c) | Transitional probability from c to node n

7, (n|c) | Transitional time distribution from c to n; defines the probability

that a transit is going to happen at time ¢

5.1.1 Continuous Timescale

The probabilistic flow f (n) (¢) describes the rate at which the observational probability
(or occupancy) o (n) (t) at node n changes over time ¢. Since a flow into one node can

Konrad Schenk

44 CHAPTER 5. PREDICTION FRAMEWORK

originate from multiple nodes along different paths c, the inflow fi, (n) (t) at node n
results from the sum of all these flows according to Eq. 5.1.

fin () (1) =Y f (nle) (1) (5.1)

Similarly, the outflow fou (n) (t) of a node n is the sum of all the inflows of its neighbors
m with n as the last node in the sequence of visited nodes, as shown in Eq. 5.2.

fous () (1) =Y > f (m[{n,c}) (¢) (5.2)

The occupancy o (n) (t) of a node n at time ¢ can then be regarded as the residual of
the inflow until time ¢ which did not yet leave the node via the outflow. Thus, it is
the integral over the difference of the inflow and outflow:

o(n)(t) = [fin(n)(2) = fou (n) (z) dz

0

B / 2 F(mle)@) = > fml{n.c})(w)de >3

[

As previously mentioned, each inflow f (n|c) (t) at node n results in several outflows,
which in turn cause inflows at the neighboring nodes m. The fraction f (m|{n,c}) (¢)
of the inflow f(n|c)(t), which gets routed towards node m, is determined by the
transitional probability p (m|{n,c}) (see Section 4.1) according to Equation 5.4.

f (m|{n,e}) (1) = f (nle) (1) - p (m| {n, c}) (5:4)

This fraction also gets delayed towards node m according to the transitional time
distribution 7 (m|{n,c}) (t4). As explained in Section 4.3, the time distribution rep-
resents the probability for each point in time t;, that this time is needed to transit
from node n to m. The time distribution for time ¢; determines how much of the flow
£ (m]{n,c}) (t) arrives at node m at time t 4 t45. To examine it from the viewpoint
of node m, its inflow at time ¢ is the sum of the partial flow f (m|{n,c})(t — t4)
multiplied by 7 (m| {n,c}) (t;) for every ¢4, as shown in Eq. 5.5.

f(ml{n,c}) (1) = /OOOT(m! {n,c}) (ta) - f (m| {n,c}) (¢ = ta) dta (5.5)

Konrad Schenk

5.1. PROBABILISTIC FLOW 45

Since the integral resembles a convolution of f and 7 and the transitional probability
p is a constant factor, Equation 5.4 and 5.5 can be rewritten as Eq. 5.6.

f(ml{n,c}) (t) = p(m[{n,c}) - (v (m[{n,c}) * f (nlc)) (1) (5.6)

It helps in understanding the prediction method to not interpret Eq. 5.6 in the usual
way that a flow f(m|{n,c}) is dependent on another flow f(n|c). A more suit-
able interpretation would be that an inflow f(n|c) to node n creates new outflows
f (m|{n,c}) to its neighboring nodes m.

Using these equations, an observed movement can now be predicted by inducing an
initial inflow of one for time ¢ = 0 at the node of the last observation and calculating
every flow according to Eq. 5.6. After obtaining all flows, the occupancies can finally
be calculated according to Eq. 5.3.

5.1.2 Approximative Solution

Although the definition of the prediction algorithm according to Eq. 5.3 and 5.6 suffi-
ciently describes the necessary computations of the main prediction algorithm, there
is a severe drawback in its implementation: a flow may be dependent on itself. On
an acyclic directed graph (like in Fig. 5.1 and 5.2(a)), the flow of each node can be
computed sequentially starting from the node of the last observation, followed by its
neighbors, then by their neighbors, and so on. But, as soon as the graph contains a
circle or an anti-parallel edge, the inflow of a node can recursively depend on its own
outflow (as shown in Fig. 5.2(b)).

Typically, the condition ¢ = {¢1,...,¢;} of a flow f(n|c) grows while traversing
through the graph since it always gets extended by the last visited node (c¢; in the
current example). Since the flow passes through the node n, a transitional probability
p(m|{n,c}) and a time distribution 7 (m|{n,c}) with a matching condition ¢ needs
to be provided by the nodes Markov-tree in order to calculate the resulting outgo-
ing flows. But, unfortunately, the Markov-tree is only able to provide entries with a
matching condition if it was observed in the learning phase. If no match is found, the
only solution to the problem is to truncate the condition c of the flow until a corre-
sponding transitional probability and a time distribution is available. It would also
be disadvantageous not to reduce the condition since the following nodes m will not
use any of this additional information: if there were any observations with a sequence
of nodes which would result in a Markov-tree of node m with an entry fully matching
the condition {ci,...,¢}, it would also force a matching entry in the previous node
c1 due to the fact that the observations causing such an entry contains the sequence

{CQ, ce >C7j}-

Konrad Schenk

46 CHAPTER 5. PREDICTION FRAMEWORK

T(b|n
o 20 m (o
p(aln)

T(a|n) p(bla) T(bla)

£,0) = (£,(m)*T(aln)-p(an)) xT(bla)-p(bla)
+ £,(n) xT(b|n)- p(b|n)

(a) Acyclic graph
T(n|b)

() "0
PIN=1 " 710 ep(bla)=1 T(bla)

fin(b) = fi,(n)*T (a|n)T (bla)
+ £y (n) #7(a|n) *T (bla) *T(n[b) +T (a|n)+T (bla)
+ £y (n) ¥7(a|n) *T (bla) *T(n[b) +T (a|n)+T (b|a)*T (n[b) +T (a|n) +T (b]a)
+ .

(b) Cyeclic graph

Figure 5.2: Computation of an inflow at one node of an acyclic graph (a) and a cyclic
graph (b). As can be seen in (a), the inflow of node b can easily be expressed as a formula.
The influence of each edge is highlighted with its corresponding color. The inflow of node n
is divided into two outflows with the ratio of p (aln) and p (bjn). Each outflow becomes the
inflow to node a and b respectively by convolving them with the corresponding transitional
time distributions 7 (aln) and 7 (b|n). The inflow to node a passes through to node b by
again convolving it with 7 (bla). So, the inflow of node b finally results from a one-time
convolution plus a twofold convolution of the inflow to node n. If a graph has a loop as in
(b), an infinite recursion occurs. The inflow of node b is dependent on the inflow of node
n, which in turn is dependent on the inflow of node b. The result is an infinite sum with
infinite convolutions, which is obviously unfeasible to compute.

As a result of the truncation, a flow f (m|c) may pass through the graph and arrive at
the same node again as an altered version f (m|c) but with the same condition c. The
same alteration is now applied to f (m/|c) resulting in another inflow at the same node
with the same condition. The consequence is an infinite loop of sequentially dependent
inflows, which thwarts an effective computation.

Fortunately, the only assumption about the system made in Section 3.1 demands that
the system changes continuously and does not skip intermediate states. It implies that
the system needs a certain time to transit from one node to another one; hence, the
soonest a neighboring node can be reached is the next time step. This fact enables an
approximative computation of the flows since if the flow computed up to the current

Konrad Schenk

5.1. PROBABILISTIC FLOW 47

Input
1 f=9%(nlc) //Initial inflow caused by the observation
2 1 //Max time horizon for prediction
3 p(nlc) //All learned transitional probabilities
4 T(nlc) //All learned transitional time distributions
Algorithm
5 F={f"(nlc)}; //nitialize set of all known flows
Label 1: Approximation
6 for t=1,...,1; //Iterate through time horizon
7 E = {/=%(nlc)}; //Create temporary set of flows
8 for every f(n|c) in F; //Iterate through all known flows
9 for every neighbor m of n; //Iterate through all neighboring nodes
10 truncate ¢ until a p(m|{n,c}) and 7 (m|{n,c}) is available;
11 f(m]{n,c}) =p(m|{n,c})-7(m|{n,c}) * f(n|c); //Calculate new flows based
//on previous approximation
12 add f(m|{n,c}) to E; //Update temporary flow set
13 set F to E; //Set current set of known flows to newly calculated flows
Label 2: Calculate result
14 for t=1,...,1; //Iterate through time horizon
15 ot (n) = Z;ZO (D fa(nle) =32, > c fo (m| {n,c})); //Calculate observational
//probabilities
Return
16 o(n), t=1,...,1, n=0,...,N //Observational probabilities

//for all nodes

Figure 5.3: Approzimative prediction method

time step is considered to be correct, it can only have an influence on itself for the
future time steps. The best approach is to change the calculation of the flows from a
spatial perspective to a temporal viewpoint.

A flow at time step ¢ can only be dependent on flows up to the time step ¢ — 1.
Therefore, an inflow at a given time step can only add values to itself for future time
steps. Since both the in- and outflows are always positive per definition (only the
difference f (n) of both can be negative), a self inflicted decrease for further time steps
is impossible. It enables an approximation of the flows by iteratively applying Eq. 5.7
on all flows. The algorithmic implementation of the approximation is shown in Fig. 5.3.

fml{n,c}) = p(ml{n.c}) - 7 (m[{n,c}) * f* (n|c) (5.7)

As the base case, every f'=° is initially given since it represents the last observable
state on which the whole prediction is based. As previously mentioned, a flow at
time ¢ = k can only be influenced by other flows for time steps ¢ < k. Therefore,

Konrad Schenk

48 CHAPTER 5. PREDICTION FRAMEWORK

after calculating every f'=! based on f'=0, the flows yield the correct results up to the
time step t = 1. The next iteration extends the correct part of the flows to ¢t < 2.
According to mathematical induction, the approximated flows are valid for every ¢ <[
after calculating [iterations.

The induction can be depicted by the example of a person walking. The initial state is
represented by an inflow of one at the node at which the person was currently observed.
Every other inflow is zero since a person can not be at different places simultaneously.
By calculating one iteration of Eq. 5.7, only the inflows to the neighboring nodes get
updated. Since the person can not go beyond those neighbors in one time step, they
can also not follow a circular structure and arrive at the neighboring nodes via another
route. Hence, the flows will not change anymore for time steps t < 1 after the first
iteration of Eq. 5.7. The earliest situation possible for the person to arrive at a node
they have already visited occurs at time step ¢ = 2 if the person reverts to the initial
node. But, this change in the inflow of the initial node can under no circumstances
cause changes in the inflow of other nodes for time steps t < 2. Thus, after the second
iteration of Eq. 5.7, every flow is now static for ¢t < 2.

Usually, the flows do not only yield the correct results up to time step ¢ < [but also
provide the better approximation for ¢ > [the more iterations are calculated. This is
due to the fact that after each iteration the magnitude of each circular flow gets lower
(since the transitional probability is < 1 and thus can only decrease a flow) and more
spread across the time due to the convolution with the transitional time distribution.
The prediction method was developed for a real-time application as introduced in
Section 1.2, but the approximative computation was not able to meet the necessary
speed requirements on large graphs due to a much too high workload on the processor.
A similar but much faster strategy to circumvent the expensive computation will be
presented in the following section.

5.1.3 Frequency Domain

Since the convolutions of the flows with the transitional time distributions takes up
most of the computational time, it is only logical to focus on this operation. The
convolution theorem states that the Fourier transformation of a convolution is the
pointwise product of both Fourier transformed operands, as shown in Eq. 5.8.

F(r(m|{n,c}) = f (n|c)) =T (m[{n,c}) - F' (n|c) (5.8)
with

F(nlc) = F (f (n|c))

Konrad Schenk

5.1. PROBABILISTIC FLOW 49

and
T (m|{n,c}) = F (1 (m|{n, c}))

Using this theorem, the complexity of the convolution is reduced from approximately
O (n?) to O (n) (omitting the computations needed for the Fourier transformation).
The transformation only needs to be done once on the transitional time distributions
and for the initial inflow to start the prediction. Afterwards, every intermediate com-
putation can be conducted in frequency domain according to Eq. 5.9.

F(m[{n,c}) =p(m|{n,c}) - T (m[{n,c}) - F (n|c) (5.9)

A second set of Fourier transformations is necessary for the final calculation of the
occupancies in order to revert to the time domain. Therefore, Equation 5.3 needs to
be slightly adjusted to Eq. 5.10.

o0 (n) = /0 CF(F () (x)da (5.10)
with

F(n) =Y Fue) - 3.3 F (m| fn,c})

Unfortunately, using this approach yields the same problem as the method presented
in Section 5.1.2: cyclic structures in the topological graph are causing flows which
are dependent on themselves. The approximation in the time domain according to
Eq. 5.7 in Section 5.1.2 can easily be transferred to the frequency domain in order to
circumvent the convolution resulting in Eq. 5.11.

F™* (m]{n,c}) = p(m[{n,c}) - T (m| {n,c}) - F* (n|c) (5.11)

After initially transferring all transitional time distributions 7 (m/|c) into the frequency
domain, every flow can be approximated by iteratively applying Eq. 5.11 [times in
order to get the correct result up to time step [. Next, Eq. 5.10 can be applied
to calculate the final observational probability o, (n) for every node n and every time
step t. This procedure is depicted in Fig. 5.4. The approximative method, presented in
Section 5.1.2, also needs [iterations for each flow to yield the correct result up to time
step [, but in each iteration a convolution needs to be performed, whereas Eq. 5.11
only utilizes multiplications. Therefore, calculating the flows in frequency domain

Konrad Schenk

50 CHAPTER 5. PREDICTION FRAMEWORK

Input
1 f=9%(nlc) //Initial inflow caused by the observation
2 1 //Max time horizon for prediction
3 p(nlc) //All learned transitional probabilities
4 7(nlc) //All learned transitional time distributions
Algorithm
5 T (m|{n,c})=F (r(m|{n,c})); //Transform time distributions into freq. domain
6 F'=0(n|c)=F (f=%(nlc)); //Transform initial inflow into freq. domain
7 F={F=%nlc)}; //Initialize set of all known flows
Label 1: Iteration
8 for t=1,...,1; //Iterate through time horizon
9 E = {F'=0(n|c)}; //Create temporary set of flows
10 for every F(n|c) in F; //Iterate through all known flows
11 for every neighbor m of n; //Iterate through all neighboring nodes
12 truncate ¢ until a p(m|{n,c}) and T (m|{n,c}) is available;
13 F (m|{n,c}) =p(m|{n,c})-T (m|{n,c}) - F(n|c); //Calculate new flows based
//on previous approximation
14 add F (m|{n,c}) to E; //Update temporary flow set
15 set F to E; //Set current set of known flows to newly calculated flows
Label 2: Calculate result
16 for every F'(n|c) in F; //Iterate through all flows
17 f(n|e) = F~1(F (nle)); //Transform all flows back to time domain
18 for t=1,...,1; //Iterate through time horizon
19 or(n) =o0i—1(n) + > . fr(nlc) =, > fr (m[{n,c}); //Calculate observational
//probabilities
Return
20 o;(n), t=1,...,1, n=0,...,N //Observational probabilities

//for all nodes

Figure 5.4: Prediction in frequency domain

gives similar results to the approximative method with less computations involved. It
is worth noting that the observational probabilities may provide good estimates for
t > [too since the iteration of Eq. 5.11 is only necessary to resolve circular structures.
If the topological graph is acyclic, each flow only has to be computed once by starting
at the initial node and calculating the flows to its neighbors, then calculating the flows
to their neighbors, and so on until the entire graph has been traversed.

But, unfortunately, the approximation in frequency domain yields a major problem:
the computationally most feasible method for transforming a signal into the frequency
domain is to apply a Discrete Fourier Transform (DFT). It transforms a vector in time
domain of length [into a complex vector in frequency domain of length /. Since all the
resulting flows in Eq. 5.10 are fixed to this length, the occupancy can only be calculated
for t < [. Thus, the prediction horizon is limited to size [of the transformation. If a

Konrad Schenk

5.1. PROBABILISTIC FLOW 51

prediction up to a further point in time is desired, [needs to be increased accordingly.
Unfortunately, the memory requirements and computational complexity increase with
[since the multiplication in Eq. 5.9 implements an element-wise multiplication of the
two vectors T and F' of size [. A more flexible and computationally less demanding
method is presented in the next section.

5.1.4 TIterative Solution

The main problem of calculating a flow f (m|{n,c}) (¢) according to Eq. 5.6 is that all
other flows f (n|c) (f) need to be known beforehand. The approach of the two previous
sections circumvent this problem by approximating them. But, the fact that all the
flows are known for the initial time step ¢ = 0 (due to the last observation) enables an
easier and faster solution.

For a given node n and a given time step ¢, the flow to its neighboring node m results
(according to Eq. 5.6) from the product of the corresponding transitional probability
p(m|{n,c}), the fragment responsible for the current time step of the convolution
of the transitional time distribution 7 (m|{n,c}), and the inflow f (n|c) as shown in
Eq. 5.12.

fi(m[{n.c}) = p(m|{n,c})- Y (7 (m[{n.c}) - fiui (n]c)) (5.12)

%

It is worth noting that the transitional time distribution 7; (m|{n,c}) for i = 0 is zero
due to the assumption of a continuous system. Thus, only inflows of the previous time
steps contribute to the current calculation. The iteration starts at £ = 1 and updates
all available flows for the current time step based on the previous time steps in each
iteration. Similar to Eq. 5.6 in Section 5.1.1, Eq. 5.12 should be interpreted as that
the previous set of flows (right side of the equation) get dispersed at the nodes they
are arriving at and thus causing new flows (left side of the equation) for the current
time step.

The occupancy of node n for the current time step ¢ results from the previous oc-
cupancy enhanced by every momentary inflow and decreased by every momentary
outflow to all of its neighbors m as given in Eq. 5.13.

ot (n) = 0i-1 (n) + Z fe(nfe) = Z Z Je(m|{n,c}) (5.13)

By iteratively calculating the flows for every time step ¢ = 0, ..., [according to Eq. 5.12
and finally applying Eq. 5.13, circular dependencies are resolved without adding any

Konrad Schenk

52 CHAPTER 5. PREDICTION FRAMEWORK

Input
1 fizo(n|c) //Initial inflow caused by the observation
2 1 //Max time horizon for prediction
3 p(nlc) //All learned transitional probabilities
4 7(nlc) //All learned transitional time distributions
Algorithm
5 F={f"(n|c)}; //nitialize set of all known flows
Label 1: Iteration
6 fort=1,...,1; //Iterate through time horizon
7 for every f(n|c) in F; //Iterate through all known flows
8 for every neighbor m of n; //Iterate through all neighboring nodes
9 truncate ¢ until a p(m|{n,c}) and 7 (m|{n,c}) is available;
10 fe (m[{n,c}) =p(m|{n,c}) >, (ri(m|{n,c}) - fi—i (n|c)); //Calculate flows for
//current time step
11 add f(m|{n,c}) to F, if not yet included; //Update flow set
Label 2: Calculate result
12 for t=1,...,0; //Iterate through time horizon
13 for n=0,...,N; //Iterate through all nodes
14 o (n) =0i—1(n) + > . fr(n|e) = >, > fr (m[{n,c}); //Calculate
//observational probabilities
Return
15 o:(n), t=1,...,, n=0,....,N //Observational probabilities

//for all nodes

Figure 5.5: Iterative prediction method

additional computational complexity to the procedure presented in Section 5.1.1 and
the multiple convolutions for every iteration of Eq. 5.7 are basically reduced to one
convolution per flow. The main difference between both methods is that the iterative
approach calculates the convolution of Eq. 5.5 for each flow only once but for one time
step after another; whereas, the approximative approach of Section 5.1.2 needs one
full convolution for every flow and every iteration. In comparison to the approach in
frequency domain as explained in Section 5.1.3, the iterative approach requires even
fewer computations since the calculation of a flow for time step ¢t < [only needs t
multiplications (see Eq. 5.12) at most, whereas the approach in frequency domain
utilizes [multiplications for every iteration of Eq. 5.9. Additionally, the initial and
final Fourier transformations are not necessary.

