

Martin Simon

Point Cloud Processing for Environmental Analysis in
Autonomous Driving using Deep Learning

Point Cloud Processing for Environmental
Analysis in Autonomous Driving using

Deep Learning

Martin Simon

Universitätsverlag Ilmenau
2023

Impressum

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Angaben sind im
Internet über
http://dnb.d-nb.de abrufbar.

Diese Arbeit hat der Fakultät für Informatik und Automatisierung der
Technischen Universität Ilmenau als Dissertation vorgelegen.

Tag der Einreichung: 25. März 2022
1. Gutachter: Univ.-Prof. Dr.-Ing. Horst-Michael Groß

(Technische Universität Ilmenau)
2. Gutachter: Univ.-Prof. Dr.-Ing. J. Marius Zöllner

(Karlsruher Institut für Technologie)
3. Gutachter: Univ.-Prof. Dr. rer. nat. Bernhard Sick

(Universität Kassel)
Tag der Verteidigung: 27. Februar 2023

Technische Universität Ilmenau/Universitätsbibliothek
Universitätsverlag Ilmenau
Postfach 10 05 65
98684 Ilmenau
https://www.tu-ilmenau.de/universitaetsverlag

ISBN 978-3-86360-272-7 (Druckausgabe)
DOI 10.22032/dbt.55809
URN urn:nbn:de:gbv:ilm1-2023000032

https://doi.org/10.22032/dbt.55809
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2023000032

Kurzfassung

Eines der Hauptziele führender Automobilhersteller sind autonome Fahrzeuge. Sie

benötigen ein sehr präzises System für die Wahrnehmung der Umgebung, dass für

jedes denkbare Szenario überall auf der Welt funktioniert. Daher sind verschiedene

Arten von Sensoren im Einsatz, sodass neben Kameras u. a. auch Lidar Sensoren ein

wichtiger Bestandteil sind. Die Entwicklung auf diesem Gebiet ist für künftige An-

wendungen von höchster Bedeutung, da Lidare eine genauere, von der Umgebungs-

beleuchtung unabhängige, Tiefendarstellung bieten. Insbesondere Algorithmen und

maschinelle Lernansätze wie Deep Learning, die Rohdaten über Lernzprozesse direkt

verarbeiten können, sind aufgrund der großen Reichweite und der dreidimensiona-

len Auflösung der gemessenen Punktwolken sehr wichtig. Somit hat sich ein weites

Forschungsfeld mit vielen Herausforderungen und ungelösten Problemen etabliert.

Diese Arbeit zielt darauf ab, dieses Defizit zu verringern und effiziente Algorithmen

zur 3D-Objekterkennung zu entwickeln. Sie stellt ein tiefes Neuronales Netzwerk mit

spezifischen Schichten und einer neuartigen Fehlerfunktion zur sicheren Lokalisierung

und Schätzung der Orientierung von Objekten aus Punktwolken bereit. Zunächst wird

ein 3D-Detektor entwickelt, der in nur einem Vorwärtsdurchlauf aus einer Punktwol-

ke alle Objekte detektiert. Anschließend wird dieser Detektor durch die Fusion von

komplementären semantischen Merkmalen aus Kamerabildern und einem gemeinsa-

men probabilistischen Tracking verfeinert, um die Detektionen zu stabilisieren und

Ausreißer zu filtern. Im letzten Teil wird ein Konzept für den Einsatz in einem be-

stehenden Testfahrzeug vorgestellt, das sich auf die halbautomatische Generierung

eines geeigneten Datensatzes konzentriert. Hierbei wird eine Auswertung auf Daten

von Automotive-Lidaren vorgestellt. Als Alternative zur zielgerichteten künstlichen

Datengenerierung wird ein weiteres generatives Neuronales Netzwerk untersucht.

Experimente mit den erzeugten anwendungsspezifischen- und Benchmark-Datensätzen

zeigen, dass sich die vorgestellten Methoden mit dem Stand der Technik messen

können und gleichzeitig auf Effizienz für den Einsatz in selbstfahrenden Autos opti-

miert sind. Darüber hinaus enthalten sie einen umfangreichen Satz an Evaluierungs-

metriken und -ergebnissen, die eine solide Grundlage für die zukünftige Forschung

bilden.

v

Abstract

One of the main objectives of leading automotive companies is autonomous self-

driving cars. They need a very precise perception system of their environment, work-

ing for every conceivable scenario. Therefore, different kinds of sensor types are in

use. Besides cameras, lidar scanners became very important. The development in

that field is significant for future applications and system integration because lidar

offers a more accurate depth representation, independent from environmental illu-

mination. Especially algorithms and machine learning approaches, including Deep

Learning and Artificial Intelligence based on raw laser scanner data, are very impor-

tant due to the long range and three-dimensional resolution of the measured point

clouds. Consequently, a broad field of research with many challenges and unsolved

tasks has been established.

This thesis aims to address this deficit and contribute highly efficient algorithms for

3D object recognition to the scientific community. It provides a Deep Neural Network

with specific layers and a novel loss to safely localize and estimate the orientation of

objects from point clouds. First, a single shot 3D object detector is developed that

outputs dense predictions in only one forward pass. Next, this detector is refined

by fusing complementary semantic features from cameras and a joint probabilistic

tracking to stabilize predictions and filter outliers. In the last part, a concept for

deployment into an existing test vehicle focuses on the semi-automated generation of

a suitable dataset. Subsequently, an evaluation of data from automotive-grade lidar

scanners is presented. A Generative Adversarial Network is also being developed as

an alternative for target-specific artificial data generation.

Experiments on the acquired application-specific and benchmark datasets show that

the presented methods compete with a variety of state-of-the-art algorithms while

being trimmed down to efficiency for use in self-driving cars. Furthermore, they

include an extensive set of standard evaluation metrics and results to form a solid

baseline for future research.

vii

Danksagung

An dieser Stelle möchte ich allen beteiligten Personen danken, die mich bei der An-

fertigung meiner Dissertation begleitet und unterstützt haben.

Mein besonderer Dank gilt Prof. Horst-Michael Groß für die ausgezeichnete Betreu-

ung und kontinuierliche Unterstützung bei der Umsetzung der gesamten Arbeit. Im

gleichen Zuge bedanke ich mich bei den Mitarbeiterinnen und Mitarbeitern der TU

Ilmenau für die Organisation und den reibungslosen Ablauf.

Ein weiterer großer Dank gilt Stefan Milz, der die Arbeit durch seine Inspiration,

Anleitung und tatkräftige Unterstützung von Anfang an geprägt hat.

Außerdem möchte ich mich bei der Valeo Schalter und Sensoren GmbH, insbesondere

Johannes Petzold und Jörg Schrepfer, für die Ermöglichung einer externen Promotion

recht herzlich bedanken.

Für das Korrekturlesen danke ich zudem David, Hauke und Jens.

Zuletzt danke ich meiner Familie, besonders meiner Frau Michaela, für ihre im-

merwährende Ermutigung mit lieben Worten und die Geduld bis zur Fertigstellung

dieser Arbeit neben dem Arbeitsalltag.

ix

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Objective . 5

1.3 Contributions . 6

1.4 Outline . 11

2 Background 13

2.1 Deep Neural Networks . 13

2.1.1 Neural Networks . 13

2.1.2 Convolutional Neural Networks 15

2.1.3 Channel Pruning . 16

2.2 Deep Generative Models . 17

2.2.1 Generative Adversarial Networks 18

2.2.2 Image to Image Translation 19

2.3 Object Detection in Computer Vision 20

2.4 Multi Object Tracking . 23

2.4.1 Multi Object Tracking via Labeled Multi- Bernoulli Random

Finite Sets . 25

2.4.2 Unscented Kalman Filter . 27

2.4.3 Coordinated Turn Motion Model 29

3 Single Shot 3D Object Detection on Point Clouds 31

3.1 Motivation . 32

3.2 Related Work . 33

3.3 Baseline Model for 3D Object Detection on Point Clouds 35

3.3.1 Point Cloud Preprocessing . 36

3.3.2 Feature Encoder Backbone . 37

3.3.3 Euler Region Proposal Network 38

xi

3.3.4 Loss Function . 40

3.4 Experiments . 41

3.4.1 Datasets . 41

3.4.2 Training and Optimization Details 42

3.4.3 Applied Evaluation Metrics 43

3.4.4 Results . 45

3.4.5 Ablation Study . 48

3.5 Related Work upon the Baseline Model 50

3.6 Conclusion . 52

4 Joint Object Detection and Tracking on Point Clouds 53

4.1 Motivation . 53

4.2 Related Work . 55

4.3 Model . 56

4.3.1 Efficient Visual Semantic Segmentation 57

4.3.2 Point Cloud Preprocessing . 58

4.3.3 3D Object Detector . 59

4.3.4 Multi Object Tracking . 63

4.4 Experiments . 64

4.4.1 Datasets . 65

4.4.2 Training and Optimization Details 66

4.4.3 Applied Evaluation Metrics 67

4.4.4 Results . 67

4.4.5 Ablation Study . 73

4.5 Related Work upon Complexer-YOLO 74

4.6 Conclusion . 75

5 Concept for Integration into an Application-Specific Scenario 77

5.1 Motivation . 78

5.2 Application Scenario of the Autonomous Car 79

5.2.1 Experimental Vehicle and Sensors 79

5.2.2 Delimitation to State of the Art 81

5.2.3 Model Integration . 83

5.3 Application-Specific Dataset . 84

5.3.1 Raw Recording . 84

5.3.2 Ground Truth Generation . 85

xii

5.3.3 Semi Automated Annotation 87

5.3.4 Dataset Analysis and Annotation Statistics 90

5.4 Experiments on the Application-Specific Dataset 92

5.4.1 Datasets . 92

5.4.2 Training and Optimization Details 93

5.4.3 Applied Evaluation Metrics 93

5.4.4 Results . 94

5.5 Point Cloud to Image Translation . 99

5.5.1 Related Work . 100

5.5.2 Conditional Generative Model 101

5.5.3 Experiments . 106

5.5.4 Conclusion . 113

5.6 Conclusion . 114

6 Summary and Outlook 117

6.1 Summary . 117

6.2 Conclusion and Outlook . 119

List of Abbreviations I

List of Figures III

List of Tables V

A Light Detection and Ranging - Lidar VII

A.1 Basics of Lidar Imaging . VII

A.2 Velodyne HDL-64E . VIII

A.3 Valeo Scala Laser Scanner . IX

B Public Datasets XIII

B.1 Overview . XIII

B.2 Synthetic Datasets .XVIII

B.3 KITTI . XIX

C Error Measures XXV

C.1 Object Detection .XXV

C.2 Multi Object Tracking .XXVI

xiii

D Comparative Measures for Bounding Boxes XXXI

D.1 Intersection Over Union .XXXI

D.2 Scale Rotation Translation Score .XXXII

Bibliography XXXV

xiv

Chapter 1

Introduction

During the last decades, humankind has become more and more fascinated by self-

driving vehicles. Driverless cars that suddenly show up when needed as if ordered by

magic could turn the worldwide traffic situation upside-down. Even small children

can be safely carried as passengers while entertaining, watching movies, or sleeping

during long trips. Driving licenses are no longer required, and a wide range of new

services and applications would emerge. Todays mostly privately owned vehicles could

be replaced by shared mobility with shuttles and robotaxis for human transportation

and autonomous delivery trucks for the transportation of goods.

In recent years vehicles on public roads have developed into complex technical

systems due to enormous safety requirements. With the aim to reduce accidents

with critical personal injuries to zero, Advanced Driving Assistance Systems (ADAS)

technologies such as adaptive cruise control or lane departure assistance are becoming

widespread. Thus, the number of persons killed in road traffic in Germany fell by

about 25 percent from 2010 (365, 000) to 272, 000 in 2020 [Destatis 2021]. However,

compared to fully Autonomous Driving, the primary goal is to support the driver

with increased comfort and safety. The driver must always remain in control and

observe his surroundings. In the context of automated driving, such systems are

often referred to as Level 2 systems following the Society of Automotive Engineers

(see Figure 1.1). Only from Level 3
”
conditional automation“ the focus does change,

taking temporary control of the vehicle. At the same time, a complete environmental

perception is already assumed. The further the backup by a human driver is reduced,

the higher the requirements grow. Especially the requirement of Level 5 to operate

safely in every conceivable scenario is a key challenge since most existing ADAS

systems are limited to specific operational design domains. There is a wide range

of practical applications resulting from different vehicles, sensor setups, automation

1

Chapter 1. Introduction

Figure 1.1: Definition of Automation Levels according to the Society of Automotive
Engineers (SAE) J3016™. The drawings in the first row indicate responsibility for 1)
the control of steering with the steering wheel icon, 2) the control of acceleration/
deceleration related to the middle part of the steering wheel icon, and 3) the attention
and control of the driver visualized by a smiley with and without hands. The blue
and green colors indicate driver vs. vehicle responsibility, whereas white indicates no
intended need for a human driver.

levels, and objective capabilities leading to a huge field of research with worldwide

interest and highest activity.

In most cases, a modular system architecture is developed according to the scheme

sense-plan-act. Using multiple sensors, the surrounding environment has to be ab-

stracted accurately in real-time to estimate trajectories for driving and finally control

the actuators with low level commands, respectively. In contrast, the end to end ap-

proach aims at jointly solving sensing and planning with data in a Neural Network

[Wayve 2022]. Parts of the research community, as well as commercial enterprises, fo-

cus on purely vision-based camera only approaches. However, the majority builds on

combining multiple sensor modalities and redundancy. Figure 1.2 shows some promi-

nent example setups. As a complementary alternative to cameras, lidar scanners

provide direct depth measurements and deliver spatial point clouds in a 3D space of

high accuracy (see Appendix A for more details). That is why lidar sensors’ availabil-

ity, advanced development, and quality of lidar scanners have also grown enormously.

In essence, today, most test vehicles include them, and from many experts, lidar is

considered an indispensable technology on the way to Level 5. Therefore, this disser-

tation deals with the processing of lidar point clouds to detect and classify objects in

3D from public road traffic for use in Level 3 to 5 systems.

2

1.1. Motivation

Figure 1.2: A sample collection of autonomous vehicles: All vehicles have very
conspicuous sensor attachments to simplify perception except for the Valeo prototype.
Images from [Cruise 2021; Zoox 2021; Waymo 2021; Aurora 2021; Valeo 2021; Level
5 2021].

1.1 Motivation

Environmental perception is still at the top of the agenda, with many unresolved

issues. Nevertheless, there has been tremendous progress so that human levels can

already be achieved in individual subtasks, thanks to the latest deep learning meth-

ods. Breakthroughs in image processing based on Convolutional Neural Network

(CNN) architectures, advanced learning, and training methods on massive data serve

as the foundation for this great success. However, the characteristics of point clouds,

e.g. from lidar, differ significantly from camera data: i) There is no fixed grid struc-

ture. ii) Points are unordered and important information is mainly contained in the

neighboring relationship of individual points, which is not directly apparent from the

data structure. iii) The point density extremely decreases at higher distances and

strongly depends on aperture angles and the resolution of the sensor and object sizes.

3

Chapter 1. Introduction

Figure 1.3: Examples of point clouds from individual objects taken from an inner-
city driving scenario, captured by an automotive-grade lidar sensor and visualized in
third-person as well as top-down view: a) a nearby Pedestrian on the sidewalk, b) an
oncoming Cyclist within 30m distance, c) a Bus ahead at a distance of 100m, d) a
Transporter parked on the other side of the road about 40m away, e) a Transporter
with the rear doors open parked directly in front, and f) a mostly occluded Car parked
in front of e) at a distance of 20m. Points are colored by relative height inside the
3D bounding box, representing the ground truth of the objects to be recognized. Note
that the sizes are scaled individually for better visibility.

Hence, distant objects are typically mapped to only a few single points simply be-

cause of physics. However, some lidar sensors are designed for long-range applications

with a small vertical field of view and detection ranges up to 250m and more. This

also leads to many measurements of surfaces truncated at small heights, especially at

close range. Further difficulties arise from highly dynamic occlusion, varying surface

materials’ reflection characteristics, and countless object poses and perspectives in

which objects are visible. Some examples are depicted in Figure 1.3 to emphasize the

challenges. However, robust detection of even small objects is essential for the task

of self-driving.

On top, such application comes with further constraints. Efficiency and runtime

play crucial roles with limited computing power and energy consumption, especially

in electric vehicles. The highest reliability and robustness are necessary for safety

reasons as the smallest errors at high speeds can result in fatal accidents. Secondarily,

costs must also be optimized and the feasibility of huge quantities guaranteed to cover

4

1.2. Objective

the needs of the general public.

In addition to the aforementioned task-specific challenges, there is an endless

variety of dynamic situations in public roads influenced by weather, temperature,

season, day or night, regulations and conditions related to different countries, and so

on. Moreover, the compliant behavior of other road participants is never completely

ensured. Rare situations and corner cases can occur at any time, making reliable

perception a colossal challenge. This problem also leads to challenges in data acqui-

sition and curation. Massive amounts of well-balanced training data are needed to

cover enough diversity for sufficient generalization using very Deep Neural Networks

(DNNs) with sufficient capacity. Accordingly, other exciting research areas, such as

transfer learning or the generation and use of artificial data, are expanding because

of all these immense challenges. Still, while revolutionizing applications, the prob-

lem of object detection and classification on point clouds offers enormous potential

for future research. Thus the best practices from machine learning and beyond are

needed. In recent years large amounts of publications as well as huge funding and

economical investments prove this.

1.2 Objective

This thesis addresses object recognition in autonomous cars, mainly using lidar sen-

sors on public roads. Depending on the dataset, the application scenario includes

urban and inner-city situations as well as highway driving at high speeds, i.e. all

vehicles, pedestrians, and potential road users, whether stationary or moving, within

a certain detection radius around the ego vehicle shall be detected. As seen in fig-

ure 1.2, most test carriers operate with one or more lidar sensors attached to roof

mountings. In contrast, the application to a closer-to-production system shall also

be analyzed within this work. The following requirements can be derived:

• Accuracy: Based on the four-wheel driving motion, the performance of the

detector may vary depending on the location of the object. Objects in the

driving area are particularly important, and poses shall be detected precisely

up to a few centimeters and degrees for yaw rotation, respectively.

• Robustness and generalization: Highly dynamic and manifold scenarios

with limited training data need to be handled. Minor noise and minor changes

in the point clouds shall not disturb. Objects shall be detected according to

wide ranges even though there are strongly varying point densities, occlusion,

5

Chapter 1. Introduction

and truncation. On the one hand, the detector shall extract robust local features

from neighboring points but exploit global features with contextual information

to compensate the aforementioned effects.

• Real time capability: In the context of autonomous vehicles, the detector

must be designed so that the calculations can be carried out very quickly so that

the overall runtime, including subsequent components for path planning and

control, is still real-time. The goal is real-time recognition and high efficiency

using as little computational resources as possible.

• Flexibility and practicability: Designed algorithms shall imply customiz-

able solutions, be as sensor independent as possible, and be generally applica-

ble to similar application scenarios. Due to the complexity and diversity, deep

learning approaches are inevitable with the current state of the art.

Based on these requirements, the objective is to develop methods for the per-

ception that constitute a basic building block of an overall application for highly

automated or autonomous vehicles suitable for the real world. The main focus is on

a preferably efficient and real-time 3D object detection that estimates object poses

in real-world data with high accuracy and classifies them into categories such as car,

truck, pedestrian, and cyclist simultaneously. On top of this, the application to a

specific sensor set shall be analyzed, including the semi-automated construction of a

dataset suitable for evaluation. In contrast to state-of-the-art, there is a particular fo-

cus on unambiguous recognition of the orientation of objects, as autonomous vehicles

proactively plan ahead to maneuver in time at appropriate velocities based on this in-

formation. Most existing work and related metrics do not take this sub-problem into

account and are therefore limited to detecting an ambiguous angle without the exact

indication of the direction. Here, the current state-of-the-art should be extended by

a robust estimation of object orientations.

1.3 Contributions

This work contains the following original contributions:

• One of the first deep learning based real-time multi-class object detectors on

point clouds using novel layers and DNN architectures is presented [Simon et al.

2018]. Based on an extension from image processing, a novel loss in complex

space is developed to address ambiguities in regression of object orientation.

6

1.3. Contributions

The presented approach achieves very high efficiency with robust performance

on single frames evaluated on a benchmark dataset.

• The following enhancements are presented to increase further the detection

performance, and robustness [Simon et al. 2019]: by migrating to voxel-based

processing of point clouds, purely data-driven learning occurs, in contrast to

manually calculated input channels; pioneering work on feature level fusion of

camera and lidar to incorporate useful semantic features from camera; modular

multi-target feature tracking decoupled from plain network predictions stabiliz-

ing over time; novel scoring for a direct object to object comparison based on

affine transformations as an alternative to state of the art [Simon et al. 2019;

Yogamani et al. 2019] with higher efficiency and flexibility.

• A concept for efficient integration into an application-specific setup is intro-

duced. Semi automated use of the aforementioned object detector as well as

tracking in the human annotation process strongly increase the efficiency in ob-

taining specific training data. This approach has added value for potentially all

supervised learning methods. Additionally, it has been partially incorporated

into the publication of a dataset for research [Yogamani et al. 2019]. It under-

lines the generalization and flexibility of the approaches chosen in the context

of this work.

• For directed dataset augmentation, the first generative network for conditional

conversion of point clouds into synthetic image content is presented [Milz et al.

2019]. The main advantage over current state-of-the-art is the ability to improve

diversity where needed while maintaining realistic geometrical and semantic

constraints.

Parts of the described methods and included experiments have already been published

at International Conferences. Below is a listing of the publications with a brief

summary of their contents.

Publications directly related to this work

M. Simon, S. Milz, K. Amende, and H.-M. Groß (2018).
”
Complex-YOLO:

Realtime 3D Object Detection on Point Clouds“. In: European Conference on Com-

puter Vision (ECCV), pp. 1-14

and

7

Chapter 1. Introduction

M. Simon and S. Milz (2018).
”
Echtzeit 3D Objekterkennung mit Punktwolken“.

In: 34. VDI/VW Gemeinschaftstagung Fahrerassistenzsysteme und automatisiertes

Fahren 2018. VDI Verlag GmbH, pp. 125-136

To recognize objects in 3D space based on point clouds, an existing approach from

image processing was adapted and extended as presented in chapter 3. A particular

focus was on reliable regression of object rotations as well as efficiency using a single-

stage model to ensure real-time capabilities. As of March 2022, there have already

been more than 290 citations, demonstrating the notably strong influence on the

research community.

M. Simon, K. Amende, A. Kraus, J. Honer, T. Sämann, H. Kaulbersch,

S. Milz, and H.-M. Groß (2019).
”
Complexer-YOLO: Realtime 3D Object De-

tection and Tracking on Semantic Point Clouds“. In: IEEE International Conference

on Computer Vision and Pattern Recognition Workshops (CVPR)

The aforementioned model was improved and extended, e.g. by fusing lidar with a

camera incorporating semantic texturing features and Multi Object Tracking (MOT)

(chapter 4). In addition, an efficient score for comparing 3D objects was presented,

which highlighted individual components depending on use case and application (sec-

tion 4.3).

S. Milz, M. Simon, K. Fischer, M. Pöpperl, and H.-M. Groß (2019).

”
Points2Pix: 3D Point-Cloud to Image Translation using Conditional GANs“. In:

German Conference on Pattern Recognition (GCPR). vol. 3. 1, pp. 387-400

Designed an approach for conditional translation of point clouds into camera images

as presented in chapter 5. The method builds on a Generative Adversarial Network

(GAN) architecture and is able to generate realistic images for point clouds of single

objects, constraint with their viewpoint, and supervised with background patches in

order to control the visual appearance while keeping spatial properties. The author

of this work equally contributed.

8

1.3. Contributions

Publications as co-author directly related to this work

T. Sämann, K. Amende, S. Milz, C. Witt, M. Simon, and J. Petzold

(2018).
”
Efficient Semantic Segmentation for Visual Bird’s-eye View Interpretation“.

In: International Conference on Intelligent Autonomous Systems (IAS), pp.679-688

Improvements of the ENet model [Paszke et al. 2016] for semantic segmentation ap-

plied on fisheye camera images regarding runtime and efficiency have been published:

parallelization of the arg max layer on GPU, and channel pruning.

S. Yogamani, J. Horgan, G. Sistu, P. Varley, D. O. Dea, M. Uricar, S. Milz,

M. Simon, K. Amende, C. Witt, H. Rashed, S. Chennupati, S. Nayak,

S. Mansoor, X. Perrotton, and P. Perez (2019).
”
WoodScape: A multi-task,

multi-camera fisheye dataset for Autonomous Driving“. In: IEEE International Con-

ference on Computer Vision (ICCV), pp.9308-9318

A dataset for automotive fisheye cameras was published, covering, among others, nine

tasks like object detection, segmentation, depth estimation, or soiling detection. The

proposed semi-automated annotation toolchain subsection 5.3.3 was used to create

parts of the annotations. The author of this thesis has made particular contributions

to the chapter related to 3D object detection.

Further publications without a direct reference to this work

V. R. Kumar, S. Milz, C. Witt, M. Simon, K. Amende, and J. Petzold

(2018).
”
Near-field Depth Estimation using Monocular Fisheye Camera: A Semi-

supervised learning approach using Sparse LIDAR Data“. In: IEEE International

Conference on Computer Vision and Pattern Recognition (CVPR), Deep Vision: Be-

yond Supervised learning

and

V. R. Kumar, S. Milz, C. Witt, M. Simon, K. Amende, J. Petzold, S.

Yogamani, and T. Pech (2018).
”
Monocular fisheye camera depth estimation

using sparse lidar supervision“. In: IEEE 2018 21st International Conference on

Intelligent Transportation Systems (ITSC), pp. 2853-2858

9

Chapter 1. Introduction

A CNN model for near field depth estimation on monocular fisheye cameras was

published semi-supervised via lidar point clouds. A major focus was on occlusion

correction in point clouds resulting from varying sensor mounting positions.

K. Fischer, M. Simon, S. Milz, H.-M. Groß, and P. Mäder (2021).

”
StickyPillars: Robust and Efficient Feature Matching on Point Clouds using Graph

Neural Networks“. In: IEEE International Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 313-323

A DNN architecture composed of Graph Neural Network, attention mechanism, and

optimal transport problem for 3D feature matching on point clouds has been pre-

sented. The model is intended to be used as middleware for registration, odometry

estimation, and localization problems.

M. Reuse, M. Simon, and B. Sick (2021).
”
About the Ambiguity of Data Aug-

mentation for 3D Object Detection in Autonomous Driving“. In: IEEE International

Conference on Computer Vision Workshops (ICCV), pp. 979-987

Experiments with data augmentation for 3D object detectors on point clouds are

presented and compared for different network architectures and two datasets.

F. Poucin, A. Kraus, M. Simon (2021).
”
Boosting Instance Segmentation with

Synthetic Data: A Study to Overcome the Limits of Real World Data Sets“. In: IEEE

International Conference on Computer Vision Workshops (ICCV), pp. 945-953

A simple yet effective approach to the use of synthetic data during the training of a

network for the task of instance segmentation on images was presented.

K. Fischer, M. Simon, S. Milz, and P. Mäder (2022).
”
StickyLocalization:

Robust End-to-End Relocalization on Point Clouds using Graph Neural Networks“.

In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp.

2962-2971

A novel end-to-end Graph Neural Network-based solution for relocalization and loop

closing on point clouds was presented. Here, a descriptor-based feature pre-selection

and a distance-based matching loss were introduced.

10

1.4. Outline

Figure 1.4: An overview of this thesis at a glance: The main focus is on object
detection and tracking on point clouds based on artificial intelligence. Furthermore,
a concept for integration into an autonomous vehicle is presented, including the ac-
quisition and evaluation of application-specific data.

1.4 Outline

This thesis is structured as follows, and an overview is given in Figure 1.4.

In chapter 2, relevant theoretical background with fundamental deep learning

techniques and concepts are reviewed. Chapter 3 and 4 provide a detailed explanation

of the proposed object detector extended with camera features as well as modular

multi-target feature tracking and presents the evaluation results of the approaches

on a benchmark dataset. To demonstrate that the model is also suitable for an

application-specific setup, chapter 5 examines a concept for integration, including

the acquisition of a required dataset. Furthermore, the outputs are evaluated and

discussed in comparison to former results. To overcome the limits of datasets and their

costly acquisition, chapter 5 also contains the proposed method for conditional point

cloud to image translation to generate systematic synthetic data. Finally, chapter

6 summarizes the results of this work, and depicts the possibilities for future work.

The appendix contains more details on lidar technology, recent related datasets, and

more insights into the evaluation metrics used to validate the methods proposed in

this thesis.

11

Chapter 2

Background

The following chapter describes necessary foundations that are relevant for this work.

In section 2.1, the basics of deep learning for computer vision are described in a

nutshell. Section 2.2 introduces the fundamentals of deep generative models. This

is followed by a review of state of the art for object detection in computer vision in

section 2.3. Lastly, section 2.4 presents the basics of multi-object tracking.

2.1 Deep Neural Networks

Basic knowledge of Deep Neural Networks (DNNs) is necessary for understanding the

dissertation. Therefore, the core concept is briefly presented in this section.

A DNN is a powerful functional approximator that can define arbitrary differen-

tiable functions to predict outputs according to provided inputs. These computa-

tional models are inspired by the human brain named for the depth of layers nested

together in a structural way and optimized with respect to any differentiable loss

function using Stochastic Gradient Descent (SGD). As a result of a variety of archi-

tectures, layers, and advanced methods for optimization, as well as the possibility

to efficiently process huge datasets in a machine learning process, DNN models are

state of the art in many domains. The following subsections describe the essential

concepts of DNN model types and techniques related to this work.

2.1.1 Neural Networks

The term Neural Network (NN) is linked to information processing in biological sys-

tems, as NNs are composed of artificial neurons, conceptually derived from biological

neurons. Each neuron has inputs, such as features from external data or outputs from

other neurons, and produces a single output sent to multiple connected neurons. In

13

Chapter 2. Background

Figure 2.1: Left: Simplified arrangement of a synthetic multi-layer Neural Network
containing multiple connected neurons. Neurons in one layer are not connected to
each other, only to all neurons in the previous layer. Thus, efficient matrix multi-
plication can be used to calculate the activation of all neurons in one layer. Right:
Diagram for a single synthetic neuron inspired by the human brain. All inputs x are
multiplied with a weight w, summed up, and an additive bias parameter is added.
Finally, an activation function ϕ generates the output signal.

the simplest case, it has an input layer, output layer, and one or more hidden layers

with data flow only in a forward direction, as visualized in Figure 2.1. Here, neu-

rons in one layer are only connected to all neurons in the previous layer, sometimes

also called fully connected feed-forward NN or Multi Layer Perceptron (MLP). The

precise mathematical form for a layer is as follows:

f(x) = ϕ(Wx+ b) (2.1)

where a NN can be described as a repeated matrix multiplication with weight matrix

W combined with element-wise nonlinear activation function ϕ and additive bias b.

All network parameters are obtained efficiently with the technique of error backprop-

agation.

An activation function is a mathematical function added into a Neural Network in

order to enable the network to learn complex patterns. In this way, Neural Networks

are capable to learn the non linearity that is mostly required to solve real-world

problems. Activation functions used throughout this thesis are Rectified Linear Unit

(ReLu), leaky ReLu [Maas et al. 2013] and parameterized ReLu [He et al. 2015a], as

visualized in Figure 2.2. Those functions are common activation functions with piece-

wise linearity as well as they are very easy to compute. Unlike ReLu, the variants

also allow to let negative values pass through the network. The functions are defined

by the following equations:

14

2.1. Deep Neural Networks

−6 −4 −2 0 2 4 6

0

2

4

6

x

y
ReLu

−6 −4 −2 0 2 4 6

0

2

4

6

x

y

leaky ReLu

−6 −4 −2 0 2 4 6

0

2

4

6

x

y

PReLu, a=0.2

Figure 2.2: Plots of the commonly used ReLu activation functions.

ReLu(x) =max(0, x) =

{
x x ≥ 0

0 x < 0
(2.2)

leakyReLu(x) =max(0, x) + 0.01 ∗min(0, x) =

{
x x ≥ 0

0.01 ∗ x x < 0
(2.3)

PReLu(x) =max(0, x) + a ∗min(0, x) =

{
x x ≥ 0

a ∗ x x < 0
(2.4)

2.1.2 Convolutional Neural Networks

The methods developed in this thesis primarily use a Convolutional Neural Network

(CNN). Therefore this subsection briefly reviews the basic building blocks and con-

cepts.

For high dimensional inputs with spatial topology, like images or audio data, fully

connected NN are poorly suited since they have a huge number of parameters that

are optimized individually. Thus, these models tend to overfit and ignore the strong

spatial correlation included in the data. Therefore, specific CNN architectures were

designed to address this issue. As seen in Figure 2.3, a typical CNN is constructed of

multiple stacked convolutional layers followed by some sort of pooling to further com-

press the size of local feature maps. In this way, neurons in a CNN are only connected

to other neurons with respect to spatial relationships while sharing parameters with

a massive decrease in their number, which also helps to address overfitting.

At the core of a CNN are convolutional layers that convolve inputs with a set

of filters, as also displayed in Figure 2.3. Here the local neighborhood of the input

is processed in a sliding window manner parallelized over parallel GPU cores. Con-

sequently, the filter kernels are applied over the entire input given additional stride

15

Chapter 2. Background

Figure 2.3: Typical structure of a CNN for image classification: The network con-
sists of alternating layers of convolutional filter kernels and subsampling, such as
pooling or strided convolutions, to extract high dimensional feature maps. In this ex-
ample, a fully connected output layer predicts classification scores based on the last
feature maps.

and padding parameters. Similarly, pooling functions like maximum or average are

utilized in order to combine local features into a more compact feature representation

with respect to the underlying activation. Both elements can be flexibly combined

using different sets of parameters.

2.1.3 Channel Pruning

Since efficiency is one of the main requirements of this thesis, channel pruning is used

to optimize a network for a fusion of point clouds with semantic segmentation from

cameras mentioned in chapter 4. Therefore this section explains the necessary basics.

Although deep CNN architectures primarily operate with shared weights, they

require an extensive amount of computations depending on the number of layers and

input resolution. A common approach for structured simplification of such models is

compression with channel pruning, where the feature map width gets reduced in order

16

2.2. Deep Generative Models

to shrink the overall network [Wen et al. 2016]. Here, the number of input channels

gets reduced by using redundancy while the output is maintained. [He, Zhang, and

Sun 2017] proposed an iterative two-step algorithm to prune each layer of common

CNN architectures like deep residual networks [He et al. 2016]. First, channels are

selected for pruning according to the least absolute shrinkage and selection operator

regression [Tibshirani 1996]. Thereby, the goal is to retain as much information

as possible with fewer channels. Then, the output feature maps are reconstructed

with linear least squares. Corresponding channels and filters are removed once the

channels are selected and pruned. Furthermore, the filters in the previous layer used

to calculate the pruned features can also be removed. Overall, there is a trade-

off between acceleration and increase of error introduced by the degree of channel

pruning.

2.2 Deep Generative Models

In recent years, there has been a growing interest in NN based methods for Domain

Translation, which will be investigated in chapter 5 to provide an approach for di-

rected data generation. Therefore, this section classifies the related work and presents

the underlying state of the art on deep generative models.

Domain Translation can be categorized into the field of Domain Adaptation as

a branch of Transfer Learning. An overview is given in Figure 2.4. Given a source

domain DS and learning task TS, and a target domain DT and learning task TT ,

Transfer Learning aims to help improve the learning of the target predictive function

fT (•) in DT using the knowledge in DS and TS, where DS �= DT , or TS �= TT [Pan

and Yang 2009; Lin and Jung 2017]. A domain D consists of a feature space X and

a marginal probability distribution P (X), where X = {x1, . . . , xn} ∈ X and a task

can be denoted as T = {Y, f(•)}, where Y is the label space and f(•) the learned

objective predictive function [Pan and Yang 2009].

Domain Adaptation can be referred to as if the feature spaces are the same, while

the marginal probability distributions of source and target data are different. The

most dominating examples are Variational Autoencoder [Kingma and Welling 2013]

and a Generative Adversarial Network (GAN) [Goodfellow et al. 2014]. For instance,

[Chen et al. 2018; Inoue et al. 2018] both deal with the task of object detection

for different domains such as image style, illumination, or object appearance, where

training and test data come from different distributions. Adversarial adaptation

17

Chapter 2. Background

Transfer Learning

Inductive Transfer
Learning

Self-taught
Learning

Multi Task
Learning

Unsupervised
Transfer Learning

Transductive
Transfer Learning

Domain Adaptation

Domain Translation

Sample
Selection Bias

has target
domain labels has no labels

has source domain
labels only

has no source
domain labels

has source
domain labels

Figure 2.4: Classification of Domain Translation used to generate synthetic training
data from a learned data distribution as a subbranch of transfer learning. Figure taken
and modified from [Pan and Yang 2009].

either focuses on discovering domain invariant representations or mapping between

unpaired domains.

Finally, Domain Translation, sometimes also referred to as domain mapping, deals

with the problem of finding a meaningful correspondence between two domains to

get such mapping. The following subsections describe the basics of GANs as well as

Image to Image Translation. More in-depth information related to Transfer Learning

can be found in [Pan and Yang 2009; Sun et al. 2015; Wilson and Cook 2018].

2.2.1 Generative Adversarial Networks

Since GAN architectures are state of the art for Domain Translation, this subsection

briefly introduces the core concepts.

The aim of GANs is to generate new samples based on a learned variational

distribution in data. Here, these networks use an adversarial training process inspired

by game theory to learn such distributions. Initially proposed by [Goodfellow et al.

2014], GANs consist of two competing NNs trained in a minimax game. A generator

G is trained to generate realistic samples and additionally takes random noise as

input. Here, the aim is to learn a distribution in the target domain, i.e. to generate

diverse outputs. On the other hand, a discriminator D takes the generated samples

as input and tries to distinguish real from fake samples. Therefore, the generator

needs to be able to learn the distribution of the training data, and the discriminator

needs to be able to classify. Despite tremendous results, GAN variants usually suffer

from several problems. Often the generator keeps generating the same type of style to

fake the discriminator, called mode collapse or training instability. Additionally, the

18

2.2. Deep Generative Models

random input noise can be suppressed, resulting in a lack of diversity or a possible

lack of regularization with the target domain [Lee et al. 2018]. The original GAN

architecture has no control over the generated outputs due to the random input noise.

Therefore, [Mirza and Osindero 2014] introduced ConditionalGANs, where additional

data is fed as a condition onto both the generator and discriminator. Given this setup,

[Regmi and Borji 2018] were able to generate synthetic data, [Hoffman et al. 2018]

developed a model for Domain Adaptation, and [Gonzalez-Garcia et al. 2018] worked

on cross-domain disentanglement based on Image to Image Translation.