An implementation of the algorithm is shown in Fig. 5.5, and Fig. 5.1 shows the
iterative approach in an example with a first-order Markov-tree. It only depicts an
acyclic graph in order to show the complete prediction up to its final, stable state in
only six steps.

Konrad Schenk

5.2. MODEL UPDATE 23

5.2 Model Update

Usually, it cannot be guaranteed that the dynamics of a system remain static after
the initial transitional and probabilistic models are learned. In order to account for
changes, a model update would be beneficial. The prediction framework comprises
three elements which can be updated: the topological model, the transitional proba-
bilities, and the transitional time distributions.

The topological model is the most cumbersome element to update. The Mean-Shift
clustering, used for determining the spatial coverage, is not able to include new ob-
servations into the clustering result without reprocessing the whole set of previously
observed data. A naive approach would be to collect new observations and create a
new topological model in a batch if the observations indicate a significant change in
the underlying topology. Unfortunately, this procedure also invalidates all transitional
probabilities and time distributions since the new topology cannot be mapped onto
the old model due to a different number of nodes, shifted positions of the nodes, and
different results in the Delaunay triangulation. Considering the topological graph as
a Self-Organizing Map [KOHONEN, 1990] or a Neural Gas [MARTINETZ et al., 1991]
and updating it to new observations does not change the topology of the graph and
provides a better alternative than a batch update. But, by shifting nodes towards new
observations, the Delaunay triangulation (see Section 3.4) is violated and the edges
may not connect only neighboring nodes any more. Additionally, the transitional time
distributions will become invalid since the time to transit from one state to another
is dependent of their respective spatial position. Also, the transitional probabilities
are not guaranteed to be correct anymore since they usually depend on the spatial
position, too. It is apparent that it is best not to update the topological model after
it is created. In order to account for possible changes and to cover sparse regions, a
set of random nodes can be seeded across the whole state space before the edges are
created by the Delaunay triangulation. But, if the topology has changed significantly,
a complete recalculation of the topological graph, the transitional probabilities and
time distributions in inevitable.

If the topological graph is kept static, the use of the Markov-tree enables an easy up-
dating of the transitional probabilities and time distributions. Since the transitional
probabilities are based on relative frequencies, they can be updated to new observa-
tions on-line by just incrementing the corresponding counter in the Markov-tree in the
same fashion as described in Section 4.2. By using a simple decaying mechanism, the
Markov-trees can even account for frequent changes in the motion mechanics and thus
adapt to different situations during its application phase. The update scheme of the
transitional time distributions, on the other hand, depends on their implementation
(see Section 4.3): if KDE was chosen to represent the distribution, it can be updated

Konrad Schenk

54 CHAPTER 5. PREDICTION FRAMEWORK

by adding a new kernel to the distribution, similar to a histogram, every time a new ob-
servation is available as explained in Section 4.3.1. But, if a parametric representation
of the time distribution is used, an on-line update is usually not possible (depending
on the involved method - e.g., GMM, or KDA) and a batch update is often the only
possibility to incorporate new observations.

5.3 Conclusion and Summary

The novel prediction algorithm which distinguishes itself from all other existing pre-
diction methods not only by its comprehensive information content but also by its
unique approach of using probabilistic flows, was presented in this chapter. This al-
gorithm uses the topological graph, first introduced in Chapter 3, which was enriched
by transitional probabilities and time distributions in a learning phase as explained in
Chapter 4. The probabilistic flow was introduced in Section 5.1. It describes the trans-
fer of an observational probability (or occupancy) from one node to a neighboring node
over time. The formal definition of the prediction method was given in Section 5.1.1,
its practical implementation was presented in Section 5.1.2 (which got optimized in
Section 5.1.3 by a transformation into the frequency domain), and a computationally
less expensive version was given in Section 5.1.4. If the system dynamics have changed,
the topological and probabilistic models can be updated as explained in Section 5.2.
The proposed procedure to predict a movement with the above mentioned methods
is intended as follows: First, the last known state of the system must be transformed
into corresponding flows. In the example of a person walking along an area, the last
node n and path c of the person needs to be determined and an inflow f (n|c) to
node n with a value of one for the time step £ = 0 must be created. The person
moved along the nodes ¢ = ¢y, ..., ¢; to n, and their observational probability at node
c; and later at node n was one since they were directly observed. Thus, the flow to
n along the path c is one. Second, the first iteration of Eq. 5.12 is performed. It
creates new inflows at the neighboring nodes m with the condition ¢ extended by n.
Whereas only one flow was known in the initial state, additional flows from the last
node n towards its neighbors m are now in existence. In every further iteration of
Eq. 5.12, the existing flows may cause additional ones with an extended condition.
Eventually, a truncation of the condition will be necessary due to unavailable entries
in the corresponding Markov-tree, as explained in Section 5.1.2. This will restrict the
total number of used flows and will prevent their exponential duplication at every
iteration. In order to obtain a prediction up to time step ¢t = [, a total of [iterations of
Eq. 5.12 needs to be performed. Finally, the observational probabilities of every node
up to time step ¢t = [can be computed using Equation 5.13.

Konrad Schenk

5.53. CONCLUSION AND SUMMARY 59

In order to enable the incorporation of new observations into the prediction algorithm
during its application, it is recommended to seed random nodes into the topological
graph in the learning phase before edge creation to account for unobserved spatial
states. The Markov-tree enables an easy on-line updating of the transitional probabil-
ities and KDE is strongly recommended for representing the transitional time distri-
butions due to its incremental updating capabilities.

Chapter 3 through Chapter 5 described the whole prediction algorithm and the nec-
essary methods involved. In order to evaluate the results provided by the prediction
algorithm, an error measure and several experiments will be presented in the following
chapter. The proposed prediction algorithm will also be compared to the state of the
art methods as introduced in Section 2.2.

Konrad Schenk

96 CHAPTER 5. PREDICTION FRAMEWORK

Konrad Schenk

o7

Chapter 6

Experimental Evaluation

In the last chapter, the main prediction framework and its methods were described
extensively. In this chapter, several experiments and their results will be presented in
order to compare the framework to the state of the art and to evaluate the quality of
the prediction results.

Two datasets will be used for evaluation. The first was recorded in the Humboldt-
Foyer at the Ilmenau University of Technology, and the second was taken from the
Beijing taxi trajectory dataset [ZHU et al., 2013, ZHANG et al., 2011, ZHANG, 2009).
Both datasets are described in Section 6.1 in greater detail.

The most common error measures are presented in Section 6.2 in order to assess
different aspects of the prediction framework and to compare it to the state of the art.
Those measures are not suitable for fully evaluating the proposed prediction framework
since it provides a spatio-temporal probability distribution as a result. Thus, a new
error measure, similar to the receiver operating characteristic (ROC), is also presented.

These error measures are used in the experiments in Section 6.3, 6.4, and 6.6. The
first experiment in Section 6.3 examines the influence of different representations of the
spatial space. It compares the cluster-based topology to a simple grid representation
and analyzes the effect of different cluster sizes on prediction accuracy. Section 6.4
describes and evaluates an experiment to contrast the iterative prediction with the
prediction using frequency domain (see Section 5.1.3 and 5.1.4). The second experi-
ment will show whether the approximations in frequency domain have a considerable
influence on prediction accuracy and examines the speed-up of the iterative approach.
The proposed prediction method is then compared to the state of the art [BENNEWITZ,
2004, VASQUEZ GOVEA, 2007,IKEDA et al., 2013| in Section 6.5 and a broad evaluation
is given in Section 6.6 in order to enable a comparison to new prediction algorithms.
Section 6.7 will summarize the experiments.

Konrad Schenk

28 CHAPTER 6. EXPERIMENTAL EVALUATION

Ethernet
to Wi-Fi

Laser range finder
LMS 151

Rechargeable battery

(a) Mobile LIDAR unit (b) Interior of the unit

Figure 6.1: The mobile LIDAR sensor unit used for acquiring the Humboldt dataset.
A picture of the sensor on top of a trolley is shown in (a). Reflective tape was applied
in order to improve the automated calibration of multiple sensors. The LIDAR sensor is
placed behind the slit between the two horizontal reflector tapes. A schematic sketch of the
interior is shown in (b). The electronics are powered by a lead battery either directly or by
a DC Power converter. The LMS151 LIDAR sensor is connected to an Ethernet to Wi-Fi
bridge in order to provide a wireless data connection to a recording server. The upper part
(covered by a cap) of the mobile unit provides a charging port, a power switch, a replaceable
fuse, and access to the Wi-Fi bridge in order to connect the recording server directly to the
scanner via an Ethernet cable, if desired.

6.1 Databasis

A dataset of human movement trajectories was recorded in the Humboldt-Foyer at
the Ilmenau University of Technology in order to develop the prediction framework.
The recordings took place in the foyer (measuring approximately 15m x 26m and
depicted in Fig. 6.2) of the main auditorium between two exams. It resulted in the
Humboldt dataset containing a total of 231 trajectories with a mean length of 16.8m
and a mean duration of 19.4s. They were recorded with three mobile LIDAR (Light
Detection And Ranging) sensor units each consisting of a SICK LMS151 scanner, a
lead battery as a power supply, and a Wi-Fi bridge which connected the scanner to the
recording server (see Fig. 6.1). After registering their scan data with an automated
calibration procedure, as described in [SCHENK et al., 2012a,SCHENK et al., 2012b|, the
students were tracked with an algorithm incorporating multiple particle filters while
they walked along the foyer, as explained in [SCHENK et al., 2011]. After filtering
out short tracks (< 1m), it resulted in 231 trajectories of which one half were used
for creating the topological graph (shown as a light gray mesh in Fig. 6.2) and the
probabilistic model, while the other part was used for evaluation in the experiments of

Konrad Schenk

6.1.

DATABASIS

29

T
Toi[ets

. .; ; wld ~
s g Stairs‘T
Locker- . age
froom

VU

«

Auditorium /

/e

.
[
.

(a) Humboldt dataset

o,

hl

(b) Topological graph

L .]
+

Cafeteria

r

Audltoﬂijm

#

Figure 6.2: Top view of the Humboldt Foyer. In (a), the layout and trajectories are
shown. Walls and static obstacles are depicted in dark gray, and the trajectories are shown
in a light gray color. In (b) the trajectories are replaced by a topological graph with its edges
shown as a light gray mesh and the nodes as dark dots.

Konrad Schenk

60 CHAPTER 6. EXPERIMENTAL EVALUATION

the following sections. The first 3m of every test trajectory were used as the observation
and the remaining part was taken as the ground truth in the evaluation.

Since a dataset with only 115 test trajectories can hardly provide a statistically sound
evaluation and the creation of a bigger dataset is both expensive and beyond the scope
of this thesis, an openly available and extensive trajectory dataset was chosen to make
this prediction framework comparable to other approaches: the Beijing taxi trajectory
dataset [ZHU et al., 2013, ZHANG et al., 2011, ZHANG, 2009]. For a comparison to
the state of the art, it would have been more convenient to use a dataset containing
pedestrian movements; but, unfortunately, no published dataset with the necessary
number of trajectories was available at the time. The Beijing taxi trajectory dataset
was chosen as a reference since cars are usually operated by humans and thus provide
movement trajectories following remotely similar intentions as pedestrians but on a
larger scale. It contains the GPS tracks of 8,602 taxis driving in the Beijing region for
a duration of one month (see Fig. 6.3). The raw dataset consists of nearly 125 million
GPS positions and covers a traveled distance of approximately 52 million kilometers
in total.

Since the tracks are only stored as a sequence of GPS points for each individual car,
a preprocessing step was necessary to extract individual trips. First, the track of a
car was split if more than 15 minutes have passed between two consecutive points.
It is a trade-off between splitting the trips of different passengers and maintaining a
continuous track in case of traffic congestion or short stopovers. In order to account
for missing intermediate points and disabled GPS devices, tracks are split if a distance
greater than 1km lies between two consecutive GPS positions. If the remaining tra-
jectories are shorter than 200m, they are discarded because they do not provide much
useful information for a prediction task on the scale of Beijing. The filtering resulted
in a dataset with a total of 5.1 million trajectories consisting of 116 million GPS po-
sitions and covering a distance of 26 million kilometers in total. This dataset was
also split in half - one for training and the other part for evaluation. Unfortunately,
the evaluation of the prediction framework on the whole 2.05 million test trajectories
would require several decades on modern computer hardware (an Intel(R) Core(TM) i7
quad core processor running at 2.67GH z was used for the evaluation). Therefore, the
1,000 longest trajectories (with 667 thousand GPS points, a length of 134 thousand
kilometers and a total duration of more than 7,398 hours) were taken as a reduced test
set. In order to predict a test trajectory, the first 10km were used as an observation
while the remaining part was used as the ground truth for the evaluation.

Since almost every prediction algorithm found in literature is evaluated on a dataset
which is not available to the public, the use of the openly available Beijing taxi tra-
jectory dataset enables other scientists to compare their prediction methods to the
prediction framework presented in this thesis. By focusing on taxi cab movements in

Konrad Schenk

6.1. DATABASIS

61

£, QRN 3
g - Y gl

(b) Topological graph

Figure 6.3: Beijing tazi trajectory dataset. In (a), the GPS points are shown as pale red
points and the connections between them as gray lines. Only a small subset (approzimately
218 thousand trajectories with 5.2 million GPS points) is presented, covering an area of
30km x 31km. A topological graph, created on these trajectories, comprising 14,272 nodes
and 57,067 edges, is illustrated in (b). Only the edges can be seen since the nodes are too
small to be identified.

Konrad Schenk

62 CHAPTER 6. EXPERIMENTAL EVALUATION

an enormous city, a prediction algorithm can also be compared to the proposed pre-
diction framework utilizing a variety of different datasets which share the same type
of motions such as the NYC’s Taxi Trip Data [WHONG, 2014|, the T-Drive dataset,
which was recorded in Beijing [YUAN et al., 2010, YUAN et al., 2011, ZHENG, 2011],
the GeoLife GPS Trajectories dataset [ZHENG et al., 2009, ZHENG et al., 2008, ZHENG
et al., 2010, ZHENG, 2012|, the epfl/mobility dataset of taxi cab rides in San Fran-
cisco |[PIORKOWSKI et al., 2009], or a collection of user-submitted GPS tracks on
© OpenStreetMap [OPENSTREETMAP and CONTRIBUTORS, 2013].

6.2 Error Measure

In the state of the art, several error measures are applied for evaluating a trajectory
prediction algorithm: the Euclidean distance error, which describes the mean distance
of the prediction to the ground truth, the more intuitive lock-in accuracy, the next
state accuracy for discretized state spaces such as those found in mobile networks,
and the prediction error over the observed proportion of the trajectories are the most
prominent. Since none of these error measures are able to fully grasp the capabilities
of the presented prediction method, a new error measure is presented in Section 6.2.5.

6.2.1 FEuclidean Distance Error

The most basic measure describes the mean Euclidean distance between the predicted
and the real location for a given time offset {5 [JEUNG et al., 2010]. The error can be
calculated as the Euclidean distance of op and xg,a utilizing an observed trajectory
up to time tg, the point xg, A of the trajectory for the future time tg,an = tg + ta,
and the prediction oa for tg.a. The mean Euclidean distance error is computed by
averaging over all test trajectories.

By comparing different prediction algorithms using the Euclidean distance error, three
problems can arise if they are not evaluated on the same dataset. The first and most
obvious problem also applies to every other error measure: the prediction performance
is dependent on the system dynamics which should be predicted. For example, a
prediction algorithm evaluated on the movements of planets may provide excellent
results, whereas another prediction method evaluated on the Brownian movement of
molecules is more likely to give significantly poorer results. It is only possible to
contrast two prediction methods evaluated on different datasets with each other if the
predicted system dynamics are similar. For instance, it is likely that the movements
of people walking in a shopping mall are following dynamics similar to the movements
of people at an airport thus enabling a comparison. But, in the case of more diverse
system dynamics, such as people in a shopping mall and cars driving around in a city,

Konrad Schenk

6.2. FRROR MEASURE 63

the Euclidean distance error measure can provide at least a rough comparison of two
different prediction methods. The example of cars in a city versus pedestrians in a
shopping mall points to the second problem of comparing two methods on different
datasets with the Euclidean distance error: the spatial and temporal scales must
be in the same magnitude. It is, for example, difficult to assess if a method which
is predicting car movements in a city with an error of 1km for a time horizon of
ta = 60min is better or worse than a prediction algorithm that is able to predict
someone’s movement in a shopping mall with a mean error of 15m for a time horizon
of to = 30s. The third problem with using the Euclidean distance error on different
datasets is that it does not provide any insight into the influence of the length of
observed trajectories. A prediction method tested on a dataset with long trajectories
can utilize more information and will, most likely, perform better than a prediction
algorithm evaluated on a dataset with short trajectories.

Due to these deficiencies, the Euclidean distance error measure only provides useful
information if the prediction algorithms are evaluated on the same dataset with the
same time offset. Since the error is easy to compute, it is best utilized for fine-tuning
a prediction algorithm and assessing different methods in its development.

6.2.2 Lock-In Accuracy

The Fuclidean distance error also has a practical disadvantage. In the example of
predicting someone’s movement in a mall, a prediction algorithm with an error of
50m is not better than a prediction method with an error of 200m - both predictions
are basically useless. The likelihood of obtaining a correct prediction would be much
more interesting for evaluating the capabilities of a prediction algorithm. The common
interpretation of a “correct” prediction is that it is within a certain distance (or lock-in
range) to the ground truth [IKEDA et al., 2013]. Thus, the lock-in accuracy for a given
distance d and time delta tan describes the proportion of the test trajectories whose
prediction is within the distance d to the ground truth.

At first glance, the lock-in accuracy does not solve the problems of the Euclidean
distance error and even introduces a new dependency by the lock-in range d. However,
it is easier to find suitable ranges for different dynamic systems (e.g., it might be
reasonable to have a range of 2m for a pedestrian and a time horizon of 30s or 200m
for a car and a time horizon of 10 minutes) than to directly compare their Euclidean
distance errors. Thus, the lock-in accuracy gives a more intuitive assessment and it
should be preferred over the Euclidean distance error.

Konrad Schenk

64 CHAPTER 6. EXPERIMENTAL EVALUATION

6.2.3 Next State Accuracy

The Euclidean distance error and the lock-in accuracy is primarily suitable for con-
tinuous state spaces. In the case of a prediction in a discretized state space, such
as mobile networks, it is common to evaluate the prediction method in terms of the
prediction accuracy for the next state [PRASAD and AGRAWAL, 2010, WANALERTLAK
et al., 2011]. It is defined as the proportion of the test trajectories whose next state
was predicted correctly, similar to the lock-in accuracy.

By merely evaluating the prediction method for the next (or sometimes the second next
or generally speaking the n'® next) discrete state, spatial scales in different problem
statements have almost no influence on the prediction error as long as the chosen dis-
cretization samples the state space adequately. Yet, similar to the Euclidean distance
measure, the next state accuracy does not reflect the amount of information used for
prediction. Furthermore, by only focusing on the next spatial state, the time horizon
is neglected and the prediction accuracy for different time offsets is not assessed.

6.2.4 Error over Trajectory

One drawback of the Euclidean distance error, the lock-in accuracy, and the next state
accuracy is the inability to account for the number of observations used to predict a
trajectory: the longer a trajectory is observed, the more information is available for
the algorithm to substantiate a prediction thus increasing the accuracy. Furthermore,
the error measures are dependent on the time offset of the prediction. Predicting a
trajectory one second into the future will more likely yield better results than predicting
the same trajectory one hour into the future. The obvious solution to this problem is
to provide the error (or accuracy) for a range of time offsets like in [GIDOFALVI et al.,
2011,IKEDA et al., 2013, JEUNG et al., 2010|, improving the comparability of different
prediction algorithms.

A similar, yet different, approach is to always use the final position of a test trajectory
as the prediction goal and present increasingly longer fractions of the trajectory as an
observation to the prediction algorithm as applied in [BENNEWITZ, 2004, VASQUEZ and
FRAICHARD, 2004]. An error is calculated for every fraction of the trajectory resulting
in a plot of the prediction error over the fraction of the trajectory. By using the final
position as the prediction target, it inherently accounts for different time offsets since
the duration of the unobserved part of the trajectory decreases with the increasing
fraction of the trajectory presented to the prediction algorithm. Unfortunately, this
approach can only be applied if the trajectories of the test dataset are almost the same
length or if the error is normalized to the length of the trajectory. If the unnormalized
error is used, a dataset with short trajectories would result in an error plot different
from a dataset with long trajectories and would impede a comparison.

Konrad Schenk

6.2. FRROR MEASURE 65

6.2.5 Prediction ROC and AUC

Most of the error measures found in literature for evaluating a prediction algorithm
assume that the algorithms only provide one position as the most probable result.
Thus, they do not account for multiple options. For example, if a prediction algorithm
were to calculate two likely positions for a given trajectory - one with a probability of
49.9% 1m off of the ground truth and a second one with 50.1% but 100m away from
the real position - the Euclidean distance error would result in an error of 100m even
if the second option, with almost the same probability, is much more accurate.

The presented prediction algorithm not only provides a few options as a result but
also a probability distribution over every possible state. For a prediction with a big
time offset, it is likely that the probability distribution disperses across a large area
with several almost equally possible states. Using a traditional error measure on
such a prediction would result in misleading interpretations. In order to account for
predictions providing a probability distribution, a new error measure needs to be found.

In the field of computer vision, it is common to evaluate re-identification algorithms
on their receiver operating characteristic (ROC) (e.g., [EISENBACH et al., 2012|). A
re-identification algorithm usually takes an unknown sample and compares it to a set
of N known images. A score representing the similarity to the sample is calculated
for every image. For every sample of a test dataset, the scores are calculated and the
known images are sorted accordingly in descending order. This results in a sorted list
for every sample, and the ROC is obtained by calculating the relative frequency (or
true positive rate - TPR) for each rank n =1,..., N that the correct image is within
the first n items of the lists. Thus, the ROC can be used to assess the probability of
having a correct match (TPR) as a function of the false acceptance rate (FAR).

The proposed prediction algorithm can be seen as a re-identification system for posi-
tions. Its prediction result is basically a list of nodes with the probability to encounter
an observed trajectory at their respective position for any given time. In the analogy
of image re-identification, the probabilities correspond to the scores, and the set of
nodes resembles the set of known images. By sorting the list of nodes according to
their probability, an ROC can be calculated in the same way it is obtained in the
re-identification example:

For each sample s = 1,...,S of a test dataset, a prediction 0®' (n) for every node n =
1,...,N and all time steps t = 0,...,tmax Up to a maximum time ¢,,,, is calculated,
and the node ng’tt which lies next to the ground truth is determined. Afterward, the
nodes n are sorted according to their observational probability o®' (n) in descending
order resulting in a new, sorted list N** = {ﬁf’t, o ,ﬁf\}t}. The ROC is constructed by
calculating the relative frequency TPR (m,t) of the occurrence of the correct node ngf
(or true positive rate) in the first m nodes of the sorted lists for every m =1,..., N

Konrad Schenk

66 CHAPTER 6. EXPERIMENTAL EVALUATION

and every sample s = 1,...,S5 as formalized in Eq. 6.1. The false acceptance rate is
calculated by FAR(m) =m/N.

As becomes apparent in the equations, the ROC is dependent on the current time delta
t. It transfers the error measure from a common two dimensional form (e.g., Euclidean
distance error over time delta) to a three dimensional plot (true positive rate over time
delta and false acceptance rate). At first glance, the complex error surface may not
be understood intuitively, but it enables a comparison to other error measures. For
a cut along the false acceptance rate of 1/5, which corresponds to the leftmost FAR
and the TPR (1,¢) curve, it becomes comparable to the lock-in accuracy with a range
of approximately half of the mean node distance.

S. st R
> isIn (ngf, N*t m>
S

TPR (m,t) = (6.1)

with

TS,t [st ~ 8t
N*" = ny ...,y

and

isIn (ng’tt, Ns’t,m> = { (1) if ngf < {ﬁ‘i’t, e 7ﬁi%t}
else

A common measure to condense an ROC to a single value is the area under the curve
(AUC), which integrates the TPR along the FAR. A value of one would indicate a
perfect prediction algorithm whereas a value of 0.5 corresponds to an algorithm which
merely takes a random guess. Since the prediction ROC (PROC) is dependent on
time delta ¢, the prediction AUC (PAUC) is also a function of ¢, gradually decreasing
from one to 0.5 over time. The PROC may yield more detailed information about
the quality of the prediction results and allows for a comparison to more common
error measures, but the PAUC provides a more intuitive assessment of the prediction
method.

6.2.6 Conclusion

As shown in this chapter, the error measure for a prediction algorithm is strongly
dependent on the used methods and its applications. For evaluating prediction algo-
rithms operating in the continuous state space, the Euclidean distance error may seem
like a good and computationally easy error measure since it provides a direct interpre-
tation of their capabilities. However, it can only be used for a profound comparison
of different algorithms if the prediction algorithms are evaluated on the same dataset.

Konrad Schenk

6.3. TOPOLOGICAL REPRESENTATION 67

A more eligible measure for comparing different datasets is the lock-in accuracy. A
good choice of its lock-in range is crucial for a proper comparison but it is easier
to choose than to compare two Fuclidean distance errors. Furthermore, it enables a
better assessment of a prediction algorithm applied on structured environments, like
road nets or buildings, since obstacles or other spatial restrictions are not accounted
for with the Euclidean distance (a mean Euclidean error of 10m may seem fair for
predicting a person in a building - but only if it is on the same floor and not three
levels directly below the person).

Prediction algorithms operating on a discretized spatial space can be easily compared
by the (n'l-) next state accuracy, even if they are evaluated on different datasets. The
measure is independent from the spatial scales, but it also does not take both the
amount of used information and the prediction time offset into account.

In order to factor in the amount of used information and the prediction offset at the
same time, it is advisable to always use the last known points of the test trajectories
as the ground truths of the prediction and not to record the error (i.e., the Euclidean
distance error or the lock-in accuracy) for different time offsets. The fraction of the
trajectories which gets presented to the prediction algorithm is varied, and the errors
are calculated for each fraction. The resulting plot makes it easier to compare two
prediction methods since it intrinsically normalizes the time scale.

All of these error measures and their modifications are only able to account for one
prediction result. Since the presented prediction framework provides a probability dis-
tribution as the result instead of a distinct state, those measures are only applicable to
compare it to different algorithms. The PROC and PAUC are better suited to evalu-
ate the presented framework because they are able to take not only the most probable
prediction into account but all other states and their probabilities, too. Therefore,
the PROC and PAUC are used for evaluating the experiments in Section 6.3 and 6.4,
whereas the respectively used error measure is applied to compare the proposed pre-
diction framework to the state of the art in Section 6.5.

6.3 Topological Representation

In order to evaluate the benefit of a Mean-Shift-based topology, as introduced in
Section 3.3, it was compared to grid-based representations with a rectangular and
a sixfold-neighborhood pattern (see Section 3.2) on the Humboldt dataset. A time
step of At = 0.1s and a time horizon of to = 20s was chosen for prediction. The
Markov-trees have a depth of five and used the Chebyshev-criterion for a margin of
¢ = 30% and a confidence greater than 75% (see Eq. 4.2 in Section 4.2). The different
graphs are shown in Fig. 6.4 and their individual PROC plots and PAUC diagrams

Konrad Schenk

68 CHAPTER 6. EXPERIMENTAL EVALUATION

s [% ¢ "“v : 1 “ ¢ s [N Fy
84 N TR | N Y N
r ¢ iy e a ¢
L . "., s
RS 8 NI % N
A \ . \ ’ . \
3 » ! 3 » 1 3 »
B o | B ot | B oo
".1}: 'i "i \
(a) Rectangular (b) Sixfold neighborhood (¢) Mean-Shift clustered

Figure 6.4: Graphs with three different methods for representing the topology. Walls and
static obstacles are depicted as dark gray dots, and the graphs are plotted with small, black
nodes and gray edges. A base length of b = 0.5m was used for the rectangular and the sizfold
neighborhood graph, and a kernel width of v, = 0.15m was utilized in the graph created with
the Mean-Shift algorithm.

are depicted in Fig. 6.5.

At first glance, there is no apparent difference between the PROC plots. If, for example,
an 80% probability of obtaining the correct prediction result is desired, all topological
representations provide almost the same false acceptance rate over time: following the
TPR = 0.8 contour, it starts at an FFAR = 0 for the time ¢ = Os (since the result
is always perfect for a time horizon of zero seconds), declining to an FAR =~ 0.65
for t = 13s (i.e., an 80% prediction accuracy can be achieved by checking the most
probable 65% of all nodes of the graph), and rising to an FAR ~ 0.55 till ¢ = 20s (for
t = 20s, ~ 10% less nodes than for ¢ = 13s must be checked in order to achieve the
desired accuracy of 80%). It is worth noting that the prediction performance rises for
t > 13s which is due to the selected scenario: almost all trajectories begin and end
in some distinct areas in the Humboldt dataset. Several students left the coverage of
the LIDAR sensors through the main exit doors, the restroom door, or the entrance
door to the main auditorium. Since the probability distribution tends to first disperse
across the state space and then accumulates at these main exit regions, it provides a
more diffuse prediction for the intermediate states of the trajectories than for the final
point. This behavior can also be seen in the PAUC plots in Fig. 6.5(d). Furthermore,
it confirms in a more intuitive modality that all three graphs provide almost equally
positive prediction results.

Konrad Schenk

6.3. TOPOLOGICAL REPRESENTATION 69

08 08
07 07
06 06
050a 050
0.4 04
03 03
0.2 02
0.1 0.1
02 04 06 08 10 02 04 06 08 10
FAR FAR
(a) PROC of rectangular graph (b) PROC of sixfold neighborhood graph
1 1
oo — g'gr!g
—6-gri
0° 09 \ — Mean Shift
0.7 \
0.6 o 08
05§ = ,
0.4 o7 r
0.3 ™
0.2 0.6
0.1
02 04 06 08 10 0'50 5 10 15 20
FAR tins
¢) PROC of Mean-Shift clustered graph d) PAUC of all graphs
g g

Figure 6.5: Prediction results for grid-based and Mean-Shift clustered graphs. As can be
seen in the PROC and PAUC diagrams, all three graphs perform almost equally well.

In addition to the methodological advantages as stated in Section 3.2, the reason to
prefer the cluster-based representation over the grid-based topologies lies in its reduced
memory requirements: Both regular grids used in the experiment were spanned by
2,320 nodes, whereas the Mean-Shift clustering provided us with a net comprising
only 1,220 nodes - almost half as many. With a graph of fewer nodes, the prediction
algorithm creates fewer flows (as explained in Section 5.1) for calculating a prediction,
thus reducing the computational requirements of the algorithm.

In order to assess the influence of the chosen kernel width for clustering on the predic-
tion accuracy, three nets were created with a kernel width of 7, = 0.075m, v, = 0.15m,
and v, = 0.3m according to the algorithm in Section 3.3.4 and 3.4. The topological
graphs resulting from the clustering are shown in Fig. 6.6 and their individual PROC
plots and PAUC diagrams are depicted in Fig. 6.7. The PROC in Fig. 6.7 are similar
to the plots in Fig. 6.5 but with more deviant shapes toward the final time horizon.

Konrad Schenk

70 CHAPTER 6. EXPERIMENTAL EVALUATION

- -~ ¢ "“v ’ (8 ‘.:"' - [8 F
¢4 ¢ 4 . ¢ 4 N
- ¢ a g - g
3 &« Q; ‘0
‘:T:hf.‘ ;f —f.‘ ;f - ﬁ‘
3 . 3 . 3 -
L It § e~ R
".1}: "i : "i
(a) Graph for v, = 0.075m (b) Graph for v, = 0.15m (c¢) Graph for v. = 0.3m

Figure 6.6: Three topological graphs obtained by the Mean-Shift algorithm with different
kernel widths. Walls and static obstacles are depicted as dark gray dots, and the graphs
are plotted with small, black nodes and gray edges. It is worth noting that the graph in (a)
almost covers every single trajectory of the dataset (please compare to Fig. 6.2) resulting
in densely sampled areas close to the exit, whereas the graph in (c) leaves large patches
uncovered and has some edges longer than 3m.

The graph with a kernel of 7, = 0.15m gives the best results for all time steps, the
graph with . = 0.3m provides the least accurate predictions from the beginning on,
and the kernel of v, = 0.075m performs in between the other two. The reason for the
comparably bad performance of the kernel width . = 0.3m can be seen in Fig. 6.6(c):
large areas with some, but not many, trajectories are not always covered by nodes
or are only represented by long edges. It leads to ambiguities if a test trajectory is
observed in these areas and it might get assigned to the wrong sequence of nodes (as
explained in Section 4.1 and Fig. 4.1) thus resulting in a wrong prediction. The small
kernel width of 7, = 0.075m provides a better result, but it covers the other extreme:
for the available number of training trajectories, the state space is sampled too densely.
A lot of transitions are only covered by individual observations resulting in almost no
generalization of the learned data.

The experiment shows that the kernel width is an important parameter and needs to
be tuned to the current application at hand. However, Fig. 6.5 also shows that the
kernel width is insensitive to small deviations from its optimum: the results are not as
good but are still on a comparable level. A rule of thumb for a suitable kernel width is
to determine the desired minimum distance between nodes in dense areas of the state
space and use it as the width for creating the graph with the Mean-Shift approach.

Konrad Schenk

6.4. PRECISION LOSS IN FREQUENCY DOMAIN 71

1 1

09 09

08 08

0.7 07

06 06

05 & 05§
= =

0.4 0.4

03 03

0.2 0.2

0.1 0.1

o o

02 0.4 06 08 1 02 0.4 06 08 1
FAR FAR

(a) PROC of graph with v, = 0.075m (b) PROC of graph with v, = 0.15m
1 1
09 —kernel = 0.3m

09 —kernel = 0.15m
08 ' —— kernel = 0.075m
0.7
0.6 3 g 0.8
05 o \
s o7 .
0.3
02 06 -
0.1
02 0.4 06 08 10 0'50 5 10 15 20
FAR tins
(c) PROC of graph with . = 0.3m (d) PAUC of all graphs

Figure 6.7: Prediction results for Mean-Shift clustered graphs with three different kernel
widths. While they perform almost similar in the first seconds, their accuracy diverges for
further time steps. The kernel of v, = 0.15m performs best on every time step.

6.4 Precision Loss in Frequency Domain

Section 5.1 described several implementations for the main prediction algorithm. The
solution using the frequency domain, as explained in Section 5.1.3, provides a feasible
and fast approach but the iterative solution, introduced in Section 5.1.4, is expected
to be even faster. The latter iteratively calculates the timesteps in succession, whereas
the former approximates all flows for all timesteps with a decreasing residual error
for each additional iteration. In applications where a large time horizon is desired but
imprecisions are acceptable to a certain extent, it may be expedient to use the approach
using the frequency domain instead of the iterative solution for saving computational
resources.

In order to ascertain the computational differences between the two approaches, their

Konrad Schenk

72 CHAPTER 6. EXPERIMENTAL EVALUATION

prediction accuracy and computational demands are compared on the Humboldt
dataset. A timestep of At = 0.1s with a total time horizon of tA = 102.4s was
used for prediction in order to utilize optimized Fast Fourier Transformations on a
vector length of [= 210 = 1024. The iterative approach inherently needs a total of
[= 1024 iterations for predicting the full time horizon and the algorithm utilizing the
frequency domain was also configured to calculate the full [= 1024 iterations in order
to obtain the best result for comparison.

The results of both algorithms are shown in Fig. 6.8. The PROC and PAUC plots
show a time horizon of ¢ = 20s instead of the full horizon of to = 102.4s since
only a few of the test trajectories were longer thus preventing a statistically sound
evaluation for ¢ > 20s. The PROC plots in Fig. 6.8(a) and 6.8(b) do not show any
significant difference but a slightly decreasing performance of the solution using the
frequency domain compared to the iterative approach is apparent in the PAUC graphs
in Fig. 6.8(c). This is believed to result from residual errors of the initial and final
Fourier transformations but also to originate from floating point errors especially on
the higher frequencies during the main iterations. Still, the overall difference in the
results of both approaches is marginal.

In order to evaluate the computational complexity of both approaches, the number of
calculations involved in each iteration was counted on one randomly chosen prediction
task. Since both algorithms use very similar processing schemes (as can be seen by
comparing Fig. 5.4 and Fig. 5.5 in Section 5.1) with the specific calculation of the
flows as their main difference, only the multiply and add operations (line 13 in Fig. 5.4
and line 10 in Fig. 5.5) were counted in this experiment. As can be seen in the
results in Figure 6.8(d), the algorithm using frequency domain needs approximately
one hundred times more calculations than the iterative approach. The former needs
1,024 for the first iteration, which relates to one element-wise multiplication of a flow
vector with a time distribution vector in frequency domain. The latter needs five
calculations since the involved transitional time distribution is merely of the length
i = 5 (which refers to the index 7 in line 10 in Fig. 5.5). Since all 1,024 elements of
the transformed transitional time distribution vectors have to be multiplied element-
wise in the frequency domain for calculating the next iteration of a flow, the iterative
approach is in advantage of processing much shorter distribution vectors, which are
rarely longer than 20 elements, thus giving the observed speed-up. The first iteration
of this specific prediction created only one new flow, whereas the following iterations
incorporated multiple flows thus increasing the computational needs until the number
of flows saturate after approximately 100 iterations.

By comparing the mean time instead of the number of computations needed for pre-
dicting the test trajectories by the frequency approach and the iterative algorithm,
a more practical assessment of their computational complexity can be achieved. A

Konrad Schenk

6.4. PRECISION LOSS IN FREQUENCY DOMAIN 73

08
0.7
06
05
0.4
03
0.2
0.1
02 0.4 06 08 10 02 0.4 06 08 10
FAR FAR
(a) PROC of the frequency approach (b) PROC of the iterative approach
1 10° : ‘ :
— Frequency Domain ——Frequency Domain
— Iterative Approach s — lterative Approach
09 2 5
® 10+
&
g 0.8 E)
= 5 10
o7 K
3
7 10°
0.6 g
05 : - : : 10° : : : : :
0 5 10 15 20 200 400 600 800 1000
tins iteration
(¢) PAUC of both implementations (d) Complexity of the calculations

Figure 6.8: Prediction results of the iterative algorithm and the approach using the fre-
quency domain. The PROC are similar in shape but the PAUC plots show a slight difference
in their performance: the solution using the frequency domain becomes gradually inferior
to the iterative solution with an increasing time horizon. Also, the number of required com-
putations is approzimately two magnitudes higher for the frequency domain than for the
iterative approach.

prediction with the iterative approach took 3.8s on average, whereas 37s are needed
when utilizing the frequency domain (evaluated on all test trajectories on an Intel(R)
Core(TM) i7 quad core processor running at 2.67GHz). At first glance, this contra-
dicts the measurements of Fig. 6.8(d), which would imply a factor of 100 in contrast
to the measured speed-up of ~ 10. However, the element-wise multiplications of the
FFT vectors heavily exploit SIMD instructions of the CPU whereas the iterative ap-
proach does not get that much of a benefit. Furthermore, the overhead of iterating
through the flows, nodes, and neighbors is also not incorporated in the measurements
of Fig. 6.8(d).