2.2.2 Image to Image Translation

The developed method from chapter 5 examines a method for automatically generat-

ing image data from point clouds for training while trying to keep specific properties

and attributes. Therefore, the underlying fundamentals are explained as follows.

Compared to image generation, where images are directly generated from random

noise, image translation generates an image from another existing image, modifying

specific attributes like meaningful features or style. Hence, it can be formulated as a

disentanglement problem, separating the content which needs to be preserved across

domains from appearance to be changed. In [Isola et al. 2017], a paired image to image

translation maps an image from the input to the output domain, requiring pairs of

corresponding images in different domains for training to formulate a reconstruction

loss. The structure is penalized at the scale of image patches according to [Li and

Wand 2016]. In general, a mapping function G called generator, based on a condition

c and a random noise input z generates the output image y:

G : {c, z} → y y ∈ R
w×h×3 c =

⎧⎨
⎩

∈ R → label to image
∈ R

t → text to image
∈ R

w×h×3 → image to image
(2.5)

A competing discriminator D tries to distinguish between real images and created

fake ones. Derived from this setup, the loss can be described as:

LcGAN(G,D) = Ec,y{log(D(c, y))}+ Ec,z{log(1−D(c, G(c, z))} (2.6)

In a follow-up, [Wang et al. 2018] increased the resolution of the generated output

with a coarse to fine generator and mapped among multiple domains [Choi et al.

2018].

In contrast, unsupervised approaches for unpaired settings were proposed based

on cycle consistency [Zhu, Park, et al. 2017; Kim et al. 2017; Yi et al. 2017]. Here,

19

Chapter 2. Background

the reconstruction of the inverse mapping from the output back to the input do-

main is checked. Other autoencoder-based models like [Liu et al. 2017; Huang, Liu,

Belongie, et al. 2018] learn a shared latent representation using two encoders, two

generators, and two discriminators with shared weights of the encoders. Furthermore,

[Tripathy et al. 2018] trained with paired and unpaired settings simultaneously and

[Zhu, Zhang, et al. 2017; Almahairi et al. 2018; Lee et al. 2018; Liu et al. 2019] intro-

duced extensions for multiple domains as well as multi-modal synthesis. Additionally,

detailed improvements and extensions were presented in [Tang et al. 2019; Zhang,

Pfister, et al. 2019; Gokaslan et al. 2018; Wu et al. 2019; Liang et al. 2018].

2.3 Object Detection in Computer Vision

In chapter 3, a model for 3D object detection on point clouds is developed based on

recent advances in computer vision. Therefore this section very briefly reviews the

related state of the art.

The term object detection refers to a challenging fundamental problem in com-

puter vision. For several decades there has been an active area of research in order to

localize and classify instances of objects according to given categories. An overview

of 2D object detection is given in Figure 2.5, starting from traditional methods shown

in green, up to more recent approaches based on DNNs. Milestones up to the time

of the work of this thesis are visualized in orange, and more recent works are shown

in blue, after the dashed line.

First traditional methods like [Viola and Jones 2001; Viola and Jones 2004] are

based on handcrafted features like [Lowe 1999] with sophisticated feature represen-

tations on sliding windows. For a long time the main bottleneck was limited com-

putational resources. After AlexNet [Krizhevsky et al. 2012] became public in 2012,

CNNs repeatedly outperformed all previous results aided by superior computers with

parallel processing on GPUs and increasingly large datasets. During this period

of rapid evolution, various architectures were developed with increasing depth and

enhanced methods for training and regularization. [Simonyan and Zisserman 2015]

proposed to increase the number of layers with multiple very small 3× 3 convolution

filters called VGG. Inspired by the breakthrough in image classification, the family

of region-based CNNs [Girshick et al. 2014; Girshick 2015; Ren et al. 2015] emerged

with a Region Proposal Network (RPN). Here, region bounds and scores at each

location on a regular grid are simultaneously predicted using multi scale anchors.

This is implemented as a sliding window with n × n convolution followed by two

20

2.3. Object Detection in Computer Vision

S
IF
T

19
99

C
as
ca
d
es

20
01

H
O
G

20
05

S
U
R
F

20
06

A
le
x
N
et

20
12

R
C
N
N

20
14

F
as
t
R
C
N
N

20
15

F
as
te
r
R
C
N
N

3D
O
P

V
G
G

G
o
og
L
eN

et

Y
O
L
O

R
es
N
et

20
16

M
on

o3
D

S
S
D

M
S
-C

N
N

Y
O
L
O
v
2

20
17

D
en
se
N
et

M
as
k
R
C
N
N

M
ob

il
eN

et

R
es
N
eX

t

R
et
in
aN

et

Y
O
L
O
v
3

20
18

M
ob

il
eN

et
v
2

C
as
ca
d
e
R
C
N
N

C
or
n
er
N
et

G
ro
u
p
N
or
m

20
19

C
en
te
rN

et

R
es
2N

et

C
as
ca
d
e
R
P
N

F
re
eA

n
ch
or

C
as
c.

M
as
k
R
C
N
N 20
20

E
ffi
ci
en
tD

et

D
E
T
R

D
ef
or
m
.
D
E
T
R

D
y
n
am

ic
R
C
N
N

G
en
.
F
o
ca
l
L
os
s

C
en
tr
ip
et
al
N
et

20
21

Y
O
L
O
F

P
V
T

S
ca
le
d
Y
O
L
O
v
4

S
w
in

T
ra
n
sf
or
m
er

F
ig
u
re

2
.5
:
T
im

el
in
e
of

im
po
rt
an

t
m
il
es
to
n
es

in
2D

ob
je
ct

de
te
ct
io
n
(t
ra
di
ti
on

al
m
et
ho
ds

in
gr
ee
n
,
re
la
te
d
m
et
ho
ds

in
or
an

ge
,

an
d
m
et
ho
ds

u
po
n
th
is

w
or
k
in

bl
u
e,

ad
di
ti
on

al
ly

se
pa
ra
te
d
by

th
e
da

sh
ed

li
n
e)
:
S
IF

T
[L
ow

e
19

99
],
C
as
ca
de
s
[V

io
la

an
d
J
on

es
20

01
],
H
O
G

[D
al
al

an
d
T
ri
gg
s
20

05
],
S
U
R
F
[B
ay

et
al
.
20

06
],
A
le
xN

et
[K

ri
zh
ev
sk
y
et

al
.
20

12
],
R
C
N
N

[G
ir
sh
ic
k
et

al
.
20

14
],

F
as
t
R
C
N
N

[G
ir
sh
ic
k
20

15
],
F
as
te
r
R
C
N
N

[R
en

et
al
.
20

15
],
3D

O
P
[C

he
n
et

al
.
20

15
],
V
G
G

[S
im

on
ya
n
an

d
Z
is
se
rm

an
20

15
],

G
oo
gL

eN
et

[S
ze
ge
dy

et
al
.
20

15
],
Y
O
L
O

[R
ed
m
on

et
al
.
20

16
],
R
es
N
et

[H
e
et

al
.
20

16
],
M
on

o3
D

[C
he
n
et

al
.
20

16
],
S
S
D

[L
iu

et
al
.
20

16
],
M
S
-C

N
N

[C
ai

et
al
.
20

16
],
Y
O
L
O
v2

[R
ed
m
on

an
d
F
ar
ha

di
20

17
],
D
en

se
N
et

[H
u
an

g
et

al
.
20

17
],
M
as
k
R
C
N
N

[H
e,

G
ki
ox
ar
i,
et

al
.
20

17
],
M
ob
il
eN

et
[H

ow
ar
d
et

al
.
20

17
],
R
es
N
eX

t
[X

ie
et

al
.
20

17
],
R
et
in
aN

et
[L
in
,
G
oy
al
,
et

al
.
20

17
],
Y
O
L
O
v3

[R
ed
m
on

an
d
F
ar
ha

di
20

18
],
M
ob
il
eN

et
v2

[S
an

d
le
r
et

al
.
20

18
],
C
as
ca
de

R
C
N
N

[C
ai

an
d
V
as
co
n
ce
lo
s
20

18
],
C
or
n
er
N
et

[L
aw

an
d
D
en

g
20

18
],
G
ro
u
p
N
or
m

[W
u
an

d
H
e
20

18
],
C
en

te
rN

et
[D

u
an

et
al
.
20

19
],
R
es
2N

et
[G

ao
et

al
.
20

19
],
C
as
ca
de

R
P
N

[V
u

et
al
.
20

19
],
F
re
eA

n
ch
or

[Z
ha

n
g,

W
an

,
et

al
.
20

19
],
C
as
ca
de

M
as
k
R
C
N
N

[C
ai

an
d
V
as
co
n
ce
lo
s
20

19
],
E
ffi
ci
en

tD
et

[T
an

et
al
.

20
20

],
D
E
T
R

[C
ar
io
n
et

al
.
20

20
],
D
ef
or
m
ab
le

D
E
T
R

[Z
hu

et
al
.
20

20
],
D
yn

am
ic

R
C
N
N

[Z
ha

n
g
et

al
.
20

20
],
G
en

.
F
oc
al

L
os
s

[L
i
et

al
.
20

20
],
C
en

tr
ip
et
al
N
et

[D
on

g
et

al
.
20

20
],
Y
O
L
O
F
[C

he
n
et

al
.
20

21
],
P
V
T

[W
an

g,
X
ie
,
et

al
.
20

21
],
S
ca
le
d
Y
O
L
O
v4

[W
an

g,
B
oc
hk
ov
sk
iy
,
et

al
.
20

21
],
S
w
in

T
ra
n
sf
or
m
er

[L
iu

et
al
.
20

21
].

21

Chapter 2. Background

sibling fully connected 1 × 1 convolution layers, one for the regression parameters

and one for the classification scores, respectively. In parallel, You Only Look Once

(YOLO) [Redmon et al. 2016] implemented the regression of spatially separated 2D

bounding boxes associated with class probabilities in a single network. Therefore a

CNN generates downsampled features over the whole image and predicts all related

regression targets for each cell directly from a last fully connected layer. The unified

multi-scale network from [Cai et al. 2016] tried to cover objects at many scales using

CNNs to exploit feature maps of several resolutions. Here, the aim is to have vari-

able sizes for the receptive fields to match various object sizes. Similarly, [Liu et al.

2016] discretized a set of default anchors over different aspect ratios and scales and

predicted scores for the presence of objects for each default box as well as offsets for

fine-grained, precise predictions. Furthermore, [He et al. 2016] introduced a learning

framework with shortcut connections between pairs of convolutional layers, namely

ResNet. Inspired by updates from prior work, [Redmon and Farhadi 2017] proposed

YOLOv2, sometimes also called YOLO9000, with anchors similar to Faster RCNN

[Ren et al. 2015] and multi-scale and joint training using a hierarchical view of object

classification to make use of classification datasets. In a follow-up, the concepts of

residual learning from [He et al. 2016], and multi-scale feature pyramids from [Lin,

Dollár, et al. 2017], were integrated to form YOLOv3 [Redmon and Farhadi 2018].

Other methods aim at higher efficiency, e.g. [Howard et al. 2017] with depthwise

separable convolution for efficiency, [Sandler et al. 2018] with an inverted residual

block with the linear bottleneck to further reduce computations and [Xie et al. 2017]

with a simpler and more efficient convolutional architecture based on inception-like

blocks from [Szegedy et al. 2015]. RetinaNet [Lin, Goyal, et al. 2017] tackles the

imbalance problem of foreground and background during object detection with a

reshaped cross-entropy loss, called focal loss. Unlike most other approaches where

batch normalization [Ioffe and Szegedy 2015] is used, [Wu and He 2018] propose group

normalization. Here feature channels are divided into groups. Within each group the

mean and variance are computed and used for normalization. Instead of directly

regressing bounding boxes, [Law and Deng 2018] formulates them as a pair of key

points without anchors for dense prediction.

More recent work, which could not be considered for the relevant problems after

the publications [Simon et al. 2018; Simon et al. 2018], can be structured as follows.

The dashed line in Figure 2.5 indicates this split. Several methods like [Cai and Vas-

concelos 2018; Vu et al. 2019; Cai and Vasconcelos 2019; Zhang et al. 2020] operate in

a multi-stage fashion, first predicting coarse object proposals followed by a sequential

22

2.4. Multi Object Tracking

refinement stage. Following [Law and Deng 2018], in [Duan et al. 2019] objects are

modeled as a set of key points using a multi-task loss for all other regression targets

to form bounding boxes. [Dong et al. 2020] introduced a mechanism to shift predicted

key points of object corners and to perform corner matching based on both the pre-

dicted and shifted corners. As alternatives, [Li et al. 2020] presented a loss for joint

representation of classification and localization parameters, while [Zhang, Wan, et al.

2019] used an object anchor matching for flexible anchor assignment and learning. In

contrast, multiple approaches are proposed for better efficiency based on multi-scale

features [Gao et al. 2019; Tan et al. 2020; Wang, Bochkovskiy, et al. 2021]. In addi-

tion, [Chen et al. 2021] proposed a dilated encoder and uniform matching based on k

nearest neighbors to solve the imbalance of positive anchors. Recently transformers

[Vaswani et al. 2017] have also found their way into computer vision. Here, [Carion

et al. 2020] construct a transformer encoder-decoder architecture with parallel fea-

ture decoding and formulate a set-based global loss with bipartite matching. In a

follow-up [Zhu et al. 2020], the attention modules were restricted to key sampling

points around a reference point. Additionally, [Liu et al. 2021] and [Wang, Xie, et al.

2021] proposed transformer-based backbones with patch wise feature embedding.

2.4 Multi Object Tracking

In chapter 4, a Multi Object Tracking (MOT) concept will be added to the developed

single frame object detector on point clouds from chapter 3. Therefore this section

reviews the related methods used for MOT.

The major goals of MOT, or Multi Target Tracking (MTT), are to detect and

localize object instances of interest under the presence of noise-corrupted data from

sensors and unknown origin while filtering out sensor noise and assigning the same

instances to unique target tracks over a certain period of time. Due to the complexity

of this task and its usefulness for real-world applications, MOT is one of the most

active research areas. There are various approaches with different strategies. On

the one hand, sequence learning methods were proposed following the great success

of DNNs. Unlike MLPs, a Recurrent Neural Network (RNN) makes use of previous

outputs to be reused as inputs while having hidden states. Here, historical informa-

tion is processed by shared weights across time. Drawbacks are slower processing

and challenges with the training of particularly deep networks due to vanishing or

exploding gradients. Therefore, Gated Recurrent Unit (GRU) [Chung et al. 2014]

and Long Short Term Memory (LSTM) [Hochreiter and Schmidhuber 1997] added

23

Chapter 2. Background

layers as gates which feature subtasks such as a) update: how much matters the past

now? b) relevance: keep or drop previous information? c) forget: delete a cell?, and

d) output: how much to output to a cell? Training these networks however remains

challenging, especially for the complex task of MOT. Hence, there are only a few

approaches such as [Ning et al. 2017] or [Kahou et al. 2017].

On the other hand, the task of MOT can be solved in two phases. First, objects of

interest are detected by an algorithm, and second, identical objects are associated and

modeled over time, commonly based on Bayesian statistics. Compared to end-to-end

learned methods, this approach offers the opportunity for step-wise abstraction and

the incorporation of rules or assumptions based on physics and expert knowledge.

Natural processes like birth, death, or the motion of objects and their states can be

modeled independently via probabilities using a sequence of measurements. Thus,

tracking by detection has been widely explored and can be categorized into online

and offline tracking. In contrast to online methods, offline tracking makes use of

global information about the future, e.g. like [Lee et al. 2016; Frossard and Urtasun

2018], which makes them unsuitable for real-time applications. According to [Vo et al.

2015], the most popular methods can be clustered into the Joint Probabilistic Data

Association Filter (JPDAF) [Bar-Shalom et al. 2011], Multiple Hypothesis Tracking

(MHT) [Blackman and Popoli 1999] and Random Finite Set (RFS) based filters

[Mahler 2014]. In many cases, a Kalman filter [Kalman 1960] is used for single state

estimation as a closed-form solution to Bayes recursion for linear cases. Similarly,

several filter approximations have been proposed to solve nonlinear problems [Julier

and Uhlmann 1997; Doucet et al. 2000; Wan and Van Der Merwe 2000; Ristic et al.

2003].

As an emerging paradigm, the MOT problem can be formulated as a dynamic

multi-target state estimation, in which the multi-target state is modeled as RFS. Fol-

lowing this approach, [Reuter et al. 2014] focuses on highly efficient approximations

of multi-object states based on a Labeled Multi-Bernoulli Random Finite Set (LMB

RFS). A coordinated turn model solves the here considered problem of tracking ma-

neuvering targets, according to [Roth et al. 2014]. The basics of LMB RFS are briefly

described in the following subsection. At the same time, subsection 2.4.2 reviews the

basics of an Unscented Kalman Filter (UKF) that is used in this work to estimate

object states with the nonlinear coordinated turn motion. Finally, a brief review of

the coordinated turn model can be found in subsection 2.4.3.

24

2.4. Multi Object Tracking

Figure 2.6: Simplified illustration of the basics of multi-object tracking via Labeled
Multi-Bernoulli Random Finite Set (LMB RFS): Several sets of hypotheses are gen-
erated, maintained or rejected at each time step t in order to approximate the multi-
target distribution based on the individual measurements and modeled associations.
Here, only two sets are visualized in blue and green to highlight the different cases:
a) a measurement where a target hypothesis can be associated, b) a target hypothesis
without an associated measurement, c) measurements with ambiguous association,
and d) clutter from noisy measurements.

2.4.1 Multi Object Tracking via Labeled Multi- Bernoulli
Random Finite Sets

Since efficiency and real-time capability are major requirements in this work, the

aforementioned developed tracking concept is based on Labeled Multi-Bernoulli Ran-

dom Finite Set (LMB RFS) [Reuter et al. 2014]. The basic idea is illustrated in

Figure 2.6 with the help of a small example, and relevant equations are described as

follows, reproduced from [Simon et al. 2019].

In order to approximate the underlying Bayes multi-target filter, [Reuter et al.

2014] proposed a Labeled Multi-Bernoulli Filter to propagate the posterior density

of the multi-target state recursively in time.

Let the state xi
t of the ith target at discrete time t be a random variable. The set

of all targets at time step t is a subset of the state space X denoted by:

Xt =
{
xi
t

}Nx
t

i=1
⊂ X (2.7)

In contrast, the set cardinality Nx
t = |Xt| is a discrete random variable at time t.

The set of all measurements at time t is again modeled as a random set with set

25

Chapter 2. Background

cardinality N z
t = |Zt| and denoted by:

Zt =
{
zit
}Nz

t

i=1
⊂ Z (2.8)

Individual measurements zit are either target-generated or clutter and the true origin

is assumed unknown. Next, the set of all measurements including the time step t is:

Zt =
t⋃

τ=1

Zτ (2.9)

The particular choice of indices is arbitrary, as both the above sets are without

order. Targets and measurements are modeled as LMB RFS as proposed in [Reuter

et al. 2014; Bryant et al. 2018]. A Bernoulli RFS is a set that is either empty with

probability 1− r or contains a single element. Here, the probability density may be

written as:

π(X) =

{
1− r, if X = ∅,
r p(x), if X = {x} (2.10)

with p(·) a spatial distribution on X, as described in [Reuter et al. 2014]. A Multi-

Bernoulli RFS is then the union of independent Bernoulli RFSs, i.e. XMB =
⋃

i X
(i)
B .

In essence, a Multi-Bernoulli RFS is well-defined by the parameters {r(i), p(i)}i.
Labeled RFSs allow the estimation of both the targets state and their individual

trajectories. For this reason the target state is extended by a label l ∈ L, i.e. each

single target state is given by x = (x, l) and in turn the multi-target state X lives on

the product space X× L with L a discrete space. Note that this definition does not

enforce the labels l to be distinct. [Vo and Vo 2011] introduced the so-called distinct

label indicator:

Δ(X) := δ|X|(|L(X)|) (2.11)

that enforces the cardinality of X to be identical to the cardinality of the projection

L(X) = {L(x) : x ∈ X}, L(x) = l. Together with Equation 2.10, it follows that the

probability density of a LMB RFS is well-defined by the parameter set {r(l), p(l)}l∈L
and the cardinality distribution yields:

ρ(n) =
∏
i∈L

(1− r(i))
∑

L∈Fn(L)

∏
l∈L

r(l)

1− r(l)
(2.12)

26

2.4. Multi Object Tracking

with Fn(L) the set of all subsets of L containing n elements. The core objective of

the multi-target tracking is to approximate the multi-target distribution ft|t(Xt|Zt)

in each time step t. This is achieved with the multi-target Bayes filter:

ft|t(Xt|Zt) =
ft(Zt|Xt)ft|t−1(Xt|Zt−1)∫
ft(Zt|Xt)ft|t−1(Xt|Zt−1)δXt

(2.13)

and the Chapman-Kolmogorov prediction:

ft+1|t(Xt+1|Zt) =

∫
ft+1|t(Xt+1|Xt)ft|t(Xt|Zt)δXt (2.14)

with ft(Zt|Xt) the multi-target measurement set density and ft+1|t(Xt+1|Xt) the

multi-target transition density.

2.4.2 Unscented Kalman Filter

In this work, the state of an object is modeled as a normal distribution. However,

since the coordinated turn motion model is nonlinear, the UKF [Julier and Uhlmann

1997] is used to approximate the transition in the Bayes theorem efficiently.

An UKF is a recursive state estimator that takes the system state as a probability

distribution. The state xt can contain non-observable variables that are estimated

by the filter based on normal distributions. For this purpose, the filter establishes a

connection between the state estimation bel(xt), the measurement data zt, and the

control ut via a system model. The current state estimate bel(xt) = p(xt|z1:t, u1:t) is

recursively derived from the previous estimate bel(xt−1) and the current observation

zt. The term ut can be ignored because the system does not know the control input.

While the initial Kalman filter [Kalman 1960; Barker et al. 1995] is only a closed-form

solution for linear systems with additive Gaussian noise, the UKF approximates the

n dimensional Gaussian distribution using a set of specific weighted samples referred

to as sigma points {Xi}2ni=0 and the actual mean x̂. The Unscented Transformation

therefore captures and transforms mean and covariance using the weighted sigma

points. The sigma points and corresponding weights can be denoted as:

X0 = x̂ (2.15)

Xi = x̂+
(√

(n+ λ)P
)
i
, i = 1, ..., n (2.16)

Xi = x̂−
(√

(n+ λ)P
)
i−n

, i = n+ 1, ..., 2n (2.17)

27

Chapter 2. Background

Figure 2.7: A simple sample for mean and covariance propagation based on the
Unscented Transformation (UT) in a 2-dimensional system: Only 5 sigma points
Xi are required to estimate the underlying Gaussian distribution accurately. Further
details are shortly described in subsection 2.4.2. Figure taken and modified from [Wan
and Van Der Merwe 2000].

where λ = α2(n+ κ)− n, such that α and β describe the spread of the sigma points

with respect to the mean. Every sigma point has two weights:

Wm
0 =

λ

n+ λ
(2.18)

W c
0 =

λ

n+ λ
+ (1− α2 + β) (2.19)

Wm
i = W c

i =
1

2(n+ λ)
, i = 1, ..., 2n (2.20)

where Wm
i is used to calculate the mean and W c

i to reconstruct the covariance. Based

on these sigma points, a nonlinear function f(·) is applied to extract the reproduced

mean x̂′ and covariance P′ with additional predictive noise Qt:

x̂′ =
2n∑
i=0

Wm
i f(Xi) (2.21)

P′ =
2n∑
i=0

W c
i

(
f(Xi)− x̂′)(f(Xi)− x̂′)T +Qt (2.22)

28

2.4. Multi Object Tracking

An example is shown in Figure 2.7. Following this, the update may be stated as:

ẑt =
2n∑
i=0

Wm
i h(Xi) (2.23)

St =
2n∑
i=0

W c
i

(
h(Xi)− ẑt

)(
h(Xi)− ẑt

)T
+Rt (2.24)

Ct =
2n∑
i=0

W c
i

(Xi − x̂′)(h(Xi)− ẑt
)T

(2.25)

Kt = CtS
−1 (2.26)

x̂t = x̂′ +Kt(zt − ẑt) (2.27)

Pt = P′ −KtStK
T
t (2.28)

where ẑt is the predicted observation at state t, St the related covariance and Rt

additive measurement noise. Thus, the Kalman gain Kt is calculated based on the

cross-covariance Ct between the predicted state and predicted observation. Finally,

mean and covariance are updated.

2.4.3 Coordinated Turn Motion Model

As the performance of an UKF can show a significant dependence on the choice of

state coordinates, [Roth et al. 2014] proposed to use Coordinated Turn models in

order to track maneuvering targets. Therefore the following basics are reproduced

from [Roth et al. 2014]. Coordinated Turn models have their origin in curvilinear

particle motion [Li and Jilkov 2003] and describe a horizontal motion at nearly con-

stant speed along with circle segments. Hence, a target can be described by a position

with respect to a fixed Cartesian frame x and y, a velocity vector v and heading angle

φ = atan2(vy, vx). In this way, the yaw rate is defined as the time derivative of φ with

φ̇ = dφ
dt
. Thus, the target state is defined by xt =

[
x y v h φ̇

]T
. Moreover, targets can

be driven with linear (longitudinal) a and rotational acceleration α, corresponding to

inputs of the dynamic rotation (steering), acceleration, and deceleration of objects.

Here, speed and yaw rates are modified. An illustration of the involved parameters

is given in Figure 2.8.

In contrast to linear Coordinated Turn variants with known yaw rates, nonlinear

ones allow for varying speed as well as yaw rates [Li and Jilkov 2003], as required for

this work. However, they imply the use of a nonlinear transition function in the state

estimation, e.g. given an UKF. The transition for a target state at time t to the next

time step t+ 1 is defined by:

29

Chapter 2. Background

Figure 2.8: Illustration of state components of the Coordinated Turn model: The
target object is depicted in the xy plane, with the magnitude of a velocity vector v and
heading angle φ. The yaw rate φ̇ can be denoted as the time derivative of the heading
angle. Here, three paths with different yaw rates are outlined (dotted lines).

xt+1 = f(xt) +G(xt)wk (2.29)

Assuming a Cartesian velocity, the discrete-time state estimation f(xt) with sample

time T is given by:

f(xt) =

⎡
⎢⎢⎢⎢⎢⎢⎣

x+ 2v
φ̇
sin(φ̇T

2
) cos(h+ φ̇T

2
)

y + 2v
φ̇
sin(φ̇T

2
) sin(h+ φ̇T

2
)

v

h+ φ̇T

φ̇

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.30)

Then, the additive noise mapping of individual state parameters G(xt) can be denoted

as:

G1 =

⎡
⎢⎢⎢⎢⎣

0 0
0 0
T 0
0 0
0 T

⎤
⎥⎥⎥⎥⎦ , G2 =

⎡
⎢⎢⎢⎢⎣

T 2

2
cos(h) 0

T 2

2
sin(h) 0
T 0

0 T 2

2

0 T

⎤
⎥⎥⎥⎥⎦ (2.31)

with noise sampled from the acceleration inputs w = [a α]T . Here, a and α are treat

as uncorrelated random variables with zero mean and standard deviations σa and σα

in order to obtain a stochastic motion model with uncertainties from the unknown

parameters.

30

Chapter 3

Single Shot 3D Object Detection
on Point Clouds

Object detection is a key problem in robotics and computer vision as it has many

applications, including Autonomous Driving. This task aims to automatically lo-

calize and classify instances of objects that semantically belong together. Objects

are mainly described with simple geometric shapes, such as cuboid bounding boxes.

However, in particularly complex scenarios from Autonomous Driving, it may be ex-

tremely challenging due to diversity, visibility, or unforeseen environmental changes.

In addition, a distinction is often introduced between static, e.g. vehicles permanently

parked at the roadside, and dynamic moving objects, in order to predict future mo-

tion of other road participants. This is mainly realized via tracking concepts with

the addition of the temporal domain. However, this chapter will first present a novel

single frame object detector on point clouds without tracking as a technical baseline

for the following chapter 4, where a tracking concept is added.

Through preprocessing into a regular grid structure, input points can be processed

by Convolutional Neural Network (CNN) architectures utilizing recent advances from

image processing. The resulting output features are processed by a specific sub-

network, which directly outputs objects in one forward pass. Furthermore, the overall

network is trained with a new kind of loss. It achieves competing results to state of

the art proven on a benchmark dataset while being much faster and computationally

more efficient. The content is derived primarily from the published work on [Simon

et al. 2018] and [Simon and Milz 2018]. The first section motivates the usefulness

and explains the technical difficulties. Section 3.2 summarizes methods from state-

of-the-art related to object detection on point clouds relevant for this work. The

focus of this chapter is section 3.3, which presents the model architecture as well as

all related innovations in the training procedure for optimization and evaluations on

31

Chapter 3. Single Shot 3D Object Detection on Point Clouds

a benchmark dataset. Afterwards, section 3.5 provides an update on state of the

art with more recent approaches that were developed after the publications in this

chapter. Finally, section 3.6 gives a summary.

3.1 Motivation

Among other perception tasks like classification or pointwise semantic segmentation,

object detection, sometimes also called recognition, has some particular advantages

for use in autonomous vehicles, as it can be used directly for downstream modules such

as tracking without extensive further processing. Objects in 3D space are typically

described as oriented bounding boxes, where additional information, e.g. categories

or flags like static vs. dynamic, can be assigned. In this way, all relevant information

is wrapped in a simplified native and highly efficient fashion.

Object detection on point clouds covering public driving scenarios is very chal-

lenging due to many aspects. First of all, inferred coherent parameters, like a pose,

dimensions, category, all have completely different meanings, value ranges, and scal-

ing. This complicates the regression significantly because all those parameters are

combined to form a single object. On top, the number of objects in a scene is un-

known and may vary dramatically. As already mentioned in 1.1, lots of challenges

and difficulties come from the use case or rather the application itself. Object view-

points have a wide variety, with point clouds capturing only the front surfaces. They

can be found throughout the region of interest in variable quantities. Plus, there

may be partial occlusion, further increasing the diversity. On the other hand, the

objects of interest are already very dissimilar, resulting in strong inter- and intraclass

variations. A huge truck on the road needs to be recognized just like a small child

on the sidewalk. Accompanying this, environmental factors such as weather condi-

tions, daytime variations, or material properties affect the sensor’s perception, also

generating sensor noise. Ultimately, runtime and hardware requirements are severely

limited, so the highest efficiency must be achieved.

In recent years, deep learning has also revolutionized object detection methods.

The high level of attention in the research community has led to breakthroughs

in image processing, especially which have already been widely used in real-world

applications, such as Video Surveillance, Robot Vision, and Autonomous Driving

prototypes. All of this forms the basis to be transferred to point clouds. Particularly

because more and more public datasets now contain not only large-scale point clouds

as a reference to camera images but also target dedicated tasks operating on point

32

3.2. Related Work

clouds or fusion concepts in order to use an alternative modality complementary

to a camera. According to the advantages mentioned above, 3D object detection

is among them as one of the most complex tasks with great potential for several

real-world applications.

3.2 Related Work

This section reviews the state-of-the-art related to 3D object detection on point clouds

up to the time of the work of this chapter. Further work done after or in parallel

with the publication can be found in section 3.5.

Most recent approaches are built on findings from image processing utilizing CNN

architectures. However, the naive transfer of 2D object detectors based on image

inputs to the point cloud domain lacks several aspects. On the one hand, the third

spatial dimension results in a computational burden while increasing the size of the

inputs, i.e. the memory consumption grows. On the other hand, processing with CNN

is highly inefficient since point clouds are usually very sparse with unequal spatially

distributed local densities. The first approaches explored voxelization. [Zeng Wang

and Posner 2015] use a sliding window in all three dimensions over 3D voxels with

fixed dimensional feature vectors consisting of points, or zero. Voting based on a

classifier, e.g. Support Vector Machine (SVM), scores objects of interest at each

position. This voting is repeated for several discrete orientation steps to deal with

rotations. Overlapping predictions are suppressed via Non Maximum Suppression

(NMS) [Neubeck and Van Gool 2006]. Following [Zeng Wang and Posner 2015],

[Engelcke et al. 2017] proposed a CNN based on sparse 3D convolutions applied

to all non-empty voxel cells in a sliding window manner. Furthermore, fixed-size

bounding boxes were assumed to remove the need to regress object dimensions. Thus,

such networks are designed to be class-specific. [Li 2017] used the typical encoding

decoding scheme with strided 3D convolutions to generate two output branches: an

objectness map predicting if a region belongs to an object and a bounding box map

predicting all regression parameters defining bounding boxes.

Another useful representation of point clouds, as range often called front view

images, was explored in [Li et al. 2016]. First, a conversion is done using cylindrical

projection where all pixels of a 2D representation are filled with the distance in the

ground plane and their height value. Similar to [Li 2017], the processing is done via

CNN, whereas bounding boxes are encoded as 24D vectors containing eight corner

points.

33

Chapter 3. Single Shot 3D Object Detection on Point Clouds

More recently, multiple fusion approaches with heavy processing pipelines combine

point clouds with camera images. In [Chen et al. 2017], point clouds are encoded as

multi-view representation with a birdview, containing height, intensity, and density

features, and front view with height, distance, and intensity features. Inspired by [Ren

et al. 2015] and [Simonyan and Zisserman 2015], a CNN first generates 3D proposals

from birdview with an RPN and projects them to front view and image inputs.

Subsequently, a deep fusion network combines the features region-wise and jointly

predicts object class as well as bounding box parameters, again encoded as eight

corners. Similarly, [Ku et al. 2018] operated on birdview representation. Both camera

and lidar inputs are processed by two modified VGG16 [Simonyan and Zisserman

2015] sub-networks with bilinear upsampling followed by an anchor-based RPN. The

outputs are fused via an element-wise mean operation at feature level and two task-

specific fully connected layers to regress axis-aligned object proposals. Finally, a

second stage network is used to create final predictions, encoding bounding boxes

as four corners at the ground, two height offsets, and yaw angle, respectively. Here

feature crops are generated from projecting predictions of the first network into the

two input views followed by an element-wise mean operation and three fully connected

layers. Duplicate predictions are filtered by NMS and the overall architecture is

trained end to end. Furthermore, [Qi et al. 2018] leverage a mature 2D object detector

in the image domain to propose and classify 2D object regions. For each proposal

from camera, a frustum is generated from corresponding bounding boxes, collecting

all points falling into it and normalizing rotations such that the center axis of the

frustum is orthogonal to the image plane. This is followed by two PointNets [Qi, Su,

et al. 2017], one for instance segmentation and one for bounding box regression and

a small sub-network to learn a transformation of the instance center to the actual

object center of the complete object in 3D.

A discretization as a voxel or range image obscures natural 3D patterns and

invariances of 3D data. Therefore, [Zhou and Tuzel 2018] kept a fixed number of

points in each occluded voxel cell. These points are then processed by multiple

stacked Voxel Feature Encoding layers based on a preprocessing and a linear layer

with batch normalization, Rectified Linear Unit (ReLu) activation as well as max

pooling to get highly descriptive pointwise features, inspired by [Qi, Su, et al. 2017].

On top, resulting features are sequentially processed by 3D convolutional middle

layers with batch normalization and ReLu, followed by an RPN.

State of the art focuses on different representations of point clouds to utilize ex-

isting and newly proposed network architectures. An overview is given in Figure 3.1.

34

3.3. Baseline Model for 3D Object Detection on Point Clouds

Point Cloud

Raw 2D Grid & Voxel Camera Fusion

Sequential Fusion Deep Fusion

• Qi, Su, et al. 2017

• Zhou and Tuzel 2018

• Zeng Wang and Posner 2015
• Li et al. 2016
• Engelcke et al. 2017
• Li 2017 • Qi et al. 2018 • Chen et al. 2017

• Ku et al. 2018

Figure 3.1: Classification of related approaches for 3D object recognition based on
point cloud representation up to the time of the work in this chapter.

Using range images, nearby features are not necessarily adjacent in 3D space. Thus,

models need to recover the spatial geometric relationship. Fusion approaches suffer

from large processing pipelines in order to solve the complex task of object detection

step-wise. This leads to high accuracies but is mostly unsuitable for real-time ap-

plications due to heavy computations. Voxels are used as a powerful alternative to

structure unordered point clouds to be used in CNN models. However, those methods

are often less efficient since typically more than 90 percent of voxels are empty due

to sparsity. This chapter takes this deficit and presents a novel real-time detector by

extending [Redmon and Farhadi 2017] from the image domain. Inspired by [Chen

et al. 2017], birdview representation of point clouds is used in this work because it

has several advantages with regard to the target application. First, objects usually

lie on the ground plane with a small variance in the vertical direction. Second, the

physical sizes of objects are preserved. Lastly, occlusion problems are mostly avoided

since objects occupy a different space.

3.3 Baseline Model for 3D Object Detection on

Point Clouds

This section describes the proposed baseline model for 3D object detection based on

point clouds, named Complex-YOLO. It follows the single-shot detection paradigm

”
You Only Look Once (YOLO)“ assisted by a CNN for direct regression of objects

trained end to end. Hence it forms the foundation for the subsequent chapter where

tracking is added. A diagram of this approach is presented in Figure 3.2. As input,

a single point cloud is transformed into birdview representation first and contains

only three feature channels. Subsequently, a feature encoder network composed of

convolutions and a task-specific Region Proposal Network are applied in order to

35

Chapter 3. Single Shot 3D Object Detection on Point Clouds

Figure 3.2: Overview of the 3D object detection model. A single CNN takes a point
cloud transformed into birdview image representation as input and computes bounding
boxes in one forward pass. The network architecture is adopted from image processing
and extended with additional regression parameters for object orientations in complex
space.

output dense predictions in one single forward pass. The following subsections explain

each part in more detail.