Nevertheless, a speed-up factor of approximately 10 between the frequency approach

Konrad Schenk

74 CHAPTER 6. EXPERIMENTAL EVALUATION

and the iterative algorithm limits the utility of the frequency domain. In order to
benefit from a faster but less accurate prediction, the algorithm should process less
than a tenth of the maximum number of iterations, but this would yield a very rough
estimate of the probability distribution at best. Therefore, the iterative approach is
recommended as explained in Section 5.1.4 in order to obtain the best results in a
reasonable amount of time.

6.5 Comparison to the State of the Art

Chapter 2 gave an overview of established prediction methods and pointed out three
promising algorithms which may be used for a versatile prediction framework. In order
to compare the proposed prediction framework to the state of the art, this section
individually contrasts the methods of [BENNEWITZ, 2004|, [VASQUEZ GOVEA, 2007],
and [IKEDA et al., 2013| with the prediction framework presented in Chapters 3 to 5.
The error measures used in the following subsections were obtained by using the 1,000
longest trajectories of the Beijing test dataset (see Section 6.1) on the topological
graph shown in Fig. 6.3(b). The graph was obtained by clustering the training data
with a kernel width of v = 25m in order to achieve a level of detail on the scale of
individual roads. It resulted in a graph comprised of 14,272 nodes and 57,067 edges.
The predictions were conducted with a timestep of At = 1s and a total time horizon
of tA = 1,200s to provide a tradeoff between computational requirements, temporal
resolution, and an adequate time horizon for a prediction of car movements. The
Markov-trees have a depth of five and used the Chebyshev-criterion for a margin of
e = 10% with a confidence greater than 75% (see Eq. 4.2 in Section 4.2).

6.5.1 Comparison to [BENNEWITZ, 2004]

Despite using a self created dataset, the evaluation of the prediction algorithm pre-
sented in [BENNEWITZ, 2004] employs an error measure which enables a simple com-
parison to the proposed prediction algorithm. For two different datasets (one obtained
in an office environment and another in a home environment), the likelihood of map-
ping a test trajectory to the correct motion pattern was measured for increasingly
longer observations of the test trajectories (as shown in Fig. 6.9(a)). By interpreting
the prediction task as recognizing the correct motion pattern (i.e., the future trajectory
up to a certain goal) out of the set of the n known motion pattern, the error measure
can be seen as the true positive rate (TPR) of predicting the correct final goal of a
test trajectory for different lengths of observations for a false acceptance rate (FAR)
of 1/n.

Konrad Schenk

6.5. COMPARISON TO THE STATE OF THE ART 5

office environment
home environment

1 1
el
S 0.8
E 2% FAR
= - 0.6 —65.25% FAR
g =
% 04
0.2
0 e 0 . : : : :
10 20 30 40 50 60 70 80 90 100 20 40 60 80 100
length of observed trajectory [%)] length of observed trajectory in %
(a) Results of [BENNEWITZ, 2004] (b) TPR of the proposed framework

Figure 6.9: Comparison of the proposed prediction method with the algorithm of [BEN-
NEWITZ, 2004]. In order to enable a comparison, the true positive rate (TPR) for a false
acceptance rate (FAR) of 2% for the office environment and an FAR of 6.25% for the home
environment was recorded for increasingly longer fractions of the Beijing test trajectories as
explained in Section 6.5.1. A comparison of both graphs show that the proposed prediction
framework performs considerably better than the pattern based algorithm of [BENNEWITZ,
2004].

In order to measure the true positive rate on the Beijing dataset utilizing the proposed
prediction framework, 1,200 second long sections of the test trajectories and the nodes
in the topological graph corresponding to the endpoint of the sections were taken as the
ground truth. Afterwards, increasingly longer fractions of these sections were presented
to the prediction framework and the TPR of the prediction results was calculated for
the same FAR used in [BENNEWITZ, 2004] (please see Section 6.2.5 for the details on
calculating the FAR and TPR). The EM algorithm in [BENNEWITZ, 2004] determined
a total of 49 motion patterns for the office environment and 16 patterns for the home
environment. Thus, the likelihood of matching the correct motion pattern relates to an
FAR of 1/49 = 2% for the office environment and an FAR of 1/16 = 6.25% for the home
environment. The corresponding results of the proposed prediction framework on the
Beijing test trajectories are shown in Fig. 6.9(b). A comparison with Fig. 6.9(a) shows
that it performs significantly better than the pattern based algorithm of [BENNEWITZ,
2004|, especially for short observations. However, it should be mentioned that the EM
algorithm correlates the full observation to all known patterns and the increasing
likelihood for longer trajectories is related to the additional knowledge of the motion.
In order to limit the memory requirements of the Markov-trees (see Section 4.2),
the proposed prediction framework cuts the input to the last six nodes to which the
observed trajectory corresponds. Since the last six nodes relate to fewer than ten
percent of the used sections of the test trajectories, the higher TPR for increasingly
longer observations results from the fact that the last point of the observation gets

Konrad Schenk

76 CHAPTER 6. EXPERIMENTAL EVALUATION

closer to the endpoint, thus reducing the time horizon and the complexity for the
prediction instead of adding useful knowledge.

It cannot be stressed enough that the results in Fig. 6.9 are obtained on different
datasets with different motion dynamics. Unfortunately, a reimplementation of the
prediction method of [BENNEWITZ, 2004| to evaluate it on the Beijing dataset for a
direct comparison is not useful due to the enormous computational complexity of de-
termining the number of model components and the motion pattern on all 2.05 million
training trajectories. Although the experiment in Fig. 6.9(b) was tuned to roughly cor-
relate to the experiment in [BENNEWITZ, 2004], the results of the comparison should
be assessed with caution.

6.5.2 Comparison to [VASQUEZ GOVEA, 2007]

The prediction algorithm of [VASQUEZ GOVEA, 2007], called GHMM, bears resem-
blance to the proposed prediction framework. It utilizes a similar topological graph
for sampling the state space and uses a probabilistic model to predict the following
state to a given observation with a first order Markov chain while providing an algo-
rithm to update both models on-line. As promising as the thesis in [VASQUEZ GOVEA,
2007| appears to be, it does not provide experimental results which may be used for
comparing it to other state of the art methods. On several undisclosed datasets, it
gives a mean distance error for an unknown time horizon as the only error measure
related to the prediction accuracy. A reimplementation and evaluation on the Beijing
dataset was abandoned due to the estimated time needed for training and prediction.
Since the idea of the topological graph in [VASQUEZ GOVEA, 2007] is similar to the
proposed one, the final graph can be assumed to be of a similar size as in Fig. 6.3(b)
with 14,272 nodes and 57,067 edges.

The computational requirements of the model training and the prediction was eval-
uated in the related work [VASQUEZ et al., 2009] on an Intel(R) Core(TM) 2 Duo,
and a linear relation of the computing time to the number of edges was discovered.
According to [VASQUEZ et al., 2009], learning one point of the training data requires
4us per edge. For the full Beijing training set with fifty-eight million data points and
the estimated number of fifty-seven thousand edges, the time required to train the
model would add up to 77 days (edg:;% -57,000edges - 58,000, 000points - 0.5). Even
on a faster computer (e.g., the Intel(R) Core(TM) i7 quad core processor running at
2.67GHz involved in the experiments of this thesis would need 29 days), it would still
need weeks to train the prediction model of GHMM. Four weeks of training might be
acceptable, but the evaluation of the reduced Beijing test dataset would require even
more time. Given the results of [VASQUEZ et al., 2009], the prediction of one observa-
tion would require 21us per edge. Unfortunately, the time horizon for the prediction

Konrad Schenk

6.5. COMPARISON TO THE STATE OF THE ART 7

11 T T T I T
EM (sigma = 0.5) —+—
EM (sigma = 1) ---x---
GHMM (covi) ---:--
10 GHMM (cov2) &8

HFKM (sampling step = e
HKFM (sampling-step = 25) --e--

8 e T e }
w ; E——
S
@
@
e i
<
5 - 5
e e et eeanas S, 3
5 - .
L
----- o @ a
4 1 1 ! 1 1 L 1]]
200 300 400 500 600 700 800 900 1000
Trajectories

Figure 6.10: Comparison of the GHMM prediction method of [VASQUEZ GOVEA, 2007/
with the EM algorithm of [BENNEWITZ, 2004] and the HFKM method of [HU et al., 2006]
for different sizes of the simulated training dataset, as published in [VASQUEZ et al., 2009].
As mentioned in 6.5.2, the GHMM algorithm provides a mean distance error which is ap-
proximately 40% better than the EM algorithm.

was not mentioned in either [VASQUEZ GOVEA, 2007] nor [VASQUEZ et al., 2009] but
it is believed to be 15 steps. Using this information, it is estimated to require 370 days
(ﬁ - 57,000edges - 667, 000points - %ﬂg’s -0.5) for evaluating the prediction
method on the reduced Beijing test dataset for a time horizon of 20 minutes (or 138
days on the Intel(R) Core(TM) i7). Due to these preliminary estimations, a reimple-
mentation and evaluation on the Beijing dataset is believed to be unfeasible and an
indirect comparison was chosen instead. Fortunately, the GHMM algorithm was also
published with more insightful experiments using an artificial dataset in [VASQUEZ
et al., 2009]|. As shown in Fig. 6.10, it was compared to the methods of [BENNEWITZ,
2004] (labeled EM) and [HU et al., 2006] (plotted as HFKM) by evaluating their aver-
age distance error for different sizes of the training dataset. By taking the best results
of Fig. 6.10, the mean prediction error of GHMM is approximately 60% of the error
of the EM algorithm. Since Section 6.5.1 also shows significantly better results of the
proposed prediction framework compared to the EM method of [BENNEWITZ, 2004],
it can be assumed that the proposed prediction framework performs at least equal to
the algorithm of [VASQUEZ GOVEA, 2007|. Both publications of the GHMM algorithm
also mentioned a decrease in prediction accuracy in the event of broken training trajec-

Konrad Schenk

78 CHAPTER 6. EXPERIMENTAL EVALUATION

tories. Due to this problem and the advantage that the proposed prediction framework
can not only utilize first order Markov chains but also chains of an arbitrary length,
it is believed that it would perform even better than GHMM in a direct comparison
on real-world data.

6.5.3 Comparison to [[KEDA et al., 2013]

A prediction algorithm similar to the proposed prediction framework was presented
in [IKEDA et al., 2013|. It shares both the idea of the topological graph and a probabilis-
tic transition model but it is strongly focused on the motion mechanics of pedestrians
and the correlated concept of sub-goals. Sub-goals are successive points in space that
people tend to use for navigating through an environment towards a final goal by
heading to the closest visible sub-goal until they see the next one. Since the concept
needs spatial information for calculating the lines of sight and tries to model pedestrian
behavior, the prediction method of [IKEDA et al., 2013] is highly limited in their ap-
plication and not usable on the Beijing dataset. Nevertheless, it is once again possible
to compare the proposed prediction framework to the sub-goal algorithm indirectly.
As shown in Fig. 6.11(a), its performance was compared using the lock-in accuracy
with a lock-in range of dy = 5m (see Section 6.2.2) on an undisclosed dataset with a
common constant velocity extrapolation model (CVM).

In order to find a suitable lock-in range d, for the evaluation on the Beijing dataset,
both the maximum time horizon and the speed of the cars were taken into account.
In [IKEDA et al., 2013|, a time horizon of t5 s = 32s was chosen and the average human
walking speed was v, = 1.4m/s according to [BROWNING et al., 2006, MOHLER et al.,
2007]. On the Beijing dataset, a time horizon of ta, = 1,200s was selected and the
average car speed on the test dataset was v, = 7.4m/s. Using Eq. 6.2, an equivalent
lock-in range of d, = 991m ~ 1km was used for evaluating the proposed prediction
framework on the Beijing test dataset.

Uy tap

dy = . d, (6.2)

Vs Tas
A way of understanding the equivalent lock-in range according to Eq. 6.2 is to use a
linear motion as a simple example. If the assumed velocity of a motion is off by a
certain factor, the Euclidean distance error increases linearly with the time horizon.
In order to obtain the same lock-in error on two different time horizons t, and t,
the lock-in range d, needs to be multiplied by the proportion of the time horizons
dy = f—z - d,. The same holds for scaling the velocity: the Euclidean distance error
increases linearly with the velocity. For instance, if a person moves with a velocity
of v, = Im/s and the movement is predicted to be twice as fast, a lock-in range of

Konrad Schenk

6.5. COMPARISON TO THE STATE OF THE ART 79

—

g ! g — constant vel.
= AW 3 08 — proposed method
= o) 806
=05 . ——Proposed xl
% 04 \\\ \“Q: —+<Pattern 8 04
g 2; ,,Tl\".‘-‘ﬂ -#-Velocity-based E 0.2
E 0.1 - - 0 . . - ‘
=}
s o 4 s 12 16 20 24 25 1 0 200 400 . 60_0 800 1000 1200
T [sec] timeins
(a) Results of [IKEDA et al., 2013] (b) Lock-in accuracy of the proposed framework

Figure 6.11: Comparison of the proposed prediction method with the graph based algo-
rithm of [IKEDA et al., 2013]. Despite the intricacy involved in the comparison, as explained
in Section 6.5.3, both plots show that the proposed method in (b) performs similarly to the
method of [IKEDA et al., 2013] in (a). Compared to a simple constant velocity model, it pro-
vides significantly better results towards the end of the time scale. Benevolently assuming
that the the ordinate of the plot in (a) is not scaled in percent as stated by the label of the
y-azis in the figure of [IKEDA et al., 2013], the proposed algorithm in (b) does not provide
an accuracy as good as in (a) for longer time horizons. Yet, due to the factors elucidated in
Section 6.5.3, the performance of the proposed prediction method can be considered almost
equal to the results of [IKEDA et al., 2013].

d, = 10m is left after ¢, = 10s. If a car is moving with v, = 10m/s and the movement
is predicted to be twice as fast, a lock-in range of d, = 10m is left after ¢, = 1s. In
order to get the same lock-in error, the lock-in range d, needs to be multiplied by the
velocities proportion d, = ;’—2 - d, as well. Combining both relations results in Eq. 6.2.

The comparison of the proposed prediction framework to the constant velocity model
on the Beijing test dataset with a lock-in range of 1km is shown in Fig. 6.11(b).
Taking CVM (blue plot) as a reference, it can be seen that the proposed prediction
framework performs in a similar way to the sub-goal algorithm. For example, with
CVM crossing the 50% mark (for ¢t = 12s in Fig. 6.11(a) and ¢ = 199s in Fig. 6.11(b)),
both prediction algorithms still provide an accuracy of 70%. Towards the end of the
time horizon with ¢ = 32s, the sub-goal method is able to provide a 43% accuracy
while CVM achieves 19%. The same holds for the proposed prediction framework for
t = 367s: it was able to predict 42% of the test trajectories within the lock-in range,
whereas CVM accomplished 19%. Towards the end of the time horizon in Fig. 6.11(b),
the constant velocity model is failing with less than 2% accuracy while the proposed
prediction framework is still able to predict almost 10% the test trajectories correctly.

Unfortunately, the experimental setup in [IKEDA et al., 2013| covers an area which
does not include many junctions and thus favors the constant velocity model. It
would be interesting to see the performance of the sub-goal algorithm on areas with

Konrad Schenk

80 CHAPTER 6. EXPERIMENTAL EVALUATION

3500
3000
2500
«» 2000
£
* 1500
1000
500

0 02 0.4 06 0.8 1
FAR

Figure 6.12: Results of the proposed prediction framework on the Beijing test dataset in
form of the PROC metric. As can be seen, the proposed prediction framework can provide
a true positive rate of at least 50% for a false acceptance rate of ~ 10% for every time step
up to one hour.

more branches and crossings. Nevertheless, it can at least be stated that the proposed
prediction framework performs in a similar manner to the sub-goal algorithm while
providing a much more versatile approach without involving model specific assump-
tions.

6.6 Long Term Prediction

The last section showed the difficulties involved in comparing a novel prediction frame-
work to an already existing algorithm whose originator did not concentrate on the
evaluation of the prediction performance. An extensive quantitative evaluation using
multiple error metrics on the graph of Section 6.5 is presented in this section in order to
facilitate the comparison of a new method to this prediction framework. The next state
accuracy and the error over trajectory are not considered because they do not provide
much useful insight due to both the specific test dataset at hand and the low influence
of longer observations on the prediction result as explained in Section 6.5.1. For all
experiments, the time horizon was extended to one hour to emphasize the capabilities
of the proposed prediction framework and provide a better basis for a comparison.

Konrad Schenk

6.6. LONG TERM PREDICTION 81

09r

PAUC

07r

06+

05 | 1 1 1 | | 1
0 500 1000 1500 2000 2500 3000 3500

tins

Figure 6.13: Results of the proposed prediction framework on the Beijing test dataset.
As shown in the PAUC diagram, the framework performs remarkably well, even for a time
horizon of one hour with an area under curve (AUC) of > 0.83.

6.6.1 Prediction ROC and AUC

The prediction performance on the Beijing test dataset using PROC and PAUC is
shown in Fig. 6.12 and 6.13 respectively. The proposed prediction framework clearly
provides an accurate prediction result even for large time horizons. After one hour,
the ground truth was covered by 20% of the most probable nodes for more than 60%
of the test trajectories (see Fig. 6.12). The area under the curve for t = 3,600s of 0.83
(as seen in Fig. 6.13) emphasizes the fact that the prediction is still far from being a
simple guess. It can be assumed that the prediction for an even larger time horizon
will still yield a good result. Unfortunately, the Beijing taxi trajectory dataset might
not provide a good databasis for an evaluation with a larger time horizon since one
hour is already a rather uncommon duration for a taxi ride and might not apply to
the usual motion model.

6.6.2 FEuclidean Distance Error

The more commonly used Euclidean distance error of the prediction using the node
with the highest probability is shown in Fig. 6.14 in blue. It monotonically increases
up to a mean error of 7.1km for a time horizon of one hour. For an algorithm only
providing one distinct point as a prediction, the result can be considered basically
useless. But, since the proposed prediction algorithm calculates a probability distribu-
tion instead of a single point, a more adequate distance error, the expected Euclidean
distance error [VASQUEZ GOVEA, 2007] éeyp, is also plotted in Fig. 6.14 in red in order

Konrad Schenk

82 CHAPTER 6. EXPERIMENTAL EVALUATION

—rank 1 error
—weighted error

(9]
T

error in km
NS
T

0 500 1000 1500 2000 2500 3000 3500
tins

Figure 6.14: The mean Euclidean distance error of the proposed prediction algorithm is
shown in blue, and the expected Fuclidean distance error is shown in red for a time horizon
of up to one hour. The Euclidean distance error only incorporates the most probable node,
whereas the expected Euclidean distance error is the weighted sum of the distances to the
ground truth of all nodes (see Eq. 6.3) thus accounting for the whole probability distribution
instead of the rank one result. As expected, the Fuclidean distance error increases over
time whereas the expected error shows a strange behavior by decreasing after t ~ 950s. The
implications of that result are described in further detail in the text below.

to account for the multimodal prediction results. Every node n contributes to this
error as its distance d,, to the ground truth weighted by its probability o (n) according
to Eq. 6.3.

Coxp = Z d, -o(n) (6.3)

Thus, the distance error of nodes with high probabilities have a stronger influence on
the overall error than nodes with a low probability. As shown in Fig. 6.14, the expected
error follows the first rank error up to a time horizon of ¢ ~ 250s and then diverges
from it until it reaches its maximum of 1.7km at t &~ 950s and declines to an error of
0.5km for the maximum time horizon of one hour. The plot hints that the prediction
result is mostly unimodal up to t ~ 250s since both distance errors are almost the
same. Subsequently, new modes emerge and cause the expected error to deviate and
slow its ascent since alternate paths and branches get a chance to compensate for less
accurate predictions. The most interesting behavior can be seen after ¢ = 950s with
the expected error decreasing over time. It contradicts the evaluation using PROC
and PAUC in Fig. 6.12 and 6.13 which clearly indicates that the prediction becomes

Konrad Schenk

6.6. LONG TERM PREDICTION 83

1 I
—— 1km lock-in
— 2km lock-in
08r 3km lock-in
506
s
=
[&]
204-
0.2-
0 I | | | | | T
0 500 1000 1500 2000 2500 3000 3500

tins

Figure 6.15: Lock-in error of the proposed prediction framework with different lock-in
ranges and a time horizon of up to one hour using the most probable node as the prediction
(i.e., rank one lock-in accuracy).

less accurate with an increasing time horizon. It is a good example that simple error
measures such as a weighted distance error do not always provide a good assessment of
a prediction algorithm since they do not account for effects like an indistinct probability
distribution with a lot of nodes having almost equally low probabilities, which was the
cause for that particular decrease in the expected Fuclidean distance error in Fig. 6.14.

6.6.3 Lock-In Accuracy

Using lock-in accuracy for evaluation with a lock-in distance of one, two and three
kilometers results in the plot of Fig. 6.15. Since the proposed prediction framework
provides a probability distribution as the prediction result, only the most probable
position was used as the prediction in this evaluation; thus, it resembles the rank one
lock-in accuracy. On the given graph with 14,272 nodes and an area of 930 square
kilometers, a random guess would result in accuracies of approximately 0.34%o0, 1.4%o,
and 3.1%o for the lock-in ranges of one, two and three kilometers respectively. As
shown in Fig. 6.15, the proposed prediction algorithm performs much better than
that, even for a time horizon of one hour with accuracies of 2.9%, 9.5%, and 19.4% for
the corresponding lock-in ranges. However, it should be noted that the taxi trajectories
occasionally stay in one area of Beijing and the probability distribution of the predic-
tion is often almost evenly spread out at further time horizons which helps in achieving
high accuracies for lock-in ranges bigger than two kilometers. In order to avoid these
effects, much smaller lock-in ranges were chosen in the following evaluations.

Konrad Schenk

84 CHAPTER 6. EXPERIMENTAL EVALUATION

1 _
=08
o
-
8
06
c
x
804r 1% FAR
E 2% FAR
S 02 5% FAR

10% FAR
O L | | | L L |
0 500 1000 1500 2000 2500 3000 3500

tins

Figure 6.16: Lock-in accuracy for different false acceptance rates (FAR). Instead of
giving the probability that the most probable prediction is within the lock-in range, the first
n percent of the nodes ordered by their probabilities is taken and it is assessed if any of them
are within the lock-in range. Another interpretation is to first take the most probable node
and check if it is within the lock-in range. If it is not, the second most probable node is
taken and checked for its distance to the ground truth to be lower than the lock-in range.
This procedure is continued until either n percent of the nodes have been evaluated or at
least one node is within the range. If a node is found, the prediction is treated as correct
and as false otherwise. This evaluation was done for the most probable 1%, 2%, 5%, and
10% of the nodes and a lock-in range of 500m for a time horizon of up to one hour. As
can be seen, ~ 33% of all test trajectories had at least one of the 1% most probable nodes
within 500m of the ground truth after one hour. If a false acceptance rate of 10% is taken,
even ~ 72% of the test trajectories were predicted correctly using this error measure.

6.6.4 Extended Lock-In Accuracy

Since the proposed prediction framework does not provide only one prediction but
rather a probability distribution over the whole state space, it is expedient to modify
the lock-in accuracy to not only take the most probable prediction into account but
to incorporate the full distribution. This leads to an ROC like interpretation of the
lock-in accuracy which takes a certain percentage (relating to the false acceptance
rate) of the most probable nodes and assesses the probability that at least one of them
is within the lock-in range. The results can be found in Fig. 6.16 for FARs of 1%,
2%, 5%, and 10% and a lock-in range of 500m. The plots provide a more insightful
evaluation than the first rank lock-in accuracy in Fig. 6.15 since it takes the whole
probability distribution into account instead of just the most probable result. Tt shows
that the real position of a taxi in the test dataset can be found after one hour of its
last observation with a probability of more than 33% by searching through the 143

Konrad Schenk

6.6. LONG TERM PREDICTION 85

1 —————]
——100m lock-in
o8l ——500m lock-in |
1km lock-in
2km lock-in
506 :
s
=
[&]
204- :
0.2- :
O e et s N L L T TR | L L M| L L L L
0.1 1 10 100

FAR in %

Figure 6.17: ROC plot of the proposed prediction framework using the lock-in accuracies
for a time horizon of one hour and different lock-in ranges. The ROC plot depicts the true
positive rate for different false acceptance rates, shown on a logarithmic scale in order to
enable a better evaluation in the more interesting regions of the plot.

(i.e., 1% of the 14,272 nodes of the topological graph used in the experiments) most
probable nodes of the prediction. By searching through the 1,427 most probable nodes
(which relates to an FAR of 10%), the chances can be improved to an impressive 72%.

6.6.5 Lock-In ROC

In order to determine a suitable false acceptance rate for a desired lock-in accuracy,
ROC like evaluations are shown in Fig. 6.17 and Fig. 6.18. For different lock-in ranges
between 100m and 2km, they show the lock-in accuracies for false acceptance rates
between 0.2%0 and 100% and a time horizon of one hour in Fig. 6.17 and 20 minutes
in Fig. 6.18. An FAR of 1%o is equivalent to taking the 14 most probable nodes of the
prediction result out of the total 14,272 nodes of the topological graph. For example,
the 14 most probable nodes of a one hour prediction are within two kilometers of the
ground truth with a probability of 33% according to the ROC in Fig. 6.17. Since one
hour might be an uncommon duration for a taxi ride, Fig. 6.18 provides the same
evaluation with a more suitable time horizon of 20 minutes, resulting in a probability
of more than 58% for the same FAR and lock-in range. By searching through the 143
most probable nodes (i.e., a false acceptance rate of ~ 1%), the probability rises to
almost 60% for one hour and to 83% for a horizon of 20 minutes. If the result should
be within 500m of the ground truth, the lock-in accuracy of the 14 most probable
nodes reduces to 7.3% and 18.6% for a prediction length of one hour and 20 minutes

Konrad Schenk

86 CHAPTER 6. EXPERIMENTAL EVALUATION

1 -
08+ .
§0.67 .
[£] L _
g 0.4 ——100m lock-in
——500m lock-in
02 1km lock-in
2km lock-in
O Lo L L L ooy | L L M| L L L Lo
0.1 1 10 100

FAR in %

Figure 6.18: ROC plot of the proposed prediction framework using the lock-in accuracies
for a time horizon of 20 minutes and different lock-in ranges. Since the time horizon of
one hour as in Fig. 6.17 is a rather uncommon duration for a taxi ride and thus might
not apply to the usual motion model, the same evaluation was also conducted with a more
suitable time horizon of 20 minutes.

respectively, which is still a remarkably good result given the size of the state space
and the length of the time horizon.

6.6.6 Intermediate Conclusion

The broad range of metrics used for evaluating the proposed prediction framework
gives a concordant predication: it performs extraordinarily well on the Beijing test
dataset for predictions of 20 minutes and even one hour into the future. Furthermore,
the evaluation provides several anchors for researchers to compare their prediction
algorithm to the proposed prediction framework.

In order to enhance the quantitative evaluation visually, an exemplary prediction of
a taxi cab in Beijing is shown in Fig. 6.19. The car came from north heading south
and turned east at the center crossing. The prediction started after the car drove
approximately one kilometer, and the result is shown as an accumulated probability
distribution from ¢ = 0s to t = 600s colored from turquoise (low probability) via
yellow (medium probability) to red (highest probability). As can be seen, the proposed
prediction framework was able to correctly predict the path of the car and conjecture
a straight movement across the intersection. Back roads and paths running in different
directions are also anticipated with a lower probability.

In Fig. 6.20, another prediction result is shown. Additionally, the probability distribu-
tions for distinct time horizons (Fig. 6.20(c) to Fig. 6.20(f)) are provided, too. While

Konrad Schenk

6.7. CONCLUSION 87

l___ﬂ_i_.__——b‘

\

1km

Figure 6.19: Exzemplary prediction of a single taxi drive. The observation is shown as
a solid black line and the path for the next ten minutes is plotted as a dashed line. The
probability distribution is shown in colors ranging from turquoise (low probability) to red
(high probability). Since it is not possible to show the distribution for every time step in a
single picture, the accumulated distribution is shown from t = 0 to t = 600s to depict the
most probable paths the car might take in that time period. As can be seen, the prediction
correctly assumes a left turn (east) at the crossing in the middle while still maintaining a
slightly lower probability for heading further south. The final position of the car at t = 600s
conforms with the predicted probability distribution, too. Paths along the side roads are also
considered and taken into account with a low probability.'

the proposed prediction framework performs remarkably well for a time horizon of up
to 550 seconds, it also illustrates a situation with a less accurate prediction for the
further time steps in Fig. 6.20(f). The prediction result assumes the car will stay on
the road with a high probability; however, the car has taken a right turn. Despite the
irregularity, a lesser but still significant probability is assigned to the nodes close to
the real position of the car. Thus, the prediction does not contain the ground truth as
the first rank anymore but it is still within the twenty most probable nodes, complying
with a false acceptance rate of less than 2%o.

6.7 Conclusion

This chapter addressed several different evaluation-related topics. First, in Section 6.1,
a small dataset was presented to contrast different methods of the prediction frame-
work. The openly available Beijing taxi trajectory dataset was subsequently introduced
for a comparison of the proposed prediction framework to the state of the art and the

!The maps in Fig. 6.19 and 6.20 were taken from openstreetmap.org “© OpenStreetMap contrib-
utors”

Konrad Schenk

88 CHAPTER 6. EXPERIMENTAL EVALUATION

1km \ 1km \ 1km \
N N

(a) Trajectory (b) Accumulated Pred. (c) t=150s

1km \ 1km \ 1km \
I I N

(d) t=300s (e) t=450s (f) t=600s

Figure 6.20: FEzemplary prediction of a single taxi drive. The observation is shown
as a solid black line and the path for the next ten minutes is plotted as a dashed line in
(a). The accumulated probability distribution for the time horizon of t = 0s to t = 600s
is shown in colors ranging from turquoise (low probability) to red (high probability) in (b).
The individual probability distributions for every 150 seconds are shown in (c-f) with the
ground truth marked as a black dot. As can be seen, the car appears to be in a traffic jam
in (c), causing the prediction to hurry ahead. In (d) and (e), the car is close to the major
peak of the probability distribution, whereas minor peaks account for slower and faster traffic
(orange, yellow and green specks). Different possible paths of the car (e.g., turning left, or
right at the crossing close to the start) are also accounted for with low probabilities. In (f),
the car takes a right turn but the proposed prediction framework assumes a high probability
that the car will stay on the road. However, smaller probabilities (green and turquoise) are
also correctly assigned to the vicinity of the car.'

Konrad Schenk

6.7. CONCLUSION 89

necessary steps for a post processing of the raw data was explained. Then, the most
common error measures were presented briefly in Section 6.2, followed by the introduc-
tion of new error measures, PROC and PAUC, which were suitable to the multimodal
results of the prediction.

The first experiment in Section 6.3 contrasted grid-based with the Mean-Shift based
topologies. The former did not perform worse than the latter but the Mean-Shift based
topology is preferred because it requires fewer nodes, edges, and less computational
power while performing equally well.

The follow-up experiment evaluated the influence of the Mean-Shift kernel size on the
prediction error. It showed that the kernel size is an important parameter, which needs
to be well adjusted to the prediction problem at hand. As a rule of thumb, it should
be set to the desired minimum distance of neighboring nodes. But, small deviations to
the optimal size still yield good results which eases the task of setting the Mean-Shift
kernel size.

Afterwards, the computational requirements of the proposed prediction framework
were examined by comparing the iterative solution with the prediction in frequency
domain in Section 6.4. Unfortunately, the computation in frequency domain can only
speed up the prediction in the very unlikely case when a coarse result is sufficient for
the problem at hand. The iterative solution should be favored since it not only provides
the most accurate results, it is also fast enough for most of the prediction tasks on
consumer hardware (e.g., it needs 3.8s for predicting a trajectory of the Humboldt
dataset up to 102.4s into the future on an Intel(R) Core(TM) i7).

In order to evaluate the overall performance of the proposed prediction framework,
it was compared to three state of the art prediction algorithms in Section 6.5 which
are versatile in its application in Section 2.2. Unfortunately, it was not possible to
contrast all methods on the Beijing test dataset due to either unmet assumptions or a
tremendous computational complexity, and only an indirect comparison was possible.
Thus, the results of the experiments should be assessed with prudence.

The proposed prediction method performed better than the EM algorithm of [BEN-
NEWITZ, 2004] by comparing both on the true positive rate for obtaining the correct
final position of the test trajectories for different length of observations. Since the
estimation of the number of model components and the calculation of motion pattern
do not scale well for the EM algorithm, the proposed prediction framework is also
preferred while learning the prediction model on an enormous training dataset.
Despite the promising methods of the GHMM prediction algorithm, as presented
in [VASQUEZ GOVEA, 2007|, it still needs further research on improving the com-
putational requirements on larger datasets. While providing better results than the
EM algorithm of [BENNEWITZ, 2004|, the GHMM algorithm is believed to perform
equally to the proposed prediction framework at best while being more prone to the

Konrad Schenk

90 CHAPTER 6. EXPERIMENTAL EVALUATION

imperfection of real-world datasets such as broken trajectories and much less capable
to meet computational restrictions in real-time applications.

The sub-goal prediction algorithm of [IKEDA et al., 2013] performed similarly to the
proposed prediction framework by comparing them to a constant velocity extrapola-
tion, using the lock-in accuracy. Both prediction algorithms do utilize similar proba-
bilistic methods but the former needs additional spatial information and its topological
graph is tuned to a pedestrian motion model thus hindering other applications whereas
the proposed prediction framework is in advantage by employing a more versatile topo-
logical model.

In order to enable a more convenient comparison to new prediction algorithms, a
broader evaluation on several error measures is given in Section 6.6. The proposed
prediction framework was evaluated on the Beijing test dataset using PROC, PAUC,
Euclidean distance error, lock-in accuracy, and several variants of the lock-in accuracy
which were modified to accommodate to the multimodal probability distributions the
prediction gives as a result. All experiments showed that the proposed prediction
framework performs remarkably well, even for a time horizon of 20 minutes and up to
one hour. The visualization of selected test trajectories in Section 6.6.6 showed that
the framework is also able to provide useful predictions, especially in cases which are
considered wrong if only the most probable node would be taken into account.

In summary, the proposed prediction framework performs better than the addressed
state of the art methods while providing a much more versatile and powerful approach
which can be adapted to every prediction task on a continuous state space. It is
advisable to utilize the Mean-Shift based topological graph (see Section 3.3.4) in con-
junction with the iterative approach (as explained in Section 5.1.4) in order to obtain
the best prediction results.

Konrad Schenk

91

Chapter 7

Conclusion and Future Work

An innovative prediction framework consisting of three elements was presented in this
thesis. The novel flow based prediction algorithm processes an observed trajectory into
a comprehensive probability distribution for the whole state space and an extensive
time horizon by utilizing a probabilistic transition model and an efficient topological
graph. Not only does the extent of the result surpass state of the art prediction
methods, which usually provide just a few distinct points or trajectories as a result,
but also the quality of the result challenges current prediction algorithms.

The next section will summarize the results and contributions of this thesis, whereas
Section 7.2 introduces new ideas which may help to further improve the prediction
performance and the computational requirements of the proposed prediction frame-
work.

7.1 Summary

This thesis dealt with several aspects of a long term motion prediction framework.
Chapter 1 introduced the topic and named some exemplary applications of a mo-
tion prediction. Chapter 2 selected relevant state of the art methods and motivated
the architecture of the proposed prediction framework. The main components of the
framework were presented in Chapter 3 to 5. Finally, the resulting algorithm was
evaluated in Chapter 6. The next sections will address these aspects respectively in
more detail followed by a juxtaposition contrasting the advantages and disadvantages
of the proposed prediction framework.

7.1.1 Applications

Some possible applications of the proposed prediction framework were introduced in
Chapter 1. The practical aspects of implementing them are now discussed in the ex-

Konrad Schenk

92 CHAPTER 7. CONCLUSION AND FUTURE WORK

ample of a mobile wireless network, autonomous cars, service robots, and a marketing
predictor.

Mobile Networks

A main goal of trajectory prediction in mobile wireless networks is to anticipate the
next base station a user is going to connect to [WANALERTLAK et al., 2011|. Since
the topology of the network is usually given by the cell towers, it can directly get
transferred into the topological model without the need of a clustering algorithm.
For every cell tower, a node is placed at the respective position, and the Delaunay
triangulation can be utilized to connect the nodes with edges. The service provider
of a mobile network perceives the movements of a user as the signal strength towards
certain cell towers. Since a trajectory of an observation must be mapped onto the
nodes of the topological graph (see Section 4.1), it is not necessary to triangulate the
user in the Euclidean space. Instead, the sequence of the last cell towers the user was
connected to (i.e., the tower with the highest signal strength) can be directly used as
an observation. After gathering enough training data, the transitional probabilities
and the transitional time distributions between the nodes are calculated. It is usually
only important to predict the next cell tower of a user instead of a complete probability
distribution. Thus, the flow based calculations are not necessary and a simple one step
prediction (i.e., one step of the approximative solution in Section 5.1.2) needs to be
performed using the transitional probabilities given the current observation.

In summary, the prediction of the next cell tower of a mobile user in a wireless network
does not pose a problem to the proposed prediction network. Due to the specific re-
strictions of the application, several simplifications (e.g., the omission of the clustering
step, or the focus on only the next node) of the involved methods are possible and
help in improving and optimizing the workflow.