3.3.1 Point Cloud Preprocessing

Initially, a point cloud P of a single time frame is cropped to a predefined area of

interest Ω:

PΩ = {P = [x, y, z]T |x ∈ [xmin, xmax], y ∈ [ymin, ymax], z ∈ [zmin, zmax]} (3.1)

The origin of P is considered at the position of the generating sensor, x points towards

the front, y points right and z is up, as indicated in Figure 3.2. With the help of the

mapping function Sj = fPS(PΩi, g) with S ∈ R
m×n, each point PΩ with index i gets

mapped into a specific grid cell Sj, described as a set:

PΩi→j = {PΩi = [x, y, z]T |Sj = fPS(PΩi, g)} (3.2)

where g is the predefined size of a grid cell, equal in both directions, resulting in m

rows and n columns. For instance, a typical size g lies between 0.06m to 0.40m,

resulting in grid resolutions of roughly m = n ∈ [200, 1334] for an area of interest of

80m× 80m. A more detailed configuration with all parameters can be found in the

experiments section (see subsection 3.4.2). As per requirement efficiency, each cell is

filled with only three handcrafted feature channels inspired by [Chen et al. 2017]:

zb(Sj) = max(PΩi→j · [0, 0, 1]T)
zg(Sj) = max(I(PΩi→j))

zr(Sj) = min (1.0, log(N + 1)/ log(64)) N = |PΩi→j|
(3.3)

36

3.3. Baseline Model for 3D Object Detection on Point Clouds

Algorithm 3.1 Birdview Transformation

Require:
points P , rows m, cols n, stepsize g, range xmin, xmax, ymin, ymax, zmin, zmax

1: grid ← init(m,n) ∈ {}
2: bv ← Matrix(m,n, 3) ∈ 0.0
3: P ← P [Px > xmin ∧ Px < xmax,Py > ymin ∧ Py < ymax,Pz > zmin ∧ Pz < zmax]
4:

5: for i ← 0 to (|P| − 1) do
6: u ← (m− 1)− round(Pix−xmin

gx
)

7: v ← (n− 1)− round(
Piy−ymin

gy
)

8: if u ≥ 0 ∧ u < m ∧ v ≥ 0 ∧ v < n then
9: grid[u][v] ← grid[u][v] ∪ {Pi}

10:

11: for u ← 0 to (m− 1) do
12: for v ← 0 to (n− 1) do
13: Puv ← grid[u][v]
14: if |Puv| > 0 then

15: bv[u][v][0] ← round(max(Puv ·[0,0,1]T)−zmin

zmax−zmin
)

16: bv[u][v][1] ← max(I(Puv))

17: bv[u][v][2] ← min(1.0, log(|Puv |+1)
log(64)

)

18: return bv

Here, each point contains an intensity value I(PΩ) used to calculate the maximum

intensity zg, N describes the number of points within a single grid cell Sj used to

calculate the normalized density zr and zb encodes the maximum height. The pseudo-

code is provided in Algorithm 3.1.

3.3.2 Feature Encoder Backbone

From a transformed point cloud in birdview representation with dimensionsm×n×3,

an efficient and straightforward CNN can be applied to learn latent features. The first

part of the model is adopted from Darknet-19 [Redmon and Farhadi 2017]. Generally,

only 3× 3 and 1× 1 convolutions mixed by max-pooling layers are used. Figure 3.3

presents the underlying architecture in detail.

First, the input is fed into two blocks of 3 × 3 convolutions, followed by max-

pooling with stride for downsampling in parallel increasing the number of channels.

This is followed by three blocks of three convolutions with additional max-pooling

layers, either two 3 × 3 mixed with one 1 × 1 convolutions or all three using 3 × 3

filter kernels. The resulting feature maps are convolved by another block of five

37

Chapter 3. Single Shot 3D Object Detection on Point Clouds

Figure 3.3: The structure of the CNN model for 3D object detection adopted from
[Redmon and Farhadi 2017]. Point clouds are transformed into birdview image rep-
resentation and processed by the network consisting of convolutions as well as max-
pooling layers, including one skip connection as indicated by the black arrow. Overall,
the input resolution gets downsampled by 1

32
in both directions with final outputs after

the Euler Region Proposal Network (E-RPN). Here, fa denotes the number of filters
in the last convolutional layer.

convolutional layers. Afterwards, a skip connection concatenates residual features

to enable the usage of fine-grained features from a previous layer. Finally, two last

convolutions, 3 × 3 and 1 × 1 generate outputs that can be directly interpreted as

detected objects by the Euler Region Proposal Network (E-RPN). Throughout the

network, leaky ReLu activation is used except the last layer, where linear activation

is used instead. Similarly, batch normalization is used for regularization in order to

stabilize the training and speedup convergence, except for the last layer. As seen in

the Yolov2 model [Redmon and Farhadi 2017], 1×1 filters are periodically mixed into

the blocks of convolutions to ensure strong compression of the feature representation.

To this end, the number of channels doubles after most pooling steps, reaching up to

1, 024 channels while downsampling to 1
32
.

Compared to the original Darknet-19, the initial number of filters in early layers

and the overall number of convolutional blocks are slightly reduced. As found by

experiments, this saves computations and speeds up runtime while losing nearly zero

performance. Potentially due to sparsity and less diversity in the inputs compared

to real camera images.

3.3.3 Euler Region Proposal Network

The last layer of the network is the E-RPN detection layer. The layer itself does

not contain additional learnable parameters, as it simply parses the final feature

map of the last convolutional layer and outputs oriented bounding boxes in 3D space

38

3.3. Baseline Model for 3D Object Detection on Point Clouds

Figure 3.4: Outline of the bounding box interpretation used within the E-RPN. The
last feature map is conditioned to learn offsets from hand-picked priors, based on the
anchoring principle introduced in [Ren et al. 2015] and [Redmon and Farhadi 2017].
For each grid cell, multiple predictions are calculated from the output features with
respect to the corresponding anchor values.

through birdview back projection. Similar to [Redmon and Farhadi 2017], anchors

are used as priors to simplify the problem. All anchor values are defined according to

the distribution of the underlying dataset. Instead of predicting coordinates directly,

only offsets at every location in the last feature map relative to the location of the grid

cell are estimated, as shown in Figure 3.4. For each grid cell, multiple predictions are

generated using the 3D position assuming a flat surface bx,y, width bw and length bl as

well as a confidence probability pob, class scores p0...pcls−1 and finally the orientation

bφ in conjunction with their related anchors. Object heights bh are fixed values for

each class, determined from the underlying training dataset. Thus, making it easier

for the network to learn. Overlapping predictions can be filtered using NMS.

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwe
tw

bl = ple
tl

bφ = arg(|z|eibφ) = arctan2(tim, tre)

(3.4)

Compared to state-of-the-art, the key innovation lies in the introduction of two ad-

ditional regression targets tim and tre, that correspond to the phase of a complex

number. This is interpreted as imaginary and real fraction corresponding to the ob-

ject’s yaw angle bφ, similar to [Beyer et al. 2015]. Again anchors are added for both

39

Chapter 3. Single Shot 3D Object Detection on Point Clouds

targets to simplify the problem to learn. On the one hand, this avoids singularities.

On the other hand, this results in a closed mathematical space, which has a favorable

impact on generalization of the model. Consequently, all regression parameters are

directly linked into the loss function without ambiguities.

3.3.4 Loss Function

In order to train the presented model, an appropriate loss function is used. Based on

the concepts from [Redmon et al. 2016] and [Redmon and Farhadi 2017], the network

optimization is done via an extended multi-part loss L, built on the sum of squared

errors of individual parts. The existing loss LYolo is extended by an orientation

part LEuler, to get use of complex numbers with closed mathematical space for angle

estimations.

L = LYolo + LEuler (3.5)

The extended part of the loss LEuler assumes that the difference between prediction

and ground truth, i.e. |z|eibφ and |ẑ|eib̂φ is always located on the unit circle with |z| = 1

and |ẑ| = 1. Therefore, the absolute value of the squared error gets minimized to get

a real valued loss:

LEuler = λcoord

m·n
32∑
i=0

B∑
j=0

1
obj
ij

∣∣∣(eibφ − eib̂φ)2
∣∣∣ (3.6)

= λcoord

m·n
32∑
i=0

B∑
j=0

1
obj
ij

[
(tim − t̂im)

2 + (tre − t̂re)
2
]

(3.7)

where λcoord is a scaling factor to ensure stable convergence in early phases and 1
obj
ij de-

notes that the jth bounding box predictor in cell i has highest Intersection Over Union

(IOU) compared to ground truth for that prediction, considering their anchors re-

spectively. Consequently, the comparison between ground truth G and predicted box

Pj with IOU
Pj∩G
Pj∪G , where Pj ∩G = {x : x ∈ Pj ∧ x ∈ G}, Pj ∪G{x : x ∈ Pj ∨ x ∈ G}

is adapted to consider rotations as well. In particular, this is required at the inner

core of the loss to calculate 1
obj
ij and 1

noobj
ij , impacting all individual parts. With the

help of 2D polygon geometries, the IOU is calculated for rotated rectangles created

from parameters bx, by, bw, bl and bφ of ground truth and prediction.

40

3.4. Experiments

Figure 3.5: Object occurrence and orientation statistics of the KITTI dataset used
for training (first row) and validation (second row): Here, the number of objects per
class, the number of Cars per yaw angle, and the spatial distribution of object centers
in a normalized 2D birdview histogram are visualized, respectively. Note the strong
imbalance with an order of magnitude more Cars compared to the other classes. As a
result, the respective direction of a Car driving is clearly reflected in the orientation
plot as well as driving lanes occurring in both heatmaps.

3.4 Experiments

This section describes the experiments conducted to evaluate the performance of the

proposed model. First, the datasets, as well as details for training and optimization,

are presented. Then, the evaluation metrics and results for object detection are

reported.

3.4.1 Datasets

The pioneering KITTI object detection dataset [Geiger et al. 2012] is used to assess

the performance of the proposed method. This dataset consists of 7, 481 training and

7, 518 testing samples, including point clouds and images. Ground truth annotations

done by humans are publicly available for training only. An exhaustive description

is provided in section B.3.

Following the protocol proposed by [Chen et al. 2017; Zhou and Tuzel 2018;

41

Chapter 3. Single Shot 3D Object Detection on Point Clouds

Qi et al. 2018], the training set is split into 3, 712 samples for training and 3, 769

for validation while keeping recorded sequences separated in order to avoid samples

from the same sequence being included in both the training and validation sets,

obtaining the distributions in Figure 3.5. Both the class and the angle distributions

contain severe imbalances. As ground-truth objects are only available for the area

visible in the image plane, there are two blind spots to the left and right of the ego

vehicle, where supervision can only be applied via augmentation. Nevertheless, the

training and validation splits are approximately equally distributed in occurrence and

orientation.

3.4.2 Training and Optimization Details

Before training, all point clouds are transformed into birdview images, as described in

3.3.1, where x ∈ [0m, 40m], y ∈ [−40m, 40m], z ∈ [−2m, 1.25m], g = 0.08m, m =

512 and n = 1024. Simultaneously global rotation is performed for augmentation.

Rotations around the origin of the point cloud from −30◦ to 30◦ with step size 5

are randomly applied to point clouds and ground truth in order to scale the size of

the training dataset. Examples from different scenarios of the training dataset are

visualized in Figure 3.6. With the number of anchors set to 5 and using all 8 classes,

the number of filters in the last convolutional layer is set to fa = 75. Here, anchors

are related to: 1) Car size, heading towards the front, 2) Car size, heading towards

the back, 3) Cyclist size, heading towards the front, 4) Cyclist size, heading towards

the back and 5) Pedestrian size with heading to the left. These values are defined

based on the distribution of ground truth objects within the training dataset. All

described prediction parameters from subsection 3.3.3 are included in x, resulting in

16×32×5 predictions simultaneously. Each one also contains probabilities for object

occurrence and classification used afterwards for filtering with a threshold of 0.6. By

design, there should be no overlapping predictions. Therefore, NMS with a threshold

of 0.2 is applied to the final output.

Following the original YOLOv2 [Redmon and Farhadi 2017], the model is trained

with Stochastic Gradient Descent (SGD) using random weight initialization with a

weight decay of 0.0005 and momentum 0.9. After the first epochs, the learning rate

is slowly scaled up starting from 0.0001 and then gradually decreased for up to 300

epochs to prevent model instability causing the training to diverge early on. Using

a constant batch size of 4, the learning rate is adjusted through quantitative testing

along with other meta parameters.

42

3.4. Experiments

Figure 3.6: Diverse samples of point clouds transformed into birdview images:
000008) road within a village with parked vehicles on the sides of the road, 000010)
road with vegetation and parked vehicles, 000165) inner city with diagonal parking,
000169) outskirts with crowded parking spaces, 001587) landscaped intersection with
low traffic and 001603) highway with traffic jam. Each color represents one of the
feature channels as described in subsection 3.3.1 while pixels without any point are
displayed in black as they are empty. Typical scan patterns from lidar are clearly
visible. For instance, the point density decreases heavily with distance (also shown as
the red color channel), as well as the characteristic shadows behind objects caused by
occlusion. Similarly, the expected diversity and immense complexity need to be taken
into account while having many empty pixels.

3.4.3 Applied Evaluation Metrics

The evaluation of the object detection performance follows the PASCAL criteria

[Everingham et al. 2010] also used for 2D object detection. Here, an interpolated

Average Precision (AP) metric is used to approximate the shape of the precision-

recall curve by averaging. This is done separately for the categories 2D (bounding

box overlap in image space), 3D (3D bounding box overlap), and birdview (rotated

bounding box overlap in birdview space), i.e. depending on the function to distinguish

43

Chapter 3. Single Shot 3D Object Detection on Point Clouds

Method Modality
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

[Li et al. 2016] Lidar 40.14 32.08 30.47 - - - - - -

[Chen et al.
2017]

Lidar 86.18 77.32 76.33 - - - - - -

[Chen et al.
2017]

Lidar+Mono 86.55 78.10 76.67 - - - - - -

[Qi et al. 2018] Lidar+Mono 88.16 84.02 76.44 72.38 66.39 59.57 81.82 60.03 56.32

[Zhou and Tuzel
2018]

Lidar 89.60 84.81 78.57 65.95 61.05 56.98 74.41 52.18 50.49

Complex-
YOLO

Lidar 84.95 76.37 75.77 44.23 42.21 38.47 66.36 60.02 59.63

Table 3.1: Performance comparison for birdview object detection based on Average
Precision percentages where higher is better. The results are obtained on the validation
dataset with the same setup. A few values were not reported originally.

Method Modality
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

[Li et al. 2016] Lidar 15.20 13.66 15.98 - - - - - -

[Chen et al.
2017]

Lidar 71.19 56.60 55.30 - - - - - -

[Chen et al.
2017]

Lidar+Mono 71.29 62.68 56.56 - - - - - -

[Qi et al. 2018] Lidar+Mono 83.76 70.92 63.65 70.00 61.32 53.59 77.15 56.49 53.37

[Zhou and Tuzel
2018]

Lidar 81.97 65.46 62.85 57.86 53.42 48.87 67.17 47.65 45.11

Complex-
YOLO

Lidar 76.01 70.11 65.42 40.86 38.16 37.17 64.74 58.09 57.92

Table 3.2: Performance comparison for 3D object detection based on Average Pre-
cision percentages where higher is better. The results are obtained on the validation
dataset with the same setup. A few values were not reported originally.

true from false predictions. Furthermore, the evaluation is subdivided into Car,

Pedestrian and Cyclist with respect to existing object classes. All details can be

found in Appendix C.

44

3.4. Experiments

0 10 20 30 40 50 60

0.4

0.6

0.8

1.0

Complex Yolo

Complex Yolo TX2

AVOD
AVOD-FPN

F-Pointnet

VxNet

Frames Per Second

M
ea

n
 A

ve
ra

g
e

Pr
ec

is
io

n Tested on NVIDIA Titan X / Titan XP

Tested on NVIDIA TX2

Figure 3.7: Comparison of 3D detection performance in relation to runtime. Being
one of the first works, efficiency has been increased significantly. Note that the mAP
values slightly differ compared to Table 3.2, because a different dataset split was used.
Reproduced from [Simon et al. 2018].

3.4.4 Results

Several related models have been developed preliminary to this work, which are in-

cluded in Table 3.1 and Table 3.2 for comparison. Both tables report the aforemen-

tioned AP scores on the validation dataset. As can be seen, the higher difficulty

level of the 3D task constantly decreases results compared to birdview evaluation.

Most similar to this work are the models of [Chen et al. 2017]. In contrast to their

work, no second point cloud representation and third camera-input are used, offering

a much lighter model while removing the need for additional fusion layers. Unlike

VoxelNet [Zhou and Tuzel 2018], where models are trained separately and fine-tuned

to single class predictions, Complex-YOLO performs multi-class prediction with only

one model trained on all classes in parallel, mainly due to efficiency and the intended

use in Autonomous Driving applications. The developed model of this work still

manages to achieve comparable accuracy. On top, with an average runtime of 50.4

frames per second measured on comparable hardware, Complex-YOLO outperforms

all other published methods in terms of efficiency (runtime) by an impressive mar-

gin of 400%. A comparison can be found in Figure 3.7 with mAP over the classes

Car, Pedestrian and Cyclist plotted against frames per second. Even on Nvidia TX2

[NVIDIA Corporation 2017] as a dedicated edge device, 4 frames per second can be

achieved without specialized optimization.

In addition to the mentioned quantitative results, Figure 3.8 presents some se-

lected qualitative results as well. Six different driving scenarios from KITTI are

presented with point clouds in birdview and associated camera images for reference.

Objects detected by the developed model are shown as oriented bounding boxes in

45

Chapter 3. Single Shot 3D Object Detection on Point Clouds

both modalities, colored by class. A small vector from the center of each object with

the same color indicates the detected orientation. Although the training data is bi-

ased due to the majority of Cars driving straight ahead or coming towards as seen in

Figure 3.5, the model generalizes the localization and orientation of vehicles on these

unseen samples. For instance, all directions in the upper left sample are recognized

correctly, even though one of the vehicles is parked against the driving lane. This

does not work quite as well for smaller objects like Pedestrians (yellow) or Cyclists

(green), that are barely visible in the point cloud.

46

3.4. Experiments

Figure 3.8: Qualitative results with projection into image space for illustrative pur-
poses, reproduced from [Simon et al. 2018]. More details are described in subsec-
tion 3.4.4.

Nevertheless, the occurrence is approximated almost correctly in many cases, as

in the upper right and middle left examples. Here, groups of small objects combined

47

Chapter 3. Single Shot 3D Object Detection on Point Clouds

with partial occlusions complicate the recognition. Both examples with multiple

Pedestrians or Cyclists in a confined space lead to a few misdetections. This effect is

further enhanced by extremely sparse point clouds, where the network cannot extract

many details. The model generally predicts up to fine-grained objects of multiple

classes but commonly makes subtle mistakes. As can be seen in the middle right and

lower left samples, the assumed mean values for the height of the Van (red) and Misc

(blue) class does not correspond to the actual height in the image. Likewise, the

model tends to overestimate the confidence of detections and is limited to the area

visible by the camera as mapped in the underlying training data from KITTI. For

example, the first Car on the left of the picture from the lower-right sample is excluded

from the region of interest, and therefore no detection is available. Furthermore, the

limited range becomes visible on the highway in the lower-left example, where vehicles

ahead can no longer be detected. However, the model often gets the right intention

and is also capable of predicting Cars parking diagonally presented in the lower right

sample of Figure 3.8. This suggests that useful features are learned from the birdview

channels that abstract the nearby environment in addition to the object itself. As

already seen from its predecessor [Redmon and Farhadi 2017] in image processing, the

performance also strongly depends on the resolution of the birdview grid. Therefore,

the resolution was selected rather high contrary to the efficiency criterion.

3.4.5 Ablation Study

To justify the formulation of the proposed method for object detection, an ablation

study is performed. Following former experiments, the described network configura-

tions are used in this study. The model is trained again from scratch, firstly with

modified point cloud preprocessing to single input channel features only, and secondly

with modified regression of object orientations. Here, a single regression parameter is

learned instead of the complex space, and all related parts are adapted accordingly.

After training, the models were applied to the validation dataset using the existing

ground truth for evaluation. In Table 3.3, a summary of this analysis is provided,

highlighting the negative impact of missing feature channels and complex formula-

tions. Both birdview and 3D performance significantly drop in AP when using only

one of the three input channels compared to all at once. The intensity channel consis-

tently yields results that are up to 50 percentage points lower than the entire input.

Several environmental influences, for instance, highly reflective materials or sunlight,

48

3.4. Experiments

Complex YOLO
Naive Angle

Figure 3.9: An analysis of the proposed model using different strategies to predict
object orientations. The plots illustrate the loss when using the complex formulation
in blue compared to direct regression in red averaged over three attempts.

Birdview 3D

Method
Car Car

Easy Mod. Hard Easy Mod. Hard

Height Channel
70.92 55.09 48.98 57.45 43.26 38.14

-14.03 -21.28 -26.79 -18.56 -26.85 -27.28

Intensity Channel
49.94 40.04 35.05 29.98 21.61 20.63

-35.01 -36.33 -40.72 -46.03 -48.50 -44.79

Density Channel
65.55 52.14 46.28 43.04 32.75 28.24

-19.40 -24.23 -29.49 -32.97 -37.36 -37.18

Naive Single Angle
68.13 56.09 55.02 66.42 53.98 53.02

-16.82 -20.28 -20.75 -9.59 -16.13 -12.40

Complex-YOLO 84.95 76.37 75.77 76.01 70.11 65.42

Table 3.3: Analysis of the impact of individual feature channels and complex orien-
tation estimation on the overall performance (AP). The model was trained separately
with different single input channels in birdview images using a simple strategy with
direct angle regression.

lead to erroneous measurements plus sensor noise, potentially decreasing the perfor-

mance. Although density features contain rich information for near-field, they are

limited to a certain distance, only providing intermediate results. In contrast, overall,

the height channel seems to contain the most entropy, which is also visually apparent

to the human eye when looking at birdview samples.

Additionally to the results with naive regression of orientation, Figure 3.9 shows

the course of the loss functions on average compared to the proposed solution. In early

iterations, much faster convergence and, in total, a lower loss is achieved, emphasizing

the beneficial properties of Complex-YOLO. Unlike other methods from state-of-the-

art, a well-defined heading without ambiguities is learned.

49

Chapter 3. Single Shot 3D Object Detection on Point Clouds

3.5 Related Work upon the Baseline Model

Due to a worldwide interest, there has been rapid progress in the field of 3D object

detection on point clouds. In parallel to the developed baseline model in this chapter,

further methods for 3D object detection quickly contributed to state of the art. The

trend here is mainly towards birdview, or rather voxel representation of point clouds,

due to computationally friendly properties and re-usage of existing CNN architec-

tures. Likewise, BirdNet [Beltran et al. 2018] generates three handcrafted birdview

feature channels, with maximum height, mean intensity, and density, respectively.

Instead of YOLO, Faster R-CNN [Ren et al. 2015] is adopted, using a VGG16 [Si-

monyan and Zisserman 2015] backbone for feature extraction. Moreover, the RPN

[Ren et al. 2015] is extended by classification into N discrete bins corresponding to

quantized yaw rotations, followed by softmax normalization. In this way, orienta-

tions are calculated using a weighted average of the predicted angle bins and the

most probable neighbor. In contrast, [Luo et al. 2018] and [Yang et al. 2018] threat

the height dimension in birdview space as channels for regular convolutions, similar

to voxels. This comes with reduced loss of information during quantization but ad-

ditional computations. Object orientations are learned with single regression targets

θ normalized by atan2(sin θ, cos θ). Again, architectures like VGG16 [Simonyan and

Zisserman 2015] and SSD [Liu et al. 2016] from image processing were adapted. On

top, [Luo et al. 2018] exploits spatiotemporal features by stacking multiple consecutive

frames into the input voxels. Here, all 3D points from past frames are transformed

into the current vehicle coordinate system while increasing the point density and giv-

ing cues about the motion of single objects. Unlike those methods, SECOND [Yan

et al. 2018] follows VoxelNet [Zhou et al. 2018], using the proposed Voxel Feature En-

coding (VFE) layers as an intermediate representation between the regular voxel and

raw points. A sparse convolutional feature extractor is used, followed by an SSD [Liu

et al. 2016] architecture as RPN with anchors. In [Lang et al. 2019], point clouds are

organized in voxels with infinite height, called pillars, and processed by a feature en-

coding based on PointNet [Qi, Su, et al. 2017] as well as VFE layers [Zhou et al. 2018]

and a 2D CNN followed by an SSD [Liu et al. 2016] detection head. In contrast, [Yang

et al. 2019] developed a proposal generation module to first generate proposals from

spherical anchors based on PointNet [Qi, Su, et al. 2017; Qi, Yi, et al. 2017]. Features

are then generated for each proposal using a VFE layer. Another two-stage method

from [Shi et al. 2019] is based on a bottom-up proposal generation with PointNet

encoder [Qi, Yi, et al. 2017] for foreground-background segmentation and canonical

50

3.5. Related Work upon the Baseline Model

box refinement. In a follow-up, [Shi, Wang, Shi, et al. 2020] predict and aggregate

intra object parts derived from bounding boxes for better supervision. Furthermore,

[Shi, Guo, et al. 2020] combine raw point processing with VFE from [Zhou et al.

2018] and [Kuang et al. 2020; Ye et al. 2020] proposed multi-scale features in a voxel

feature pyramid network, also based on VFE. Similarly, [Zheng, Tang, Chen, et al.

2021] fuse semantic features from different abstraction levels and align confidences

from classification with the regression of localization parameters. Additionally, post-

processing with distance variant NMS weighted by IOU is applied. [Yang et al. 2020]

operates on raw point clouds, based on global feature generation with set abstraction

layers from [Qi, Yi, et al. 2017] and fusion sampling, where objects are predicted

relative to selected candidate points. Other specific work such as [He et al. 2020] pro-

posed an auxiliary network for point-wise supervision and a part-sensitive warping

scheme to align the classification with the regression branch in the detection head.

[Liu et al. 2020] developed a triple attention module for joint channel-, point- and

voxel-wise feature generation and coarse to fine regression. In [Zheng, Tang, Jiang,

et al. 2021], shape aware data augmentation is used in a student-teacher setup based

on a pair of single-stage detectors, together with orientation aware- and consistency

loss. Unlike others, [Shi and Rajkumar 2020] transform point clouds to a fixed radius

near-neighbors graph and make usage of a Graph Neural Network consisting of a

Multi Layer Perceptron (MLP) with residual connections. Furthermore, [Yin et al.

2021] first formulate the task as keypoint detection, followed by a regression to other

attributes and refinement with additional point features using an MLP.

Another area of research focuses on the fusion of point clouds with camera im-

ages. The idea is to benefit from meaningful contextual information of dense camera

textures while remaining accurate spatial information of raw 3D point clouds. In

addition to MV3D [Chen et al. 2017], Frustum-PointNet [Qi et al. 2018] and AVOD

[Ku et al. 2018] as already presented in section 3.2, [Xu et al. 2018] proposed a fea-

ture level fusion, where point clouds and images are independently processed by a

PointNet [Qi, Su, et al. 2017] and CNN, respectively. Then, a fusion network com-

bines the resulting outputs and finally predicts 3D bounding boxes. More recently,

[Liang et al. 2019] proposed a multi-task formulation of 2D and 3D object detection,

depth completion, and ground estimation, where lidar and camera features are fused

at various levels in a dense fusion scheme. In [Pang et al. 2020], individual candidate

detections from lidar and camera are converted into a set of consistent joint detec-

tions and post-processed by a 2D CNN for refinement. Similarly, [Yoo et al. 2020]

separate the feature generation based on VoxelNet [Zhou et al. 2018] and ResNet

51

Chapter 3. Single Shot 3D Object Detection on Point Clouds

[He et al. 2016] for camera. Features are then projected into birdview representation

and processed by a gated feature fusion based on PointNet [Qi, Su, et al. 2017] for

proposal generation and refinement.

Overall, a trade-off between efficiency and accuracy can be seen when selecting

the architecture and input representation for 3D object detection algorithms. Most

current work achieves high accuracy due to the complex proposal and refinement

stages. However, it has too much computational effort and too high runtime in order

to use them for AD applications. Lightweight methods such as one-stage birdview

processing typically have the best runtimes with fewer computations but tend to be

less accurate compared to voxels or raw processing.

3.6 Conclusion

This chapter presented the developed model for 3D object detection on point clouds.

The model is a single shot CNN, formulating object detection as a regression problem

to spatially separated bounding boxes and associated class probabilities. Point clouds

are preprocessed into compact birdview images containing three feature channels

only. The entire model can be optimized end to end on raw point cloud datasets.

Quantitative evaluation of this method on the KITTI benchmark yielded results on

par with state of the art while clearly outperforming in terms of efficiency. Although

the results are encouraging, the model is subject to a few limitations. First, it can only

generate pseudo 3D objects since no object height, and offsets in height dimension are

learned. Adding such regression targets strongly affects the overall performance since

the model seems to be very sensitive to the interaction of single parameters. Finally,

there is a trade-off between efficiency and loss of information when using only three

handcrafted features in a regular 2D grid structure as inputs. Instead of processing

all points, some potentially beneficial properties of point clouds are harshly trimmed

down, comparable to lossy compression. However, current approaches and complex

architectures are poorly suited for efficient operation on point clouds. Therefore, the

baseline model will be improved in the next chapter before a concept for tracking

over time is developed. There, the input representation will be changed to voxels

with more channels and supplemented with contextual features from the image space

to improve the feature extraction and allow for full 3D detection.

52

Chapter 4

Joint Object Detection and
Tracking on Point Clouds

The method for 3D object detection presented in the preceding chapter, Complex-

YOLO, is exclusively based on the point cloud of the current time step. Consequently,

predictions of two successive frames often vary considerably. From small deviations

in the pose to random rotations of the heading, uncontrolled errors often occur. This

indicates uncertainties and network failures when compared with earlier predictions

since unnatural behavior is modeled. Similar to video processing, a key to solve

this problem lies in the use of spatiotemporal information, well known as tracking.

Therefore, in this chapter, the developed algorithm for joint object detection and

tracking, namely Complexer-YOLO, is presented. As a baseline, the model described

in chapter 3 is updated with new building blocks from state of the art upon completion

from section 3.5. Furthermore, a novel fusion with visual features from camera is

introduced. Finally, resulting predictions are jointly tracked to stabilize recognized

objects and filter outliers, formulated as Multi Object Tracking (MOT).

The first section indicates the usefulness for real-world applications and technical

problems. Then, section 4.2 reviews methods from state of the art related to MOT. In

section 4.3, the developed model for joint object detection and tracking is presented

and evaluated on a real-world benchmark dataset in section 4.4. Finally, section 4.6

gives a summary.

4.1 Motivation

A human driver constantly observes the surroundings carefully while driving. Driving

safely requires anticipation and precaution, as mistakes by other participants always

have to be expected, and longer breaking distances of several meters may be necessary

53

Chapter 4. Joint Object Detection and Tracking on Point Clouds

depending on the speeds and weather conditions. Therefore, the potential behavior of

other road users is continuously estimated, based on prior knowledge or experience,

but also, especially with the help of recent motion and flow. Just in a few seconds

of observation, velocities and headings can be determined with high accuracy and

directly used for decision making. In some cases, particular objects, humans, or

animals are actually only perceived by their behavior or movement over time. For

instance, cyclists when pedaling or the gait of a human being, contain typical patterns

that humans can easily recognize. In both cases, the visual appearance emerges more

clearly from the background, and the movements attract much more attention. In a

computer, this task can be referred to as tracking. Compared to humans, it is very

challenging to recognize highly complex scenarios and find the right associations in

a sequence. Most methods in this area utilize the tracking by detection paradigm,

where first objects are localized with a detector, after which an algorithm associates

them over time. This becomes more challenging due to occlusions, vague or even

missing detections, or target interactions, particularly on busy public road scenarios

and crowded areas. Despite the difficulty of this task, especially recent deep learning

methods enabled great progress in visual recognition and tracking. Detection rates

and accuracy have grown enormously, allowing tracking algorithms to better assess

appropriate associations. However, it remains a challenging problem, as detectors

and trackers still have subtle flaws. Instead of fully utilizing the historical context, as

humans do, detector and tracker are fully decoupled during the processing pipeline.

For instance, Figure 4.1 visualizes a sequence with decoupled predictions from the

algorithm in chapter 3. As can be seen, the detected truck in frame 000080 has

a significant discrepancy compared to other time steps and ground truth. Surely,

this leads to difficulties for the usage in a tracking algorithm. Overall, there are so

far only a few tracking algorithms with a focus on the spatial dimension of point

clouds, as it gets even more complicated with another degree of freedom. However,

real-world applications such as Autonomous Driving require robust spatiotemporal

perception. In essence, existing deep learning based detectors are not sufficient, as

meaningful information is supposed to be used from the temporal dimension, similar

to humans. Therefore, a broad field of research with great potential has emerged,

trying to challenge the complexity of real-world scenarios.

54

4.2. Related Work

Figure 4.1: Visualization of Complex-YOLO individually applied to the KITTI raw
sequence from 2011-09-26 number 0022 in birdview perspective using the color chan-
nels described in subsection 3.3.1. All related objects on the street are constantly
detected. However, there are some notable outliers and inaccuracies. For instance,
the orientation of the Truck (red bounding box) and some other Cars jitters from one
frame to the next. Without further processing, this would often lead to emergency
breaking in Autonomous Driving mode to avoid collisions with ghost objects that are
predicted into the ego lane.

4.2 Related Work

This section supplements the theoretical background from chapter 2 and the related

work from chapter 3 with a brief summary of existing MOT algorithms and the

relevant basics of MOT used for joint object detection and tracking.

Following the aforementioned tracking by detection paradigm, MOT is usually

accomplished in two stages. Objects of interest are first detected by an algorithm,

and then identical objects are associated over time utilizing object hypotheses from

the detector. A common strategy is to leverage global information regarding the

detections [Lee et al. 2016; Frossard and Urtasun 2018]. Here, entire sequences are

optimized offline with information from both past and future. In contrast, online

models must be used for real-time applications, where only the past is known, and

outputs are generated for each frame. Recent online approaches focus on the tracking

55

Chapter 4. Joint Object Detection and Tracking on Point Clouds

of 2D objects. In IMMDP [Xiang et al. 2015], a framework based on reinforcement

learning with multiple Markov decision processes was demonstrated using monocular

camera detections from Faster R-CNN [Ren et al. 2015]. With the help of a bi-

nary classifier, pairwise similarity scores are calculated between lost targets and non

tracked detections. Then, the Hungarian algorithm [Munkres 1957] is used to predict

assignment scores. Unlike IMMDP, [Lenz et al. 2015] formulate a min-cost flow op-

timization, inspired by [Zhang et al. 2008] and the dynamic shortest path algorithm

for data association [Berclaz et al. 2011; Pirsiavash et al. 2011]. Again, the algo-

rithm was evaluated given 2D monocular camera detections from [Wang et al. 2013].

First partial extensions into 3D space were presented in [Scheidegger et al. 2018] and

[Sharma et al. 2018]. The former operates on detections from a Convolutional Neural

Network (CNN) architecture [Krishnan and Larsson 2016; Yu et al. 2017], extended

by the regression of a distance from the camera center to the center of the detected

object, trained with smooth L1 loss from [Girshick 2015]. Moreover, detected ob-

jects are used as input measurements modeled as Random Finite Set (RFS) [Mahler

2007] to recursively estimate a Poisson Multi Bernoulli Mixture density [Williams

2015]. The latter associates pairwise detections from [Murthy et al. 2017], including

2D bounding boxes, 3D shape, and object poses using key points of discriminative

parts. This is done via a likelihood matrix between targets of different time steps,

minimizing several cost functions.

The work in this chapter differs from all of these approaches in that the model

goes beyond the 2D space and instead directly operates on 3D detections. This

comes with higher complexity due to the additional spatial dimension but allows

far better interpretability and re-usability for environmental perception in real-world

applications. Based on the concepts from [Vo and Vo 2011; Reuter et al. 2014;

Granström et al. 2017; Bryant et al. 2018], targets and measurements are modeled

as Labeled Multi-Bernoulli Random Finite Set (LMB RFS) (see subsection 2.4.1).

Furthermore, object movements are described as coordinated turn motion model

[Roth et al. 2014] (see subsection 2.4.3) with innovation calculated using an Unscented

Kalman Filter (UKF) [Julier and Uhlmann 1997] (see subsection 2.4.2).

4.3 Model

This section presents the developed algorithm for joint object detection and tracking.

A conceptual diagram is visualized in Figure 4.2. Following recent updates from state-

of-the-art, the core concepts from chapter 3 are adopted, whereas some details are

56

4.3. Model

Figure 4.2: Overview of the joint 3D object detection and tracking pipeline. Point
cloud inputs are transformed into regular 3D voxel representation (described in sub-
section 4.3.2) and fused with contextual features extracted from camera images using
ENet [Paszke et al. 2016] (see subsection 4.3.1). These are fed into another single
CNN to generate 3D object predictions (described in subsection 4.3.3). Finally, the
predicted parameters are threatened as measurements for multi target feature tracking
over time using odometry (see subsection 4.3.4).

refined in order to improve subtle failure modes. Unlike Complex-YOLO, Complexer-

YOLO first transforms point clouds into occupancy voxels in order to increase the

number of input channels. Inspired by camera fusion approaches from section 3.5,

dense visual features from semantic segmentation are projected into the voxel cells

to enrich the input feature space further. Although more computations are needed,

substantially less information is lost during preprocessing. This is followed by an

upgraded version of the CNN from chapter 3, again extended with two additional

regression targets representing object heights and height offsets, respectively. Finally,

resulting detections are further refined with MOT for temporal consistency and to

filter out inaccuracies. In the following subsections, each part is explained in more

detail.

4.3.1 Efficient Visual Semantic Segmentation

The developed network to generate semantic maps out of images is built on ENet

[Paszke et al. 2016]. ENet adopts ResNet [He et al. 2016], together with PRelu

[He et al. 2015b], different forms of convolutions, like regular, dilated, strided or de-

convolutions and spatial dropout [Tompson et al. 2015] to efficiently classify pixels.

Hence, it was created for low latency operations and aimed for high efficiency in

accordance with the designation. First, the network heavily reduces the input sizes

57

Chapter 4. Joint Object Detection and Tracking on Point Clouds

Figure 4.3: Visual semantic segmentation results from ENet [Paszke et al. 2016] on
diverse KITTI samples drawn semi-transparently over the camera images: The net-
work was retrained as described in subsection 4.4.2. Although ENet is very efficient,
it achieves high quality in the classification of individual pixels.

while compressing visual information, using early downsampling. Second, blocks of

convolutions are decomposed into smaller ones based on factorization. To further

increase the efficiency, the last layer of the network that performs the argmax oper-

ation was entirely parallelized using threading. This allows calculations to execute

concurrently for every single pixel of the last feature map. In addition, channel prun-

ing was performed, as described in subsection 2.1.3. More details of the training

and optimization of the ENet can be found in subsection 4.4.2. Despite a significant

reduction of computations and memory requirements, the accuracy decreases only

marginally. Resulting semantic maps (see Figure 4.3) are used during preprocessing

of the point clouds to fill generated voxels, as described in subsection 4.3.2.

4.3.2 Point Cloud Preprocessing

Similar to subsection 3.3.1, a point cloud P of a single time frame is cropped to a

predefined area of interest Ω, as shown in the first two upper blocks in Figure 4.2.

58

4.3. Model

Instead of a 2D grid, the mapping function fPS is extended by one dimension with

S ∈ R
m×n×c, where c is the number of channels along the height dimension. Hence,

each point PΩ with index i gets mapped into a specific voxel cell Sj, as in Equa-

tion 3.2. Again, a typical resolution is in range m = n ∈ [200, 1334] and c ∈ [5, 50]

with gz ∈ [0.10m, 1.00m] for an area of interest of 80m × 80m × 5m. A more de-

tailed configuration with all parameters can be found in the experiments section (see

subsection 4.4.2).