Autonomous Cars

It is a crucial ability for autonomous cars to predict trajectories of other vehicles and
pedestrians in order to avoid collisions and obey the traffic rules [HERMES et al., 2009).
The proposed prediction method can be used to solve this task, but it poses some
difficulties. First of all, the state space of an autonomous car is usually given in the
form of an egocentric perspective. Using a global coordinate system for the topological
model is not feasible since it can, in the worst case, comprise the whole world which
in turn would cause enormous memory requirements and an unrealistic number of
observations is needed to learn the topological and probabilistic model. By using a
local coordinate system, observations of the surroundings are transformed according
to the egomotion of the car which induces a high variety in the state space. If, for the

Konrad Schenk

7.1. SUMMARY 93

sake of simplicity, the autonomous car can move with two speeds in one direction, an
object showing up at a certain distance to the front left and moving to the right can
follow two trajectories (one for each speed of the car) in the local coordinate system.
Since the position, speed and movement direction of the autonomous car can change
continuously, an observation can have a multitude of trajectories in the topological
graph. Creating a topological model on such a local coordinate system is possible,
but the high diversity of observations will most likely cause very imprecise predictions
because a lot of unrelated situations are superimposed onto one point in the state space
and the same situation may be observed in different regions of the local coordinate
system.

One method of increasing the prediction accuracy is to not only use the Euclidean
coordinates as the state space but also to include the speed and steering angle of the
car as additional dimensions. By using the previous example, an object showing up at
the same relative point and following the same global trajectory will always cause the
same trajectory for the same speed and steering angle in the topological graph. Thus,
it can be predicted with a much higher accuracy. The only disadvantage of such an
approach is the need of many more observations to train the topological graph and
the probabilistic model due to the higher dimension of the state space (also known as
“the curse of dimensionality” [BELLMAN and CORPORATION, 1957]). Using knowledge
about the physical correlations between the Euclidean trajectories of objects and the
current speed and steering angle of a car, it is possible to include an observation into
the topological and probabilistic models not only for the car’s current speed and angle,
but for every possible combination of both. Such a procedure would greatly improve
prediction accuracy and reduce the number of observations needed to train the models.
Furthermore, it would also give a good example of how the proposed prediction method
can be improved by model specific knowledge.

It is expected that the proposed prediction framework can be successfully applied to
an autonomous car for predicting vehicles and pedestrians in traffic. But, since the
trajectories are highly confined by the environment and follow very distinct models
(due to both physical and regulatory laws), a prediction algorithm tailored to the
specific task may provide equal or even better results without the need to learn a
topological and probabilistic model in advance.

Service Robots

The task of predicting movements on a mobile service robot may seem very similar
to the task of predicting trajectories on an autonomous car; however, it yields some
major differences.

First of all, the state space of a robot in a home environment, for example, is less

Konrad Schenk

94 CHAPTER 7. CONCLUSION AND FUTURE WORK

confined. The robot is not restricted to a road network, is allowed to move around
freely without traffic restrictions, and usually has a higher degree of freedom in its
motions [SIEGWART et al., 2011]. Therefore, the prediction framework needs to cover
several situations and, thus, more observations are required to create an adequate topo-
logical and probabilistic model. If the environment the robot operates in is restricted
in size, the use of a global Euclidean coordinate system is advised. The robot will miss
many observations since it may only be able to observe its immediate surroundings.
But, the application of a two dimensional global coordinate system will most likely
need less observations to create an appropriate topological and probabilistic model
compared to a much more complicated, high dimensional, and local system, similar to
the recommendations for the autonomous car.

Second, the environment a mobile service robot operates in is usually not very extensive
and is almost always located inside of a building. Thus, the topological graph can cover
the entire state space with few memory requirements, which in turn encourages the
use of a global Euclidean coordinate system.

Third, the robot itself is a point of interest in most environments, causing pedestrians
to observe, approach, avoid, or interact with it [SABANOVIC et al., 2006, MULLER
et al., 2008|. The robot introduces a high degree of variety since it influences the
trajectories of the observations depending on its own position. Contradictory to the
previous recommendation to use a global coordinate system, this behavior can best be
countered by using a local coordinate system since the robot (being the attractor or
deflector) will always be located in the origin of the topological model.

Using the proposed prediction framework with a global Euclidean coordinate system is
expected to perform well on a mobile service robot. But, due to the robot’s interactions
with its surroundings and the limited perception range, prediction algorithms using
social force models [LUBER et al., 2010| or similar approaches are believed to provide
better prediction results, if a long training phase to collect observations needs to be
avoided.

Marketing Predictor

Contrary to the previous two applications, the main task of a prediction algorithm in
marketing is to enable a gentle “collision” with a customer. Since the use of machine
learning, cognitive robotics, and Al is relatively new in the fields of experimental
marketing, ample research still needs to be done to identify the most beneficial use
cases for prediction algorithms.

In the naive example of a spatial prediction of customers in a mall in order to intercept
them and offer services, the implementation of the proposed prediction framework is
straightforward: Using a global coordinate system, the topological graph is advised

Konrad Schenk

7.1. SUMMARY 95

to be created by a clustering algorithm, preferably the Mean-Shift algorithm, as ex-
plained in Section 3.3. If the environment is highly structured (e.g., by shelves), a
manual creation of the topological graph may also be feasible. After learning the
probabilistic model (as addressed in Chapter 4), utilizing Markov-trees to store the
transitional probabilities and Kernel Density Estimations to represent the transitional
time distributions, the prediction framework using the iterative solution as explained
in Section 5.1.4 can be applied to predict a customer’s trajectory.

By applying the prediction algorithm on more abstract metrics (like purchase inten-
tions [DEES et al., 2008|, impulsiveness, and health consciousness |[BEARDEN and
NETEMEYER, 1999|) describing a customer on a non-spatial scale, the future shopping
behavior and a suitable time to offer a product may be predicted. With the current
level of research in these fields, it is not possible to provide tangible advice on how to
apply the prediction framework because the concomitants are not yet known. However,
it can be assumed that the generic approach for a spatial state space should provide a
decent starting point.

Conclusion

The proposed prediction framework offers the potential of a beneficial generic solution
to a variety of prediction problems. As long as the state space and the involved motion
models do not change significantly, the framework provides useful and comprehensive
prediction results. But, if the state space does not remain static (e.g., due to the use
of a local coordinate system) or if the motion models do change (like in the example
of the mobile service robot), the prediction framework may not be able to give a very
precise prediction result. By incorporating the respective variations into the state
space, more accurate results can be achieved but in exchange for an increased need of
observations.

7.1.2 Motivation

After introducing the concept and necessity of a long term motion prediction for several
application scenarios in Chapter 1, the current state of the art was presented and
analyzed in Chapter 2. One peculiarity was that no method in the related literature
was able to provide a probability distribution over the whole spatio-temporal state
space. Predicting the motion of an object with state of the art algorithms usually
results in a number of most likely future trajectories or a few distinct points. Such
simplistic results prevent the application of the prediction algorithm for tasks which
need to determine the probability to observe an object in a certain region, or even
at a single specific point in the spatio-temporal space. Furthermore, almost all state
of the art algorithms were tailored to a specific problem statement and are therefore

Konrad Schenk

96 CHAPTER 7. CONCLUSION AND FUTURE WORK

only applicable to a very limited set of tasks. However, three algorithms [BENNEWITZ,
2004, VASQUEZ GOVEA, 2007,IKEDA et al., 2013] were identified as being versatile and
thus selected as a reference to this thesis.

The proposed prediction algorithm was also intended to be used on a specific sub-
ject, but the drawbacks of the state of the art methods inspired the creation of a
most versatile prediction framework, assessing the entire state space by providing a
comprehensive probability distribution as a result.

7.1.3 Framework

The evaluation of the state of the art in long term motion prediction unveiled a com-
mon architecture: First, a topological representation was created in a learning phase
in order to enable an easy processing of trajectories or observations. Afterwards, a
probabilistic model was learned which is encoding similarities of observed movements
or state transitions. Finally, both parts were processed by an algorithm in order to
predict an observation. This architecture was also adopted for the proposed prediction
framework and Chapter 3 to 5 focused on the respective components.

Topological Representation

Chapter 3 dealt with the topological representation of the state space and introduced
the topological graph as a well suited concept. Whereas grid-based graphs, as presented
in Section 3.2, are simple and straightforward, a data driven topology provides both
a better sampling of the state space and has less computational requirements. The
data driven graph can be created by first determining the nodes based on clustering
observations and then connecting them by edges. After assessing different clustering
methods for the creation of the nodes in Section 3.3, the Mean-Shift algorithm is rec-
ommended because it requires the user to set only one easily ascertainable parameter,
and it is able to sample the state space according to the density of the training data.
One disadvantage of the Mean-Shift algorithm is its lack of an on-line updating mech-
anism. If the graph has to be learned iteratively, the Growing Neural Gas is a better
suited clustering algorithm because it can be easily updated and inherently connects
the nodes with edges. Unfortunately, the Growing Neural GGas needs six parameters
to be tuned to the characteristics of the state space, which makes it more difficult to
obtain a good clustering result.

After determining the nodes, preferably with the Mean-Shift algorithm, they can be
connected with edges using the Delaunay triangulation, as described in Section 3.4.
[t ensures that any continuous trajectory in the state space can be represented as
a sequence of connected nodes without any interruptions due to a missing edge be-

Konrad Schenk

7.1. SUMMARY 97

tween two successive nodes. This property is of utmost importance for the proposed
prediction algorithm to function properly.

If memory requirements are no issue, the use of a regular grid as the topology is also
a valid option. As shown in Section 6.3, it does not perform much differently than a
graph learned by a clustering algorithm. Using a grid avoids the time consuming part of
learning a topology based on observations in exchange for a higher memory requirement
and a slightly increased computational complexity in the application phase.

Probabilistic Model

Once the topological graph is created, it has to be enriched with a probabilistic model,
as presented in Chapter 4. The probabilistic model is comprised of two elements: the
transitional probabilities for each node and the transitional time distributions for every
edge. As explained in Section 4.1, the transitional probabilities of a node provide the
likelihood of an observation to transit each connected neighbor. In a learning phase,
they are estimated by the relative frequencies of the training trajectories performing
the respective transition.

For every edge, a transitional time distribution specifies how much time is needed for
a transition between the connected nodes, as described in Section 4.3. It is learned
by taking the related observations of a training dataset and sampling the time they
need for that transition. Those samples are then used to estimate a time distribution,
either in a parametric form, like GMM, or preferably as a non-parametric KDE.

In order to account for the previous path of an observation, the transitional proba-
bilities and time distributions are not restricted to a first-order Markov model (i.e.,
the probabilities and distributions are only dependent on the current state). A novel
concept, introduced as the Markov-tree in Section 4.2, enables an easy method to ef-
ficiently learn, manage, and process transitional probabilities and time distributions
with Markov chains of arbitrary lengths. The only restriction on the length of the
previous path taken into account during the computations is imposed by the amount
of available training data. For this purpose, an assessment for the quality of a prob-
ability estimation using Chebyshev’s inequality is presented and recommended to be
used for limiting the descend into the Markov-tree to an adequate depth.

Prediction Framework

As presented in Chapter 5, the main prediction method utilized the topological graph
and the probabilistic model in order to calculate a comprehensive probability distri-
bution across the whole state space and for every time step. The main idea behind
the prediction method was adopted from common path planning algorithms: an initial

Konrad Schenk

98 CHAPTER 7. CONCLUSION AND FUTURE WORK

belief, i.e., the current observation, is spread across the entire graph like a wavefront
with respect to its topology.

The concept of a probabilistic flow was introduced in Section 5.1 in order to implement
such a procedure. Starting from the node of the last known observation with the obser-
vational probability of one, it diverges at nodes and is delayed at edges while it spreads
throughout the entire graph according to the transitional probabilities and transitional
time distributions respectively. In Section 5.1.1, the formal definition of the prediction
algorithm was given using a continuous timescale. Then, an approximative imple-
mentation was presented in Section 5.1.2 in order to transfer it to a computationally
less challenging discrete time scale and to provide a more practical algorithm. How-
ever, the approximative implementation involves multiple convolutions, making it very
time consuming. By transferring the computation into the frequency domain, a faster
algorithm can be implemented, as explained in Section 5.1.3. The computational com-
plexity can be reduced even further in most of the use cases if the approach is changed
from approximating and refining the probabilistic flows iteratively to calculating them
for every time step successively, as shown in Section 5.1.4.

If the underlying motion model is not static and tends to change over time, an on-line
updating mechanism is required to keep the topological and the probabilistic models
up to date. Section 5.2 discussed the model update and concluded that the topological
model should stay static as long as possible since nearly any change will also severely
affect every transitional probability and time distribution. Randomly seeded nodes
can be added prior to creating the edges and learning the probabilistic models. States
and regions of the state space that have yet to be observed and accounted for will be
taken into consideration and extensive recalculations will be avoided. Updating the
probabilistic models is less critical due to the benefits of the Markov-tree. It enables
an easy and effective refining of the transitional probabilities and time distributions
during the application phase of the proposed prediction framework.

7.1.4 Evaluation

The proposed prediction framework was evaluated in Chapter 6. Section 6.1 introduced
the used datasets and the most common error measures were explained in Section 6.2.
Since none of these errors were able to fully address the rich information the proposed
prediction framework provides in form of a comprehensive probability distribution,
new error measures, the PROC and PAUC, were introduced in Section 6.2.5.

The evaluation of different topological graphs in Section 6.3 unveiled that the Mean-
Shift approach provided results comparable to more simple grid-based topologies while
enabling a much faster and computationally less expensive prediction. Furthermore,
it was shown that the kernel size had a significant influence on the prediction accuracy

Konrad Schenk

7.1. SUMMARY 99

and must be chosen carefully. While being tolerant of small deviations, it is recom-
mended to tune the kernel size to the minimum distance two neighboring nodes should
have.

Section 6.4 compared the prediction algorithm using the frequency domain, as intro-
duced in Section 5.1.3, to the iterative approach, as presented in Section 5.1.4. Both
approaches provided similar results but the iterative algorithm was almost one order of
magnitude faster. The algorithm using the frequency domain approximates the whole
probability distribution for the full time horizon step by step, whereas the iterative
algorithm calculates the prediction result successively one time step at a time. Hence,
the frequency domain is only advantageous if a rough estimate of the prediction is
needed for a point in time in the distant future. In nearly every other use case, the
iterative approach is to be preferred.

The comparison of the proposed prediction framework to state of the art algo-
rithms [BENNEWITZ, 2004, VASQUEZ GOVEA, 2007, IKEDA et al., 2013] in Section 6.5
proved to be difficult since a direct comparison was not possible. They were evaluated
on undisclosed datasets and a reevaluation on adequately extensive datasets would
not have been feasible. However, indirect comparisons have shown that the proposed
prediction framework was at least on par with or was even superior to the state of
the art algorithms while providing a more comprehensive prediction result and a more
versatile approach.

In order to facilitate the comparison of a new method to this prediction framework,
a broad evaluation on several error measures was given in Section 6.6. For this task,
an openly available dataset, containing recordings of taxi movements in Beijing [ZHU
et al., 2013, ZHANG et al., 2011, ZHANG, 2009|, was chosen for the evaluation. This
dataset can also be substituted by a variety of other datasets [ZHENG et al., 2008, P1-
ORKOWSKI et al., 2009,ZHENG et al., 2009,ZHENG et al., 2010, YUAN et al., 2010, YUAN
et al., 2011,ZHENG, 2011,ZHENG, 2012, OPENSTREETMAP and CONTRIBUTORS, 2013]
without difficulty because it represents a common type of motion on an enormous, spa-
tially almost unrestricted state space. As shown in Section 6.6, the proposed prediction
framework was able to predict a taxi movement with a considerable accuracy twenty
minutes into the future on the scale of a huge city. Even a prediction of one hour into
the future still yields decent results if a concession to spatial accuracy is accepted.

7.1.5 Considerations

In order to decide if the proposed prediction framework is a worthwhile solution to a
specific prediction problem, it is not only important to be aware of the implementa-
tional details as summarized in the previous sections, but it is also necessary to know
of its advantages and disadvantages.

Konrad Schenk

100 CHAPTER 7. CONCLUSION AND FUTURE WORK

Advantages

e Versatile:

The most important quality of the proposed prediction framework is its highly
versatile architecture. Because both the topological and the probabilistic model
are created by using observations, no model specific knowledge needs to be im-
plemented. This property enables a broad range of applications since the motion
model of most prediction problems is often either unknown or it is just a coarse
approximation. But, by creating a probabilistic model based on observations, all
factors influencing a specific motion are intrinsically accounted for.

e Adaptable:

Despite the fact that model specific knowledge does not have to be implemented,
additional information about the motion mechanics or the topology can be used
to enhance the prediction framework and to reduce the need of observations.
One option would be to extend a single observation across the state space using
knowledge about the relation of the different dimensions (similar to the transfor-
mation of a single trajectory onto different velocities and steering angles in the
example of the autonomous car in Section 7.1.1). Another way of including prob-
lem specific knowledge would be to directly limit, modify, or set the transitional
time distributions, transitional probabilities, or the topological graph according
to the restrictions and dynamics of the given system.

e Few parameters:

The adaptability of the versatile approach is not the only reason why the pro-
posed prediction framework enables an easy implementation for a given problem.
The fact that only one sensitive parameter, the kernel width as mentioned in Sec-
tion 3.3.4, needs to be tuned to the system at hand (besides the more generic
and less critical implementational parameters such as the time step width, or
the final horizon for the prediction) enables sufficient prediction results early on
without the need to perform several reruns to find an optimal set of values. But,
even that parameter can be avoided if the clustering algorithm is omitted due to
a known topology (similar to the example of a mobile network in Section 7.1.1)
or if a regular grid is chosen.

e On-line updating:
As mentioned in Section 5.2, the prediction framework is, within some restric-
tions, able to incorporate new observations into the topological and probabilistic
models even after the initialization phase. This ability can be used to either
start using the prediction algorithm early on and improve it during its applica-
tion, or to account for changes in the motion mechanics of the system (e.g., an

Konrad Schenk

7.1. SUMMARY 101

obstruction in the topology like a road closure).

Disadvantages

e Global topology:

The main disadvantage of the proposed prediction framework is the need of a
global (i.e., mostly static and not frequently changing) topology. It is also possi-
ble to use a local coordinate system but it should be avoided since it introduces
another set of problems, as discussed in Section 7.1.1. A global topology compli-
cates the application of the proposed prediction framework on moving systems,
such as robots or cars, since a transformation of the systems observations into a
global coordinate system according to its egomotion becomes necessary.

e Requires extensive data:

Processing a global topology on a computer restricts the application of the pre-
diction algorithm to problems in a bounded state space. Within this state space,
all the major situations must be covered by observations in order to obtain good
prediction results. For example, a car’s movements can be predicted on a scale
of a city with manageable effort (as demonstrated in Section 6.6), but to predict
its trajectory on the scale of the entire world requires an enormous amount of
observational data and processing power, which makes it practically unfeasible.
Nevertheless, a method to reduce the needed observational data and processing
power for such an application will be presented later in Section 7.2.2.

e Slow clustering:

If a cluster-based topology is chosen instead of a regular grid, the creation of
the topological model may take a lot of time if a huge state space needs to
be covered. For a small area, the Mean-Shift algorithm is able to process the
observations relatively quickly (e.g., on the Humboldt dataset, the clustering
takes only some seconds on consumer hardware). However, a larger state space
needs more observations in order to be adequately represented, which in turn
results in a significantly longer runtime of the Mean-Shift clustering algorithm
(e.g., it takes weeks on consumer hardware to create the topological graph for the
Beijing dataset). The computational needs can be reduced by using a clustering
algorithm with a low complexity (e.g., the K-Means algorithm has a complexity
of O (n) compared to the Mean-Shift algorithm with O (n?)) but it introduces
another set of disadvantages, as discussed in Section 3.3.