After voxels and semantic maps (subsection 4.3.1) are prepared in parallel, they

are merged based on point cloud to image projection, as illustrated in the top middle

block in Figure 4.2. For all non-empty voxels, every point inside a voxel cell gets

projected into pixel coordinates in image space using matrix multiplications. First,

points are transformed into camera coordinates based on extrinsic calibrations. This

is followed by multiplication with a camera projection matrix based on intrinsic cali-

brations. The resulting pixel coordinates are then used to address class labels in the

semantic map from subsection 4.3.1. Finally, one resulting feature per voxel cell is

calculated given the argmax over all resolved class indices from all points inside a

voxel. Here, a normalized floating value in range [1, 2] is assigned in case the voxel

is non-empty and visible to the camera, zero otherwise. The pseudo-code is provided

in Algorithm 4.1. In this way, contextual information with visual features from a

camera is efficiently fused into the voxel map while only increasing complexity from

boolean occupancy to floating-point occupancy plus visual semantic. At the same

time, irregular point clouds are quantized into regular voxel grids, allowing to use

CNN architectures for further processing. This configuration was found by quan-

titative experiments to work best compared to pure voxel occupancy, voxels filled

with intensity values of the reflectivity from lidar sensors, or a birdview approach (as

presented in chapter 3). Further details are described in subsection 4.4.5.

4.3.3 3D Object Detector

In the next step of the processing pipeline, the fused voxels are fed into a network

for single-shot 3D object detection. The network from chapter 3 consists of a feature

encoder backbone and a Region Proposal Network (RPN) with its specific loss func-

tion. Following updates from state-of-the-art, both parts are adapted in this work.

Inspired by [Redmon and Farhadi 2018], a hybrid approach between the presented

network in subsection 3.3.2 and deep residual networks [He et al. 2016] is used for

feature extraction. Hence, the network uses successive blocks of 1 × 1 and 3 × 3

59

Chapter 4. Joint Object Detection and Tracking on Point Clouds

Algorithm 4.1 Voxel Generation and Camera Fusion

Require:
points P , image img, rows m, cols n, channels c, stepsize g,
range xmin, xmax, ymin, ymax, zmin, zmax

1: grid ← init(m,n, c) ∈ {}
2: voxel ← init(m,n, c) ∈ 0.0
3: semantic ← ENet(img)
4:

5: for i ← 0 to (|P| − 1) do
6: u ← (m− 1)− round(Pix−xmin

gx
)

7: v ← (n− 1)− round(
Piy−ymin

gy
)

8: if u ≥ 0 ∧ u < m ∧ v ≥ 0 ∧ v < n then
9: channel ← round(Piz−zmin

zmax−zmin
(c− 1))

10: grid[u][v][channel] ← grid[u][v][channel] ∪ {Pi}
11:

12: for u ← 0 to (m− 1) do
13: for v ← 0 to (n− 1) do
14: for channel ← 0 to (c− 1) do
15: Puvk ← grid[u][v][channel]
16: if |Puvk| > 0 then
17: Pcam ← CamProj(Puvk)
18: if |Pcam| > 0 then
19: voxel[u][v][channel] ← norm(mode(semantic[Pcam]))

20: return voxel

convolutions with residual shortcut connections. Strided convolutions are utilized for

downsampling instead of max-pooling layers. Throughout the network, leaky ReLu

activation is used, except for the last layer. The overall architecture is significantly

larger compared to subsection 3.3.2, as shown in Table 4.1. There are 49 convolu-

tional layers in total, instead of 59 as in [Redmon and Farhadi 2018]. As found by

experiments, the multi-scale prediction introduced by [Redmon and Farhadi 2018]

decreases the performance of the network. Unlike the image space, where objects

appear with varying scales, the voxel (birdview) representation of point clouds keeps

the metric space with priors about the physical dimensions of objects. Therefore, the

developed network only works with single-scale predictions. As a result, the afore-

mentioned 10 convolutional layers are removed at the end of the architecture without

losing performance. On top of that, less filter kernels are required in early layers to

extract meaningful features.

Based on the expanded number of input channels and enhanced capacity in the

60

4.3. Model

Layer Output Size Filter Size Stride Activation

input m× n× c - - -

conv1 m× n× 21 3× 3, 21 1 leakyReLu

conv2 m
2
× n

2
× 42 3× 3, 42 2 leakyReLu

conv3 x m
2
× n

2
× 64

⎡
⎣ 1× 1, 32

3× 3, 64

⎤
⎦× 1 1 leakyReLu

conv4 m
4
× n

4
× 128 3× 3, 128 2 leakyReLu

conv5 x m
4
× n

4
× 128

⎡
⎣ 1× 1, 64

3× 3, 128

⎤
⎦× 2 1 leakyReLu

conv6 m
8
× n

8
× 256 3× 3, 256 2 leakyReLu

conv7 x m
8
× n

8
× 256

⎡
⎣ 1× 1, 128

3× 3, 256

⎤
⎦× 8 1 leakyReLu

conv8 m
16

× n
16

× 512 3× 3, 512 2 leakyReLu

conv9 x m
16

× n
16

× 512

⎡
⎣ 1× 1, 256

3× 3, 512

⎤
⎦× 8 1 leakyReLu

conv10 m
32

× n
32

× 1024 3× 3, 1024 2 leakyReLu

conv11 x m
32

× n
32

× 1024

⎡
⎣ 1× 1, 512

3× 3, 1024

⎤
⎦× 2 1 leakyReLu

conv12 m
32

× n
32

× fa 1× 1, fa 1 linear

Table 4.1: The architecture of Complexer-YOLO. Building blocks with residual con-
nections are shown in brackets, with the numbers of blocks stacked. Downsampling is
performed with strided convolutions. The number of filters in the last convolutional
layer conv12 is denoted by fa.

backbone network, the RPN is extended with the following aspects. First, additional

regression parameters are added for the height of objects h and the offset from the

ground z, respectively. In this way, the network learns fine nuances instead of the

rough approximation with class-wise fixed height values from the former chapter.

Differences in the elevation level are mainly observed on steep inclines or downhill

slopes in the surrounding area, where offsets of several meters can occur at longer

distances. Therefore, the multi-part loss L is extended by LZ, the squared errors of

the object height h and coordinate z between ground truth and prediction:

L = LYolo + LEuler + LZ (4.1)

61

Chapter 4. Joint Object Detection and Tracking on Point Clouds

LZ = λcoord

m·n
32∑
i=0

B∑
j=0

1
obj
ij

[
(hi − ĥi)

2 + (zi − ẑi)
2
]

(4.2)

where λcoord denotes a scaling factor to ensure stable convergence in early phases, i is

the index over all grid cells, j is the index of object predictions with B the number of

object predictions per cell. Then, the developed score Ssrt is used to define 1obj
ij instead

of Intersection Over Union (IOU). This is a profound adaptation, as the whole training

process is supervised and thus directly depends on the comparison with ground truth.

On the one hand, IOU ignores opposite orientations of two objects modulo π. Though

estimated orientations are well defined through the complex space, using IOU, the

network is encouraged to predict objects rotated by π, since wrong predictions are not

penalized. On the other hand, calculating the IOU for rotated bounding boxes in 3D

requires several operations. This results in heavy computations, considering the huge

amount such calculations are invoked during training and inference. Thus, inspired

by affine transformations, the Ssrt score between two arbitrary 3D objects described

as bounding boxes A and B can be formulated as a composite of independent scores

for scaling Ss, rotation Sr and translation St, defined as follows:

Ss = 1−min

(
3− (sx + sy + sz)

ws

, 1

)
, ws ∈ (0, 1] (4.3)

si =

{
si, if si < 1
1
si,

otherwise
, i ∈ {x, y, z} (4.4)

Sr = max
(
1− θ

wrπ
, 0
)
, wr ∈ (0, 1] (4.5)

θ = π −
∣∣∣|θx| − π

∣∣∣+ π −
∣∣∣|θy| − π

∣∣∣+ π −
∣∣∣|θz| − π

∣∣∣ (4.6)

St = max
(
1− ‖t‖2

wt(diag(A) + diag(B))
, 0
)
, wt ∈ (0, 1] (4.7)

where si denotes ratios of the sizes of the objects in x, y, z dimensions, θ denotes

the sum of the difference from the orientation angles θx,y,z, t is the vector of the

difference between the two objects centers, and diag() denotes the length of the

spatial diagonals. The weighting factors ws, wr, and wt can be used to control how

strict each of the individual scores is, whereas towards 0 is more strict. St is calculated

62

4.3. Model

with respect to the sizes of the two objects using the diagonals. For tiny objects, small

translations already have a bigger impact and vice versa for large objects.

All previous scores Ss, Sr, St are limited to [0, 1] and can be combined into the

final score Ssrt using a weighted average:

Ssrt = α Ss + β Sr + γ St, α + β + γ = 1 (4.8)

where α, β, γ are the weights of the three sub scores, respectively.

In essence, the developed network operates on voxelized point clouds fused with

semantic features from a camera, as described in subsection 4.3.2, extracts features

based on the adapted CNN architecture, and detects 3D objects in one forward pass.

Remaining parts are inherited from chapter 3. The detector can be optimized end

to end, while using the Ssrt score for object to object comparison with predefined

weights ws, wr, wt and α, β, γ.

4.3.4 Multi Object Tracking

In the last part of the developed model, predictions are tracked based on the LMB

RFS [Reuter et al. 2014; Bryant et al. 2018] approach (see subsection 2.4.1). This step

is related to the right upper block in Figure 4.2 and requires additional odometry to

compensate the ego motion. Hence, 3D bounding boxes, i.e. center coordinates c =

[x, y, z], dimensions s = [l, w, h] and yaw orientation φ, are interpreted as Gaussian

noise corrupted measurements zit, i ∈ {1, . . . , N z
t } with z = [c, s, φ] of the positional

parameters (see Equation 2.8), extended by xi
t, i ∈ {1, . . . , Nx

t } as extended targets

[Granström et al. 2017] (see Equation 2.7), with the measurement noise covariance

matrix:

R =

⎡
⎢⎢⎢⎣
0.52 0 . . . 0
0 0.52 . . . 0
...

...
. . . 0

0 0 . . . 0.12

⎤
⎥⎥⎥⎦ (4.9)

Target movements are assumed based on the coordinated turn motion model [Roth

et al. 2014] (see subsection 2.4.3). Here, the process noise covariance consisting of

the standard deviation of the acceleration σa and the yaw rates derivative σα is:

Q =

[
σ2
a 0
0 σ2

α

]
(4.10)

63

Chapter 4. Joint Object Detection and Tracking on Point Clouds

Following the coordinated turn model, the extended target state mean x̄i
t contains the

same parameters as the measurements z as well as the motion parameters velocity v

and yaw rate φ̇. Hence, the ith target at time t can be described as:

x̄i
t = [cit, s

i
t, φ

i
t, v

i
t, φ̇

i
t] (4.11)

with state covariance matrix P̄ i
t . Based on the measurement equation:

z = H · x̄ (4.12)

with measurement matrix H = (I7 0) ∈ R
7×9, where I7 is the identity matrix of

dimension 7, a Bayesian filter can be formulated, using an Unscented Kalman Filter

(UKF) (see subsection 2.4.2) for innovation. Here, the application of an UKF for

the nonlinear motion model is desirable, while the update for the linear measurement

model can also be simplified to a default Kalman Filter. During an update step,

each predicted target is associated with each measurement at that step, where the

update is performed according to the defined measurement model. Based on the

update likelihood, association probabilities on which targets are kept or discarded

can be modeled in a heatmap. Formally, the association probability pa(x
i, zj) of

the measurement zj and the state xi can be used to formulate the non-assignment

probability as:

pna(z
j) = 1−

∑
xi∈X

pa(x
i, zj) (4.13)

Given a threshold Pna, the birth of a new target from an unexplained measurement

can be assumed, if pna > Pna. From the mean of the cardinality distribution in

Equation 2.12, the number of targets to be extracted Ne can be derived. Finally,

all targets are filtered according to their existence probabilities r(l) and extracted as

final outputs of the model.

4.4 Experiments

In the following experiments, the developed model that uses voxelized point cloud

inputs, the presented specific CNN and multi-object tracking are evaluated. First,

underlying datasets, as well as details for training and optimization, are presented.

Second, the evaluation metrics and both quantitative and qualitative results for multi-

object tracking are reported. Finally, an ablation study provides more details w.r.t.

the proposed Ssrt score and voxel input features fused with semantic textures.

64

4.4. Experiments

Figure 4.4: Statistics of the training sequences in the KITTI tracking dataset for
the classes Car and Pedestrian: A box plot visualizes a summary of the length of
existing tracks over time without outliers for better visibility. This is complemented
by the number of object instances for each individual sequence (blue).

4.4.1 Datasets

In addition to the object detection datasets mentioned in subsection 3.4.1, the KITTI

object tracking dataset [Geiger et al. 2012] is used to assess the performance of the

proposed joint object detection and tracking method. This dataset consists of 21

sequences for training and 29 sequences for testing with annotated 3D bounding

box instances over time for the classes Car and Pedestrian. Like object detection

datasets, ground truth is only publicly available for training sequences. Therefore,

only the training data is analyzed here. The evaluation of the test sequences is done

directly on a web server by uploading final detections. More details can be found in

section B.3.

Overall, there are 8, 008 samples for training with 579 instances of Cars as well

as 167 instances of Pedestrians, and 11, 095 samples for testing, respectively. In Fig-

ure 4.4, the distribution of all training sequences is presented. As can be seen, most

sequences differ significantly from each other in the number of occurring object in-

stances as well as in the length of individual tracks. Some sequences contain instances

of only one of the two classes. Furthermore, the length of a sequence varies from 78

to 1, 059 frames, resulting in the duration of tracks ranging from 0 to 643 frames and

approximately 60 frames on average.

On top, the Cityscapes dataset [Cordts et al. 2016] is used to train the network

described in subsection 4.3.1, as well as the KITTI semantic segmentation dataset

[Alhaija et al. 2018] for fine-tuning. Jointly the two datasets contain 5, 200 samples

65

Chapter 4. Joint Object Detection and Tracking on Point Clouds

with dense pixel-wise annotations. More details about these datasets are addressed

in Appendix B.

4.4.2 Training and Optimization Details

To optimize the Complexer-YOLO model, several training stages are carried out.

First, the image pipeline for the extraction of semantic features is trained. Using the

same set of optimization parameters as in [Paszke et al. 2016], the modified ENet is

pre-trained on Cityscapes [Cordts et al. 2016]. Next, the training is continued for

10 epochs on the KITTI semantic segmentation dataset [Alhaija et al. 2018] in order

to fine-tune the network in the target domain. Again, the same training procedures

and optimization parameters are used as in the original version. Thus, the weights

are fixed, and this network can be used to generate the semantic maps in the input

images.

Second, point cloud inputs are transformed into voxel representation, as described

in subsection 4.3.2, where x ∈ [0m, 60m] , y ∈ [−40m, 40m] , z ∈ [−2.73m, 1.27m]

with g = 0.08m × 0.08m × 0.19m, resulting in m = 768, n = 1024, c = 21 input

features. At the same time, the corresponding generated semantic maps are inserted

as final input for the object detection network. This network is trained from scratch

for 140k iterations, with a step wise decayed learning rate at 20k, 80k and 120k

iterations, respectively. These parameters are adjusted through quantitative testing.

Furthermore, the Ssrt score parameters are adjusted to ws = 0.3, wt = 1.0 and

wr = 0.5 to be more sensitive for errors in scale or orientation compared to translation.

The sub score weights are defined as β = 0.4, α = γ = 0.3, with slightly increased

weight for orientation. An exhaustive comparison of Ssrt to IOU can be found in

subsection 4.4.5. All other parameters like the learning rate, batch size and so on are

similar to subsection 3.4.2, except the number of classes. Here, the classes Misc and

Tram were removed due to the strong imbalance in the tracking dataset and the few

Sitting Persons are merged with Pedestrians. So, there are 5 classes in total resulting

in fa = 70 filters of the last convolutional layer. Additionally to global yaw rotation,

random flipping along the x axis is used for augmentation, adopted from [Yang et al.

2018].

Lastly, for tracking of the outputs from the object detection network, the noise

of the motion turn model described in subsection 4.3.4 is defined as σa = 18.89 and

σα = 1.49, found by quantitative testing. In this way, the tracker is emphasized to

put more weight on measurements from the network instead of model priors.

66

4.4. Experiments

4.4.3 Applied Evaluation Metrics

To assess the performance of the proposed joint object detection and tracking ap-

proach, the HOTA [Luiten et al. 2020] and CLEAR MOT [Bernardin and Stiefelhagen

2008; Li et al. 2009] evaluation metrics are reported. These metrics are commonly

used in MOT and include Higher Order Tracking Accuracy (HOTA), Detection Ac-

curacy (DetA), Association Accuracy (AssA), Detection Recall (DetRe), Detection

Precision (DetPr), Association Recall (AssRe), Association Precision (AssPr), Local-

ization Accuracy (LocA) as well as Multi-Object Tracking Accuracy (MOTA), Multi-

Object Tracking Precision (MOTP), Id Switches (IDs), False Positives (FP), False

Negatives (FN), Mostly Tracked (MT), Mostly Lost (ML) and Trajectory Fragments

(Frag). MOTA, MOTP, and especially HOTA combine the subtasks of accurate de-

tection, localization, and association into single combined metrics. All these metrics

are integrated into the KITTI benchmark suite [Geiger et al. 2012] and can be per-

formed for the test dataset via an upload of the predictions with a predefined format.

Further details and definitions can be found in Appendix C.

4.4.4 Results

The overall runtime of the model is 11.5 frames per second, measured with an exper-

imental implementation on a GTX1080Ti GPU and Intel Xeon CPU. All aforemen-

tioned metrics are reported in Table 4.2 and Table 4.3 on the KITTI tracking test

dataset [Geiger et al. 2012], together with the cited performance of approaches from

[Sharma et al. 2018], [Xiang et al. 2015], [Scheidegger et al. 2018] and [Lenz et al.

2015], but these models are based on inputs from cameras. Since the evaluation also

takes place in the image plane based on 2D IOU, all tracked 3D detections have to

be back-projected. This explains the inferior performance of Complexer-YOLO, be-

cause every single task, detection, localization, and association, is substantially more

challenging with an additional spatial dimension. Nevertheless, the proposed model

achieves remarkable results without working natively in the image domain. For in-

stance, three out of four image methods yield lower performance than the achieved

Association Precision (AssPr) of 85.23%, indicating well-predicted trajectories keep-

ing track to ground truth. Unlike all other methods, the developed model is capable

of recognizing and tracking several classes simultaneously. However, for small objects

like Pedestrians, the level of difficulty is significantly higher, so the achieved results

also drop dramatically.

67

Chapter 4. Joint Object Detection and Tracking on Point Clouds

Method Type HOTA DetA AssA DetRe DetPr AssRe AssPr LocA

[Sharma et al. 2018] 2D 63.75 % 72.87 % 56.40 % 76.58 % 85.38 % 59.05 % 86.70 % 86.90 %

[Xiang et al. 2015] 2D 68.66 % 68.02 % 69.76 % 71.47 % 83.28 % 74.50 % 82.02 % 84.80 %

[Scheidegger et al. 2018] 2D 59.12 % 65.43 % 54.28 % 69.87 % 80.68 % 57.28 % 83.89 % 83.94 %

[Lenz et al. 2015] 2D 50.92 % 58.57 % 44.51 % 63.69 % 75.67 % 46.47 % 81.23 % 81.44 %

CY (Car) 3D 49.12 % 62.44 % 39.34 % 67.58 % 76.86 % 40.72 % 85.23 % 81.47 %

CY (Pedestrian) 3D 14.08 % 24.91 % 8.15 % 27.21 % 52.62 % 8.63 % 59.39 % 68.64 %

Table 4.2: Quantitative tracking results of Complexer-YOLO (CY) on the KITTI
tracking test dataset [Geiger et al. 2012], based on the HOTA tracking metrics from
[Luiten et al. 2020] (see section C.2), in comparison with state of the art camera-based
online tracking approaches.

Method Type MOTA↑ MOTP↑ IDs↓ FP↓ FN↓ MT↑ ML↓ Frag↓
[Sharma et al. 2018] 2D 82.68 % 85.50 % 934 4283 741 72.61 % 2.92 % 581

[Xiang et al. 2015] 2D 82.75 % 82.78 % 211 5300 422 60.31 % 12.15 % 201

[Scheidegger et al. 2018] 2D 79.23 % 81.58 % 485 5634 1024 62.77 % 6.46 % 554

[Lenz et al. 2015] 2D 70.78 % 78.78 % 770 7360 1918 49.23 % 9.38 % 847

CY (Car) 3D 72.61 % 78.49 % 1952 5809 1658 56.92 % 5.85 % 1103

CY (Pedestrian) 3D 11.99 % 62.31 % 1555 15000 3820 2.41 % 38.49 % 1649

Table 4.3: Quantitative tracking results of Complexer-YOLO (CY) on the KITTI
tracking test dataset [Geiger et al. 2012], based on the CLEAR MOT metrics from
[Bernardin and Stiefelhagen 2008] (see section C.2), in comparison with state of the
art camera-based online tracking approaches.

Furthermore, HOTA results are visualized in Figure 4.5 with plots for the classes

Car (left) and Pedestrian (right). For both Car and Pedestrian, Complexer-YOLO

is rather conservative with higher precision, but lower recall as some objects are not

detected or associated. However, only moderate performance is achieved for Pedes-

trian, as both recognition from super sparse point clouds and association in 3D are

very challenging. In both cases, the performance quickly drops with an IOU threshold

α above 0.6 for Car, and already from 0.4 for Pedestrians. This indicates inaccura-

cies in the predicted bounding boxes but also introduced from back-projection into

image space, where the evaluation takes place. With roughly 0.15 (Car) and 0.50

(Pedestrian) False Negatives, not all objects from ground truth are detected even

for very low IOU thresholds (α), as seen in Detection Recall (DetRe). In contrast,

Localization Accuracies (LocA) highlight the higher accuracies for true positive de-

tections with approximately 0.81 for Car and 0.69 for Pedestrian. On top, there are

68

4.4. Experiments

Figure 4.5: Analysis of the tracking performance of the presented approach on
the KITTI tracking test dataset [Geiger et al. 2012] for the classes Car (left) and
Pedestrian (right), based on the HOTA tracking metrics [Luiten et al. 2020] (de-
scribed in subsection 4.4.3 and section C.2). The approximated area under the re-
spective curve is given in brackets, while alpha (α) corresponds to the used IOU
thresholds. More details are discussed in subsection 4.4.4. Reproduced from http:

// www. cvlibs. net/ datasets/ kitti/ eval_ tracking. php .

very few false-positive associations, as the Association Accuracy (AssA) is similar to

the Association Recall (AssRe). Likewise, the detections with Detection Accuracy

(DetA) scored only slightly below the Detection Recall (DetRe). Nevertheless, due

to short-term fragmentations and Identity Switches, there are several false-negative

associations affecting the association performance. Hence, Association Recall (As-

sRe) and Association Accuracy (AssA) scores the worst with 0.41, 0.39 for Car and

0.09, 0.08 for Pedestrian respectively. In total, the calculated HOTA scores are 0.49

(Car) and 0.14 (Pedestrian).

As can be seen from the example sequence in Figure 4.6, even in such a heavily

crowded environment, the developed model discovers the majority of objects over a

duration of 11.5 seconds. Here, the tracking compensates for temporary occlusions

and outliers from single-shot detection, whereby point clouds contain almost zero

points in some regions. This also helps to stabilize the correct estimation of the ori-

entation of individual objects compared to single-shot detection. However, missing or

false detections lead to a few identifier switches while also decreasing the Association

Precision (AssPr), because predicted tracks become fragmented.

Another example is visualized in Figure 4.7. The figure shows tracked trajectories

of a short highway sequence with traffic jam from KITTI in top-view perspective.

Here, the ego vehicle is driving at low speed for a few seconds in the right lane (dashed

trajectory), while other vehicles in all three regular lanes come to a standstill (colored

69

http://www.cvlibs.net/datasets/kitti/eval_tracking.php
http://www.cvlibs.net/datasets/kitti/eval_tracking.php

Chapter 4. Joint Object Detection and Tracking on Point Clouds

Figure 4.6: Qualitative tracking results of Complexer-YOLO on the KITTI raw
sequence from 2011-09-26 number 0104 in grayscale. The figure is divided into two
parts, second one (b) on the next page, to improve readability.
a) Both images in the top row provide an overview of the scene depicted at two time
steps (000055 and 000090) corresponding to a frame rate of 10Hz. In contrast,
the other rows contain different point cloud frames from a successive sequence in
birdview perspective starting at 000055. Here, bounding boxes, class labels, and unique
tracking identifiers predicted by the presented approach are visualized. Besides the
complexity of the scene with many different objects, partial or complete occlusion is
the biggest challenge as it heavily affects the detection step in the processing pipeline.
In particular, wrongly interpreted orientations causing incorrect tracks afterwards,
e.g. Car 22 in 000055, Van 5 in 000060, Car 33 in 000075 and so on. In contrast,
many objects such as the Cars driving in front of the ego vehicle with identifiers 0 or
1, even the Pedestrians 30 or 47 are detected and tracked throughout their existence.
The detection range is considerably reduced for smaller objects so that Pedestrians are
reliably detected only up to a distance of approximately 25m. Although Pedestrians at
longer ranges are sporadically detected, the tracker filters conservatively in most cases
because the accuracy of these detections is not sufficient. Considering the extremely
small number of points in the point clouds in such regions, a fairly good performance
can be achieved. Especially up to mid-range objects in the direct field of view of the
ego vehicle are tracked robustly, e.g. Cars 15, 16, 25, 27 or 28 from 000055 onward.

70

4.4. Experiments

b) The second part of Figure 4.6 shows the continued sequence with some challenges
in the permanent association of inaccurate or missing single shot detections. For
instance, the Van on the right with identifier 36 switches to 73 from frame 000100 to
000110. Another example is between frame 000120 and 000145, where the track of
the Truck with identifier 74 is lost for a short period and gets reborn as identifier 90.
In both cases, the objects are completely occluded by tall parking vehicles on the sides
of the road for a few frames while driving through this passage.

trajectories). At the same time, two vehicles in front switched to the emergency

lane and kept rolling (overlaying green and bright blue trajectories). Despite heavy

occlusions introduced by the first row of vehicles in the middle lane, most trajectories

are reliably detected in the left and middle lanes. However, sometimes the tracker

cannot fully compensate for missing detections even in this sequence and creates new

tracks visible as very short and fragmented trajectories. Nevertheless, the developed

tracking greatly improves the temporal consistency compared to single-shot detection.

71

Chapter 4. Joint Object Detection and Tracking on Point Clouds

F
ig
u
re

4
.7
:
V
isu

al
resu

lts
of

tracked
trajectories

on
on

e
of

the
K
IT

T
I
trackin

g
sequ

en
ces

for
a
highw

ay
scen

ario:
T
he

dashed
lin

e
in

w
hite

represen
ts

the
ego

m
ovem

en
t
from

past
u
p
to

the
cu
rren

t
fram

e
cen

tered
at

the
origin

(red
coordin

ate
axes).

C
olored

lin
es

correspon
d
to

tracked
objects

w
ith

a
circle

in
dicatin

g
birth

an
d
a
squ

are
for

death,
respectively.

T
he

legen
d
is

accordin
g
to

the
form

at:
target

track
[T
,N

]
::
[Δ

T
],
w
here

T
is

the
tim

e
fram

e
of

birth,
N

is
a
cou

n
ter

for
born

tracks
per

fram
e
an

d
Δ
T

is
the

len
gth

of
the

track.
In

addition
,
the

backgrou
n
d
of

the
w
hole

im
age

is
fi
lled

w
ith

color,
represen

tin
g
the

den
sity

of
scan

poin
ts

from
lidar

accu
m
u
lated

over
the

fu
ll
sequ

en
ce,

w
here

w
hite

den
otes

n
o
poin

ts
an

d
black

in
dicates

m
an

y
su
perim

posed
poin

ts.
N
ote

that
all

brighter
region

s
correspon

d
to

very
shortly

seen
or

u
n
seen

su
rrou

n
din

gs
from

the
lidar

sen
sor

w
ith

few
er

poin
ts

du
e
to

occlu
sion

.
In

parallel
to

the
ego

trajectory,
there

are
particu

larly
sparsely

popu
lated

region
s
du

e
to

other
drivin

g
vehicles,

m
akin

g
the

detection
an

d
trackin

g
challen

gin
g.

T
he

cam
era

im
age

show
s
on

e
of

the
last

fram
es

for
referen

ce
overlaid

w
ith

the
detected

segm
en

tation
m
ap

an
d
bou

n
din

g
boxes.

R
eprodu

ced
an

d
m
odifi

ed
from

[S
im

on
et

al.
2019].

72

4.4. Experiments

Feature IOU 0.7 SRT 0.7

Birdview 28.64 30.02
Occupancy 31.93 33.24
Intensity 32.39 33.57
Semantic 34.14 35.43

Table 4.4: Ablation study of different input feature representations with mAP values
(in %) reported for 3D object detection on the KITTI validation set. Reproduced from
[Simon et al. 2019].

4.4.5 Ablation Study

In this section, an extensive ablation study is presented to determine the contribution

of several design decisions. Further experiments are performed on a fixed setup for

training, based on the KITTI datasets introduced in subsection 3.4.1. First, the

resolution of the voxel input channels c is analyzed starting from cubic voxels with

g = 0.08m resulting in c = 50 height channels, down to g = 0.40m with c = 10.

It seems the network is not able to utilize fine-grained features, or degraded density

hinders the generation of meaningful features. Therefore, c = 21 is found as the best

trade-off between accuracy and runtime.

In addition, several input features are tested and reported in Table 4.4, instead of

voxels filled with semantic features from camera. Here, the mean Average Precision

(mAP) values present the 3D object detection performance averaged over the classes

Car, Pedestrian and Cyclist, when using voxels with occupancy, intensity, i.e. the

calibrated reflectivity from lidar sensors (see Appendix A), or fused semantic features.

Plus, the first row is related to a birdview input with 3 channels only, as presented in

chapter 3. All runs are individually trained and repeated twice, once with IOU, once

with Ssrt. In both cases, the threshold for correct detections is set to 0.7 for all classes.

Although the generated semantic maps contain subtle flaws with wrongly classified

pixels, this feature adds about 2% mAP. This gain mostly comes from improvements

of small objects such as Pedestrians, where the visual context from images is utilized.

Furthermore, Ssrt gives 1.3% improvement on mAP as well as up to 20% speedup

during inference and halved the time required for training. An exhaustive assessment

of the Ssrt score in comparison to the commonly used IOU is provided in Appendix D.

73

Chapter 4. Joint Object Detection and Tracking on Point Clouds

20
19

20
20

20
21

20
22

Complexer-YOLO

[Zhang, Zhou, et al. 2019]

[Hu et al. 2019]

[Baser et al. 2019]

[Weng, Wang, Held, et al. 2020]

[Weng, Wang, Man, et al. 2020]

[Wang et al. 2020]

[Wu, Li, et al. 2021]

[Wu, Han, et al. 2021]

[Weng et al. 2021]

[Yin et al. 2021]

[Chiu et al. 2021]

[Kim et al. 2021]

[Huang and Hao 2021]

[Chaabane et al. 2021]

Figure 4.8: Systematic timeline of related work upon Complexer-YOLO [Simon et
al. 2019]: All presented methods aim to track in 3D space while using different inputs:
camera and lidar (orange), lidar only (blue) and camera only (green).

4.5 Related Work upon Complexer-YOLO

In parallel to the method developed in this chapter, several other approaches have

been proposed for MOT with respect to point clouds and 3D processing, after it was

published in [Simon et al. 2019]. An overview is given in Figure 4.8. For instance,

[Hu et al. 2019] proposed a motion learning module based on Long Short Term

Memory (LSTM) for MOT of vehicles in monocular images. Similarly, [Chaabane et

al. 2021] proposed a joint detection and tracking using an LSTM architecture to filter

physically implausible matches. In [Baser et al. 2019], a feature association network

based on a CNN and cosine similarity maps are used to learn object associations fully.

In contrast, some works only operate on point cloud inputs such as [Weng, Wang,

Held, et al. 2020], where lidar detections in 3D are predicted, followed by a Kalman

filter [Kalman 1960] and Hungarian algorithm [Munkres 1957]. Furthermore, [Wu,

Li, et al. 2021] presented a tracklet proposal network to first generate proposals, and

then refine and associate them for MOT, where the refinement uses consistency con-

straints in the spatiotemporal feature space. [Wu, Han, et al. 2021] proposed a data

association guided by prediction confidences generated from a constant acceleration

motion model, while [Weng et al. 2021] developed a joint 3D tracking and motion

forecasting based on a Graph Neural Network (GNN) and generative trajectory pre-

diction. Two different approaches have been presented by [Wang et al. 2020] and

[Yin et al. 2021]. The former proposed an end-to-end network to generate foreground

masks, 3D bounding boxes, and point wise tracking association displacements, oper-

ating on two adjacent point cloud input frames and the latter formulated objects as

key points, which are first detected and tracked and then refined with additional point

features. Here, the tracking is realized by a simple greedy closest point matching.

However, a majority of other methods also focus on the fusion of images from

camera with point clouds from lidar. First, [Zhang, Zhou, et al. 2019] proposed a

74

4.6. Conclusion

multi-modality feature extraction and fusion with PointNet [Qi, Su, et al. 2017] and

VGG [Simonyan and Zisserman 2015]. Second, [Weng, Wang, Man, et al. 2020] again

used a GNN for multi-modal feature learning from images and point clouds in parallel.

In [Chiu et al. 2021], an association with Mahalanobis distance combined with feature

distances was presented. Furthermore, [Kim et al. 2021] integrated all observations

from camera and lidar at object level into a two-stage association framework. Another

joint detection and tracking network was proposed in [Huang and Hao 2021], where

bounding boxes are predicted in the first step together with association scores for

further processing in a comprehensive data association module.

Overall, there are countless works in the field of MOT for Autonomous Driving

(AD) with different approaches. On the one hand, end-to-end methods based on

LSTM, or more recently GNN architectures try to detect and associate objects with

more discriminative feature engineering jointly. On the other hand, the tracking by

detection paradigm offers a powerfully flexible and modular alternative also used in

this work. Most importantly, recent advances in 3D object detection with consistently

improving results can be reused to simplify the association problem.

4.6 Conclusion

For use in real-world applications, MOT is often one of the most practical compo-

nents to complement object detection for environmental perception. In addition to

the recognition and localization of objects, the focus of this task is on association over

time, while behavior and motions are estimated. To address this task, this chapter

presented one of the first methods for joint object detection and tracking on point

clouds, entirely in 3D. To this end, point cloud inputs as well as generated seman-

tic maps from camera are fused into a 3D voxel representation and processed by a

specific CNN for 3D object detection. Then, detections are tracked following the

Labeled Multi-Bernoulli Random Finite Set (LMB RFS) [Reuter et al. 2014; Bryant

et al. 2018] approach, allowing motion models to be incorporated and uncertainties

to be modeled over time. The model is inspired by chapter 3 but includes a novel

metric for the object to object comparison that can be inserted into any Neural Net-

work (NN) for object detection to be more efficient and flexible. Experiments on the

KITTI benchmark demonstrate the power and efficiency of the model with respect

to baselines related to previous work natively operating in the image domain. Unfor-

tunately, at the time of this work, no alternative datasets existed for applications in

75

Chapter 4. Joint Object Detection and Tracking on Point Clouds

AD to allow more fair comparisons directly in 3D. However, also qualitative exper-

iments show visually pleasing results. In future work, an advanced combination of

Deep Neural Network (DNN) architectures with statistical models for tracking can

be extremely beneficial. However, different motion models are needed for different

object categories. For instance, wheeled vehicles move completely in different ways

compared to pedestrians. Similarly, innovations from state-of-the-art to individual

components of the model, as seen in section 4.5, can be integrated to boost the overall

performance.

76

Chapter 5

Concept for Integration into an
Application-Specific Scenario

After a method for 3D object detection on point clouds was developed in chapter 3

and extended by tracking in chapter 4, the integration into an application-specific

scenario is outlined in this chapter. A thorough development of a complete system

for Autonomous Driving (AD) is beyond the scope of this work, as further detailed

challenges such as path planning and control arise. Despite the fact that the pre-

sented methods achieve high recognition rates, the scenarios on public roads are way

too complex and require a smart combination of additional perception, e.g. from

cameras. However, there are already significant differences in the raw point clouds

resulting from specific experimental vehicles or sensor technology. Additionally, the

deployment requires advanced optimization for suitable target hardware and an ex-

tended implementation for online processing, as well as an integration part with input

and output interfaces. Therefore, the focus in this chapter is on a concept for integra-

tion in order to assess the potential performance of such a system. An existing test

vehicle is presented, where prerequisites and conditions are analyzed. Derived from

this, an application-specific dataset is created. Here, the developed methods from

former chapters are used for automation in a developed application to efficiently and

accurately label ground truth through interaction with humans. With the help of the

generated dataset, the performance on point clouds from different sensors is assessed

by training and optimization of the model.

In contrast to the semi-automated manual data acquisition, a novel method for

the synthetic generation of additional training data is also presented. Here, a Gen-

erative Adversarial Network (GAN) is developed that learns a distribution of the

3D characteristics of objects and translates it to the image space to generate visual

77

Chapter 5. Concept for Integration into an Application-Specific Scenario

representations. Thus, existing datasets can be expanded explicitly and selectively.

The content is derived primarily from the published work in [Milz et al. 2019].

The first section in this chapter explains the technical difficulties and motivates

the usefulness. Second, the target system with interfaces for integration is described

in more detail. Then, section 5.3 presents the process of how the application-specific

dataset is created in a semi-automated fashion supported by the developed methods

from the previous chapters. This dataset is used for experimental evaluation in

section 5.4. As an alternative in obtaining training data, section 5.5 explores the

generative approach based on a GAN. Finally, section 5.6 gives a summary.

5.1 Motivation

During the past several years, there has been worldwide increased research in the

field of AD. Compared to the single tasks of object detection or tracking based on

point clouds from the previous chapters, this area is by far broader and more com-

plex. No existing sensor modality and no existing system alone fulfill all the required

properties for solving the existing problems. Although deep learning approaches en-

able enormous progress with higher detection rates, better accuracy and fewer false

predictions, there is still a long way to go before human drivers are no longer needed.

There are dozens of challenges and disadvantages associated with such methods. First

and foremost, the massive demand of data for training, optimization, validation, and

testing to ensure the safety-critical function. Likewise, significantly reduced perfor-

mance is to be expected in cross-sensor deployment, as the generalization capability is

limited and any change in the target domain remains a challenge. For instance, each

of the test vehicles in Figure 1.2 has different sensors with varying mounting posi-

tions. Therefore, the need for specialization and adaptation heavily arises. However,

the predominant approach is to use expensive prototypes to simplify the challenges

as much as possible, especially in environmental perception. For example, in most

cases, there are roof structures with a huge number of sensors for research and de-

velopment, which are probably completely unsuitable for the mass market and series

production. The price of the sensors alone can easily exceed the price of the actual

vehicle many times over. For this reason, a field of research has emerged, mitigating

the costs with cheaper sensors and hardware suitable for the generality while adding

individual functions to increase driving comfort, safety, or partially to take over con-

trol and relieve the driver temporarily. This area paves the way step by step towards

AD. Here, the toughest challenges are the more challenging conditions due to the use

78

5.2. Application Scenario of the Autonomous Car

of cheaper hardware and sensor technology, which are additionally integrated into

current vehicles as invisibly as possible. On the one hand, the systematic introduc-

tion of more and more automation is becoming easier. At the same time, general

acceptance is increased, and reliance on machines builds up.

5.2 Application Scenario of the Autonomous Car

An autonomous vehicle typically consists of a system of individual components based

on sensors, perception, planning, and control that must be optimally coordinated with

each other. Additionally, there are defined interfaces between all modules at differ-

ent levels of abstraction. For instance, the presented object detection with bounding

box abstraction is generated from sensor inputs and forwarded to the planning com-

ponents. As already indicated, the overall function is a safety-critical system since

there is a continuous interaction with other road users and public traffic participants.

Therefore, it is highly sensitive e.g. to false detections, and the design has to be very

conservative, better to stop instead of causing fatal accidents. On the other hand,

unnatural, harsh braking lowers the user’s acceptance significantly. Consequently,

a high degree of reliability is required, which is aimed for through redundancy and

fusion concepts. Here, the developed object detection and joint tracking methods

can be used as sub-components of perception. Safe recognition of road users is the

first step in predicting movements and behavior. Precise localization of objects is

of high importance since it will have a direct influence on navigation and driving.

In addition to other abstraction levels, such as maps with lanes, traffic lights, traffic

signs, etc., the object level is one of the main components for environmental modeling

in dynamic road scenarios, as elementary information can be processed quickly and

efficiently.

The following subsections provide more details of the target setup, where the

developed methods will be integrated. First, the vehicle setup with used sensors is

described. Second, subsection 5.2.2 highlights the challenges compared to state-of-

the-art, resulting from the different setups. Finally, the concept for the integration

of the developed methods is outlined in subsection 5.2.3.

5.2.1 Experimental Vehicle and Sensors

The underlying test vehicle is based on the Volkswagen Passat B8, converted with an

additional battery and the most advanced charging alternator for the power supply

to industrial computers with GPU cards mounted via PCI express extensions. As

79

Chapter 5. Concept for Integration into an Application-Specific Scenario

CPU 16 × Custom Carmel ARM64
GPU 2 × Volta iGPU, 2 × Turing dGPU

Accelerator 2 × Deep Learning Accelerator
Stereo and Optical Flow Engine

Image Signal Processor
Extras Programmable Vision Accelerator

CAN Interfaces
16 × GMSL(R) Camera ports

TDP 500W

Table 5.1: Nvidia Drive AGX Pegasus: Technical Hardware Specifications.

an alternative embedded platform, Nvidia Drive AGX [NVIDIA Corporation 2021]

can be used, where GPUs are also available, see Table 5.1 for detailed specifications.

Electronically longitudinal and lateral control of the test vehicle is established via

CAN signals over an AutoBox device [dSPACE GmbH 2021]. Individual modules of

the entire system can be distributed to the computers so that communication takes

place via Ethernet sockets.

For perception, more than thirty sensors of different modalities are mounted in

or around the vehicle, and connected to the PCs. Figure 5.1 illustrates the sensor

mountings. In most cases, prototype development sensors with raw data access via

Ethernet are used since traditional automotive-grade sensors typically output pre-

processed data only. In addition to the well-known surround-view fisheye cameras,

radars, ultrasounds, a front camera, and inertial DGPS are also installed to cover a

broad experimental setup.

This work focuses on point clouds generated by the lidar scanners, 6× Valeo Scala

Gen1 around the test vehicle (darker green) and one Scala Gen2 (brighter green)

mounted in front. Obviously, the front and back of the vehicle are covered with more

sensors to have multiple overlapping regions and redundancy. There is a small area

on each side that is not visible by the Valeo lidars as the vehicle cannot move to the

sides. Additionally, the two Velodynes mounted on top of the vehicle can be used for

reference similar to the benchmark dataset used in former chapters. For comparison,

sample point clouds of all lidars from one of the recordings are shown in Figure 5.2.

Valeo Scala sensors have a limited horizontal field of view of about 140◦, whereas

Velodyne captures full 360◦ by rotation around its own axis. The different number of

layers (laser diodes) and resulting point density is clearly visible from 4 (Scala1) up

to 64 (Velodyne HDL-64E). Overall, all lidars typically suffer from internal reflections

80

5.2. Application Scenario of the Autonomous Car

Figure 5.1: Overview of sensors mounted on the Volkswagen Passat B8 platform.
This vehicle setup is used for research and development in the area of AD. The focus
of this work is on the lidars (Scala and Velodyne).

and noise from near field reflections < 1m, but output measurements directly in 3D.

5.2.2 Delimitation to State of the Art

All methods developed in this work and from state of the art are also suitable for use

in the presented setup. However, decreased performance must be expected without

specific optimization and fine-tuning. The main difference concerns the underlying

sensor outputs and their mounting positions. Compared to the Velodyne lidars, the

Scalas have a substantially fewer number of laser diodes (Generation 1 has 4 and 2

has 16 layers) and, in addition, the horizontal and vertical field of view is smaller.

These lidars are designed to be mounted at lower levels, e.g. at the bumpers, to

enable cleaner integration into existing vehicle designs. Therefore, especially in the

near field, the viewing capacity is strongly limited in the height dimension to cover

long ranges. Moreover, the number of points measured is reduced by a factor of 42

due to the aforementioned restrictions, but this fluctuates heavily depending on the

scenario and internal lidar parameters. For instance, multiple echos with different

thresholds can be used to compensate for extreme conditions, but algorithms must

be robust against the additional sensor noise.

Furthermore, the occlusion problem is considerably increased by low sensor instal-

lations. Where roof attachments like Velodyne lidars partially overlook objects with

small blind spots behind, the Scalas look almost parallel to the ground at objects

81

Chapter 5. Concept for Integration into an Application-Specific Scenario

Figure 5.2: Point cloud samples from four different lidar sensors: a) 6× Valeo
Scala1, b) Valeo Scala2, c) Velodyne VLP-32C, and d) Velodyne HDL-64E of an
inner-city environment. The top row contains fisheye camera images for a 360◦

overview of the scene, whereas each point cloud is rendered from top-view at the mid-
dle row and a 3D perspective at the bottom. All presented lidars are based on rotating
mirrors, whereas Valeo Scalas have a restricted horizontal field of view. Therefore,
a) contains measurements of all available Scala1 sensors transformed into unified co-
ordinates. Both automotive-grade Valeo Scala sensors are mounted low in the front
bumper and Velodyne sensors on top of the recording vehicle. This allows the upper
sensors to see beyond some objects of moderate height, offering several advantages for
the resulting point clouds.

so that everything behind is completely occluded. Estimating the upper surface of

objects is much more complex, as no measured points are generated from the surface,

as seen from below. Subsequently, there are cases where individual laser beams of

the lower layers pass below objects and only appear much later on solid surfaces.

For instance, higher vehicles like SUVs or trucks offer plenty of ground clearance and

thus make point clouds rather challenging.

Overall, due to the aforementioned characteristics, a significantly reduced detec-

tion performance compared to the results from the previous chapters can be expected.

Likewise, insufficient generalization can be expected because besides the highly com-

plex public environments, also the properties of the point clouds deviate greatly. How-

ever, with the help of optimization on application-specific data, acceptable detection

rates can be achieved in order to improve existing driving and comfort applications

and step-wise extend automation.

82

5.2. Application Scenario of the Autonomous Car

5.2.3 Model Integration

In order to use the developed method for 3D object detection from chapter 4 for

the AD system, certain CPU and GPU computing power are required. Among other

modules and calculations, the model can flexibly run on the target hardware described

in subsection 5.2.1. In case distributed computers are used for individual modules

of the system, proper communication between each node must be ensured, e.g. via

Ethernet. As mentioned before, the model needs to be optimized and fine-tuned for

the specific sensor setup to achieve the best potential performance. This is described

in more detail in subsection 5.4.2.

For online processing, the inputs are captured from streams via Ethernet inter-

faces and decoded into point clouds in Cartesian space. The associated timestamps

and sensor calibration are used to transform individual point clouds into a global

one when using multiple lidar sensors. This is followed by the preprocessing de-

scribed in subsection 4.3.2. For simplification, occupancy voxels are used instead of

semantic features generated from cameras because an additional synchronization and

integration of the presented semantic segmentation model is required. The developed

tracking approach from chapter 4 can be used optionally, depending on which track-

ing or fusion the system is based on. Here, a serial connection to the vehicle CAN

bus is used to retrieve odometry and ego-motion signals. Specifically, vehicle yaw

rates and velocities are used. All inputs are temporarily stored in memory using ring

buffer implementations.

The inference of the model is triggered regularly at 10Hz as a trade-off for ef-

ficiency vs. accuracy. This is the native frame rate of default Velodyne settings,

whereas intermediate frames from Scala with 25Hz are ignored. In this way, point

cloud frames are selected based on the nearest neighbors of the timestamps without

further corrections. The output interface consists of all predicted objects, namely the

center coordinates, the dimensions, yaw orientation, uncertainty, and the inferred

class label with fixed type and precision. If tracking is used, estimated objects ve-

locities can be added to enable better prediction of individual motion for consuming

planning modules. This output is sent via socket communication either locally or

over the Ethernet interface, depending on which computer setup is used.

83

Chapter 5. Concept for Integration into an Application-Specific Scenario

5.3 Application-Specific Dataset

The preparation of a qualified dataset is extremely time-consuming and costly, as

ground truth must be generated for the optimization of the networks in addition to

the raw recordings. There are high demands on quality and quantity with many

sources of errors down to low-level package loss due to network traffic, jitter and

others. After all, every publicly available large-scale dataset for AD has been care-

fully developed over the years. An overview and further details of public benchmark

datasets can be found in Appendix B. But still, complex scenarios from public roads

are often extremely rarely present and cannot be recreated sufficiently in a closed test

environment. Moreover, specific data is always needed to achieve reasonable perfor-

mance for various use cases. Therefore, recording sessions in public are carried out

with the experimental vehicle at different locations and at different times to create an

application-specific dataset. From as much material as possible, helpful, interesting

sequences tailored to the applications are manually selected in postprocessing and

extended with ground truth for 3D objects generated by a semi-automated annota-

tion process with humans in the loop. Therefore, a dedicated software application

was developed to efficiently label the data, integrating the methods from previous

chapters for automation.

The individual steps for creating the application-specific dataset are described in

detail below. First, a special recording system and the recording sessions are described

in subsection 5.3.1. Then, the annotation process with the developed GUI application

is presented in subsection 5.3.2 and subsection 5.3.3. Here, methods from chapter 3

and chapter 4 are adapted and reused for partial automation. Finally, subsection 5.3.4

provides an overview with statistical information regarding the outcoming dataset.

5.3.1 Raw Recording

The recordings were made with the vehicle presented in subsection 5.2.1. All sensors

are calibrated to reference coordinates and connected to a single recording PC. The

powerful NI PXI platform [National Instruments Corporation 2021] with multiple

interface modules was used to guarantee enough performance and to avoid additional

synchronization over multiple nodes. Recordings are controlled by a human within a

recording toolchain based on the NI LabView environment. Hence, start and stop are

triggered manually during driving, while the software performs regular sanity checks

with online status indicators to abort on failure modes. Once a recording is started,

incoming packages with low-level raw data are cached and saved to a binary format

84

5.3. Application-Specific Dataset

without further processing or decoding. In this way, a superior bandwidth of more

than 500 Megabytes per second of data can be processed. This is required since raw

data from most of the sensors must be saved immediately.

With this setup, a human driver maneuvered the vehicle through several major

cities in Germany at busy times while triggering the recordings. To this end, Stuttgart

in June 2018, the area of Nuremberg and Erlangen in July 2018 as well as Munich in

November 2019 were picked with several hours of recordings, each. The raw data of

sequences with 5 to 45 minutes duration are backed up on persistent memory after

each day of recording.

5.3.2 Ground Truth Generation

Assuming a frame rate of 25Hz over all raw sequences, more than two million frames

are recorded in total. A major part is of no use for training and optimization of the

developed perception models, as almost identical contents repeat continuously. For

instance, each time the vehicle has to wait at a traffic light or stop sign, the sensors

capture the same environments for a few seconds. At a frame rate of 25Hz, the vari-

ations from one frame to the next are also minimal. Therefore, individual sequences

are carefully selected by qualitative evaluation from humans to generate a balanced

dataset with high diversity, also covering some rare cases. Those sample sequences

have a length of 50 seconds up to 200 seconds, as a trade-off between diversity for

single frame object detection and tracking needs. Each sequence is extracted from

the corresponding raw data with an existing proprietary toolchain and decoders, syn-

chronized to a frame rate of 2Hz. This is done using nearest-neighbor interpolation

with the time of arrival timestamps generated from the LabView environment, where

the Velodyne clock is used as the master.

Based on these exported sequences, a software application is developed to sup-

port humans in 3D object labeling in order to generate ground truth. Hence, the

GUI-based tool is separated into three areas. First, a menu bar contains global func-

tions to load and save a session and to replay a sequence of data. The main part is

the workspace, where interactive windows with points clouds and additional camera

images are visualized. On top, property bars present fields with quantitative details

corresponding to a focused bounding box and allow for interactive manipulation. Ad-

ditionally, a scene graph lists all existing instances grouped by classes and identifiers.

All areas are fully adjustable dockable bars or sub-windows and can be modified by

drag and drop, see Figure 5.3 for an example. Furthermore, data from additional or

85

Chapter 5. Concept for Integration into an Application-Specific Scenario

Figure 5.3: The GUI of the annotation tool with sample data: Here, four fully ad-
justable sub-windows with fisheye front and rear as well as birdview and 3D renderings
from the Velodyne point cloud are arranged inside the workspace below the menu bar.
The 3D view is further subdivided into an interactive perspective view in the upper
part. The lower part shows a small subset of points related to the focused bounding
box of a Transporter instance in different orthogonal views (top, behind, side). This
is especially helpful for fine-grained corrections. A height-based color coding is used
from red (low) to blue (high) while ignoring 10% of the lowest and highest z values to
filter outliers. In contrast, birdview coloring is similar to the color channels described
in subsection 3.3.1, except the red channel is based on an angular feature calculated
by normals of each point to make vertical surfaces stand out clearly. While 25 objects
are already annotated, bounding boxes (small rectangles with direction indicators, col-
ored by class) can be added and manipulated in all visualizations as well as menu and
property bars to generate ground truth efficiently. Everything is saved automatically
to JSON format.

fewer sensors can be loaded in order to be flexible for changes in the available sensor

setup. Ultimately, the application outputs generated bounding boxes to Java Script

Object Notation (JSON) format.

Although the update rate is relatively low at two frames per second, objects of

intermediate frames can also be interpolated. In complex dynamic environments,

this results in minor errors due to interpolation in favor of wide variety and diversity.

Moreover, the accuracy also depends on the presented synchronization, as labels once

generated in point clouds from Velodyne are transferred, e.g. to Scalas or cameras.

The relatively slow rotation around its own axis results in small deviations during a

86

5.3. Application-Specific Dataset

run. For simplification, no further corrections are applied here.

5.3.3 Semi Automated Annotation

Although the developed tool involves the placement and manipulation of objects

in 3D smoothly via interaction with mouse and keyboard shortcuts, an extremely

large number of individual actions needs to be performed manually until satisfactory

accuracy is achieved. For instance, the virtual camera must be permanently aligned

or single object parameters precisely adjusted to respective objects. In most cases,

the point clouds are extremely sparse and require the use of a camera or checking

through parts of the sequence where the objects are perfectly visible. All this leads

to an average processing time of over one minute to complete a single frame, but the

use of automation reduces the time by 50%.

For this reason, the methods for 3D object detection and tracking from former

chapters are reused and integrated into the annotation tool. An overview of the

overall workflow is visualized in Figure 5.4. Initially with the use of a keyboard

shortcut or menu entry, the inference of the model from chapter 3 can be triggered

so that the current point cloud flows through the network as input, and detections

are directly added as bounding boxes. Figure 5.5 provides a sample annotation.

Consequently, the number of actions is reduced, the better the predictions are

since only minor corrections need to be done. Second, during forward annotation of

a sequence, objects are considered as measurements to be tracked. Hence, predic-

tions are automatically inserted into the next frame, assuming that all objects are

manually corrected by humans before switching to the next frame. Here, the logic of

the tracking model is slightly adapted to fit this use case as the measurements are

considered to be perfect. On the one hand, the object dimensions from the current

frame are taken over unchanged into the predictions of the next frame since ground

truth values are already assigned. Similarly, birth and death of a target track as well

as existence and target thresholds are adapted, i.e. a new target with full existence

probability is created for every new measurement and directly removed as soon as

the measurement disappears. Figure 5.6 visualizes a few results of the prediction.

Whenever bounding boxes of the current frame are corrected, the switch to the next

frame automatically updates the internal state of the tracker by using these boxes as

current measurements together with odometry. At the same time, another prediction

step is performed to generate new bounding boxes that are immediately shown after

the next frame is loaded. As can be seen, static or non-moving objects like parked

87

Chapter 5. Concept for Integration into an Application-Specific Scenario

Start
Unlabeled

Input Sequence

Load Next Frame

Input Frame

Predictions
available?

Manual Detection Trigger

Model Inference

Detected
Bounding Boxes

Manual Correc-
tion and Positioning

Corrected
Bounding Boxes

Trigger Next Frame and
Save Current to JSON

End of
Sequence?

Tracker Up-
date and Predict

Predicted
Bounding Boxes

Stop

no

yes

yesno

Figure 5.4: Workflow diagram for a semi-automated annotation of an unlabeled
sequence of data samples: All high-level processing steps are visualized as rectangles
in orange, with the integrated intelligent algorithms for automation marked in bold.
Related inputs or outputs are drawn as blue trapezoids, and conditional branches are
shown as diamonds in green. For the first input frame, initial detections can be
generated by one click to reduce the number of manual actions. This is followed by a
manual correction step, with the removal of wrong, creation of missing objects, and
fine-grained manual adaptations. Furthermore, the tracking automatically predicts
bounding boxes for the next frame when a frame switch is triggered through another
click.

cars are labeled perfectly since the relative ego-motion was already corrected. In

contrast, dynamic moving objects require minor corrections. Here, the tracker also

estimates the velocity of a dynamic object after it is tracked at least two times. For

88

5.3. Application-Specific Dataset

Figure 5.5: Automated annotation using the developed object detection model from
chapter 3. For a given sample, left a) and right b) fisheye images as well as the point
cloud c) are visualized. The same height-based coloring presented in Figure 5.3 is used
here. When using Complex-YOLO, all visible bounding boxes are generated on the fly
with the inference of the model in d), triggered by one click in the annotation tool.
Afterwards, minor manual corrections are made, based on reference cameras or by
scrolling forward or backward in the sequence. For instance, the motorcycle zoomed-
in e) or the vehicles parking behind the bushes f), both indicated by white arrows,
are not detected. Hence, missing bounding boxes visualized in white need to be added
manually. This significantly reduces the manual effort as only a few bounding boxes
need to be created from scratch and thus ensures vastly reduced time and costs. As
reference, there are also magenta arrows in the fisheye images pointing to the missing
objects.

instance, both upper red arrows point to a car driving in front of the ego vehicle

in the same direction and an oncoming Truck, that are first predicted with several

meters offset to the point cloud in 000005, but accurately predicted in 000010 and

000015.

Both methods complement each other in the annotation process, as objects can

be initially created by the detector and thus tracked until the end of the sequence

with small step-by-step corrections. However, the performance of automation heavily

depends on the accuracy of the detections as well as predictions and, therefore, on

the complexity of the scene. Objects are sometimes temporarily fully occluded, which

can only be solved by forward and backward annotation over multiple frames. For

instance, the parked car in Figure 5.6 represented by the yellow arrows cannot be

seen in the point cloud of frame 000000, while being clearly visible afterwards. This

results in an even higher number of actions needed for highly accurate annotation of

89

Chapter 5. Concept for Integration into an Application-Specific Scenario

Figure 5.6: Automated annotation using the adapted tracking method from chapter 4
illustrated on a sample sequence from Velodyne HDL-64E at 2Hz (every 5th frame
with delta 0.5s). In frame 000000, corrected bounding boxes are fed into the tracking
algorithm as initial measurements. Then, frames 000005, 000010 and 000015 show
predictions from tracking following sequential forward and manual correction cycles
described in Figure 5.4. Here, green arrows indicate predictions almost without the
need for manual correction, while red and yellow arrows represents bounding boxes
either to be reworked or missing due to occlusion in 000000. In this way, mainly
subtle corrections of dynamic objects (red arrows) are left for an annotator instead of
the full annotation of the frame.

ground truth. If many wrong or partially wrong objects are automatically generated,

the number of actions remains nearly similar. When switching to a frame other than

the next, tracking is temporarily disabled, and the internal state of the tracker is

reset. Overall, the effort for annotation is significantly reduced by automation, and

the full process is heavily accelerated, which makes the annotation tool also suitable

for larger amounts of data.

5.3.4 Dataset Analysis and Annotation Statistics

After several people were trained with the presented application on sample data, all

sequences described in subsection 5.3.2 were annotated. The first part is in a version

without automated tracking. Here, no unique object instance identifiers were assigned

throughout the sequences either, but all appearing objects were annotated throughout

the sequences, even with temporary occlusion. For this purpose, the sequences were

used forward and backward as well as reference images from cameras. Additionally,

the Scala2 was only available for later recordings in Munich. Overall, three-stage

reviews were carried out to validate and ensure high quality. During validation,

90

5.3. Application-Specific Dataset

Figure 5.7: Object occurrence and orientation statistics of the generated application-
specific dataset: The first row presents overall quantities, whereas the second row is
related to the described part with Scala2, only. The first two columns show histograms
with the number of objects per class and the distribution of yaw rotation angles. They
are followed by the spatial distribution of object centers in a normalized 2D histogram
in a birdview perspective. While Velodyne64 and the combined Scala1 point clouds in
the upper plot cover the full surrounding of the car with the origin at the rear axle,
the field of view from the front Scala2 is clearly reflected in the lower heatmap.

inaccuracies between annotations from Velodyne applied to Scala point clouds were

observed. As illustrated, the root causes are sensor noise and synchronization because

higher relative speeds of more than 100km/h occur. Therefore, the labels for Scala2

were corrected manually and saved separately. In addition, a script-based check

for plausibility and basic errors was performed, using the temporal context within

the sequences. For instance, an object instance can be determined by its identifier,

if available, or by its 3D position in successive frames. Thus, movements can be

calculated, consistent classes and dimensions, or the deviation of the yaw orientation

can be monitored. Moreover, all single object parameters are verified for reasonable

values per class.

A couple of statistical quantities of the generated application-specific dataset are

shown in Figure 5.7. In total, 13, 922 frames are included at 2Hz with roughly 170k

annotated objects, whereas 3, 322 frames contain Scala2 with roughly 31k objects, as

well. Essentially, the distributions of classes and yaw angles are similar to the KITTI

91

Chapter 5. Concept for Integration into an Application-Specific Scenario

dataset from Karlsruhe presented in subsection 3.4.1. As can be seen, real object

occurrence probabilities of major German cities are reflected. There is a high density

of objects, especially on road surfaces and in the near field of up to 20m. The sensor

setup is designed exactly for this purpose as the majority of sensors cover the front

and the rear of the ego vehicle.

Parts of this setup, from tooling to the overall automated annotation process,

have also been incorporated into the publication of the Valeo Woodscape dataset

[Yogamani et al. 2019], a fisheye camera open-source dataset that comprises of over

10k images captured by multiple vehicles using automotive-grade surround-view fish-

eye cameras and annotations for a variety of computer vision tasks, assisted by point

cloud reference.

5.4 Experiments on the Application-Specific Data-

set

This section describes the experiments on the generated data conducted to assess the

object detection performance for the application-specific sensor setup. First, the de-

rived datasets for evaluation are presented, followed by details related to the training

and optimization of the model. Finally, after the metrics are shortly described in

subsection 5.4.3, subsection 5.4.4 reports the achieved results.

5.4.1 Datasets

Based on the recorded and annotated sequences described in section 5.3, three in-

dividual datasets are constructed and split into subsets for training, validation, and

testing. The first one consists of point clouds from Velodyne64 for reference and

comparison. Second, the Scala1 dataset is based on fused point clouds from all six

Scala1 sensors. Therefore, calibrations are used to transform all point clouds into

common vehicle coordinates using nearest neighbor time synchronization. All object

annotations are propagated from Velodyne64 by transformation into the same vehicle

coordinates based on the sensor calibrations, without further corrections for synchro-

nization or jitter. Both, Velodyne64 and Scala1 datasets are randomly subdivided

into 38 sequences (7, 847 samples) for training, 13 sequences (3, 086 samples) for vali-

dation and 14 sequences (2, 989 samples) for testing. There was at least one minute of

driving between single sequences during the recordings, and routes were only traveled

through once, so individual sequences considerably differ from each other.

92

5.4. Experiments on the Application-Specific Dataset

The third dataset is composed of point clouds from Scala2. As shown in Figure 5.7,

only the front of the ego vehicle is visible with small blind spots to both sides. Due

to the availability of the sensor during the recording sessions, only a part of the

aforementioned datasets is covered. This results in 12 sequences (2, 446 samples) for

training, 3 sequences (388 samples) for validation and 4 sequences (488 samples) for

testing.

5.4.2 Training and Optimization Details

A simplified variant of the developed model from section 4.3 is trained repeatedly on

all three datasets end to end without additional camera inputs and tracking. Here,

point clouds are preprocessed to occupancy voxels instead. Subsequently the Convo-

lutional Neural Network (CNN) architecture generates object outputs, as visualized

in Figure 5.8. According to the datasets, there are two different sets of parameters.

First, voxelization is done for Velodyne and Scala1, where x ∈ [−39.68m, 39.68m],

y ∈ [−39.68m, 39.68m], z ∈ [−2m, 4m], g = 0.16m × 0.16m × 0.20m, result-

ing in m = n = 496 and c = 30. Second, as Scala2 covers the front only with x ∈
[0m, 69.12m], y ∈ [−39.68m, 39.68m], z ∈ [−2m, 4m], g = 0.16m×0.16m×0.20m,

with m = 432, n = 496 and c = 30. All annotated objects with less than 5 points

within the bounding box in the respective point cloud are filtered and ignored, since

many objects are occluded in the Scala point clouds due to the low mounting posi-

tions. Based on the resulting sets of objects, the regression anchors are defined by

class wise mean values of length, width and height, times the two most appearing yaw

orientations. Hence, there are 12 anchors in total, with fa = 180 filters in the last

convolutional layer. In addition to an extended data augmentation, all other training

parameters from section 4.4 are retained. Since Velodyne64 and Scala1 have ground

truth labels for the complete environment, global rotation is used in 360◦ without

restriction.

5.4.3 Applied Evaluation Metrics

Following the 3D object detection metrics introduced in section 3.4, Average Precision

(AP) metrics are used to assess the performance of the model. On the one hand, this

evaluation also enables cross-comparisons to chapter 3. However, there are some

significant distinctions due to the labeling policies. Unlike KITTI, the application-

specific dataset does not rely on camera reprojection and is not limited to the area

visible to the front camera. Therefore, there are no similar difficulty levels of easy,

93

Chapter 5. Concept for Integration into an Application-Specific Scenario

Figure 5.8: Overview of the experimental pipeline for 3D object detection on the
application-specific setup. This model is a section of Figure 4.2, operating only on
point cloud inputs without downstream tracking. All unused building blocks are shown
transparently with dashed lines.

moderate, and hard. Additionally, there are no occlusion or truncation labels. Each

individual object is labeled throughout the sequences without Dontcare areas, only

filtered out if less than 5 points are within the bounding box, respectively. The

evaluation is based on the covered areas of the sensor data, according to the region

of interests defined in subsection 5.4.2. Furthermore, results are reported for 3D and

birdview bounding box overlap classified according to the Intersection Over Union

(IOU) thresholds 0.3, 0.5, and 0.7. More details regarding the definition of AP can

be found in Appendix C.

5.4.4 Results

The difficulty level of 3D object detection on the application-specific setup multiplies,

primarily due to the low mounting positions of the sensors as well as lower vertical

resolution compared to Velodyne64. However, the developed model discovers a vast

amount of objects even with more sparsity and extremely complex inner-city scenarios

as shown in Figure 5.9. The example scenes from Munich include multi-lane traffic

scenarios and huge road intersections with heavy traffic. Additionally, there are

countless pedestrians and cyclists on the sidewalks. Here, the density of correctly

detected objects varies according to the capabilities of the underlying point clouds.

Nevertheless, in some cases, the model is able to localize objects even with a few

point measurements.

Additionally, an exhaustive quantitative evaluation is provided in Table 5.2 as well

as Figure 5.10 for 3D and Figure 5.11 for birdview analysis. In both cases, the model

94

5.4. Experiments on the Application-Specific Dataset

Figure 5.9: Qualitative 3D object detection results on point clouds from a) 6× Valeo
Scala1, b) Valeo Scala2, and c) Velodyne HDL-64E, representing crowded test samples
from Munich per column. Visualized are recognized objects as bounding boxes in 3D
and birdview perspective, colored by classification: red for Car, green for Pedestrian,
yellow for Truck, cyan for Cyclist, blue for Bus and magenta for Transporter. All
grid cells have a size of 20 × 20m, representing the ground surface in order to give
an estimate of the proportions. In addition, fisheye camera images are visualized for
an impression of the scenes (top).

95

Chapter 5. Concept for Integration into an Application-Specific Scenario

Data 3D IoU mAP C
ar

P
ed
es
tr
ia
n

C
y
cl
is
t

T
ra
n
sp
or
te
r

B
u
s

T
ru
ck

Velodyne64

0.3 42.98 80.34 47.32 50.09 2.41 30.30 47.43

0.5 38.68 77.59 37.26 47.17 2.37 23.81 43.86

0.7 21.81 62.26 4.06 25.98 2.07 13.20 23.30

Scala1

0.3 19.90 56.82 4.53 15.10 0.58 24.90 17.47

0.5 14.69 46.04 0.97 9.63 0.51 17.03 13.96

0.7 5.58 20.67 0.05 1.73 0.18 5.48 5.39

Scala2 (front)

0.3 49.86 76.08 54.00 55.28 28.55 54.51 30.71

0.5 42.89 70.41 39.56 46.59 26.61 47.22 26.97

0.7 19.10 43.24 2.87 21.70 13.10 21.54 12.17

Data BEV IoU mAP C
ar

P
ed
.

C
y
cl
.

T
ra
n
sp
.

B
u
s

T
ru
ck

Velodyne64

0.3 43.13 80.47 47.70 50.10 2.41 30.30 47.79

0.5 40.97 79.41 42.28 48.50 2.40 27.21 46.03

0.7 29.73 72.79 10.97 34.58 2.37 19.09 38.60

Scala1

0.3 20.69 59.01 5.49 15.44 0.58 25.05 18.58

0.5 18.05 54.42 1.94 11.48 0.56 24.52 15.38

0.7 11.06 39.59 0.19 4.17 0.51 11.46 10.42

Scala2 (front)

0.3 50.65 76.97 54.66 56.56 28.79 56.23 30.71

0.5 47.29 75.59 49.07 49.02 28.47 52.91 28.69

0.7 32.15 68.26 11.94 35.30 24.71 30.71 22.00

Table 5.2: Performance comparison of the presented approach for 3D and birdview
(BEV) object detection based on AP percentages, where higher values are better. Val-
ues are reported for different IOU thresholds 0.3, 0.5, 0.7, and the best result of each
column is marked in bold. Note that Scala2 has a restricted region of interest. As can
be seen, there is a significant drop in performance depending on the IOU threshold in
most cases. This indicates fine-grained weaknesses in the regression of individual pa-
rameters, while the coarse localization of objects is well learned. Furthermore, sparse
point clouds with far less vertical sampling from Scala1 drop significantly in perfor-
mance. Except for Scala2, the model is not able to recognize Transporters well, as in
most cases, confusion with Cars occurs due to the similarity and biased distribution
across the classes.

is capable of classifying and localizing most object occurrences but makes subtle

mistakes due to ambiguities from sparsity, partial occlusion, or interaction with other

objects. For instance, Figure 5.12 shows prominent cases, where the Car in front

has just a couple of point measurements from the rear, and the pole of a traffic light

interacts with a nearby Pedestrian. A similar situation can be observed with groups

96

5.4. Experiments on the Application-Specific Dataset

Figure 5.10: Comparison of 3D object detection results on Scala1, Scala2, and
Velodyne, visualized as class-wise PR curves. As can be seen, there is a substantial
variance across IOU thresholds (0.3, 0.5, 0.7), classes, and underlying sensors. While
the model clearly performs the best for Cars on all three sensor sets, it struggles with
other classes due to varying reasons.

Figure 5.11: Comparison of birdview object detection results on Scala1, Scala2 and
Velodyne, visualized as class-wise PR curves for IOU thresholds (0.3, 0.5, 0.7). All
plots follow the trends and are consistently better or equal to the 3D metrics presented
in Figure 5.10. Hence, the discrepancies within the graphs of one sensor are also
smaller. However, there remains a strong variance across the classes and sensors
corresponding to the distribution in training data as well as the density of point clouds.

97

Chapter 5. Concept for Integration into an Application-Specific Scenario

of small objects like Pedestrians, e.g. waiting at a bus stop. Furthermore, many

objects are truncated, especially in near to mid-range, as they are partly outside the

field of view of the sensors. In such cases, required information about the surface

and contours of objects is not adequately represented in the measured point clouds.

Therefore, the detection accuracy also decreases significantly, especially at higher

distances. This can be seen in the remarkably increased performance for smaller

IOU thresholds of 0.5 and 0.3. Moreover, results for Scala1 are generated with the

limitation of inaccurate ground truth, as all labels for training and evaluation are

interpolations from Velodyne64 with small errors from synchronization.

In general, similar trends can be seen as in the evaluation on benchmark data

from chapter 3. Cars work best by far, whereas small and relatively rare objects are

troublesome. The reported performance on Velodyne64 is in total considerably lower

due to differences in the evaluation metrics described in subsection 5.4.3. Overall,

Scala2 is on par with Velodyne64, helped by a few reasons. First, the region of

interest is limited to the front only. Second, the diversity and the distance from

training to test data are lower because only recordings from Munich on the same

day are included instead of multiple. Compared to Velodyne64 and Scala2, there is

a major drop in performance for Scala1 throughout all categories. First of all, the

density of points is reduced to a minimum with missing crucial information through

neighboring relations. As a result, the model can hardly abstract more descriptive

features, and predictions become uncertain and inaccurate. Furthermore, the higher

the relative velocity of the objects, the less accurate the ground truth propagated

from Velodyne64, since all point clouds were recorded at different frame rates and

synchronized by nearest neighbor timestamps. Here, up to 1m offset occurs in worst

case scenarios leading to potential misalignment during training and evaluation. In

addition, by design Scala2 and especially Scala1 barely cover objects in the height

dimension at close range, often showing only the lower half of objects, as presented

in Figure 5.12.

Overall, the performance of the class Transporter drops significantly across all

classes for Velodyne64 (mAP < 0.30) and Scala1 (mAP < 0.03). Here, the root

cause is mainly due to an inconsistency in labeling. Parts of the ground truth labels

mixed up Transporter with Car because of the similarities. In essence, the model

tends to predict Car instead of Transporter, as the number of instances is also ex-

tremely predominant. On the other hand, all Transporter wrongly classified as Car

barely stand out in the amount of Car instances but generate some false positives as

well. All corrupted labels were corrected for Scala2 during the individual annotation.

98

5.5. Point Cloud to Image Translation

Figure 5.12: Examples of common failure modes from the test split: I) a partly
incomplete mid-range pedestrian, II) a vehicle directly in front at a distance of approx.
45m and III) a pedestrian close to the pole of a traffic light. Point clouds from a)
6× Scala1, b) Scala2, and c) Velodyne64 are cropped around the object bounding
boxes from ground truth, each presented in behind and top-view perspective, colored
by height. In Scala1 point clouds a), the low vertical resolution and strongest sparsity
becomes a major challenge as object surfaces are mostly unseen or truncated. This
improves with Scala2 b), where for example, at least half of the pedestrian I) is covered
in b). The problem of incomplete object surfaces is further highlighted in II), where
only a few patterns of the back represent the object shape making recognition more
difficult. In addition, III) highlights the potential problem of delimiting nearby objects
from each other. Overall, these problems get even worse at higher distances with far
fewer points. Note that the sizes are scaled individually for better visibility and in a)
bounding boxes are inaccurate, as they are interpolated from Velodyne64 annotations
without further corrections.

Therefore, a performance of a completely different order of magnitude was achieved.

But still, many Transporter instances are wrongly classified as Car or even Truck,

because the underlying point clouds have very similar characteristics.

5.5 Point Cloud to Image Translation

As the diversity and balance of data is a major key for robust models with good gen-

eralization, domain translation techniques can be utilized in order to enhance sparse

data instead of laborious manual acquisition. Most supervised learning methods are

99

Chapter 5. Concept for Integration into an Application-Specific Scenario

based on the assumption that training and testing data are drawn from the same

distribution. If one violates this constraint, a model trained on a source domain will

most likely experience a drop in performance when tested on the target domain due to

differences between domains [Patel et al. 2015], which might quickly result in fatal ac-

cidents in the case of self-driving cars. Therefore, a careful preparation of large-scale

datasets with multiple sensor modalities is particularly important, since they lead to

time-consuming and costly efforts. All major public datasets have taken up to one

year for recordings alone and more years are required to prepare suitable sequences

for training, testing, and validation. A comprehensive list of related public datasets

can be found in Appendix B. Although there are more than a dozen such datasets

nowadays, they cover only a fraction of possible real-world scenarios. Hence, in order

to provide alternatives, the research field of transfer learning has been established,

empowered by deep learning.

This section presents the developed approach, called Points2Pix, for conditional

image generation from learned point cloud characteristics based on a Generative Ad-

versarial Network (GAN). The content is mainly derived from [Milz et al. 2019]. First,

state of the art before the publication of this work is reviewed in subsection 5.5.1.

Thus, the developed model is described in subsection 5.5.2. This is followed by

experiments conducted on two fundamentally different benchmark datasets in sub-

section 5.5.3 and a brief conclusion with a broader impact.