Konrad Schenk

102 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.2 Modifications

Despite the remarkably accurate prediction results and the real-time capabilities of the
proposed prediction framework, there is still some room for improvement and mod-
ifications. Its performance can be improved quantitatively by optimizing the com-
putationally intensive modules and by lowering their requirements. Furthermore, the
prediction capabilities can be enhanced qualitatively by applying a divide and conquer
approach on the propagation of the probabilistic lows. Those two aspects of future
research will be presented in more detail in the next two sections.

7.2.1 Performance improvements

Reducing the computational requirements helps in several aspects. This speeds up the
prediction process, and it also enables the use of a finer temporal resolution, a larger
time horizon, or the processing of a greater state space. The results in Section 6.4
show that the framework is able to predict small to mid-sized state spaces at least one
order of magnitude faster than real-time. The average prediction on the Humboldt
dataset with a graph consisting of 1,220 nodes and 2,041 edges took 3.8s. A time
horizon of 102.4 s and a temporal resolution of 0.1s was chosen and the prediction was
performed on an Intel(R) Core(TM) i7 quad core processor running at 2.67 GHz while
using less than 50 MByte of RAM (including the overhead of a GUI and visualization).
This performance does not suggest the need of an improvement but unfortunately, the
Beijing scenario showed that the computational requirements did not scale linear with
the number of edges or the length of the time horizon. On the graph with 14,272 nodes
and 57,067 edges, a prediction 1,200s into the future with a temporal resolution of 1s
took 750 s and allocated about 1.1 GByte of RAM. The prediction is also faster than
real-time but the necessity of an optimized implementation becomes more obvious.
Some experiments in Section 6.6 even used a time horizon of 3,600 s and a prediction
took 3,160 s on average while allocating almost 10 GByte of RAM. Such an application
is nearly unfeasible even if it is slightly faster than real-time. In order to process
such a huge state space and time horizon, it would be advantageous to lower both the
computational requirements and the memory usage.

The most obvious option is to parallelize the flow update since the flows are indepen-
dent from each other for every individual time step. If it is implemented on a GPU,
each flow in Line 10 of the pseudocode in Fig. 5.5 can be computed by one process-
ing unit, which would result in a tremendous speed-up (depending on the number of
processing units of the GPU) compared to the calculation on a single CPU core. Un-
fortunately, the transfer of the algorithm onto a GPU is difficult since a lot of attention
needs to be paid to memory management. The amount of RAM on a graphics card is

Konrad Schenk

7.2. MODIFICATIONS 103

Figure 7.1: Redundancy in Markov-trees of neighboring nodes. The nodes of the topolog-
ical graph in the upper part of the figure are shown as red circles with black edges between
them, and observed trajectories are depicted as blue lines with an arrow representing their
direction. The Markov-trees of nodes C, D, and E are shown in the lower half after en-
riching them with the five observations. The vertices of the Markov-trees are depicted as
green circles and are connected by brown lines. They are labeled with their index as a black
capital letter and their individual counter f, for the number of observed transitions to the
neighboring nodes in white. The vertex for node C is highlighted red to show the similarities
in the trees. The Markov-trees of node D and E are similar to the tree of node C, extended
by their own vertex on top. As indicated by the dotted black arrows in the lower half of
the figure, the counter of the Markov-tree of node C can be deduced from the counter of the
neighboring Markov-trees.

usually smaller than the RAM of the host computer and it can be understood that the
complete information of the flows, time distributions, and transitional probabilities
does not fit into it. Thus, it is necessary to determine and reorganize the informa-
tion needed for the calculations of the current time step on the CPU before finally
computing the iteration on the GPU. This necessity and the involved copy operations
between the host and device RAM adds overhead to the algorithm and might impede
the benefits of the parallelization of Line 10 of the pseudocode in Fig. 5.5. However,
utilizing multiple CPU cores for the task is much easier because all processing units
can operate on the host RAM and do not require any additional memory management
or copying.

Konrad Schenk

104 CHAPTER 7. CONCLUSION AND FUTURE WORK

One method of lowering the memory requirements is to reduce the redundancy in the
current implementation of the probabilistic model, especially the Markov-trees. They
share a lot of information, as depicted in Fig. 7.1. Neighboring Markov-trees do not
only have a similar structure but also the information stored in one tree is deducible
from its adjacent Markov-trees. In the example of node D in Fig. 7.1, the Markov-tree
shares the same structure of the tree of node C, extended by a vertex for node D on
top of it. Furthermore, the counter fp for the vertices of the tree of node C can be
calculated by adding together all counter fr and fs of their respective vertices in the
Markov-tree of node D. This is due to the fact that all observations contributing to
the counter fp are going from node C to node D and then leaving node D towards its
neighbors. Similar to Kirchhoff’s current law in electrical engineering, the number of
observations entering node D is equal to the number of observations leaving it. Thus,
the sum of all counter of a vertex in the Markov-tree of node D (outgoing from node D)
equals the counter fp of the respective vertex in the Markov-tree of node C (incoming
to node D). However, this only holds true for observations passing the nodes. If an
observation vanishes at a node or a new one starts, this rule does not apply because
the sums of ingoing and outgoing observations are no longer equal. Nevertheless, the
vast amount of redundancy is a good indicator that the solution of using one individual
Markov-tree for each node is not ideal. It may be possible to save a lot of memory and
reduce the redundancy by using one big structure, similar to a global Markov-tree, to
store the transitional counter and time distributions.

7.2.2 Hierarchical Graph

While parallelization or the application of a global Markov-tree would reduce the
computational requirements, the concept of hierarchical graphs might be useful for
improving the qualitative prediction capabilities. The utilization of just one big graph
to predict taxi movements in a huge city accentuated a practical inadequacy in the
experiments of Section 6.6: the probabilistic model did not contain a comprehensive
description of the motion mechanics despite the large training dataset. Due to the
combinatorial complexity, the depth of the Markov-trees had to be restricted to five
levels and the use of Chebyshev’s inequality often inhibited the descent into the trees
even further. Thus, the cars previous path was only considered for the last five nodes
at most. With a common distance of 100 m between two neighboring nodes, only the
last ~400m of the observed trajectory have an influence on the prediction result.

This contradicts the common intention of using a taxi cab: it is not used to drive
straight over a crossing, to take a turn, or to go around the corner. A taxi cab is
mostly taken to go from a starting point to a goal, usually several kilometers away. Yet
in order to incorporate the information of the starting point and thus the main motive

Konrad Schenk

7.2. MODIFICATIONS 105

First Level Second Level
C

Figure 7.2: The first two layers of an exemplary hierarchical graph. The nodes of the
first layer are depicted as red, blue, and green dots on the left, connected by black edges.
The corresponding child nodes in the second level are shown in their respective color. The
topological border between the three nodes of the first layer are shown as gray dotted lines.
The number of layers is not restricted but just the first two are shown in order to keep
the figure clear and simple. The prediction starts in the first layer by calculating all flows.
The resulting flows are then transferred onto the next layer and refined. This procedure is
repeated until the lowest layer has been processed. Transferring a flow one layer down is
considered to be the most challenging aspect of the hierarchical graph. Due to the topological
change of a transfer, a flow in the first level coming from A to B and continuing to C has
multiple representations in the second level: it can either come from Al or A2, continue
with an arbitrary sequence of B1, B2, and B3, and finally head towards C1, or C2. How the
upper level flow is distributed to the multitude of lower level possibilities needs to be dealt
with in future research.

~

4

G
C2
Yef /

of a taxi drive, the complete observed trajectory instead of just the last ~400 m must
be included for calculating a better prediction result. A topological graph covering
the whole state space with more widespread and less nodes will take a longer past
of the trajectory into account but it also reduces the spatial resolution drastically.
Additionally, it is still not guaranteed that the full observation can be represented
by a sequence of five or less nodes without condoning a further reduction in spatial
resolution.

This dilemma might be solvable by using a hierarchical graph structure, as depicted
in Fig. 7.2. Its uppermost level contains a very coarse graph with only a few nodes
covering the whole state space. The next subordinate level holds a graph which samples
the state space with more nodes (e.g., ten times the number). With each subsequent
level, the state space is represented by more nodes until the desired spatial resolution
is attained by the lowest graph.

In order to calculate a prediction, the proposed prediction framework is first applied

Konrad Schenk

106 CHAPTER 7. CONCLUSION AND FUTURE WORK

on the graph of the uppermost level to obtain a probability distribution on a very low
resolution. In the example of taxi cab movements across a city, this would provide
information about the general destination of the car and how it will get there globally
(e.g., what suburbs it will most likely travel through). Each node in the current graph
corresponds to a set of child nodes in the next level as determined by their Voronoi
regions. The edges in the lower graph which are shared by nodes with different parent
nodes are defined as border edges since they represent the lower level link of the
respective edge in the upper level. The prediction result of the upper level can be
refined by transferring all flows of the upper level to the child graph according to the
respective border edges they travel along. Those transferred flows can then be used
to predict the probability distribution on the lower graph. This procedure is repeated
until the lowest level is processed and the high resolution result is calculated.

Two problems arise with such a procedure. First, the observed trajectory cannot just
be mapped onto the uppermost graph in order to predict a movement because it might
only cover one node and valuable information (e.g., the direction of movement) gets
lost. It should be mapped onto the lowest graph of the hierarchy and propagated
upwards while keeping the information about the initial inflow it creates on every
level, which might add its own set of problems.

Second, the transfer of a probabilistic flow one level down is significant. A flow on the
upper level, coming from node A, currently at node B and going to its neighboring
node C essentially describes the transition from the border to the Voronoi region of
node A, across the domain of the current node B, to the boundary of the region of
node C. Thus, the flow should be presented as an inflow on the lower level at the B-C
border edges towards the sub-graph of C. Unfortunately, the topology of the lower level
is different from the upper level and the condition of the flow (which is [C|B, A4, ...] on
the upper level) has multiple representations on the lower level since various sequences
of nodes to get from the A-B border to the B-C border may exist in the sub graph of B
(in the example of Fig. 7.2, [C2|B3, B2, B1, Al], [C1|B3, B1, Al], or [C1|B3, B1, A2]
are just a few of many options). Furthermore, it is very likely that several B-C border
edges are in existence (two in the example of Fig. 7.2) which makes it necessary to
distribute the flow among them.

Solving these two issues is considered to be the greatest obstacle in developing an
elaborate concept of the hierarchical graph. However, it can be assumed that the
benefit of such an enhancement is not only a better prediction result. It is also likely
to provide an improvement of the computational requirements because the flows do
not propagate through the graph in its full extend. Due to the divide and conquer
approach, they are processed in small patches of the graph, essentially reducing the
total number of flows and limiting the combinatorial complexity of their condition.

Konrad Schenk

BIBLIOGRAPHY 107

Bibliography

[ASAHARA et al., 2011] ASAHARA, AKINORI, K. MARUYAMA, A. SATO and K. SETO

(2011). Pedestrian-movement prediction based on mized Markov-chain model. In
Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pp. 25-33. ACM.

[ASHBROOK and STARNER, 2003] ASHBROOK, DANIEL and T. STARNER (2003). Us-

ing GPS to learn significant locations and predict movement across multiple users.
Personal and Ubiquitous Computing, 7(5):275-286.

[AURENHAMMER, 1991] AURENHAMMER, FRANZ (1991). Voronoi diagrams - a sur-

vey of a fundamental geometric data structure. ACM Computing Surveys (CSUR),
23(3):345-405.

[BACHMANN et al., 2013] BACHMANN, ANJA, C. BORGELT and G. GIDOFAIVI
(2013). Incremental Frequent Route Based Trajectory Prediction. In Proceedings
of the Sizth ACM SIGSPATIAL International Workshop on Computational Trans-
portation Science, p. 49. ACM.

[BAUM et al., 1970] BAuM, LEONARD E, T. PETRIE, G. SOULES and N. WEISS
(1970). A mazimization technique occurring in the statistical analysis of probabilistic
functions of Markov chains. The annals of mathematical statistics, pp. 164-171.

[BEARDEN and NETEMEYER, 1999] BEARDEN, WILLIAM O and R. G. NETEMEYER
(1999). Handbook of marketing scales: Multi-item measures for marketing and con-
sumer behavior research. Sage.

[BELLMAN and CORPORATION, 1957] BELLMAN, R. and R. CORPORATION (1957).
Dynamic Programming. Rand Corporation research study. Princeton University
Press.

[BENNEWITZ, 2004] BENNEWITZ, MAREN (2004). Mobile robot navigation in dynamic
environments. PhD thesis

Konrad Schenk

108 BIBLIOGRAPHY

[BENNEWITZ et al., 2005 BENNEWITZ, MAREN, W. BURGARD, G. CIELNIAK and
S. THRUN (2005). Learning motion patterns of people for compliant robot motion.
Internationl Journal of Robotics Research, 24:31-48.

[BROWNING et al., 2006] BROWNING, RAYMOND C, E. A. BAKER, J. A. HERRON
and R. KRAM (2006). Effects of obesity and sex on the energetic cost and preferred
speed of walking. Journal of Applied Physiology, 100(2):390-398.

[BURGARD et al., 1999] BURGARD, WOLFRAM, A. B. CREMERS, D. Fox, D. HAH-
NEL, G. LAKEMEYER, D. SCHULZ, W. STEINER and S. THRUN (1999). Experiences
with an interactive museum tour-guide robot. Artificial intelligence, 114(1):3-55.

|[CHEBYSHEV, 1867| CHEBYSHEV, PL (1867). On mean values. Journal de mathé-
matiques pures et appliquées, 2(12):177-184.

[CIGNONTI et al., 1998] CiGNONI, PAOLO, C. MONTANI and R. SCOPIGNO (1998).
DeWall: A fast divide and conquer Delaunay triangulation algorithm in E,.
Computer-Aided Design, 30(5):333-341.

[COMANICIU et al., 2001] CoMANICIU, DORIN, V. RAMESH and P. MEER (2001).
The variable bandwidth mean shift and data-driven scale selection. In Computer
Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on,
vol. 1, pp. 438-445. IEEE.

[DEES et al., 2008] DEES, WINDY, G. BENNETT and J. VILLEGAS (2008). Measuring
the effectiveness of sponsorship of an elite intercollegiate football program. Sport
Marketing Quarterly, 17(2):79.

|DELAUNAY, 1934] DELAUNAY, BORIS (1934). Sur la sphere vide. Izv. Akad. Nauk
SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, 7(793-800):1-2.

|[DIJKSTRA, 1959] DIJKSTRA, EDSGER W (1959). A note on two problems in connex-
ion with graphs. Numerische mathematik, 1(1):269-271.

[DRENGNER et al., 2011] DRENGNER, JAN, S. JAHN and C. ZANGER (2011). Mea-
suring event-brand congruence. Event Management, 15(1):25-36.

[DWYER, 1987] DWYER, REX A (1987). A faster divide-and-conquer algorithm for
constructing Delaunay triangulations. Algorithmica, 2(1-4):137-151.

|[EISENBACH et al., 2012] E1SENBACH, MARKUS, A. KorLArOw, K. SCHENK,
K. DEBEs and H. GROsSS (2012). View invariant appearance-based person reidenti-
fication using fast online feature selection and score level fusion. In Advanced Video

Konrad Schenk

BIBLIOGRAPHY 109

and Signal-Based Surveillance (AVSS), 2012 IEEE Ninth International Conference
on, pp. 184-190. IEEE.

|[EISENBACH et al., 2013] EISENBACH, MARKUS, P. SCHEINER, A. KOLAROW,
K. SCHENK, H.-M. GRross and I. WEINREICH (2013). Learning Illumination Maps
for Color Constancy in Person Reidentification. Workshop Farbbildverarbeitung,
19.

|[ESTER et al., 1996] ESTER, MARTIN, H.-P. KRIEGEL, J. SANDER and X. XU

(1996). A density-based algorithm for discovering clusters in large spatial databases
with noise.. In Kdd, vol. 96, pp. 226-231.

[FRITZKE et al., 1995] FRITZKE, BERND et al. (1995). A growing neural gas network
learns topologies. Advances in neural information processing systems, 7:625-632.

[FUKUNAGA and HOSTETLER, 1975] FUKUNAGA, K. and L. HOSTETLER (1975).
The Estimation of the Gradient of a Density Function, with Applications in Pattern
Recognition. IEEE Transactions on Information Theory, 21(1):32—40.

|[FULGENZI et al., 2009] FUuLGENZI, CHIARA, A. SPALANZANI and C. LAUGIER
(2009). Probabilistic motion planning among moving obstacles following typical mo-
tion patterns. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ
International Conference on, pp. 4027-4033. IEEE.

[GIANNOTTI et al., 2007] GIANNOTTI, FoscA, M. NaNNI, F. PINELLI and D. PE-
DRESCHI (2007). Trajectory pattern mining. In Proceedings of the 13th ACM

SIGKDD international conference on Knowledge discovery and data mining, pp.
330-339. ACM.

[GIDOFALVI et al., 2011] GIDOFALVI, GY06z0, C. BORGELT, M. KAuL and T. B.
PEDERSEN (2011). Frequent route based continuous moving object location-and den-
sity prediction on road networks. In Proceedings of the 19th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, pp. 381—

384. ACM.

|GROSS et al., 2014] Gross, H-M, K. DEBEs, E. EINHORN, S. MUELLER, A. SCHEI-
DIG, C. WEINRICH, A. BLEY and C. MARTIN (2014). Mobile Robotic Rehabilitation
Assistant for walking and orientation training of Stroke Patients: A report on work
in progress. In Systems, Man and Cybernetics (SMC), 2014 IEEE International
Conference on, pp. 1880-1887. IEEE.

Konrad Schenk

110 BIBLIOGRAPHY

[HAFTING et al., 2005] HAFTING, TORKEL, M. FYHN, S. MOLDEN, M.-B. MOSER
and E. I. MOSER (2005). Microstructure of a spatial map in the entorhinal cortex.
Nature, 436(7052):801-806.

[HAN et al., 2004] HAN, BOHYUNG, D. CoMANICIU and L. DAVIS (2004). Sequential

kernel density approrimation through mode propagation: applications to background
modeling. In proc. ACCV , vol. 4, pp. 818-823.

[HART et al., 1968] HART, PETER E, N. J. NILSSON and B. RAPHAEL (1968). A
formal basis for the heuristic determination of minimum cost paths. Systems Science
and Cybernetics, IEEE Transactions on, 4(2):100-107.

[HELLBACH, 2010] HELLBACH, SVEN (2010). Entwicklung von Methoden zur Unter-
scheidung und Interpretation von Bewegungsmustern in dynamischen Szenen. PhD
thesis

|[HERMES et al., 2009] HERMES, CHRISTOPH, C. WOHLER, K. SCHENK and F. KuMm-

MERT (2009). Long-term wvehicle motion prediction. In Intelligent Vehicles Sympo-
stum, 2009 IEEE, pp. 652-657. IEEE.

[HU et al., 2006] Hu, WEIMING, X. X140, Z. Fu, D. XIg, T. TAN and S. MAYBANK
(2006). A system for learning statistical motion patterns. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 28(9):1450-1464.

[IKEDA et al., 2013| IKEDA, TETSUsHI, Y. CHIGODO, D. REA, F. ZANLUNGO,
M. SHioMI and T. KANDA (2013). Modeling and prediction of pedestrian behavior
based on the sub-goal concept. Robotics: Science and Systems VIII, p. 137.

[JEUNG et al., 2008] JEUNG, HOYOUNG, Q. L1u, H. T. SHEN and X. ZHOU (2008).
A hybrid prediction model for moving objects. In Data Engineering, 2008. ICDE
2008. IEEE 24th International Conference on, pp. 70-79. IEEE.