5.5.1 Related Work

After the breakthrough in image processing with the help of GAN architectures de-

scribed in subsection 2.2.1, only a few methods were adapted for point cloud pro-

cessing. As a precursor, [Wu et al. 2017] deals with single image 3D reconstruction,

inspired by [Wu et al. 2016]. Here, two encoding decoding networks for 2.5D sketch

estimation were proposed, including normal, depth and silhouette, followed by 3D

shape estimation. The output is a 3D voxel-based reconstruction of the input image.

The first deep generative models based on point clouds were introduced in [Achlioptas

et al. 2018], where three architectures were presented: i) an autoencoder based on

PointNet [Qi, Su, et al. 2017], that was trained first, then fixed, and a GAN trained in

the latent feature space of the bottleneck from the autoencoder. Both generator and

discriminator consist of simple Multi-Layer Perceptrons (MLPs) with a single and

two hidden layers, respectively, ii) a GAN with raw point cloud inputs, where the

generator consists of five fully connected ReLu layers and a discriminator similar to

100

5.5. Point Cloud to Image Translation

the autoencoder of the previous approach, and iii) Gaussian mixture models fitted on

the latent space from the autoencoder, used to sample and decode with the decoder

from the autoencoder. In contrast, [Li et al. 2019] showed that common discrimina-

tors from image processing are not suitable for point sets. Therefore, architectures

based on PointNet [Qi, Su, et al. 2017] are used as discriminator. Furthermore, learn-

ing a feature descriptor of point cloud inputs to be used as an additional input into

the generator was proposed to overcome this problem.

The state of the art at the time of this work is mainly focusing on deep gen-

erative models to explore several variants for domain adaptation. There is a wide

range of subtasks, with image to image translation being the most significant one.

However, only very few work exists dealing with point clouds, and none of them aims

to translate properties from point clouds into images that can be used to enhance

datasets. Therefore, this section addresses this deficit with a novel generative model

parameterized via additional input conditions described as follows.

5.5.2 Conditional Generative Model

The basic idea of the developed model (Points2Pix) is to learn and convert knowl-

edge of 3D objects from a distribution of training data into loosely generated images.

At the same time, important properties like the pose or shape of the object shall

be parsed by the model and translated into the output. In addition, an arbitrary

background image patch is used to parameterize the environment while again con-

taining the 3D point cloud projected into the image plane in order to enhance the

control over the image synthesis further. Thus, by entering and manipulating these

predefined conditions, completely new samples with desired properties can be gener-

ated. For instance, any number of images can be created for a rare vehicle, retaining

the concise features and basic characteristics as specified in the conditions. Simulta-

neously, the input of the background image patch allows for variations of the main

visual context, such that the environment in the generated synthetic image is also

flexible.

Inspired by [Isola et al. 2017], Points2Pix aims to generate realistic images in a

conditional GAN setup, where the main input comes from a point cloud of a single

object instead. A high-level overview of the full pipeline is visualized in Figure 5.13.

Hence, the task includes the translation of structural and geometric properties from

the point cloud domain and merges them with textures from a learned image dis-

tribution out of a training dataset. This is solved by a generator consisting of two

101

Chapter 5. Concept for Integration into an Application-Specific Scenario

Figure 5.13: Overview of the Points2Pix model architecture for point cloud to image
translation. This figure highlights the competing adversarial formulation of a jointly
trained generator (blue), based on raw point cloud input as well as a background image
patch combined with points mapped from 3D into 2D via camera projection and a
discriminator (green). While the aim of the generator is to synthesize a complete
image (fake) by translating 3D characteristics from the point cloud and surroundings
from the background image patch, the PatchGAN [Isola et al. 2017] discriminator
learns to classify the result at the scale of the local image patches into real or fake in
order to enforce the generator to output fine-grained realistic textures.

combined sub-networks as well as three input conditions, jointly trained with the dis-

criminator network. The first part is a point feature encoder based on PointNet [Qi,

Su, et al. 2017], to generate global 3D features capturing the shape and description of

the underlying object. Second, a UNet autoencoder [Ronneberger et al. 2015] is used

to generate the images from the input patch filled with pixels from the background

condition as well as the projected points. Here, features from the point encoder and

image encoder are concatenated at the innermost part. Both the generator and the

discriminator networks, as well as the loss to jointly train them, are explained in more

detail in the following paragraphs.

Generator. A defining feature for the underlying problem is to fuse features from

point clouds with features from the image space while mapping a high-resolution

input to a high-resolution output grid. In addition, structural and geometric details

mapped from the point cloud need to be aligned with the output, while the visual

appearance can be drawn from the distribution in training data. Therefore, the

proposed generator G(c1, c2, c3) with conditions c1, c2, c3 is adapted from [Isola et al.

102

5.5. Point Cloud to Image Translation

Figure 5.14: Detailed architecture of the generator. The overall pipeline is based
on three input conditions and can be split into three areas: top) point cloud fea-
ture encoding based on [Qi, Su, et al. 2017], middle) feature-level fusion, and bottom)
convolutional UNet architecture from image processing [Ronneberger et al. 2015]. Re-
produced from [Milz et al. 2019].

2017] based on UNet [Ronneberger et al. 2015] and extended by a PointNet [Qi,

Su, et al. 2017]. A detailed illustration of the network architecture can be found in

Figure 5.14.

All three conditions are obtained in a preprocessing step based on the underlying

dataset. An overview of the assembly can be found in Figure 5.15. First, in c1 ∈ R
n×3

the raw point cloud of an object is cropped from the global scene and randomly

sampled to n points. Here, n points are chosen with equal probability as a subset

of all points inside a 3D bounding box, while individual points can occur multiple

times if there are less than n points contained in total. Afterwards, a PointNet [Qi,

Su, et al. 2017] is used, where two stages of feature space transformations followed

by fully connected MLPs are carried out, and a final max pooling layer aggregates

global point cloud features. These features are combined with intermediate camera

features at the innermost part of the UNet [Ronneberger et al. 2015] in order to

provide meaningful features for the rendering of 3D characteristics.

103

Chapter 5. Concept for Integration into an Application-Specific Scenario

Figure 5.15: An overview of how the conditions c1, c2, c3 are generated on a sample
from KITTI [Geiger et al. 2012]. While the point cloud of an object is used both
directly as input c1 and indirectly to generate further input features via back projection
into the image plane c2, a background patch c3 as well as the ground truth image to
be used for the discriminator is also cut out of the camera image. Therefore, ground
truth bounding boxes are used in 3D and 2D (green box) to extract the relevant regions.
Point clouds are colored by height. More details and equations are described in the
generator paragraph of subsection 5.5.2.

The second condition c2, i.e. an image with features projected from the same

point cloud input as in c1, is generated through a camera projection matrix P using

homogeneous coordinates:

kx = PT cam
pc X (5.1)

where k is a constant, x = (u, v, 1)T are pixel coordinates, X = (X, Y, Z,W)T are

point coordinates from the point cloud extended with homogeneous coordinate W ,

T cam
pc is an extrinsic transformation matrix from point cloud into a world coordinate

system and P can be denoted as:

P = K [I | 0]
[
R t
0 1

]
= K [R | t] (5.2)

where R is a 3 × 3 rotation matrix and t a 3-dimensional translation vector, both

representing the rotation and translation of the camera from world reference, and a

matrix K containing the intrinsic camera parameters defined by:

K =

⎡
⎣ αu s u0

0 αv v0
0 0 1

⎤
⎦ (5.3)

104

5.5. Point Cloud to Image Translation

with the coordinates of the principal point u0, v0, a skew factor s, αu = f
unitw

, the

width of a pixel in world units unitw, αv = f
unith

, the height of a pixel in world

units unith and f being the focal length. One color channel of the resulting image

coordinates x normalized by k is filled with the Euclidean distance from the origin of

the camera to point coordinates X in world reference. This results in a sparse image

similar to a depth image and can be calculated by:

yg(x) =
‖T cam

pc X‖
dmax

(5.4)

where dmax is a normalizing scaling factor and the resulting green color channel is

denoted by yg. In case point clouds contain an additional intensity value for each

point, e.g. the reflectivity from most lidar sensors (see Appendix A), a second color

channel (blue) can be filled with yb(x) = I(X).

Finally, the third condition c3 is an arbitrary image patch with the surrounding

of an object cropped from camera images as visualized in Figure 5.15. First, an area

of 256× 256 pixels is extracted as ground truth for the discriminator D centered at

the center of a given 2D bounding box from ground truth for objects. Then, the pixel

values from the inner area of this ground truth image are removed, which are to be

regenerated later by the network. Only the border is kept at a predefined width of 15

pixels to constraint environmental rendering. Thus, for each visible object for which

ground truth bounding boxes are also present in 2D and 3D, an input sample with

c1, c2, c3 can be generated. Objects that are close to the edge of the image are filtered

out. During training, the image background patch is compliant to the ground truth

reference for the discriminator D, while in test mode, background patches can be

randomly selected to produce completely new image creations. In order to increase

efficiency, c2 is merged into the empty image center in c3, before feeding both into

the UNet [Ronneberger et al. 2015]. After point and image features are encoded in

parallel, both are fused at the innermost part. This is followed by several up-sampling

layers to generate the final output image.

Discriminator. The assessment of the output from the generator is performed by

an adapted version of the Markovian discriminator from [Isola et al. 2017]. It consists

of 5 convolutional layers with batch and instance normalization as well as dropout

layers and tries to distinguish between fake D [G(c1, c2, c3)] and real images D[y]

at the scale of N × N patches. In contrast to [Isola et al. 2017], the input of the

discriminator is restricted to the generated image, and the conditions c2, c3 as the

105

Chapter 5. Concept for Integration into an Application-Specific Scenario

raw point clouds c1 cannot be processed by a CNN without further preprocessing.

To effectively distinguish fake from real images, while being able to model high- and

low-frequency structures in parallel, an additional L1 term is applied by shifting a

window across the generated image, similar to a convolution as originally proposed

by [Li and Wand 2016].

The overall objective of the conditional generative model can be formulated as

an additive combination of the loss from the generator LG and the discriminator LD.

During training, both are trained simultaneously while iteratively reducing LG and

increasing LD ideally. In other words, the output from the generator improves with

more realistic images, while the discriminator progressively struggles to distinguish

them from real ones. Following Equation 2.6 and incorporating the conditions c1, c2

as well as c3, the basic loss can be described as:

LcGAN(G,D) = Ey[log(D(c2, c3, y))] + Ec1,c2,c3 [log(1−D(c2, c3, G(c1, c2, c3))] (5.5)

Compared to Equation 2.6, the random noise input z is removed but implicitly incor-

porated as dropout layers during training, similar to [Isola et al. 2017]. In order to

force the generated output to be compliant with the conditions, the aforementioned

L1 difference between the generated output and the ground truth is added. Therefore,

the final loss can be denoted as:

LPoints2Pix = LcGAN(G,D) + λL1 · Ec1,c2,c3,y [||y −G(c1, c2, c3)||1] (5.6)

with weighting factor λL1 , as proposed by [Wang et al. 2018].

5.5.3 Experiments

This subsection introduces the datasets, all underlying training and model param-

eters, as well as the metrics used to evaluate the developed model. To emphasize

the generalization, the results are presented on two fundamentally different datasets,

where alternating conditions like different backgrounds or random rotations to the

point cloud input prove the capabilities to generate high diversity. On top, two

simplified network architectures, called Points2Pixno pointnet and Points2Pixhalf unet,

are examined to determine the influence of individual input conditions as well as the

capabilities of synthesizing images with the help of a Deep Neural Network (DNN)

trained as a generator. An overview of the different network variants is illustrated in

Figure 5.16.

106

5.5. Point Cloud to Image Translation

Figure 5.16: Architectural review of the proposed Points2Pix generator (left), a
derivative without the raw point cloud condition c1 (middle) and a variant without
the features encoded from the camera projection c2 as well as the background patch c3
(right). Thus, both Points2Pixno pointnet and Points2Pixhalf unet each operate only in
image space or with point cloud input, while the full Points2Pix model benefits from
all input conditions G(c1, c2, c3) by implicitly learning a mapping between the spaces.
Reproduced and modified from [Milz et al. 2019].

Datasets. As in chapter 3, the KITTI object detection dataset [Geiger et al. 2012]

is used to evaluate the model for the target environment of Autonomous Driving.

Again, the same splits are used with 3, 712 samples for training and 3, 769 samples

for validation. In preprocessing, the data for single objects is generated by cropping

their area in the images using the 2D bounding box labels and the points from the

point cloud belonging to the object using the 3D bounding box labels, respectively.

Here, strongly occluded or truncated objects are skipped using the existing labels.

In addition, objects with more than dmax = 60m distance or with less than 700

points are filtered out. All images are resized to match 256×256 pixels using bicubic

interpolation. Based on this setup, more than 20k samples are extracted for training

using Cars only.

Furthermore, the indoor dataset SunRGBD [Song et al. 2015] is used to prove

generalization. In contrast, RGB-D sensors are used to capture this dataset, instead

of lidar. Therefore, the projection in condition c2 only contains the radial depth yg,

since no additional intensity values I(X), i.e. the reflectivity of materials measured

by a lidar, are available. By applying the same preprocessing with dmax = 4m, 3, 267

samples are generated with Chairs, Tables, Desks, Pillows, Sofas and Garbage Bins.

Due to very limited size, 2, 940 samples are used for training and only 327 samples

for validation.

107

Chapter 5. Concept for Integration into an Application-Specific Scenario

Training and Optimization Details. The developed model and the variants de-

scribed in Figure 5.16 are trained from scratch on both training datasets for 100

epochs using the Adam optimizer [Kingma and Ba 2015] with a batch size of 4,

learning rate of of 0.0002 and momentum β1 = 0.5, β2 = 0.999 such as λL1 = 100. All

point cloud inputs are randomly sampled to n = 1, 024 points, i.e. individual points

can occur multiple times for point clouds from objects with fewer points than n (see

paragraph generator in subsection 5.5.2). The background image patch c3 with the

environmental surroundings contains 15 pixels from the outer border to the inner of

the image, leaving a square of 226 pixels to be generated (see c3 in Figure 5.15). For

the generator, batch normalization [Ioffe and Szegedy 2015] and ReLu activation are

used, while the discriminator is based on leakyReLu and a sigmoid activation after

the last convolutional layer. These values were acquired through quantitative testing.

Evaluation Metrics. According to the desired properties of generative models,

several measures have been proposed to estimate the performance. However, there

is no clear consensus about which measure is the best for comparison [Borji 2019].

Therefore, in order to assess the performance of the developed model, three specific

scores, namely a classification score Sc, an object-based score Siou and a diversity

score Sd, are used, inspired by [Wang and Gupta 2016]. Hence, a YOLOv3 [Redmon

and Farhadi 2018] detector trained on ImageNet [Deng et al. 2009] and Microsoft

coco [Lin et al. 2014] is utilized to detect 2D objects in the generated images as well

as the original ones. Then, the output is compared to the existing ground truth from

manual annotations while assuming that such a detector will work if the images are

realistic enough.

First, a number of correctly detected classes Sc can be denoted as:

Sc =
TPfake

TPreal

(5.7)

where a true positive TP is a correctly classified detection independent of the related

bounding box when compared to the ground truth class label. Moreover, fake denotes

the generated image and real the original target image. Second, the IOU can be

considered for all TP detections, resulting in:

Siou =
BBfake ∩ BBreal

BBfake ∪ BBreal

| Sc = 1 (5.8)

such that only positive results in terms of classification are evaluated Sc = 1, where

BBfake is the detected 2D bounding box in the generated image and BBreal the

108

5.5. Point Cloud to Image Translation

(cars) (chairs)
Points2Pixfull Points2Pixfull
Points2Pixno_pointnet Points2Pixno_pointnetPoints2Pixhalf_unet Points2Pixhalf_unet

Confidence Threshold YOLOv3

C
la

ss
if
ic

at
io

n
 S

co
re

 (
%

)
-
S
c

Figure 5.17: Classification scores Sc plotted over the confidence from an object
detector for Cars (KITTI [Geiger et al. 2012]) and Chairs (SunRGBD [Song et al.
2015]). Here, confidence describes a lower bound for the estimated certainty of each
predicted object. A more detailed description is given in the results paragraph in
subsection 5.5.3. Reproduced from [Milz et al. 2019].

detected 2D bounding box in the original image, respectively. The third score Sd

measures the diversity based on the average Siou, when alternating the background

condition c3 → {1...N}:
Sd =

1

N

N∑
i=1

Sioui
(5.9)

In this way, N = 10 different background patches are randomly selected as input to

condition the diversity of the generated output images while verifying the detection

from YOLOv3.

Results. In this paragraph, the aforementioned quantitative metrics as well as quali-

tative results are reported for both datasets. In Figure 5.17, the classification score Sc

can be found for Cars on KITTI as well as Chairs on SunRGBD. Here, Points2Pixfull

corresponds to the full model with G(c1, c2, c3), while Points2Pixno pointnet is a version

without features from the input point cloud c1 and Points2Pixhalf unet without c2 and

c3 based on the point cloud input only, as depicted in Figure 5.16. As can be seen,

the results on KITTI are significantly better. This is mainly due to uncertainties in

YOLOv3 [Redmon and Farhadi 2018] for smaller, underrepresented classes such as

Chairs, which leads to frequently misclassified or misdetected objects. Nevertheless,

the network benefits from all input conditions with consistently up to 20 percent

better results. On the one hand, this emphasizes an implicitly learned mapping from

109

Chapter 5. Concept for Integration into an Application-Specific Scenario

Dataset Class
Siou Sd

0.3 0.5 0.7 0.3 0.5 0.7

KITTI Car 0.76 0.77 0.77 0.71 0.70 0.68

Siou Sd

0.1 0.2 0.3 0.1 0.2 0.3

SunRGBD

Sofa 0.52 0.77 0.77 0.16 - -

Table 0.70 - - 0.24 0.22 -

Chair 0.60 0.58 0.58 0.45 0.37 0.33

Table 5.3: Quantitative results with Siou and Sd scores for KITTI and SunRGBD
data: The values are presented for several detection confidence thresholds, i.e. 0.3,
0.5, and 0.7 in case of KITTI, as well as 0.1, 0.2 and 0.3 for SunRGBD to address
uncertainties from the YOLOv3 network. A minus indicates no detections for the
associated class. Reproduced from [Milz et al. 2019].

point cloud to image space. On the other hand, the knowledge from the distribu-

tion in the training data is better reflected by the learned weights resulting in more

meaningful feature representations. A top performance of roughly Cs = 76 percent

is reached for Cars at a low confidence threshold of 0.1. Moreover, the results de-

crease with an increasing confidence threshold, again indicating uncertainties of the

underlying detector. However, YOLOv3 is able to detect most of the objects in the

generated fake images, demonstrating that the developed model produces sufficient

structures and patterns similar to real images.

In addition, Table 5.3 presents both, the IOU based detection scores Siou and the

diversity scores Sd. Again, similar behavior can be observed in comparison to Cs,

while the impact of the confidence threshold is less. This indicates that the detector

is also capable of predicting the bounding boxes on generated fake images with

high accuracy compared to the bounding boxes detected on real images. Likewise,

Figure 5.18 gives an impression with pairs of the recognized objects in real (right)

and fake (left) images, each with detected object on fake in green and on real in red.

Here, the behavior of the detector is extremely similar in all examples, which also

demonstrates positive characteristics of the generated images similar to real ones.

In most cases, the model is able to seamlessly continue patterns from the back-

ground patch c3 such as road markings or shadows from the sunlight. Furthermore, in

some cases, the basic colors of the objects are changed, thus creating more diversity.

However, some objects still have somewhat unnatural structures, which also lead to

slightly reduced performance of the detector. In particular, the variation of the back-

ground patch c3 (see Figure 5.15) partly degrades the results of Sd seen in Table 5.3.

110

5.5. Point Cloud to Image Translation

Figure 5.18: Examples of generated images on the validation sets with results from
object detection compared to corresponding real images. Multiple pairs of fake (left)
and real (right) images are visualized from Cars or Chairs decorated with bounding
boxes detected by YOLOv3 [Redmon and Farhadi 2018]. Green bounding boxes are
detected in fake, while the red ones are from real images. A more detailed description
is given in the results paragraph in subsection 5.5.3. Reproduced from [Milz et al.
2019].

For instance, Figure 5.19 shows different examples with varying backgrounds. It can

be clearly seen that properties from the point cloud c1 as well as the back projection

in c2 are translated into the generated images, making all objects easily recognizable.

Similarly, positions and orientations, as well as the viewpoints, are transferred very

accurately from input conditions into the output. Notably, the basic brightness, con-

trast, and daylight are still seamlessly integrated, even though completely different

scenes have been generated. In contrast, some areas of the images are often blurred,

resulting in less fine-grained details and structures. Especially colored objects from

indoor scenarios in SunRGBD confuse the generation of the environment and lead to

111

Chapter 5. Concept for Integration into an Application-Specific Scenario

Figure 5.19: Results with varying background condition c3. Generated images from
four different object classes with ten different background inputs from the validation
sets are visualized. The left column shows the original image, followed by the corre-
sponding point cloud used as constant input conditions c1 and c2. Throughout all of
the samples, the 3D characteristics are translated and clearly visible in 2D, while the
environmental patterns are mostly realistic. A more detailed discussion is given in
the results paragraph in subsection 5.5.3. Reproduced from [Milz et al. 2019].

unnatural large, almost monochrome colored areas. In addition, some of the outputs

tend towards abstraction or art, potentially due to the significantly smaller amount

of training samples. Nevertheless, 3D patterns from point clouds are learned and

translated into the image space with clearly visible patterns and characteristics in

2D, while the main content in the images integrates very well into the forced back-

grounds.

Another way to increase the flexibility of data generation using the developed

model is to modify the point cloud input, affecting the raw point condition c1 and the

image projection c2. In particular, transformations like global rotation can be used

to generate specific orientations of the objects. For instance, Figure 5.20 presents

some qualitative results with partly over-stressed rotation, where the objects are

upside down. Although the generated images are a bit blurry around the objects, the

intended contours and shape are clearly visible.

112

5.5. Point Cloud to Image Translation

Figure 5.20: Results when modifying the input point cloud in raw point condition c1
and image projection c2. The left part shows two examples of Cars from the KITTI
validation set when rotating the point cloud by 20◦ around the up axis. The right part
contains examples from the SunRGBD validation set with a flipped-up axis. Although
the generated objects are slightly blurred, the 3D representation can be successfully
translated into the image. Reproduced from [Milz et al. 2019].

5.5.4 Conclusion

In this section, a pioneering approach for point cloud to image translation called

Points2Pix was presented. An existing conditional image to image model from [Isola

et al. 2017] was adapted to generate highly realistic images mainly based on 3D

properties from point cloud inputs. Therefore, a novel network architecture based

on PointNet [Qi, Su, et al. 2017] combined with UNet [Ronneberger et al. 2015]

was proposed. Here, three conditions, c1 a raw point cloud of an object of interest,

c2 an image back-projection of c1 and a background image patch c3, are used as

input, while the network learns a distribution of the characteristics in training data

as well as a translation from 3D to 2D. After the network is trained, a targeted

data generation can be implemented to extend existing datasets or to increase and

balance diversity simply by modifying one of the input conditions. While keeping

important characteristics and structures from 3D, the conditional setup is very helpful

in generating a variety of diverse data. However, the output resolution is limited to

256× 256, and despite a special error function, blurred areas can occur. This leaves

room for further development.

113

Chapter 5. Concept for Integration into an Application-Specific Scenario

Nevertheless, the model can be used for 3D texturing, lidar and camera fusion,

cross sensor domain adaptation, as well as data augmentation, since most AD datasets

focus on high redundancy through multi-modal sensors. Building upon this work,

several other methods have already been developed. An overview for image to image

translation was given in [Alotaibi 2020]. Moreover, an approach for generative image

in-painting was presented in [Shao et al. 2020]. Additionally, multiple methods for

rendering images from point clouds were developed, such as [Atienza 2019; Kim et al.

2020; Cortinhal et al. 2021; Peters and Brenner 2020]. Likewise, a view synthesis from

colored point clouds, i.e. images are rendered from arbitrary viewpoints of a scene,

was presented in [Song et al. 2020]. Similarly, [Haiderbhai et al. 2020] generated X-ray

images from generic point clouds, while [Caccia et al. 2019] modeled a reconstruction

of compressed point clouds from lidar. Also, many perception tasks were enhanced

with domain adaptation techniques, e.g. [Saito et al. 2019; Kim et al. 2019; Wang

et al. 2019; Zhao et al. 2019; Choi et al. 2019].

5.6 Conclusion

This chapter contains a concept for the integration of the developed methods from

chapter 3 and chapter 4 in Advanced Driving Assistance Systems (ADAS) or Au-

tonomous Driving (AD) systems, consisting of an analysis of the application-specific

setup as well as a semi-automated construction of a dataset suitable to train and eval-

uate the developed methods in comparison to the performance on a scientific bench-

mark dataset. Hence, the essential steps and difficulties for a real-world deployment

are highlighted, and the potential of the developed model is explored. However, full

integration requires further development to solve revealed problems in detail. First,

the implementation and adaptation for embedded hardware are missing, as a specific

API has to be used in order to utilize acceleration modules fully. Parts from chapter 4

were neglected for simplification of the experimental evaluation. The proposed fusion

with semantic features from camera requires the highest accuracy in sensor synchro-

nization as well as further supervised training data in the image domain. Inaccuracies

have already been identified during synchronization based on software timestamps,

making manual corrections of ground truth for Scala2 necessary instead of simple

propagation from Velodyne64. Although automated annotation of data has modified

requirements for detector and tracking, the developed methods could be reused with

minor adaptations in a real-world application assisting humans during annotation.

114

5.6. Conclusion

As a result, enormous time and cost savings can be achieved, and moreover, errors

from humans can be prevented to increase the quality of the generated ground truth.

Additionally, a model to synthesize images from point clouds based on a Gen-

erative Adversarial Network (GAN) was investigated. This is particularly helpful

when it comes to multi-modal data acquisition, which is common for AD. Conditions

such as a point cloud from single objects, e.g. a vehicle or a section of an image

from the target environment, can be given as input to the network in order to pro-

vide specific data. As an alternative, such methods are beneficial, especially because

rare or underrepresented cases can simply be synthesized rather than laboriously

recorded in the real world. On top, the diversity and balance of training datasets

strongly influence the convergence and generalization of learning-based approaches

such as Deep Neural Networks DNNs. Overall, the conducted experiments on the

constructed dataset confirm that the proposed methods also work when operating

on restricted automotive-grade sensors in real-world scenarios. The results achieved

on point clouds from Scala2 are particularly very promising. Future work will focus

on the extension to multiple Scala2 or next-generation sensors, covering the full 360◦

environment while increasing the size of the dataset. The concepts developed in this

work form a solid basis for further development and improvements.

115

Chapter 6

Summary and Outlook

6.1 Summary

This thesis dealt with the recognition of objects in 3D point clouds for Autonomous

Driving (AD). Highly automated driving on public roads provides the foundation for

the field of environmental perception, currently one of the most exciting fields of re-

search. The first promising results from computer vision have been fuelled by recent

advances in deep learning. However, the pursuit of progressively improved automa-

tion up to full autonomy in such safety-critical systems requires complex processing

chains with additional redundancy. In particular, the spatiotemporal detection of the

surrounding environment plays a central role in the planning and control of vehicles.

Therefore, lidar technology has emerged to produce accurate measurements of depth

forming point clouds. Nevertheless, both sensor technology and processing are still

mainly the subject of research, practically unsuitable for the usual private ownership

of vehicles. Based on this, the primary objective of this work was also the applica-

tion to a closer-to-production system with even more challenging conditions due to

requirements for sensor mountings with smooth integration into the vehicle design as

well as reasonable hardware and sensor constraints.

In the first part (chapter 3), a novel highly efficient model for object detection

on point clouds called Complex-YOLO [Simon et al. 2018] was developed, based on

You Only Look Once (YOLO) [Redmon et al. 2016], a Convolutional Neural Network

(CNN) from image processing. As one of the first works of its kind, the developed

method considerably contributes to the research community with an above-average

number of citations. Particular focus was put on a lightweight input representation

of point clouds in birdview image space, together with a specific loss function to

incorporate robust estimation of the orientation directly into the regression layer using

117

Chapter 6. Summary and Outlook

the complex space. Thus, state-of-the-art has been extended by essential building

blocks for 3D object detection with higher efficiency compared to existing approaches.

Based on this baseline, a downstream probabilistic Multi Object Tracking (MOT)

was presented (chapter 4), which is the first of its kind to operate directly in a global

3D space with point clouds from lidar. In contrast, sequential processing of point

clouds directly in a Deep Neural Network (DNN) is challenging in several aspects.

First, recurrent architectures quickly become very complex with many layers. Addi-

tionally, the incorporation of regression together with the association over time into a

learning process with differentiable loss is severely limited and often unstable. There-

fore, the developed approach offers a convenient alternative following the tracking-by-

detection scheme using an online tracking based on Labeled Multi-Bernoulli Random

Finite Set (LMB RFS) [Reuter et al. 2014; Bryant et al. 2018]. This facilitates the

optimization of DNNs as a robust detector and at the same time allows the use of

temporal information and target instantiation based on realistic physical assump-

tions. Moreover, as one of the first works, a feature-level fusion with point clouds

converted into voxels and features from camera images was presented. Thus, the

capability of the baseline detector is strongly increased by voxels filled with a nor-

malized floating number calculated from back-projected class labels. Hence, an ENet

[Paszke et al. 2016] was trained to generate these class labels formulated as pixel-wise

semantic segmentation on camera images. This offers the opportunity to efficiently

learn improved features that represent complex semantic relationships that are hardly

present in irregular point clouds. In addition, a novel measure for object to object

matching called Scale Rotation Translation Score (Ssrt) was introduced. In compar-

ison to the commonly used Intersection Over Union (IOU), Ssrt comes with higher

efficiency and better flexibility since individual components can be weighted. In this

way, application-specific requirements, e.g. a prioritization for correct regression of

individual object parameters like orientation, localization or scale, can also directly

be mapped into the learning process.

In the last part of this thesis (chapter 5), the embedding and integration of the

developed methods into an application-specific setup was examined. Accordingly,

a dataset was prepared in order to assess the performance with point clouds from

automotive-grade lidar sensors in a close-to-production vehicle. This is one of the

biggest challenges for data-driven approaches in real-world safety-critical environ-

ments, as vast amounts of well-curated data are a prerequisite. Therefore, the de-

veloped algorithms were smoothly integrated into a software application for human

annotations and iteratively reused for automation. Although the requirements differ

118

6.2. Conclusion and Outlook

significantly from perception in autonomous vehicles, costs and effort could be effec-

tively reduced, also showing their potential for generalization. Overall, the achieved

performance alone is not sufficient for AD level 5. Nevertheless, a significant con-

tribution can already be made to a holistic system based on redundancy, where the

developed methods can be used as single or complementary components in parallel

to others. Here, the immense potential for scaling via data, the potential exchange

of individual building blocks, or more advanced sensor technology is particularly de-

cisive. All shown concepts are also valid for use in real-world comfort and driving

applications with partial automation for driver assistance. In addition, an alterna-

tive approach for directed cross-sensor data generation was designed (section 5.5),

extending state of the art with a novel conditional setting for point cloud to image

translation, i.e. image synthesis. This kind of solution with initial results is partic-

ularly promising to solve problems related to the acquisition of datasets needed for

deep learning approaches. Not only can costs and efforts be reduced, but the aspects

of increasing the balance and diversity in the data must also be taken into account,

which is very important for the performance of supervised learning methods. How-

ever, fundamental research is needed for a more goal-oriented synthesis of data of the

highest quality and even more flexibility for real-world applications.

6.2 Conclusion and Outlook

In the context of this work, a comprehensive contribution could be made to the

objective set, namely efficient object recognition in 3D point clouds for AD, and

thus to push the frontier of environmental perception by expanding deep learning for

point cloud processing. Spatial perception is one of the key challenges to realizing

self-driving vehicles, with lidar sensors, among others, making tremendous progress

in producing accurate and dense measurements of the environment. Although new

methods have emerged, there are many opportunities for optimization and expansion.

Further improvements can also be made to the developed model for joint object

detection and tracking itself. For instance, modular building blocks like the backbone

for feature generation can be exchanged by new trends from state-of-the-art. Further-

more, as many raw points as possible should flow through the network via an efficient

representation in order to discard as little information as possible at this early stage

to enrich the learning of valuable features. Moreover, there are several directions to

investigate. First, any improvement of the detector simplifies the tracking, as the

association strongly depends on the underlying predictions. Here, a comparison of

119

Chapter 6. Summary and Outlook

different strategies for the fusion with features from camera would be interesting.

Also, multiple point clouds can be used as input into the network at the same time,

as a temporal sliding window, in order to make even better use of temporal informa-

tion. Graph Neural Networks [Wu et al. 2020] or transformers from natural language

processing [Vaswani et al. 2017] are particularly well suited for this purpose. How-

ever, efficiency must still be increased. Another option is to simplify the regression

in the detector, e.g. to transfer the estimation of dimensions to the MOT. Similarly,

dedicated motion models for pedestrians and cyclists could contribute to the state

estimation. To further increase efficiency and for use in embedded systems, runtime

optimizations can be investigated both in the CNN and in pre- or postprocessing.

One of the main concerns throughout this thesis is the dataset issue when ap-

plying deep learning algorithms to real-world problems. Due to the complexity and

diversity of available driving scenarios, the quantity for sufficient generalization mul-

tiplies to an unrealistic order of magnitude. For instance, several traffic environments

exist like a highway, inner-city, landscape, or urban areas resulting in varying speeds,

driving maneuvers, and density of road participants, as well as environmental con-

ditions such as weather or time of the year and day, plus worldwide diversity for

traffic signs and rules in different countries. Also, the dynamic environment of public

roads changes permanently, especially due to construction sites or new types of par-

ticipants, e.g. next-generation vehicles. Additionally, meaningful differences in raw

data from diverse or evolving sensor technology as well as varying mounting positions

and viewpoints introduce severe challenges. Recently, there have been rapid advances

exemplified by many new public benchmark datasets, as can be seen in Appendix B.

Similarly, more data from the application-specific setup can be generated in further

iterations while using the newest heavy multi-stage offline detectors and tracking for

better automation. In parallel, it would be beneficial to adapt the setup to have a

mix of long-, mid-, and short-range sensors to minimize the truncation of objects.

Furthermore, the dependency on data or sensors can be minimized by cross dataset

or sensor learning as well as domain adaptation techniques, as another exciting field

for research.

Together with the methods developed in this thesis, future efforts will support the

objective of shaping the future of mobility worldwide with the safest ways of moving

people or goods.

120

List of Abbreviations

AD . Autonomous Driving

ADAS Advanced Driving Assistance Systems

AP . Average Precision

CNN Convolutional Neural Network

DNN Deep Neural Network

E-RPN Euler Region Proposal Network

GAN Generative Adversarial Network

GDPR General Data Protection Regulation

GNN Graph Neural Network

GRU Gated Recurrent Unit

IOU . Intersection Over Union

JPDAF Joint Probabilistic Data Association Filter

JSON Java Script Object Notation

LMB RFS Labeled Multi-Bernoulli Random Finite Set

LSTM Long Short Term Memory

MHT Multiple Hypothesis Tracking

MLP Multi Layer Perceptron

I

List of Abbreviations

MOT Multi Object Tracking

MTT Multi Target Tracking

NMS Non Maximum Suppression

NN . Neural Network

ReLu Rectified Linear Unit

RFS . Random Finite Set

RNN Recurrent Neural Network

RPN Region Proposal Network

SGD . Stochastic Gradient Descent

SVM Support Vector Machine

UKF Unscented Kalman Filter

VFE . Voxel Feature Encoding

YOLO You Only Look Once

II

List of Figures

1.1 Definition of SAE Automation Levels 2

1.2 Examples of autonomous vehicles . 3

1.3 Examples of point clouds from an automotive-grade lidar 4

1.4 Thesis outline . 11

2.1 Synthetic neurons and multi-layer Neural Network 14

2.2 Plots of the commonly used ReLu activation functions. 15

2.3 Convolutional Neural Network (CNN) 16

2.4 Classification of Domain Translation 18

2.5 Milestones in 2D object detection . 21

2.6 Illustration of multi-object tracking 25

2.7 Mean and covariance propagation based on the Unscented Transfor-

mation . 28

2.8 Coordinated Turn motion model . 30

3.1 Related approaches for 3D object detection based on point clouds . . 35

3.2 Baseline model for 3D object detection 36

3.3 CNN network architecture . 38

3.4 Euler Region Proposal Network . 39

3.5 Statistics of the KITTI object recognition dataset 41

3.6 Birdview image samples . 43

3.7 Performance over runtime plot . 45

3.8 Qualitative results . 47

3.9 Loss comparison during training . 49

4.1 Complex-YOLO results on a KITTI sequence 55

4.2 Joint object detection and tracking architecture 57

4.3 Results from ENet . 58

4.4 Statistics of the KITTI tracking dataset 65

III

List of Figures

4.5 Quantitative tracking results on KITTI 69

4.6 Qualitative tracking results on KITTI 70

4.7 Tracked trajectories on KITTI . 72

4.8 Related milestones upon Complexer-YOLO 74

5.1 Application-specific vehicle sensor setup 81

5.2 Lidar point cloud comparison . 82

5.3 GUI of the annotation tool . 86

5.4 Semi-automated annotation workflow 88

5.5 Automated annotation using Complex-YOLO 89

5.6 Annotation automated by tracking 90

5.7 Statistics of the application-specific dataset 91

5.8 Experimental detection pipeline . 94

5.9 Qualitative results on the application-specific dataset 95

5.10 PR curves for 3D evaluation . 97

5.11 PR curves for birdview evaluation . 97

5.12 Common failure modes . 99

5.13 Points2Pix model architecture . 102

5.14 Architecture of the generator . 103

5.15 Preprocessing of the input conditions 104

5.16 Architectural review of Points2Pix . 107

5.17 Classification score plots . 109

5.18 Object detection on images generated from Points2Pix 111

5.19 Qualitative results with varying background conditions 112

5.20 Qualitative results with rotated point cloud conditions 113

A.1 Time of flight distance measurement VIII

A.2 Lidar field of view schematic . IX

B.1 KITTI Annieway . XX

B.2 Examples from the KITTI object detection datasetXXII

B.3 Example sequence from the KITTI tracking datasetXXIII

D.1 Quantitative analysis of the Ssrt scoreXXXIV

IV

List of Tables

3.1 Performance comparison for birdview object detection 44

3.2 Performance comparison for 3D object detection 44

3.3 Feature channel and complex orientation experiments 49

4.1 Complexer-YOLO model architecture 61

4.2 Quantitative tracking results (HOTA) 68

4.3 Quantitative tracking results (CLEAR MOT) 68

4.4 Ablation of input features . 73

5.1 Nvidia Drive AGX Pegasus: Technical Hardware Specifications 80

5.2 Performance comparison . 96

5.3 Quantitative results for KITTI and SunRGBD 110

A.1 Specifications of the Velodyne HDL-64E. X

A.2 Specifications of the Scala Gen1. X

A.3 Specifications of the Scala Gen2. XI

B.1 Public datasets overview . XV

C.1 KITTI object detection evaluation parametersXXVI

V

Appendix A

Light Detection and Ranging -
Lidar

The following sections provide information about the basics of lidar imaging and the

sensors that generate the point clouds used throughout this work.