[JEUNG et al., 2010] JEUNG, HOYOUNG, M. L. Yiu, X. ZHOU and C. S. JENSEN
(2010). Path prediction and predictive range querying in road network databases.

The VLDB Journal, 19(4):585-602.

[JockuscH and RITTER, 1999] JocKUsCH, JAN and H. RITTER (1999). An instan-

taneous topological mapping model for correlated stimuli. In Neural Networks, 1999.
IJCONN’99. International Joint Conference on, vol. 1, pp. 529-534. IEEE.

[KELLNER et al., 2012] KELLNER, DOMINIK, J. KLAPPSTEIN and K. DIETMAYER
(2012). Grid-based DBSCAN for clustering extended objects in radar data. In In-
telligent Vehicles Symposium (IV), 2012 IEEE, pp. 365-370. IEEE.

Konrad Schenk

BIBLIOGRAPHY 111

[KEMENY and SNELL, 1960] KEMENY, JOHN G and J. L. SNELL (1960). Finite
markov chains, vol. 356. van Nostrand Princeton, NJ.

[KOHONEN, 1990] KOHONEN, TEUVO (1990). The self-organizing map. Proceedings
of the IEEE, 78(9):1464 1480,

[KOLAROW et al., 2012] KOLAROW, ALEXANDER, M. BRAUCKMANN, M. EISEN-
BACH, K. SCHENK, E. EINHORN, K. DEBES and H.-M. GROsSS (2012). Vision-
based hyper-real-time object tracker for robotic applications. In Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 2108-2115.
IEEE.

[KOLAROW et al., 2013] KOLAROW, ALEXANDER, K. SCHENK, M. EISENBACH,
M. DosE, M. BRAUCKMANN, K. DEBES and H.-M. GRoss (2013). APFel: The
intelligent video analysis and surveillance system for assisting human operators. In
Advanced Video and Signal Based Surveillance (AVSS), 2013 10th IEEE Interna-
tional Conference on, pp. 195-201. IEEE.

|[KOLLER-MEIER and VAN GooL, 2002] KOLLER-MEIER, ESTHER B and
L. VAN GOOL (2002). Modeling and recognition of human actions using a
stochastic approach. In Video-Based Surveillance Systems, pp. 179-191. Springer.

[KrRUMM, 2008] KrUMM, JOHN (2008). A markov model for driver turn prediction.
Technical Report, SAE Technical Paper.

[KUDERER et al., 2012] KUDERER, MARKUS, H. KRETZSCHMAR, C. SPRUNK and
W. BURGARD (2012). Feature-Based Prediction of Trajectories for Socially Com-
pliant Nawvigation.. In Robotics: Science and Systems.

[LAVALLE, 2006] LAVALLE, STEVEN M (2006). Planning algorithms. Cambridge
university press.

[LENGYEL et al., 1990] LENGYEL, JED, M. REICHERT, B. R. DONALD and D. P.

GREENBERG (1990). Real-time robot motion planning using rasterizing computer
graphics hardware, vol. 24. ACM.

[LLOYD, 1982] LLOYD, STUART (1982). Least squares quantization in PCM. Infor-
mation Theory, IEEE Transactions on, 28(2):129-137.

[LUBER et al., 2010] LUBER, MATTHIAS, J. A. STORK, G. D. TipaLDI and K. O.
ARRAS (2010). People tracking with human motion predictions from social forces.
In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pp.
464-469. IEEE.

Konrad Schenk

112 BIBLIOGRAPHY

[MAKHOUL, 1975] MAKHOUL, JOHN (1975). Linear prediction: A tutorial review.
Proceedings of the IEEE, 63(4):561-580.

[MAKRIS and ELLIS, 2002] MAKRIS, DIMITRIOS and T. ELLIS (2002). Spatial and
Probabilistic Modelling of Pedestrian Behaviour.. In BMVC, pp. 1-10. Citeseer.

[MALTHOUSE and BLATTBERG, 2005] MALTHOUSE, EDWARD C and R. C. BLAT-

TBERG (2005). Can we predict customer lifetime value?. Journal of interactive
marketing, 19(1):2-16.

[MARTINETZ et al., 1991] MARTINETZ, THOMAS, K. SCHULTEN et al. (1991). A
"Neural-Gas" Network Learns Topologies. Artificial neural networks, pp. 397-402.

[McLACHLAN and KRISHNAN, 2007] MCLACHLAN, GEOFFREY and T. KRISHNAN
(2007). The EM algorithm and extensions, vol. 382. John Wiley & Sons.

[METROPOLIS and ULAM, 1949] METROPOLIS, NICHOLAS and S. ULAM (1949). The

monte carlo method. Journal of the American statistical association, 44(247):335-
341.

[MOHLER et al., 2007] MOHLER, BETTY J, W. B. THOMPSON, S. H. CREEM-
REGEHR, H. L. Pick Jr and W. H. WARREN Jr (2007). Visual flow influ-
ences gait transition speed and preferred walking speed. Experimental brain research,
181(2):221-228.

[MONREALE et al., 2009] MONREALE, ANNA, F. PINELLI, R. TRASARTI and F. GI-
ANNOTTI (2009). Wherenezt: a location predictor on trajectory pattern mining.
In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 637-646. ACM.

[MULLER et al., 2008] MULLER, STEFFEN, S. HELLBACH, E. SCHAFFERNICHT,
A. OBER, A. SCHEIDIG and H.-M. GRoss (2008). Whom to talk to? Estimat-
ing user interest from movement trajectories.. In RO-MAN, pp. 532-538.

|OLIVER et al., 2000] OLIVER, NURIA M, B. ROSARIO and A. P. PENTLAND (2000).
A Bayesian computer vision system for modeling human interactions. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, 22(8):831-843.

[OPENSTREETMAP and CONTRIBUTORS, 2013] OPENSTREETMAP and CONTRIBU-
TORS (2013). Planet.gpz. http://planet.openstreetmap.org/gps/. Accessed: 2016-
08-22.

Konrad Schenk

BIBLIOGRAPHY 113

[PELLEG et al., 2000] PELLEG, DAN, A. W. MOORE et al. (2000). X-means: Extend-
ing K-means with Efficient Estimation of the Number of Clusters.. In ICML, pp.
T727-734.

|[PHILIPPSEN, 2004] PHILIPPSEN, ROLAND (2004). Motion planning and obstacle
avoidance for mobile robots in highly cluttered dynamic environments. PhD the-
sis, Ecole Polytechnique Fédérale de Lausanne.

|[P1ccARDL, 2004] PICCARDI, MASSIMO (2004). Background subtraction techniques:
a review. In Systems, man and cybernetics, 2004 IEEE international conference on,

vol. 4, pp. 3099-3104. IEEE.

[PIORKOWSKI et al., 2009] PIORKOWSKI, MICHAL, N. SARAFIJANOVIC-DJUKIC and
M. GROSSGLAUSER (2009). CRAWDAD dataset epfl/mobility (v. 2009-02-24).
http://crawdad.org/epfl /mobility /20090224. Accessed: 2016-08-22.

[PRASAD and AGRAWAL, 2010] PRASAD, PRATAP S and P. AGRAWAL (2010). Mowve-

ment prediction in wireless networks using mobility traces. In Consumer Commu-
nications and Networking Conference (CCNC), 2010 7th IEEE, pp. 1-5. IEEE.

|[RABINER, 1989] RABINER, LAWRENCE (1989). A tutorial on hidden Markov models
and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257-

286.

[SABANOVIC et al., 2006] SABANOVIC, SELMA, M. P. MICHALOWSKI and R. SiM-
MONS (2006). Robots in the wild: Observing human-robot social interaction outside
the lab. In Advanced Motion Control, 2006. 9th IEEE International Workshop on,
pp- 596-601. IEEE.

[SCHENK et al., 2011] SCHENK, KONRAD, M. EISENBACH, A. KOLAROW and H.-M.
GROSS (2011). Comparison of laser-based person tracking at feet and upper-body
height. In KI 2011: Advances in Artificial Intelligence, pp. 277-288. Springer Berlin
Heidelberg.

[SCHENK et al., 2012a] SCHENK, KONRAD, A. KOLAROW, M. EISENBACH,
K. DEBEs and H. GRrOss (2012a). Automatic calibration of multiple stationary

laser range finders using trajectories. In Advanced Video and Signal-Based Surveil-
lance (AVSS), 2012 IEEE Ninth International Conference on, pp. 306-312. IEEE.

[SCHENK et al., 2012b| SCHENK, KONRAD, A. KovLArROW, M. EISENBACH,
K. DEBEs and H.-M. GRross (2012b). Automatic calibration of a stationary net-
work of laser range finders by matching movement trajectories. In Intelligent Robots

Konrad Schenk

114 BIBLIOGRAPHY

and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 431-437.
IEEE.

[SCHROETER et al., 2013] SCHROETER, CH, S. MUELLER, M. VOLKHARDT, E. EIN-
HORN, C. HUIJNEN, H. VAN DEN HEUVEL, A. VAN BERLO, A. BLEY and H.-M.
GROsSS (2013). Realization and user evaluation of a companion robot for people
with mild cognitive impairments. In Robotics and Automation (ICRA), 2013 IEEE
International Conference on, pp. 1153-1159. IEEE.

[SIEGWART et al., 2011] SIEGWART, ROLAND, I. R. NOURBAKHSH and D. SCARA-
MUZZA (2011). Introduction to autonomous mobile robots. MIT press.

[SILVERMAN, 1986] SILVERMAN, BERNARD W (1986). Density estimation for statis-
tics and data analysis, vol. 26. CRC press.

[STENTZ, 1994] STENTZ, ANTHONY (1994). Optimal and efficient path planning for

partially-known environments. In Robotics and Automation, 1994. Proceedings.,
1994 IEEFE International Conference on, pp. 3310-3317. IEEE.

[STRICKER et al., 2012] STRICKER, = RONNY, S. MULLER, E. FEINHORN,
C. SCHROTER, M. VOLKHARDT, K. DEBES and H.-M. GRrOss (2012). Konrad
and Suse, Two Robots Guiding Visitors in a University Building. In Autonomous
Mobile Systems 2012, pp. 49-58. Springer.

[SUu and DRYSDALE, 1995] Su, PETER and R. L. S. DRYSDALE (1995). A compari-
son of sequential Delaunay triangulation algorithms. In Proceedings of the eleventh
annual symposium on Computational geometry, pp. 61-70. ACM.

[VASQUEZ and FRAICHARD, 2004] VASQUEZ, DizAN and T. FRAICHARD (2004).
Motion prediction for moving objects: a statistical approach. In Robotics and Au-
tomation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on,
vol. 4, pp. 3931-3936. IEEE.

[VASQUEZ et al., 2009] VASQUEZ, DizaN, T. FRAICHARD and C. LAUGIER (2009).
Growing hidden markov models: An incremental tool for learning and predicting hu-
man and vehicle motion. The International Journal of Robotics Research, 28:1486—
1506.

[VASQUEZ GOVEA, 2007] VASQUEZ GOVEA, ALEJANDRO DIZAN (2007). Incremental
learning for motion prediction of pedestrians and vehicles. PhD thesis, Grenoble,

INPG.

Konrad Schenk

BIBLIOGRAPHY 115

[VERHEIN and CHAWLA, 2006] VERHEIN, FLORIAN and S. CHAWLA (2006). Mining
spatio-temporal association rules, sources, sinks, stationary regions and thorough-
fares in object mobility databases. In Database Systems for Advanced Applications,
pp. 187-201. Springer.

[VON MIsES, 1928] VoN Mises, R. (1928). Wahrscheinlichkeit, Statistik und
Wahrheit. No. Bd. 3 in Schriften zur wissenschaftlichen Weltauffassung. J. Springer.

[WANALERTLAK et al., 2011] WANALERTLAK, WEETIT, B. LEE, C. YU, M. KM, S.-
M. PARK and W.-T. KiMm (2011). Behavior-based mobility prediction for seamless
handoffs in mobile wireless networks. Wireless networks, 17(3):645-658.

[WEINRICH et al., 2013] WEINRICH, CHRISTOPH, M. VOLKHARDT, E. EINHORN
and H.-M. GRross (2013). Prediction of human collision avoidance behavior by

lifelong learning for socially compliant robot navigation. In Robotics and Automa-
tion (ICRA), 2013 IEEE International Conference on, pp. 376-381. IEEE.

[WESER et al., 2006)] WESER, MARTIN, D. WESTHOFF, M. HUSER and J. ZHANG
(2006). Multimodal people tracking and trajectory prediction based on learned gen-
eralized motion patterns. In Multisensor Fusion and Integration for Intelligent Sys-
tems, 2006 IEEE International Conference on, pp. 541-546. IEEE.

[WHONG, 2014] WHONG, CHRIS (2014). NYC’s Taxi Trip Data.
http://chriswhong.com/open-data/foil _nyc_taxi/index.php. Accessed: 2016-
08-22.

[WIEST et al., 2012] WIEST, JURGEN, M. HOFFKEN, U. KRESEL and K. DIET-
MAYER (2012). Probabilistic trajectory prediction with Gaussian mizture models.

In Intelligent Vehicles Symposium (1V), 2012 IEEE, pp. 141-146. IEEE.

[XU et al., 2005] Xu, Rui, D. WUNSCH et al. (2005). Survey of clustering algorithms.
Neural Networks, IEEE Transactions on, 16(3):645-678.

[YE et al., 2009] YE, YANG, Y. ZHENG, Y. CHEN, J. FENG and X. XIE (2009). Min-
ing individual life pattern based on location history. In Mobile Data Management:
Systems, Services and Middleware, 2009. MDM’09. Tenth International Conference
on, pp. 1-10. IEEE.

[YING et al., 2011] YiNG, JosH JiA-CHING, W.-C. LEg, T.-C. WENG and V. S.
TSENG (2011). Semantic trajectory mining for location prediction. In Proceedings
of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pp. 34—43. ACM.

Konrad Schenk

116 BIBLIOGRAPHY

[YUAN et al., 2011] YUAN, JING, Y. ZHENG, X. XIE and G. SUN (2011). Driving with
Knowledge from the Physical World. In SIGKDD 2011 . Association for Computing
Machinery, Inc.

[YUAN et al., 2010] YUuAN, JING, Y. ZHENG, C. ZHANG, W. XIg, X. XIE and
Y. HUANG (2010). T-Drive: Driving Directions Based on Tazi Trajectories. In
ACM SIGSPATIAL GIS 2010. Association for Computing Machinery, Inc.

[ZHANG, 2009] ZHANG, LIN (2009). Beijing taxi trajectory dataset.
http://sensor.ee.tsinghua.edu.cn/datasets.html. Accessed: 2015-06-08.

[ZHANG et al., 2011] ZHANG, WENZHU, L. ZHANG, Y. DING, T. M1vAkI, D. GOR-
DON and M. BEIGL (2011). Mobile sensing in metropolitan area: Case study in
beising. In Mobile Sensing Challenges Opportunities and Future Directions, Ubi-
comp2011 workshop.

|ZHENG, 2011| ZHENG, Yu (2011). T-Drive sample dataset.
https://www.microsoft.com/en-us/research /publication /t-drive-trajectory-data-
sample/. Accessed: 2016-08-22.

|ZHENG, 2012| ZHENG, Yu (2012). GeoLife ~ GPS Trajectories.
https://www.microsoft.com/en-us/download /details.aspx?id=52367. Accessed:
2016-08-22.

|[ZHENG et al., 2008] ZHENG, YU, Q. L1, Y. CHEN, X. XIE and W.-Y. MaA (2008).
Understanding mobility based on GPS data. In Proceedings of the 10th international
conference on Ubiquitous computing, pp. 312-321. ACM.

[ZHENG et al., 2010] ZHENG, YU, X. XI1E and W.-Y. MA (2010). GeoLife: A Col-
laborative Social Networking Service among User, Location and Trajectory.. IEEE
Data Eng. Bull., 33(2):32-39.

[ZHENG et al., 2009] ZHENG, YU, L. ZHANG, X. XIE and W.-Y. MA (2009). Mining
interesting locations and travel sequences from GPS trajectories. In Proceedings of
the 18th international conference on World wide web, pp. 791-800. ACM.

[ZHU et al., 2013] ZHu, BING, Q. HUANG, L. GuiBAS and L. ZHANG (2013). Ur-
ban Population Migration Pattern Mining Based on Taxi Trajectories. In Mobile
Sensing, 3rd International Workshop on.

|[ZIEBART et al., 2009| ZIEBART, BRIAN D, N. RATLIFF, G. GALLAGHER,
C. MERTZ, K. PETERSON, J. A. BAGNELL, M. HEBERT, A. K. DEY and S. SRINI-
VASA (2009). Planning-based prediction for pedestrians. In Intelligent Robots and

Konrad Schenk

BIBLIOGRAPHY 117

Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pp. 3931-3936.
IEEE.

[Z1vKoviC, 2004] ZIVKOVIC, ZORAN (2004). Improved adaptive Gaussian mizture
model for background subtraction. In Pattern Recognition, 2004. ICPR 2004. Pro-
ceedings of the 17th International Conference on, vol. 2, pp. 28-31. IEEE.

Konrad Schenk

Promotionsordnung der Technischen Universitat Ilmenau — Allgemeine Bestimmungen —

Anlage 1

Erklarung

Ich versichere, dass ich die vorliegende Arbeit ohne unzulassige Hilfe Dritter und ohne Be-
nutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen
direkt oder indirekt Gbernommenen Daten und Konzepte sind unter Angabe der Quelle ge-
kennzeichnet.

Bei der Auswahl und Auswertung folgenden Materials haben mir die nachstehend auf-
gefuhrten Personen in der jeweils beschriebenen Weise entgeltlich/unentgeltlich” geholfen:

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden Arbeit
nicht beteiligt. Insbesondere habe ich hierfir nicht die entgeltliche Hilfe von Vermittlungs-
bzw. Beratungsdiensten (Promotionsberater oder anderer Personen) in Anspruch genom-
men. Niemand hat von mir unmittelbar oder mittelbar geldwerte Leistungen fiir Arbeiten
erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ahnlicher Form einer
Prifungsbehdrde vorgelegt.

Ich bin darauf hingewiesen worden, dass die Unrichtigkeit der vorstehenden Erklarung als

Tauschungsversuch bewertet wird und gemaB § 7 Abs. 10 der Promotionsordnung den Ab-
bruch des Promotionsverfahrens zur Folge hat.

(Ort, Datum) (Unterschrift)

1) Unzutreffendes bitte streichen.

Promotionsordnung der Technischen Universitat |imenau - Allgemeine Bestimmungen -

Annex 1

Declaration

| certify that | prepared the submitted thesis independently without undue assistance
of a third party and without the use of others than the indicated aids. Data and concepts
directly or indirectly taken over from other sources have been marked stating the
sources.

When selecting and evaluating the following materials, the persons listed below
helped me in the way decribed respectively for a charge/free of charge®:

Further persons were not involved in the content-material-related preparation of the
thesis submitted. I n particular, | have not used the assistance against payment offered
by consultancies or placing services (doctoral consultants or other persons). | did not
pay any money to persons directly or indirectly for work or services which are related
to the content of the thesis submitted.

So far the thesis have not been submitted identically or similarly to an examination
office in Germany or abroad.

| have been notified that any incorrectness in the submitted above mentioned

declaration is assessed as attempt to deceive and, according to § 7 para. 10 of the PhD
regulations, this leads to a discontinuation of the doctoral procedure.

(city, date) (signature)

1) Delete as applicable.