A.1 Basics of Lidar Imaging

Lidar sensors are based on the principle of time of flight, where the distance is es-

timated by actively emitting light and the measuring of the time delays for the re-

sponse. This principle is visualized in Figure A.1. The optical signal is reflected from

a target, traced back, and detected in order to measure the delay of the light waves

traveling through the atmosphere. In the simplest case, a short light pulse and the

time of arrival are used, while more complex methods based on the modulation of

the amplitude and frequency are also available. Based on such pointwise estimation,

lidar sensors are constructed to cover a large field of view. Therefore, in most cases,

scanning systems are used with a so-called beam steering component. Here, some

sort of optics together with rotating components are often used in order to jointly

rotate the unit with light source and receptors. Furthermore, multiple light sources

and receptors are used in parallel along the spinning axis to obtain measurements for

different angular directions simultaneously. A more detailed overview can be found in

[Royo and Ballesta-Garcia 2019]. Furthermore, [Lambert et al. 2020] gives a thorough

assessment of several lidar sensors related to AD.

Given the characteristics of such systems, certain properties of the generated point

clouds emerge:

• The resolution in point clouds depends on single components such as the number

VII

Appendix A. Light Detection and Ranging - Lidar

Figure A.1: The principle of pulsed time of flight distance measurement.

of light sources and detectors, their structure as well as the beam steering

module, and decreases quadratically with distance.

• Point Clouds have a strongly varying density that is heavily influenced by spatial

occlusion since they are measured by an optical process (see Figure A.2).

• The field of view is determined by the structure of light sources and detectors

(vertical, see Figure A.2) and the beam steering module (horizontal) as well as

the optics, respectively.

• The intensity of the reflected pulse varies according to the material (reflectivity)

of the target. Therefore, extreme cases like highly reflective materials will

introduce some noise in the measurement.

A.2 Velodyne HDL-64E

As one of the first high-definition scanning lidar sensors, the HDL-64E is based on

a rotating head component, including 64 laser emitters mounted to specific vertical

angles. The head spins at rates from 5Hz up to 20Hz, generating approximately

1.3kk points per second of the full surrounding environment. Specifications can be

found in Table A.1.

VIII

A.3. Valeo Scala Laser Scanner

Figure A.2: A schematic for the field of view of typical lidar setups for AD: Nearby
objects will generate shadowed characteristics in the resulting point clouds, respec-
tively. In contrast to the upper rows, the third image represents a lower mounting
position related to Scala Gen2. Here, only a section of the person is visible, while the
van is occluded by the person and the bus by both objects.

A.3 Valeo Scala Laser Scanner

Both Scala Laser Scanners are automotive-grade scanning lidar sensors from Valeo.

They were designed to be used for ADAS and AD applications mounted low for

integration close to production. Based on rotating mirrors inside the housing, a

limited area in front of the sensors is scanned. Specifications can be found in Table A.2

and Table A.3.

IX

Appendix A. Light Detection and Ranging - Lidar

Category Specifications

Laser Class 1 - eye safe
Wavelength 905 nm
Pulse 10 ns

Scan Pattern Horizontal Field of View 360◦

Vertical Field of View +2◦ up to -24.8◦ down
Scan Rate 5 - 20 Hz
Number of Layers 64
Horizontal Resolution 0.08◦ - 0.35◦

Vertical Resolution ∼0.4◦

Distance Accuracy <20 mm

Power Operating Voltage 12 - 32 V
Consumption 60 W

Table A.1: Specifications of the Velodyne HDL-64E.

Category Specifications

Laser Class 1 - eye safe
Wavelength 905 nm
Pulse <5 ns

Scan Pattern Horizontal Field of View 145◦

Vertical Field of View 3.2◦

Scan Rate 25 Hz
Number of Layers 3 per scan, 4 effective per 2 scans
Horizontal Resolution 0.25◦

Vertical Resolution 0.8◦

Distance Resolution <100 mm

Power Operating Voltage 9 - 14 V
Consumption <10 W

Table A.2: Specifications of the Scala Gen1.

X

A.3. Valeo Scala Laser Scanner

Category Specifications

Laser Class 1 - eye safe
Wavelength 905 nm
Pulse <5 ns

Scan Pattern Horizontal Field of View 133◦

Vertical Field of View 10◦

Scan Rate 25 Hz
Number of Layers 16
Horizontal Resolution 0.125◦ for +/-15◦

0.25◦ for +/-15◦ to 66.5◦

Vertical Resolution 0.6◦

Distance Resolution <100 mm

Power Operating Voltage 9 - 14 V
Consumption <10 W

Table A.3: Specifications of the Scala Gen2.

XI

Appendix B

Public Datasets

This annex provides additional information about public benchmark datasets with a

focus on KITTI as used in both 3D object detection and MOT. Further observation

of state of the art after the work in this thesis has revealed a growing number and

size of point cloud data for AD.

B.1 Overview

In recent years many new datasets have been developed due to deep learning trends.

All of the new datasets come with additional Python development kits and APIs.

Some concentrate on individual routes, e.g. in the United States, motivated by

the scenario of self-driving fleet services. Others cover data from large areas or

several cities captured by multiple recording vehicles during a longer period of time.

Such datasets are carefully selected and prepared with exact sensor calibrations and

high-quality annotations usually done by humans. In Table B.1, the most widely

used datasets in the domain of AD are presented. Some of the recent ones are still

under development or planned extensions while being partially influenced by General

Data Protection Regulation (GDPR). Almost all setups are based on experimental

constructions mounted on the roof of vehicles, which is a significant contrast to current

passenger cars. Except for PandaSet1 and A2D2 [Geyer et al. 2020]2, all records are

for non commercial academic use only.

KITTI. The pioneering Kitti Vision Benchmark Suite3 [Geiger et al. 2012] has grown

into a large collection of benchmarks since 2012. Therefore, it is the most frequently

1PandaSet available at https://scale.com/resources/download/pandaset, accessed: 2021-10-09
2A2D2 available at https://www.a2d2.audi/a2d2/en.html, accessed: 2021-10-09
3KITTI available at http://www.cvlibs.net/datasets/kitti/, accessed: 2021-10-09

XIII

Appendix B. Public Datasets

Name Year Sensors Sample Size Framerate

Kitti 2012 Velodyne HDL-64E ∅120k points 10 Hz
2× Stereo Cam. 1.4MP 1382× 512 pix(raw) 10 Hz
GPS/IMU N/A

Cityscapes 2016 Stereo Camera 2MP 2048× 1024 pix 17 Hz
Vehicle Odometry N/A
GPS N/A

ApolloScape 2018 2× Riegl VUX-1HA ∅100k points 10 Hz
2× Camera 3130× 960 pix 30 Hz
GNSS/IMU N/A

BDD100K 2018 Camera > 0.9MP ≥ 1280× 720 pix 30 Hz
GPS/IMU N/A

nuScenes 2019 Velodyne HDL-32E ∅35k points 20 Hz
6× Camera 1.4MP 1600× 900 pix 12 Hz
5× Long Range Radar ∅625 points 13 Hz
GNSS/IMU N/A

Argoverse 2019 2× Velodyne Ultra Puck ∅107k points 10 Hz
7× Camera 1920× 1200 pix 30 Hz
2× Stereo Camera 2056× 2464 pix 5 Hz
GPS N/A

PandaSet 2019 Hesai Pandar64 ∅106k points 10 Hz
Hesai PandarGT ∅60k points 10 Hz
6× Camera 1920× 1080 pix 10 Hz
GPS/IMU N/A

Lyft L5 2019 3× Lidar ∅216k points 10 Hz
6× Camera 1224× 1024 pix 10 Hz
Camera 2048× 864 pix 10 Hz

A2D2 2020 5× Velodyne VLP-16 ∅47k points 10 Hz
6× Camera 2.3MP 1920× 1208 pix 30 Hz
GNSS/IMU N/A
Vehicle CAN N/A

Waymo O.D. 2020 5× Lidar ∅177k points 10 Hz
5× Camera 1920× 1280 pix 10 Hz

nuImages 2020 6× Camera 1.4MP 1600× 900 pix 2 Hz
GNSS/IMU N/A

Ford AV 2020 4× Velodyne HDL-32E ∅139k points 10 Hz
6× Camera 1.3MP 1656× 860 pix 15 Hz
Camera 5MP 2464× 1726 pix 6 Hz
GPS/IMU 200 Hz

XIV

B.1. Overview

Name Tasks Training Samples

Kitti Stereo, Optical/Scene Flow ≈ 200
Depth Completion/Prediction 93k
Odometry Estimation/Localization 11 sequences
2D/3D/BEV Object Detection 7, 481
Multi Object Tracking 21 sequences
Road/Lane Detection 289
Semantic Segmentation (pixel wise) 200

Cityscapes Semantic Segmentation (pixel wise, instance level, 5k
panoptic)/3D Object Detection +20k (coarse)

ApolloScape 2D Object Detection 5k
3D Object Detection/Multi Object Tracking ≈ 6.4k
Stereo ≈ 4.2k
Trajectory Prediction/Motion Forecasting 53 seq. @60s
Lane Segmentation 110k
Semantic Segmentation (pixel wise) 147k

BDD100K 2D Classification/2D Object Detection/Lane Detection 70k
Semantic Segmentation (pixel wise, instance level) 7k
Multi Object Tracking ≈ 280k

nuScenes 3D Object Detection/Multi Object Tracking/
34k

Semantic Segmentation (point wise)/Odometry
Trajectory Prediction/Motion Forecasting 850 seq. @20s

Argoverse 3D Multi Object Tracking ≈ 25k
Trajectory Prediction/Motion Forecasting 205,842 seq. @5s

PandaSet 3D Object Detection 8, 240
Semantic Segmentation (point wise) 6, 080

Lyft L5 Trajectory Prediction/Motion Forecasting 134k seq. @25s
3D Object Detection 55k

A2D2 Semantic Segmentation (pixel wise, point wise) 41, 277
3D Object Detection 12, 497

Waymo O.D. 3D Object Detection/3D Multi Object Tracking 240k
2D Object Detection/2D Multi Object Tracking 200k

nuImages 2D Object Detection/Semantic Segmentation (pixel wise masks) 67k

Ford AV Odometry Estimation/Localization/Mapping N/A

Table B.1: Overview with key figures of public datasets for AD, ordered by year.

XV

Appendix B. Public Datasets

cited dataset. Included data was captured around the mid-size city of Karlsruhe, cov-

ering rural areas and highways. After 2012, there were many extensions for different

tasks in computer vision, such as [Geiger et al. 2013; Fritsch et al. 2013; Menze and

Geiger 2015; Behley et al. 2019].

Cityscapes. Another large scale dataset for computer vision originally released in

2016 is called Cityscapes4 [Cordts et al. 2016]. This dataset contains stereo video

sequences from 50 different cities in Germany and neighboring countries with high-

quality pixel-level annotations and additional weakly annotated data. Originally,

Cityscapes was intended for the assessment of computer vision algorithms for major

tasks of semantic urban scene understanding. In 2020, Cityscapes was extended by

the task of 3D object detection from camera for all types of vehicles [Gählert et al.

2020].

ApolloScape. As part of the Apollo open-source project for AD, the ApolloScape5

[Huang, Cheng, et al. 2018] dataset was developed in several iterations since 2018.

It contains a collection of camera and lidar data with street view scenes from four

regions of China with varying weather and daytime conditions, enhanced with diverse

annotations. ApolloScape is intended for the development of multi-sensor fusion and

multi-task learning, widely used for research and academics.

BDD100K. This dataset6 [Yu et al. 2020] is a collection of 100k high-resolution

video sequences recorded by dash cameras from Nexar7 behind the windshield of

public cars in the United States. Additionally, BDD100K contains rough trajecto-

ries created from GPS/IMU information recorded by cell phones. The diversity is

increased by different weather conditions, day times, and recordings from diverse

cities.

nuScenes. A very popular dataset with 360 deg coverage using the entire sensor

suite of a real self-driving platform approved for public roads was published named

nuScenes8 [Caesar et al. 2020]. Alongside cameras, it includes lidar and radars plus

localization as well as semantic maps to be used as additional priors. nuScenes covers

4Cityscapes available at https://www.cityscapes-dataset.com/, accessed: 2021-10-09
5ApolloScape available at http://apolloscape.auto/, accessed: 2021-10-09
6BDD100K available at https://bdd-data.berkeley.edu/, accessed: 2021-10-09
7see https://us.getnexar.com/
8nuScenes available at https://www.nuscenes.org/nuscenes, accessed: 2021-10-09

XVI

B.1. Overview

urban driving situations from Boston and Singapore with careful data curation and

high-quality annotations. This dataset set a new order of magnitude of available

public datasets in 2019/2020 and is well suited for a broad range of research topics

related to AD.

nuImages. As part of nuScenes, nuImages9 complements the dataset with additional

camera annotations sampled from the overall database for diversity reasons.

Argoverse. Composed of two datasets, one for temporal tracking of objects in more

than 100 sequences, and one with a strong focus on motion forecasting, Argoverse
10 [Chang et al. 2019] includes high definition maps with 290km of geometric and

semantic metadata. It was collected by a fleet of AD vehicles in Pittsburgh and

Miami spanning different seasons, weather conditions, and times of the day.

PandaSet. PandaSet11 is constructed on complex driving scenarios in urban en-

vironments with more than 100 scenes of 8 seconds each, selected from 2 routes in

Silicon Valley in the United States: 1) San Francisco and 2) El Camino Real from Palo

Alto to San Mateo. It comes with the cuboid and pointwise semantic segmentation

annotations and is available for commercial use (CC BY 4.0 license).

Lyft L5. The first part of the Lyft Level 512 [Kesten et al. 2019] dataset was released

in 2019 and deals with real-world environmental perception by providing human-

labeled cuboids of traffic agents. In 2020, it was extended by the largest collection of

motion prediction data released to date [Houston et al. 2020]. The data was collected

from another autonomous fleet on Palo Alto routes for more than half a year. This

dataset provides high-definition spatial and semantic maps with context about traffic

agents and their motion.

A2D2. The Audi Autonomous Driving Dataset13 [Geyer et al. 2020] was captured

in the cities of Gaimersheim, Munich, and Ingolstadt, covering highways, country

roads, and inner-city with closed loops suitable for the tasks of relocalization or loop

closure. A2D2 combines lidar with camera with non-sequential annotations for 3D

9nuImages available at https://www.nuscenes.org/nuimages, accessed: 2021-10-09
10Argoverse available at https://www.argoverse.org/, accessed: 2021-10-09
11PandaSet available at https://scale.com/resources/download/pandaset, accessed: 2021-10-09
12Lyft L5 available at https://self-driving.lyft.com/level5/data/, accessed: 2021-10-09
13A2D2 available at https://www.a2d2.audi/a2d2/en.html, accessed: 2021-10-09

XVII

Appendix B. Public Datasets

bounding boxes restricted to the area visible to the front center camera. Commercial

use is permitted by CC BY-ND 4.0 license.

Waymo Open Dataset. As an excerpt of the sensor suite from the Waymo AD

platform, one of the largest and most diverse datasets was published named Waymo

Open Dataset14 [Sun et al. 2020]. It contains nearly 2k sequences at 20 seconds length

with bounding box labels for lidar as well as camera images from San Francisco,

Phoenix, and Mountain View, California. In addition, object tracking approaches

are supported by unique instance identifiers throughout all annotations. Overall, the

setup is also capable of investigating sensor fusion or domain adaptation research.

Ford AV Dataset. Lastly, a multi-agent dataset collected by a fleet of AD vehicles

in Detroit and Michigan during 2017 to 2018 was announced in 202015 [Agarwal et al.

2020]. It includes driving around airports, freeways, city centers, university campuses,

and suburban areas with recordings from multiple cameras and lidar point clouds

augmented with 3D map information. In order to support collaborative tasks, this

dataset contains data from multiple vehicles driving through the same environment

simultaneously.

B.2 Synthetic Datasets

In addition to the numerous datasets from actual recordings, simulated synthetic ones

also exist. However, the simulation of specific point cloud generating sensors is still

uncommon. A major advantage is the ability to control and scale even for rare corner

cases, as well as the possibility to generate highly balanced datasets with sufficient

diversity. In contrast, there are often domain shifts between natural and synthetic

data, as these are often far from reality. Therefore, modern synthetic datasets are

often produced by game engines like Unity [Unity Technologies 2021] or Unreal [Epic

Games, Inc. 2021], with advanced physical rendering techniques and sensor models.

Furthermore, [Dosovitskiy et al. 2017] developed an open-source simulator supporting

flexible specification of sensor suites and environmental conditions.

14Waymo Open Dataset is available at https://waymo.com/open/, accessed: 2021-10-09
15Ford AV dataset is available at https://avdata.ford.com/, accessed: 2021-10-09

XVIII

B.3. KITTI

GTA V. Playing for Data [Richter et al. 2016] and Playing for Benchmarks [Richter

et al. 2017] called GTA V datasets16 are large generated image datasets. Both are

created from the commercial video game Grand Theft Auto V using the existing

highly realistic synthetic world. They include 25k and 250k high-resolution image

samples with annotations for most vision tasks extracted during rendering.

Synscapes. Another photo-realistic synthetic dataset for street scene parsing is

called Synscapes17 [Wrenninge and Unger 2018]. This dataset is produced on a pro-

cedural, physical rendering engine with a wide variety of environmental factors and

configurations for high diversity and details. Altogether, there are 25k generated im-

ages at 1440× 720 or 2048× 1024 pixels, as well as object annotations, dense depth,

and pixel-wise semantic labels.

SYNTHIA. Following the other synthetic datasets, SYNTHIA18 [Ros et al. 2016]

is a collection of imagery and dense depth as well as pixel-wise semantic labels. With

more than 200k realistic high definition images from driving scenarios, a wide diversity

was modeled with towns, modern cities, highways, or green areas. Moreover, different

weather, lighting conditions, and day-time variations are available.

B.3 KITTI

The KITTI dataset has been released and expanded in several steps since 2012.

Raw data was captured taking advantage of the AD platform Annieway. A modified

Volkswagen Passat B6 was equipped with recording hardware, two high-resolution

color and grayscale video cameras, a Velodyne lidar as well as a GPS localization

system, as visualized in Figure B.1. In total, roughly 3 TB of data, i.e. 6 hours

of traffic scenarios around Karlsruhe were originally recorded and post-processed to

extract representative subsets for mobile robotics and computer vision tasks [Geiger

et al. 2013]. According to the spin rate of the lidar sensor, all cameras are triggered

at 10 frames per second with shutter time dynamically adjusted. In addition, data

from the GPS/IMU system is synchronized based on the closest timestamp. Hence,

in the worst case, the resulting time difference is 5ms.

16GTA V datasets are available at https://download.visinf.tu-darmstadt.de/data/from games/
and https://playing-for-benchmarks.org/, accessed: 2021-10-09

17Synscapes is available at https://synscapes.on.liu.se/, accessed: 2021-10-09
18SYNTHIA is available at https://synthia-dataset.net/, accessed: 2021-10-09

XIX

Appendix B. Public Datasets

Figure B.1: The KITTI Annieway AD platform, reproduced from http: // www.

cvlibs. net/ datasets/ kitti/ index. php .

Moreover, 3D object ground truth was generated by a set of human annotators

in the form of 3D bounding boxes to objects such as Cars, Vans, Trucks, Trams,

Pedestrians and Cyclists. Here, an object is only annotated if it is visible in the

reference front camera. Each bounding box contains further information as either

visible, partially occluded, fully occluded, or truncated. Thus, there are regions

marked as Dontcare, e.g. if they are too far away or groups of small objects like

Pedestrians.

KITTI Object Detection. From all raw recordings, 7,481 samples were chosen

for training and 7,518 samples for testing, according to the number of non-occluded

objects in the scene as well as the entropy of the object orientation distribution to

ensure diversity. Figure B.2 presents a few samples. At the same time, it was ensured

that no samples from individual sequences were contained in both splits. Due to the

class distribution, only Cars, Pedestrian and Cyclists are evaluated. Furthermore,

during evaluation, ground truth objects are filtered by truncation, occlusion, and

Dontcare labels. Additionally, only detections larger than a certain amount of pixels

in the images are considered. Here, 3D predictions must also be projected back into

2D. The object detection benchmark is subdivided into 2D with additional orientation

similarity, 3D, and birdview comparison according to the function used to calculate

the similarity between ground truth and prediction.

XX

http://www.cvlibs.net/datasets/kitti/index.php
http://www.cvlibs.net/datasets/kitti/index.php

B.3. KITTI

KITTI Multi Object Tracking. In contrast to the KITTI object detection dataset,

this dataset contains 21 full sequences for training and 29 sequences for testing. Only

the classes Car and Pedestrian are evaluated, as of the required numbers of labeled

objects for comprehensive evaluation. Again, ground truth objects are filtered by

truncation, occlusion, and Dontcare regions, while predictions are filtered according

to their height in 2D. Moreover, the benchmark uses 2D bounding box overlap to

compute the evaluation metrics.

XXI

Appendix B. Public Datasets

Figure B.2: Examples from the KITTI object detection dataset, reproduced from
http: // www. cvlibs. net/ datasets/ kitti/ index. php .

XXII

http://www.cvlibs.net/datasets/kitti/index.php

B.3. KITTI

Figure B.3: Example sequence from the KITTI object tracking dataset, reproduced
from http: // www. cvlibs. net/ datasets/ kitti/ index. php .

XXIII

http://www.cvlibs.net/datasets/kitti/index.php

Appendix C

Error Measures

This annex describes all evaluation metrics used in this thesis for both object detec-

tion and MOT in more detail.

C.1 Object Detection

The object detection task is judged by precision P = TP
TP+FP

over recall R = TP
TP+FN

curves with the AP as the principal quantitative measure. Hence, the evaluation

follows the PASCAL metrics [Everingham et al. 2010] originally proposed by [Salton

and McGill 1983]. Predictions are distinguished true or false based on the IOU with

ground truth bounding boxes denoted as:

IOU =
area(Bp ∩ Bt)

area(Bp ∪ Bt)
(C.1)

where Bp is the predicted bounding box, and Bt is the ground truth target. Pre-

dictions are classified as correct as soon as the IOU is above a certain threshold.

Duplicate detections from the same object are considered false.

Average Precision (AP). Following [Simonelli et al. 2019], the AP is denoted as:

AP|R =
1

|R|
∑
r∈R

ρinterp(r) (C.2)

where precision values provided by ρinterp(r) are averaged over equally spaced re-

call levels R40 = {1/40, 2/40, ..., 1}. For each interval, the maximum precision at

recall value greater or equal than r is taken according to the interpolation function

ρinterp(r) = max
r′:r′≥r

ρ(r′).

XXV

Appendix C. Error Measures

Threshold Easy Mod. Hard

minimum height 40 25 25

maximum truncation 0.15 0.30 0.5

maximum occlusion 0 1 2

Table C.1: KITTI object detection evaluation parameters.

KITTI. The protocol for the evaluation on the KITTI dataset first divides all ob-

jects according to the classes Car, Pedestrian, and Cyclist. The minimum overlap for

detections to be considered as correct is defined as 0.7 for Cars and 0.5 for Pedes-

trians, and Cyclists respectively. Furthermore, three subcategories, namely easy,

moderate and hard, are introduced within the ground truth, based on the number

of pixels visible in the image, occlusion, and truncation labels. All definitions can

be found in Table C.1. In addition, detections that match Dontcare annotations are

ignored.

Moreover, the evaluation is split into 2D detection, birdview detection, and 3D

detection. Here, the computation of the IOU from Equation C.1 is modified with

respect to the complexity, where 2D means bounding box overlap in image space

(pixel coordinates) with vertical bounding boxes only, birdview means 2D bounding

box overlap with rotated bounding boxes on the ground plane (world coordinates)

and 3D considers yaw rotated bounding box overlap in 3D space with 7 degrees of

freedom.

C.2 Multi Object Tracking

To measure the performance of the proposed methods for MOT, the common CLEAR

MOT [Bernardin and Stiefelhagen 2008; Li et al. 2009] and newer HOTA [Luiten et

al. 2020] metrics are used. These metrics are presented below.

Multiple Object Tracking Accuracy (MOTA) is a combination of the three

most important measures for describing tracking performance, calculated as:

MOTA = 1−
∑

t(FPt + FNt + IDst)∑
t GTt

(C.3)

where for frame t, GTt is the number of objects present in the ground truth, FPt are

the false positives as well as FNt are the false negatives in t and IDst is the number

of identity switches.

XXVI

C.2. Multi Object Tracking

Multiple Object Tracking Precision (MOTP) measures the misalignment be-

tween the predicted bounding boxes and the ground truth, defined as:

MOTP =

∑
i,t d

i
t∑

t ct
(C.4)

where dit is the IOU of track i with the assigned ground truth target t and ct is

the number of matches found in frame t. Hence, it heavily relies on the detections

without taking any tracking performance such as consistent trajectories into account.

Identity Switches (IDs) referes to the number of times an object is assigned a

new identifier in its track.

False Positive (FP) represents the total number of occurrences where an object is

detected although no object exists.

False Negative (FN) represents the total number of occurrences where an existing

object is not detected.

Mostly Tracked (MT) targets represents the number of ground truth tracks that

are assigned the same label for at least 80% of the sequence.

Mostly Lost (ML) targets represents the number of ground truth tracks that are

assigned the same label for at most 20% of the sequence.

Fragmentation (Frag). A counter for the number of times an object is lost in a

frame but then re-detected in a future frame is called Fragmentation.

Based on these metrics, HOTA was designed to provide a single metric for all

three components of tracking (localization, detection, and association). It can be

seen as the geometric mean of the detection and association score. Therefore, the

concepts of True Positive Association (TPA), False Negative Association (FNA), and

False Positive Association (FPA) were defined as:

TPA(c) = {k}, k ∈ {TP | prID(k) = prID(c) ∧ gtID(k) = gtID(c)} (C.5)

FNA(c) = {k}, k ∈ {TP | prID(k) �= prID(c) ∧ gtID(k) = gtID(c)} (C.6)

∪ {FN | gtID(k) = gtID(c)}
FPA(c) = {k}, k ∈ {TP | prID(k) = prID(c) ∧ gtID(k) �= gtID(c)} (C.7)

∪ {FP | prID(k) = prID(c)}

XXVII

Appendix C. Error Measures

where c is the set of correctly associated true positives, the set of ground truth

detections assigned with different or no identifier if they were missed, and the set of

predictions assigned with different or no identifier if they did not correspond to an

object, respectively, furthermore, HOTA can be decomposed into sub metrics which

allow an individual analysis of the tracking performance. These metrics are defined

as follows.

Detection Accuracy (DetA).

DetAα =
|TP |

|TP |+ |FN |+ |FP | (C.8)

Association Accuracy (AssA).

AssAα =
1

|TP |
∑

c∈{TP}

|TPA(c)|
|TPA(c)|+ |FNA(c)|+ |FPA(c)| (C.9)

Higher Order Tracking Accuracy (HOTA).

HOTAα =
√

DetAα · AssAα (C.10)

Detection Recall (DetRe).

DetReα =
|TP |

|TP |+ |FN | (C.11)

Detection Precision (DetPr).

DetPrα =
|TP |

|TP |+ |FP | (C.12)

Association Recall (AssRe).

AssReα =
1

|TP |
∑

c∈{TP}

|TPA(c)|
|TPA(c)|+ |FNA(c)| (C.13)

Association Precision (AssPr).

AssPrα =
1

|TP |
∑

c∈{TP}

|TPA(c)|
|TPA(c)|+ |FPA(c)| (C.14)

XXVIII

C.2. Multi Object Tracking

Localization Accuracy (LocA).

LocAα =
1

|TP |
∑

c∈{TP}
S(c) (C.15)

where S(c) is the spatial similarity score function used to generate the set of true

positives TP , such as IOU.

These scores are evaluated over a range of different IOU thresholds α and the

major score is approximated by:

HOTA =
1

19

∑
α∈{0.05,0.1,...,0.95}

HOTAα (C.16)

KITTI. Similar to the object detection metrics, objects considered for evaluation

are filtered based on predefined parameters. Here, the maximum truncation is set to

zero, the minimum height is set to 25 pixels, and the maximum occlusion is equal

to 2. For comparison of detections and ground truth, 2D bounding box overlap in

image space (pixel coordinates) is used with a minimum overlap for the CLEAR MOT

metrics set to 0.5.

XXIX

Appendix D

Comparative Measures for
Bounding Boxes

This annex very briefly reviews the commonly used Intersection Over Union (IOU) for

bounding box comparison and describes the properties of the proposed Scale Rotation

Translation Score Ssrt in more detail.

D.1 Intersection Over Union

The IOU, also known as Jaccard similarity coefficient or Jaccard index, is a statistic

to measure the similarity and diversity of finite sample sets. This also includes objects

that are often referred to as bounding boxes. In general, the IOU can be defined as:

IOU(A,B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B| (D.1)

where the similarity of two bounding boxes (or sample sets) A and B is defined as

the size of the intersection divided by the size of the union. Therefore, results are

by design 0 ≤ IOU(A,B) ≤ 1. The IOU is widely used for the comparison of 2D

bounding boxes in computer vision, among other fields. In contrast, the increased

number of 7 to 9 degrees of freedom for 3D bounding boxes leads to significantly more

complex calculations because there are many possibilities for the different poses of

the objects in relation to each other. Another downside is the disregard for rotations

with multiples of π. This might cause ambiguities that can have a negative impact

on the training of Deep Neural Network (DNN). Nevertheless, the IOU is often the

method of choice for 3D detectors as well.

XXXI

Appendix D. Comparative Measures for Bounding Boxes

D.2 Scale Rotation Translation Score

In order to justify the properties of the developed scoring together with its underlying

parameters, Figure D.1 presents an exhaustive assessment in comparison to Intersec-

tion Over Union (IOU). First, a set of n = 1k sample object instances are created

with linear interpolation, given a realistic lower and upper bound for each single pa-

rameter (x, y, z, length, width, height, yaw). Thus, objects centers are limited to

x ∈ [−2, 2] , y ∈ [−2, 2] , z ∈ [−1, 1] with step size:

vmax − vmin

n
, v ∈ {x, y, z, length, width, height, yaw} (D.2)

and so on. Then, n2 scores are calculated for all samples compared with each other.

This is repeated twice, once for Ssrt and once for IOU, and plotted as: a) and d) 3D

surface with x and y sample indices and z corresponds to the score; b) and e) filled

contours from the scores over the sample indices; c) and f) histogram of the number

of times a score occurs. Furthermore, to show the effects of differences in individual

parameters and the interaction with combined ones, except i), plots g) to o) compare

samples in which all variations of two elements are generated, with one fixed target

object as well as all other parameters of the generated samples fixed. The changing

elements are plotted on the axes x and y. In i), only the yaw entries of the samples

have different values, whereas the yaw of the target object is set to 0.0 to center the

plot. As can be seen in a) to f), the peak reaches a value of 1.0 along the diagonal,

i.e. whenever equal samples are compared. Also, the score decreases perpendicularly

to the diagonal but less steeply. In general, the selected Ssrt setup is more liberal,

see a) and d), or b) and e), but respects the heading of the orientation, see i) and

l). This results in almost equal distribution, instead of an imbalance towards zero,

as indicated by c) and f), respectively. The peak in f) around 0.1 comes from the

outer regions in d), where the object samples do not overlap while having similar

sizes and orientations. It can be ignored as long as all subscores Ss, Sr and St have

similar weights α, β, γ, because only predictions with the best scores are used as 1obj
ij

during training. An optional penalty can be used to approximate IOU, as presented

in [Simon et al. 2019]. While plots g) and h), or j) and k) are very similar for both

scores, a major difference can be seen in terms of orientation in i), l) and o) as well

as m) and n). This yields a considerable deviation of the scores since IOU cannot

distinguish rotations by π. Additionally, IOU equals one at ±π
2
because all samples

have a squared shape. As a result, a kind of periodic parabolic curve can be seen

XXXII

D.2. Scale Rotation Translation Score

in i). In contrast, Ssrt assigns 1.0 if the samples are equal with linearly decreasing

scores the more the yaw angles deviate from each other.

XXXIII

Appendix D. Comparative Measures for Bounding Boxes

Figure D.1: Quantitative analysis of Ssrt compared to IOU using generated objects
with realistic linearly interpolated object centers, dimensions and yaw orientations.

XXXIV

Bibliography

Achlioptas, P., O. Diamanti, I. Mitliagkas, and L. Guibas (2018). “Learning represen-
tations and generative models for 3d point clouds”. In: International Conference
on Machine Learning (ICML). Vol. 1, pp. 40–49.

Agarwal, S., A. Vora, G. Pandey, W. Williams, H. Kourous, and J. McBride (2020).
“Ford Multi-AV Seasonal Dataset”. In: arXiv preprint 2003.07969.

Alhaija, H., S. Mustikovela, L. Mescheder, A. Geiger, and C. Rother (2018). “Aug-
mented Reality Meets Computer Vision: Efficient Data Generation for Urban
Driving Scenes”. In: International Journal of Computer Vision (IJCV).

Almahairi, A., S. Rajeshwar, A. Sordoni, P. Bachman, and A. Courville (2018). “Aug-
mented cyclegan: Learning many-to-many mappings from unpaired data”. In: In-
ternational Conference on Machine Learning. PMLR, pp. 195–204.

Alotaibi, A. (2020). “Deep Generative Adversarial Networks for Image-to-Image Trans-
lation: A Review”. In: Symmetry 12.10, p. 1705.

Atienza, R. (2019). “A conditional generative adversarial network for rendering point
clouds”. In: IEEE International Conference on Computer Vision and Pattern
Recognition Workshops (CVPR), pp. 10–17.

Aurora (2021). Source. https://aurora.tech/press. Accessed: 2021-07-16.

Baser, E., V. Balasubramanian, P. Bhattacharyya, and K. Czarnecki (2019). “Fantrack:
3d multi-object tracking with feature association network”. In: 2019 IEEE Intel-
ligent Vehicles Symposium (IV). IEEE, pp. 1426–1433.

Barker, A. L., D. E. Brown, and W. N. Martin (1995). “Bayesian estimation and the
Kalman filter”. In: Computers & Mathematics with Applications 30.10, pp. 55–77.

Behley, J., M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall
(2019). “SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR
Sequences”. In: IEEE International Conference on Computer Vision (ICCV),
pp. 9297–9307.

XXXV

https://aurora.tech/press

Bibliography

Beltran, J., C. Guindel, F. M. Moreno, D. Cruzado, F. Garcia, and A. de la Escalera
(2018). “BirdNet: a 3D Object Detection Framework from LiDAR information”.
In: IEEE International Conference on Intelligent Transportation Systems (ITSC),
pp. 3517–3523.

Berclaz, J., F. Fleuret, E. Turetken, and P. Fua (2011). “Multiple object tracking
using k-shortest paths optimization”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 33.9, pp. 1806–1819.

Beyer, L., A. Hermans, and B. Leibe (2015). “Biternion nets: Continuous head pose re-
gression from discrete training labels”. In: German Conference on Pattern Recog-
nition (GCPR), pp. 157–168.

Borji, A. (2019). “Pros and cons of GAN evaluation measures”. In: Computer Vision
and Image Understanding 179, pp. 41–65.

Blackman, S. S. and R. Popoli (1999). Design and analysis of modern tracking sys-
tems. Artech House Publishers.

Bryant, D. S., B. T. Vo, B. N. Vo, and B. A. Jones (2018). “A Generalized Labeled
Multi-Bernoulli Filter with Object Spawning”. In: IEEE Transactions on Signal
Processing 66, pp. 6177–6189.

Bernardin, K. and R. Stiefelhagen (2008). “Evaluating multiple object tracking per-
formance: the clear mot metrics”. In: EURASIP Journal on Image and Video
Processing 2008, pp. 1–10.

Bay, H., T. Tuytelaars, and L. Van Gool (2006). “Surf: Speeded up robust features”.
In: European conference on computer vision. Springer, pp. 404–417.

Bar-Shalom, Y., P. K. Willett, and X. Tian (2011). Tracking and data fusion: A
handbook of Algorithms. Vol. 11. YBS publishing Storrs, CT, USA:

Caccia, L., H. van Hoof, A. Courville, and J. Pineau (2019). “Deep Generative Mod-
eling of LiDAR Data”. In: IEEE International Conference on Intelligent Robots
and Systems (IROS).

Caesar, H., V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y.
Pan, G. Baldan, and O. Beijbom (2020). “nuScenes: A multimodal dataset for
autonomous driving”. In: IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 11621–11631.

Cai, Z., Q. Fan, R. S. Feris, and N. Vasconcelos (2016). “A unified multi-scale deep
convolutional neural network for fast object detection”. In: European Conference
on Computer Vision (ECCV). Springer, pp. 354–370.

XXXVI

Bibliography

Carion, N., F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko (2020).
“End-to-end object detection with transformers”. In: European Conference on
Computer Vision. Springer, pp. 213–229.

Chang, M. F., J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P.
Carr, S. Lucey, D. Ramanan, and J. Hays (2019). “Argoverse: 3D tracking and
forecasting with rich maps”. In: IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 8740–8749.

Chaabane, M., P. Zhang, R. Beveridge, and S. O’Hara (2021). “DEFT: Detection Em-
beddings for Tracking”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops.

Chen, X., K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma, S. Fidler, and R. Urtasun
(2015). “3d object proposals for accurate object class detection”. In: Advances in
Neural Information Processing Systems (NIPS), pp. 424–432.

Chen, X., K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun (2016). “Monocular
3d object detection for autonomous driving”. In: IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 2147–2156.

Chen, X., H. Ma, J. Wan, B. Li, and T. Xia (2017). “Multi-view 3D object detection
network for autonomous driving”. In: IEEE International Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 1907–1915.

Chen, Y., W. Li, C. Sakaridis, D. Dai, and L. Van Gool (2018). “Domain Adaptive
Faster R-CNN for Object Detection in the Wild”. In: IEEE International Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 3339–3348.

Chen, Q., Y. Wang, T. Yang, X. Zhang, J. Cheng, and J. Sun (2021). “You only look
one-level feature”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13039–13048.

Chiu, H.-k., J. Li, R. Ambruş, and J. Bohg (2021). “Probabilistic 3D multi-modal,
multi-object tracking for autonomous driving”. In: 2021 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, pp. 14227–14233.

Choi, Y., M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo (2018). “Stargan: Unified
generative adversarial networks for multi-domain image-to-image translation”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 8789–8797.

Chung, J., C. Gulcehre, K. Cho, and Y. Bengio (2014). “Empirical evaluation of gated
recurrent neural networks on sequence modeling”. In: arXiv preprint 1412.3555.

XXXVII

Bibliography

Cortinhal, T., F. Kurnaz, and E. E. Aksoy (2021). “Semantics-aware multi-modal
domain translation: From LiDAR point clouds to panoramic color images”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 3032–3048.

Choi, J., T. Kim, and C. Kim (2019). “Self-ensembling with gan-based data augmen-
tation for domain adaptation in semantic segmentation”. In: IEEE International
Conference on Computer Vision (ICCV), pp. 6830–6840.

Cordts, M., M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele (2016). “The Cityscapes Dataset for Semantic Urban
Scene Understanding”. In: IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 3213–3223.

Cruise (2021). Source. https://www.getcruise.com/news. Accessed: 2021-07-16.

Cai, Z. and N. Vasconcelos (2018). “Cascade r-cnn: Delving into high quality object
detection”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 6154–6162.

— (2019). “Cascade r-cnn: High quality object detection and instance segmentation”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence.

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (2009). “Imagenet: A
large-scale hierarchical image database”. In: IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 248–255.

Destatis (2021). Federal Statistical Office - Verkehrsunfaelle. https://www.destatis.
de/DE/Themen/Gesellschaft-Umwelt/Verkehrsunfaelle/_inhalt.html. Ac-
cessed: 2021-07-15.

Doucet, A., S. Godsill, and C. Andrieu (2000). “On sequential Monte Carlo sampling
methods for Bayesian filtering”. In: Statistics and computing 10.3, pp. 197–208.

Dong, Z., G. Li, Y. Liao, F. Wang, P. Ren, and C. Qian (2020). “Centripetalnet:
Pursuing high-quality keypoint pairs for object detection”. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 10519–
10528.

Dosovitskiy, A., G. Ros, F. Codevilla, A. López, and V. Koltun (2017). “CARLA: An
open urban driving simulator”. In: Conference on Robot Learning (CoRL).

dSPACE GmbH (2021). AutoBox. https : / / www . dspace . com / en / inc / home /
products/hw/accessories/autobox.cfm. Accessed: 2021-09-09.

XXXVIII

https://www.getcruise.com/news
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Verkehrsunfaelle/_inhalt.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Verkehrsunfaelle/_inhalt.html
https://www.dspace.com/en/inc/home/products/hw/accessories/autobox.cfm
https://www.dspace.com/en/inc/home/products/hw/accessories/autobox.cfm

Bibliography

Dalal, N. and B. Triggs (2005). “Histograms of oriented gradients for human detec-
tion”. In: 2005 IEEE computer society conference on computer vision and pattern
recognition (CVPR’05). Vol. 1. Ieee, pp. 886–893.

Duan, K., S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian (2019). “Centernet: Keypoint
triplets for object detection”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 6569–6578.

Engelcke, M., D. Rao, D. Z. Wang, C. H. Tong, and I. Posner (2017). “Vote3Deep:
Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neu-
ral Networks”. In: IEEE International Conference on Robotics and Automation
(ICRA), pp. 1355–1361.

Epic Games, Inc. (2021). Unreal Engine. https://www.unrealengine.com/en-US/.
Accessed: 2021-09-09.

Everingham, M., L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman (2010).
“The pascal visual object classes (voc) challenge”. In: International journal of
computer vision 88.2, pp. 303–338.

Fischer, K., M. Simon, S. Milz, H.-M. Groß, and P. Maeder (2021). “Stickypillars:
Robust and Efficient Feature Matching on Point Clouds using Graph Neural
Networks”. In: IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 313–323.

Fischer, K., M. Simon, S. Milz, and P. Mäder (2022). “StickyLocalization: Robust
End-to-End Relocalization on Point Clouds Using Graph Neural Networks”. In:
IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 2962–
2971.

Fritsch, J., T. Kuhnl, and A. Geiger (2013). “A new performance measure and evalu-
ation benchmark for road detection algorithms”. In: IEEE Intelligent Transporta-
tion Systems Conference (ITSC), pp. 1693–1700.

Frossard, D. and R. Urtasun (2018). “End-to-end Learning of Multi-sensor 3D Track-
ing by Detection”. In: IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 635–642.

Gählert, N., N. Jourdan, M. Cordts, U. Franke, and J. Denzler (2020). “Cityscapes
3D: Dataset and Benchmark for 9 DoF Vehicle Detection”. In: IEEE International
Conference on Computer Vision and Pattern Recognition Workshops (CVPR).

Gao, S., M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and P. H. Torr (2019).
“Res2net: A new multi-scale backbone architecture”. In: IEEE transactions on
pattern analysis and machine intelligence.

XXXIX

https://www.unrealengine.com/en-US/

Bibliography

Granström, K., M. Baum, and S. Reuter (2017). “Extended Object Tracking: Intro-
duction, Overview, and Applications”. In: Journal of Advances in Information
Fusion 12.2.

Geiger, A., P. Lenz, C. Stiller, and R. Urtasun (2013). “Vision meets robotics: The
KITTI dataset”. In: The International Journal of Robotics Research 32, pp. 1231–
1237.

Geyer, J., Y. Kassahun, M. Mahmudi, X. Ricou, R. Durgesh, A. S. Chung, L. Hauswald,
V. H. Pham, M. Mühlegg, S. Dorn, T. Fernandez, M. Jänicke, S. Mirashi, C. Sa-
vani, M. Sturm, O. Vorobiov, M. Oelker, S. Garreis, and P. Schuberth (2020).
“A2D2: Audi Autonomous Driving Dataset”. In: arXiv: 2004.06320 [cs.CV].

Girshick, R., J. Donahue, T. Darrell, and J. Malik (2014). “Rich feature hierarchies
for accurate object detection and semantic segmentation”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 580–587.

Girshick, R. (2015). “Fast R-CNN”. In: IEEE International Conference on Computer
Vision (ICCV), pp. 1440–1448.

Geiger, A., P. Lenz, and R. Urtasun (2012). “Are we ready for autonomous driv-
ing? the KITTI vision benchmark suite”. In: IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 3354–3361.

Gokaslan, A., V. Ramanujan, D. Ritchie, K. I. Kim, and J. Tompkin (2018). “Im-
proving shape deformation in unsupervised image-to-image translation”. In: Pro-
ceedings of the European Conference on Computer Vision (ECCV), pp. 649–665.

Goodfellow, I. J., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio (2014). “Generative Adversarial Networks”. In: Advances
in Neural Information Processing Systems (NIPS), pp. 2672–2680.

Gonzalez-Garcia, A., J. Van De Weijer, and Y. Bengio (2018). “Image-to-image trans-
lation for cross-domain disentanglement”. In: Advances in Neural Information
Processing Systems (NIPS), pp. 1287–1298.

Haiderbhai, M., S. Ledesma, N. Navab, and P. Fallavollita (2020). “Generating X-ray
Images from Point Clouds Using Conditional Generative Adversarial Networks”.
In: 42nd Annual International Conference of the IEEE Engineering in Medicine
& Biology Society (EMBC). IEEE, pp. 1588–1591.

He, K., X. Zhang, S. Ren, and J. Sun (2015a). “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification”. In: Proceedings of the IEEE
international conference on computer vision, pp. 1026–1034.

XL

https://arxiv.org/abs/2004.06320

Bibliography

— (2015b). “Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification”. In: IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1026–1034.

— (2016). “Deep Residual Learning for Image Recognition”. In: IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778.

He, K., G. Gkioxari, P. Dollar, and R. Girshick (2017). “Mask R-CNN”. In: IEEE
International Conference on Computer Vision (ICCV), pp. 2961–2969.

He, C., H. Zeng, J. Huang, X.-s. Hua, and L. Zhang (2020). “Structure Aware Single-
stage 3D Object Detection from Point Cloud”. In: IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 11873–11882.

Huang, K. and Q. Hao (2021). “Joint Multi-Object Detection and Tracking with
Camera-LiDAR Fusion for Autonomous Driving”. In: IEEE International Con-
ference on Intelligent Robots and Systems (IROS).

Hoffman, J., E. Tzeng, T. Park, J.-y. Z. Phillip, I. Kate, S. Alexei, and T. Dar-
rell (2018). “CyCADA : Cycle-Consistent Adversarial Domain Adaptation”. In:
International Conference on Machine Learning (ICML), pp. 1989–1998.

Houston, J., G. Zuidhof, L. Bergamini, Y. Ye, A. Jain, S. Omari, V. Iglovikov, and P.
Ondruska (2020). One Thousand and One Hours: Self-driving Motion Prediction
Dataset. https://level5.lyft.com/dataset/.

Howard, A. G., M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam (2017). “MobileNets: Efficient convolutional Neural Net-
works for Mobile Vision Applications”. In: arXiv preprint 1704.04861.

Hochreiter, S. and J. Schmidhuber (1997). “Long short-term memory”. In: Neural
computation 9.8, pp. 1735–1780.

Hu, H.-N., Q.-Z. Cai, D. Wang, J. Lin, M. Sun, P. Krahenbuhl, T. Darrell, and F. Yu
(2019). “Joint monocular 3D vehicle detection and tracking”. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 5390–5399.

Huang, G., Z. Liu, L. Van Der Maaten, and K. Q. Weinberger (2017). “Densely con-
nected convolutional networks”. In: IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4700–4708.

Huang, X., X. Cheng, Q. Geng, B. Cao, D. Zhou, P. Wang, Y. Lin, and R. Yang
(2018). “The apolloscape dataset for autonomous driving”. In: IEEE International
Conference on Computer Vision and Pattern Recognition Workshops (CVPR),
pp. 1067–1073.

XLI

https://level5.lyft.com/dataset/

Bibliography

Huang, X., M.-Y. Liu, S. Belongie, and J. Kautz (2018). “Multimodal unsupervised
image-to-image translation”. In: Proceedings of the European conference on com-
puter vision (ECCV), pp. 172–189.

He, Y., X. Zhang, and J. Sun (2017). “Channel Pruning for Accelerating Very Deep
Neural Networks”. In: IEEE International Conference on Computer Vision (ICCV),
pp. 1389–1397.

Inoue, N., R. Furuta, T. Yamasaki, and K. Aizawa (2018). “Cross-Domain Weakly-
Supervised Object Detection through Progressive Domain Adaptation”. In: IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 5001–5009.

Ioffe, S. and C. Szegedy (2015). “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: International conference on ma-
chine learning. PMLR, pp. 448–456.

Isola, P., J.-Y. Zhu, T. Zhou, and A. A. Efros (2017). “Image-to-Image Translation
with Conditional Adversarial Networks”. In: IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1125–1134.

Julier, S. J. and J. K. Uhlmann (1997). “New extension of the Kalman filter to
nonlinear systems”. In: Signal processing, sensor fusion, and target recognition
VI. Vol. 3068. International Society for Optics and Photonics, pp. 182–193.

Kahou, S. E., V. Michalski, R. Memisevic, C. Pal, and P. Vincent (2017). “RATM:
recurrent attentive tracking model”. In: IEEE International Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPR). IEEE, pp. 1613–1622.

Kalman, R. E. (1960). “A new approach to linear filtering and prediction problems”.
In: Journal of Basic Engineering.

Kingma, D. P. and J. Ba (2015). “Adam: A Method for Stochastic Optimization”.
In: International Conference for Learning Representations (ICLR).

Kesten, R., M. Usman, J. Houston, T. Pandya, K. Nadhamuni, A. Ferreira, M. Yuan,
B. Low, A. Jain, P. Ondruska, S. Omari, S. Shah, A. Kulkarni, A. Kazakova, C.
Tao, L. Platinsky, W. Jiang, and V. Shet (2019). Lyft Level 5 Perception Dataset
2020. https://level5.lyft.com/dataset/.

Kim, T., M. Cha, H. Kim, J. K. Lee, and J. Kim (2017). “Learning to discover
cross-domain relations with generative adversarial networks”. In: International
Conference on Machine Learning. PMLR, pp. 1857–1865.

Kim, S., J. Choi, T. Kim, and C. Kim (2019). “Self-training and adversarial back-
ground regularization for unsupervised domain adaptive one-stage object detec-

XLII

https://level5.lyft.com/dataset/

Bibliography

tion”. In: IEEE International Conference on Computer Vision (ICCV), pp. 6092–
6101.

Krishnan, A. and J. Larsson (2016). “Vehicle detection and road scene segmentation
using deep learning”. MA thesis.

Kim, A., A. Ošep, and L. Leal-Taix’e (2021). “EagerMOT: 3D Multi-Object Tracking
via Sensor Fusion”. In: IEEE International Conference on Robotics and Automa-
tion (ICRA).

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). “ImageNet Classification with
Deep Convolutional Neural Networks”. In: Advances in Neural Information Pro-
cessing Systems (NIPS), pp. 1097–1105.

Ku, J., M. Mozifian, J. Lee, A. Harakeh, and S. Waslander (2018). “Joint 3D Proposal
Generation and Object Detection from View Aggregation”. In: IEEE International
Conference on Intelligent Robots and Systems (IROS), pp. 1–8.

Kuang, H., B. Wang, J. An, M. Zhang, and Z. Zhang (2020). “Voxel-FPN: Multi-scale
voxel feature aggregation for 3D object detection from LIDAR point clouds”. In:
Sensors 20.3, p. 704.

Kumar, V. R., S. Milz, C. Witt, M. Simon, K. Amende, and J. Petzold (2018). “Near-
field Depth Estimation using Monocular Fisheye Camera: A Semi-supervised
learning approach using Sparse LIDAR Data”. In: IEEE International Confer-
ence on Computer Vision and Pattern Recognition (CVPR), Deep Vision: Beyond
Supervised learning.

Kumar, V. R., S. Milz, C. Witt, M. Simon, K. Amende, J. Petzold, S. Yogamani, and
T. Pech (2018). “Monocular fisheye camera depth estimation using sparse lidar
supervision”. In: 2018 21st International Conference on Intelligent Transportation
Systems (ITSC). IEEE, pp. 2853–2858.

Kingma, D. P. and M. Welling (2013). “Auto-encoding variational bayes”. In: arXiv
preprint 1312.6114.

Kim, H.-K., K.-Y. Yoo, and H.-Y. Jung (2020). “Color Image Generation from LiDAR
Reflection Data by Using Selected Connection UNET”. In: Sensors 20.12, p. 3387.

Lambert, J., A. Carballo, A. M. Cano, P. Narksri, D. Wong, E. Takeuchi, and K.
Takeda (2020). “Performance analysis of 10 models of 3D LiDARs for automated
driving”. In: IEEE Access 8, pp. 131699–131722.

Lang, A. H., S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom (2019). “Pointpil-
lars: Fast encoders for object detection from point clouds”. In: IEEE International

XLIII

Bibliography

Conference on Computer Vision and Pattern Recognition (CVPR). Vol. 2019-
June, pp. 12689–12697.

Liu, M.-Y., T. Breuel, and J. Kautz (2017). “Unsupervised image-to-image translation
networks”. In: Advances in neural information processing systems, pp. 700–708.

Law, H. and J. Deng (2018). “Cornernet: Detecting objects as paired keypoints”. In:
Proceedings of the European conference on computer vision (ECCV), pp. 734–750.

Lee, B., E. Erdenee, S. Jin, and P. K. Rhee (2016). “Multi-Class Multi-Object Track-
ing using Changing Point Detection”. In: European Conference on Computer Vi-
sion (ECCV), pp. 68–83.

Lee, H.-Y., H.-Y. Tseng, J.-B. Huang, M. Singh, and M.-H. Yang (2018). “Diverse
image-to-image translation via disentangled representations”. In: European Con-
ference on Computer Vision (ECCV), pp. 35–51.

Level 5 (2021). Source. https://level-5.global/. Accessed: 2021-07-16.

Lenz, P., A. Geiger, and R. Urtasun (2015). “FollowMe: Efficient Online Min-Cost
Flow Tracking with Bounded Memory and Computation”. In: IEEE International
Conference on Computer Vision (ICCV), pp. 4364–4372.

Li, Y., C. Huang, and R. Nevatia (2009). “Learning to associate: Hybridboosted
multi-target tracker for crowded scene”. In: IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 2953–2960.

Li, C.-L., M. Zaheer, Y. Zhang, B. Poczos, and R. Salakhutdinov (2019). “Point cloud
gan”. In: IEEE International Conference on Learning Representations Workshops
(ICLR).

Li, X., W. Wang, L. Wu, S. Chen, X. Hu, J. Li, J. Tang, and J. Yang (2020). “Gener-
alized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense
Object Detection”. In: Advances in Neural Information Processing Systems 33,
pp. 21002–21012.

Li, B. (2017). “3D Fully Convolutional Network for Vehicle Detection in Point Cloud”.
In: IEEE International Conference on Intelligent Robots and Systems (IROS),
pp. 1513–1518.

Liang, X., H. Zhang, L. Lin, and E. Xing (2018). “Generative semantic manipula-
tion with mask-contrasting gan”. In: Proceedings of the European Conference on
Computer Vision (ECCV), pp. 558–573.

XLIV

https://level-5.global/

Bibliography

Liang, M., B. Yang, Y. Chen, R. Hu, and R. Urtasun (2019). “Multi-Task Multi-
Sensor Fusion for 3D Object Detection”. In: IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 7345–7353.

Lin, T.-Y., M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick (2014). “Microsoft coco: Common objects in context”. In: European
conference on computer vision. Springer, pp. 740–755.

Lin, T.-Y., P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie (2017). “Fea-
ture Pyramid Networks for Object Detection”. In: IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 2117–2125.

Lin, T.-Y., P. Goyal, R. Girshick, K. He, and P. Dollár (2017). “Focal loss for dense
object detection”. In: Proceedings of the IEEE international conference on com-
puter vision, pp. 2980–2988.

Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg
(2016). “SSD: Single shot multibox detector”. In: European Conference on Com-
puter Vision (ECCV), pp. 21–37.

Liu, M.-Y., X. Huang, A. Mallya, T. Karras, T. Aila, J. Lehtinen, and J. Kautz
(2019). “Few-shot unsupervised image-to-image translation”. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 10551–10560.

Liu, Z., X. Zhao, T. Huang, R. Hu, Y. Zhou, and X. Bai (2020). “TANet : Robust
3D Object Detection from Point Clouds with Triple Attention”. In: Conference
on Artificial Intelligence (AAAI).

Liu, Z., Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo (2021). “Swin
Transformer: Hierarchical Vision Transformer using Shifted Windows”. In: Inter-
national Conference on Computer Vision (ICCV).

Li, X. R. and V. P. Jilkov (2003). “Survey of maneuvering target tracking. Part I.
Dynamic models”. In: IEEE Transactions on aerospace and electronic systems
39.4, pp. 1333–1364.

Lin, Y.-P. and T.-P. Jung (2017). “Improving EEG-based emotion classification using
conditional transfer learning”. In: Frontiers in human neuroscience 11, p. 334.

Lowe, D. G. (1999). “Object recognition from local scale-invariant features”. In: Pro-
ceedings of the seventh IEEE international conference on computer vision. Vol. 2.
Ieee, pp. 1150–1157.

Luiten, J., A. Osep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixe, and B. Leibe
(2020). “HOTA: A Higher Order Metric for Evaluating Multi-Object Tracking”.
In: International Journal of Computer Vision (IJCV).

XLV

Bibliography

Li, C. and M.Wand (2016). “Precomputed real-time texture synthesis with markovian
generative adversarial networks”. In: European Conference on Computer Vision
(ECCV), pp. 702–716.

Luo, W., B. Yang, and R. Urtasun (2018). “Fast and Furious: Real Time End-to-End
3D Detection, Tracking and Motion Forecasting with a Single Convolutional Net”.
In: IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3569–3577.

Li, B., T. Zhang, and T. Xia (2016). “Vehicle Detection from 3D Lidar Using Fully
Convolutional Network”. In: Robotics: Science and Systems.

Mahler, R. P. (2007). Statistical Multisource-Multitarget Information Fusion. Artech
House, Inc.

— (2014). Advances in statistical multisource-multitarget information fusion. Artech
House.

Menze, M. and A. Geiger (2015). “Object scene flow for autonomous vehicles”. In:
IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3061–3070.

Maas, A. L., A. Y. Hannun, A. Y. Ng, et al. (2013). “Rectifier nonlinearities improve
neural network acoustic models”. In: Proc. icml. Vol. 30. 1. Citeseer, p. 3.

Milz, S., M. Simon, K. Fischer, M. Pöpperl, and H.-M. Groß (2019). “Points2Pix:
3D Point-Cloud to Image Translation Using Conditional GANs”. In: German
Conference on Pattern Recognition (GCPR). Vol. 3. 1, pp. 387–400.

Mirza, M. and S. Osindero (2014). “Conditional generative adversarial nets”. In:
arXiv preprint 1411.1784.

Munkres, J. (1957). “Algorithms for the assignment and transportation problems”.
In: Journal of the society for industrial and applied mathematics 5.1, pp. 32–38.

Murthy, J. K., G. S. Krishna, F. Chhaya, and K. M. Krishna (2017). “Reconstructing
vehicles from a single image: Shape priors for road scene understanding”. In: IEEE
International Conference on Robotics and Automation (ICRA). IEEE, pp. 724–
731.

National Instruments Corporation (2021). NI PXI. https://www.ni.com/de-
de/shop/pxi.html. Accessed: 2021-09-09.

Ning, G., Z. Zhang, C. Huang, X. Ren, H. Wang, C. Cai, and Z. He (2017). “Spatially
supervised recurrent convolutional neural networks for visual object tracking”. In:
IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4.

XLVI

https://www.ni.com/de-de/shop/pxi.html
https://www.ni.com/de-de/shop/pxi.html

Bibliography

Neubeck, A. and L. Van Gool (2006). “Efficient non-maximum suppression”. In: In-
ternational Conference on Pattern Recognition (ICPR). Vol. 3. IEEE, pp. 850–
855.

NVIDIA Corporation (2017). Jetson TX2. https://www.nvidia.com/de- de/
autonomous-machines/embedded-systems/jetson-tx2/. Accessed: 2021-08-07.

— (2021). NVIDIA DRIVE AGX Developer Kit. https://developer.nvidia.com/
drive/drive-agx. Accessed: 2021-09-09.

Paszke, A., A. Chaurasia, S. Kim, and E. Culurciello (2016). “ENet : A Deep Neural
Network Architecture for Real-Time Semantic Segmentation”. In: arXiv preprint
1606.02147.

Patel, V. M., R. Gopalan, R. Li, and R. Chellappa (2015). “Visual domain adaptation:
A survey of recent advances”. In: IEEE signal processing magazine 32.3, pp. 53–
69.

Peters, T. and C. Brenner (2020). “Conditional adversarial networks for multimodal
photo-realistic point cloud rendering”. In: PFG–Journal of Photogrammetry, Re-
mote Sensing and Geoinformation Science 88.3, pp. 257–269.

Poucin, F., A. Kraus, and M. Simon (2021). “Boosting Instance Segmentation With
Synthetic Data: A Study To Overcome the Limits of Real World Data Sets”. In:
IEEE International Conference on Computer Vision Workshops (ICCV), pp. 945–
953.

Pang, S., D. Morris, and H. Radha (2020). “CLOCs : Camera-LiDAR Object Can-
didates Fusion for 3D Object Detection”. In: IEEE International Conference on
Intelligent Robots and Systems (IROS).

Pirsiavash, H., D. Ramanan, and C. C. Fowlkes (2011). “Globally-optimal greedy al-
gorithms for tracking a variable number of objects”. In: IEEE International Con-
ference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 1201–
1208.

Pan, S. J. and Q. Yang (2009). “A Survey on Transfer Learning”. In: IEEE Transac-
tions on Knowledge and Data Engineering 22.10, pp. 1345–1359.

Qi, C. R., H. Su, K. Mo, and L. J. Guibas (Dec. 2017). “PointNet: Deep Learning
on Point Sets for 3D Classification and Segmentation”. In: IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 652–660.

Qi, C. R., L. Yi, H. Su, and L. J. Guibas (2017). “PointNet++: Deep Hierarchi-
cal Feature Learning on Point Sets in a Metric Space”. In: Advances in Neural
Information Processing Systems (NIPS), pp. 5099–5108.

XLVII

https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-tx2/
https://developer.nvidia.com/drive/drive-agx
https://developer.nvidia.com/drive/drive-agx

Bibliography

Qi, C. R., W. Liu, C. Wu, H. Su, and L. J. Guibas (2018). “Frustum PointNets for
3D Object Detection from RGB-D Data”. In: IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 918–927.

Ristic, B., S. Arulampalam, and N. Gordon (2003). Beyond the Kalman filter: Particle
filters for tracking applications. Artech house.

Regmi, K. and A. Borji (2018). “Cross-View Image Synthesis Using Conditional
GANs”. In: IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3501–3510.

Royo, S. and M. Ballesta-Garcia (2019). “An overview of lidar imaging systems for
autonomous vehicles”. In: Applied sciences 9.19, p. 4093.

Redmon, J., S. Divvala, R. Girshick, and A. Farhadi (2016). “You Only Look Once:
Unified, Real-Time Object Detection”. In: IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 779–788.

Ren, S., K. He, R. Girshick, and J. Sun (2015). “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks”. In: Advances in Neural
Information Processing Systems (NIPS), pp. 91–99.

Reuter, S., B.-T. Vo, B.-n. Vo, and K. Dietmayer (2014). “The labeled multi-bernoulli
filter”. In: IEEE Transactions on Signal Processing 62.12, pp. 3246–3260.

Redmon, J. and A. Farhadi (2017). “YOLO9000: Better, Faster, Stronger”. In: IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 7263–7271.

— (2018). “YOLOv3: An Incremental Improvement”. In: arXiv preprint 1804.02767.

Ronneberger, O., P. Fischer, and T. Brox (2015). “U-net: Convolutional networks for
biomedical image segmentation”. In: International Conference on Medical image
computing and computer-assisted intervention. Springer, pp. 234–241.

Roth, M., G. Hendeby, and F. Gustafsson (2014). “EKF/UKF maneuvering target
tracking using coordinated turn models with polar/Cartesian velocity”. In: IEEE
International Conference on Information Fusion (FUSION), pp. 1–8.

Richter, S. R., Z. Hayder, and V. Koltun (2017). “Playing for Benchmarks”. In: IEEE
International Conference on Computer Vision (ICCV), pp. 2213–2222.

Richter, S. R., V. Vineet, S. Roth, and V. Koltun (2016). “Playing for Data : Ground
Truth from Computer Games”. In: European Conference on Computer Vision
(ECCV), pp. 102–118.

XLVIII

Bibliography

Ros, G., L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez (2016). “The SYN-
THIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation
of Urban Scenes”. In: IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3234–3243.

Reuse, M., M. Simon, and B. Sick (2021). “About the Ambiguity of Data Augmen-
tation for 3D Object Detection in Autonomous Driving”. In: IEEE International
Conference on Computer Vision Workshops (ICCV), pp. 979–987.

Saito, K., Y. Ushiku, T. Harada, and K. Saenko (2019). “Strong-weak distribution
alignment for adaptive object detection”. In: IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 6956–6965.

Sämann, T., K. Amende, S. Milz, C. Witt, M. Simon, and J. Petzold (2018). “Ef-
ficient Semantic Segmentation for Visual Bird ’ s-eye View Interpretation”. In:
International Conference on Intelligent Autonomous Systems (IAS), pp. 679–688.

Sandler, M., A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen (2018). “Mo-
bilenetv2: Inverted residuals and linear bottlenecks”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 4510–4520.

Scheidegger, S., J. Benjaminsson, E. Rosenberg, A. Krishnan, and K. Granstrom
(2018). “Mono-Camera 3D Multi-Object Tracking Using Deep Learning Detec-
tions and PMBM Filtering”. In: IEEE Intelligent Vehicles Symposium (IV), pp. 433–
440.

Sharma, S., J. A. Ansari, J. K. Murthy, and K. M. Krishna (2018). “Beyond Pixels:
Leveraging Geometry and Shape Cues for Online Multi-Object Tracking”. In:
IEEE International Conference on Robotics and Automation (ICRA), pp. 3508–
3515.

Shao, H., Y. Wang, Y. Fu, and Z. Yin (2020). “Generative image inpainting via edge
structure and color aware fusion”. In: Signal Processing: Image Communication
87, p. 115929.

Shi, S., C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li (2020). “PV-RCNN:
Point-Voxel Feature Set Abstraction for 3D Object Detection”. In: IEEE In-
ternational Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 10529–10538.

Shi, S., Z. Wang, J. Shi, X. Wang, and H. Li (2020). “From Points to Parts: 3D Object
Detection from Point Cloud with Part-aware and Part-aggregation Network”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence.

XLIX

Bibliography

Simon, M., S. Milz, K. Amende, and H.-M. Groß (2018). “Complex-YOLO: Real-time
3D Object Detection on Point Clouds”. In: European Conference on Computer
Vision (ECCV), pp. 1–14.

Simon, M., K. Amende, A. Kraus, J. Honer, T. Sämann, H. Kaulbersch, S. Milz,
and H.-M. Groß (2019). “Complexer-YOLO: Real-Time 3D Object Detection and
Tracking on Semantic Point Clouds”. In: IEEE International Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPR).

Simonelli, A., S. R. Bulo, L. Porzi, M. López-Antequera, and P. Kontschieder (2019).
“Disentangling monocular 3d object detection”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1991–1999.

Song, S., S. P. Lichtenberg, and J. Xiao (2015). “SUN RGB-D: A RGB-D scene
understanding benchmark suite”. In: IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 567–576.

Simon, M. and S. Milz (2018). “Echtzeit 3D Objekterkennung mit Punktwolken”. In:
34. VDI/VW Gemeinschaftstagung Fahrerassistenzsysteme und automatisiertes
Fahren 2018. VDI Verlag GmbH, pp. 125–136.

Salton, G. and M. J. McGill (1983). Introduction to modern information retrieval.
mcgraw-hill.

Song, Z., W. Chen, D. Campbell, and H. Li (2020). “Deep Novel View Synthesis
from Colored 3D Point Clouds”. In: European Conference on Computer Vision
(ECCV). Springer, pp. 1–17.

Shi, W. and R. R. Rajkumar (2020). “Point-GNN: Graph Neural Network for 3D Ob-
ject Detection in a Point Cloud”. In: IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1711–1719.

Sun, S., H. Shi, and Y. Wu (2015). “A survey of multi-source domain adaptation”.
In: Information Fusion 24, pp. 84–92.

Sun, P., H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo,
Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam, H. Zhao, A.
Timofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi, Y. Zhang, J. Shlens, Z.
Chen, and D. Anguelov (2020). “Scalability in perception for autonomous driving:
Waymo open dataset”. In: IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2446–2454.

Shi, S., X. Wang, and H. Li (2019). “PointRCNN: 3D object proposal generation and
detection from point cloud”. In: IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 770–779.

L

Bibliography

Simonyan, K. and A. Zisserman (2015). “Very deep convolutional networks for large-
scale image recognition”. In: IEEE International Conference on Learning Repre-
sentations (ICLR).

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich (2015). “Going Deeper with Convolutions”. In: IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1–9.

Tang, H., D. Xu, N. Sebe, and Y. Yan (2019). “Attention-guided generative adversar-
ial networks for unsupervised image-to-image translation”. In: 2019 International
Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–8.

Tibshirani, R. (1996). “Regression shrinkage and selection via the lasso”. In: Journal
of the Royal Statistical Society: Series B (Methodological) 58.1, pp. 267–288.

Tripathy, S., J. Kannala, and E. Rahtu (2018). “Learning image-to-image translation
using paired and unpaired training samples”. In: Asian Conference on Computer
Vision. Springer, pp. 51–66.

Tompson, J., R. Goroshin, A. Jain, Y. LeCun, and C. Bregler (2015). “Efficient object
localization using convolutional networks”. In: IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 648–656.

Tan, M., R. Pang, and Q. V. Le (2020). “Efficientdet: Scalable and efficient object
detection”. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10781–10790.

Unity Technologies (2021). Unity. https://unity.com/de. Accessed: 2021-09-09.

Valeo (2021). Source. https://www.valeo.com/en/autonomous-driving-a-major-
technological-challenge-for-cities/. Accessed: 2021-07-16.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, �L. Kaiser,
and I. Polosukhin (2017). “Attention is all you need”. In: Advances in Neural
Information Processing Systems (NIPS), pp. 5998–6008.

Viola, P. and M. Jones (2001). “Rapid object detection using a boosted cascade of
simple features”. In: IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR). Vol. 1. IEEE, pp. I–I.

Viola, P. and M. J. Jones (2004). “Robust real-time face detection”. In: International
journal of computer vision 57.2, pp. 137–154.

LI

https://unity.com/de
https://www.valeo.com/en/autonomous-driving-a-major-technological-challenge-for-cities/
https://www.valeo.com/en/autonomous-driving-a-major-technological-challenge-for-cities/

Bibliography

Vo, B.-N., M. Mallick, Y. Bar-Shalom, S. Coraluppi, R. Osborne, R. Mahler, and
B.-t. Vo (2015). “Multitarget tracking”. In: Wiley encyclopedia of electrical and
electronics engineering 2015.

Vu, T., H. Jang, T. X. Pham, and C. D. Yoo (2019). “Cascade RPN: Delving into
High-Quality Region Proposal Network with Adaptive Convolution”. In: Confer-
ence on Neural Information Processing Systems (NeurIPS).

Vo, B.-t. and B.-n. Vo (2011). “A Random Finite Set Conjugate Prior and Application
to Multi-Target Tracking”. In: International Conference on Intelligent Sensors,
Sensor Networks and Information Processing (ICISSNIP), pp. 431–436.

Wang, X., M. Yang, S. Zhu, and Y. Lin (2013). “Regionlets for generic object detec-
tion”. In: IEEE International Conference on Computer Vision (ICCV), pp. 17–
24.

Wang, T.-C., M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro (2018). “High-
Resolution Image Synthesis and Semantic Manipulation with Conditional GANs”.
In: IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 8798–8807.

Wang, T., X. Zhang, L. Yuan, and J. Feng (2019). “Few-shot adaptive faster r-cnn”.
In: IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 7173–7182.

Wang, S., Y. Sun, C. Liu, and M. Liu (2020). “PointTrackNet: An end-to-end network
for 3-D object detection and tracking from point clouds”. In: IEEE Robotics and
Automation Letters 5.2, pp. 3206–3212.

Wang, W., E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao
(2021). “Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction
without Convolutions”. In: IEEE ICCV.

Waymo (2021). Source. https://waymo.com/press. Accessed: 2021-07-16.

Wayve (2022). A New Approach to Self-Driving: AV2.0. https://wayve.ai/blog/a-
new-approach-to-self-driving-av2-0. Accessed: 2022-01-28.

Wang, C.-Y., A. Bochkovskiy, and H.-Y. M. Liao (2021). “Scaled-YOLOv4: Scaling
Cross Stage Partial Network”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 13029–13038.

Wilson, G. and D. J. Cook (2018). “A survey of unsupervised deep domain adapta-
tion”. In: ACM Transactions on Intelligent Systems and Technology (TIST) 11,
pp. 1–46.

LII

https://waymo.com/press
https://wayve.ai/blog/a-new-approach-to-self-driving-av2-0
https://wayve.ai/blog/a-new-approach-to-self-driving-av2-0

Bibliography

Wen, W., C. Wu, Y. Wang, Y. Chen, and H. Li (2016). “Learning structured sparsity
in deep neural networks”. In: Advances in neural information processing systems
29, pp. 2074–2082.

Weng, X., J. Wang, D. Held, and K. Kitani (2020). “3d multi-object tracking: A base-
line and new evaluation metrics”. In: 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, pp. 10359–10366.

Weng, X., Y. Wang, Y. Man, and K. M. Kitani (2020). “Gnn3dmot: Graph neural
network for 3d multi-object tracking with 2d-3d multi-feature learning”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 6499–6508.

Wang, X. and A. Gupta (2016). “Generative image modeling using style and struc-
ture adversarial networks”. In: European conference on computer vision. Springer,
pp. 318–335.

Wu, Y. and K. He (2018). “Group normalization”. In: Proceedings of the European
conference on computer vision (ECCV), pp. 3–19.

Williams, J. L. (2015). “Marginal multi-Bernoulli filters: RFS derivation of MHT,
JIPDA, and association-based MeMBer”. In: IEEE Transactions on Aerospace
and Electronic Systems 51.3, pp. 1664–1687.

Wu, J., T. Xue, J. J. Lim, Y. Tian, J. B. Tenenbaum, A. Torralba, and W. T.
Freeman (2016). “Single image 3D interpreter network”. In: European Conference
on Computer Vision (ECCV), pp. 365–382.

Wu, J., Y. Wang, T. Xue, X. Sun, W. T. Freeman, and J. B. Tenenbaum (2017).
“MarrNet: 3D shape reconstruction via 2.5D sketches”. In: Advances in Neural
Information Processing Systems (NIPS), pp. 541–551.

Wu, W., K. Cao, C. Li, C. Qian, and C. C. Loy (2019). “Transgaga: Geometry-aware
unsupervised image-to-image translation”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 8012–8021.

Wu, Z., S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip (2020). “A comprehen-
sive survey on graph neural networks”. In: IEEE Transactions on neural networks
and learning systems 32.1, pp. 4–24.

Wu, H., W. Han, C. Wen, X. Li, and C. Wang (2021). “3D Multi-Object Tracking
in Point Clouds Based on Prediction Confidence-Guided Data Association”. In:
IEEE Transactions on Intelligent Transportation Systems.

Wu, H., Q. Li, C. Wen, X. Li, X. Fan, and C. Wang (Aug. 2021). “Tracklet Proposal
Network for Multi-Object Tracking on Point Clouds”. In: Proceedings of the Thir-

LIII

Bibliography

tieth International Joint Conference on Artificial Intelligence, IJCAI-21. Ed. by
Z.-H. Zhou. International Joint Conferences on Artificial Intelligence Organiza-
tion, pp. 1165–1171.

Wrenninge, M. and J. Unger (2018). “Synscapes: A photorealistic synthetic dataset
for street scene parsing”. In: arXiv preprint 1810.08705.

Wan, E. A. and R. Van Der Merwe (2000). “The unscented Kalman filter for non-
linear estimation”. In: Proceedings of the IEEE 2000 Adaptive Systems for Signal
Processing, Communications, and Control Symposium (Cat. No. 00EX373). Ieee,
pp. 153–158.

Weng, X., Y. Yuan, and K. Kitani (2021). “PTP: Parallelized Tracking and Prediction
with Graph Neural Networks and Diversity Sampling”. In: IEEE Robotics and
Automation Letters 6.3, pp. 4640–4647.

Xu, D., D. Anguelov, and A. Jain (2018). “PointFusion: Deep Sensor Fusion for
3D Bounding Box Estimation”. In: IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 244–253.

Xiang, Y., A. Alahi, and S. Savarese (2015). “Learning to track: Online multi-object
tracking by decision making”. In: IEEE International Conference on Computer
Vision (ICCV), pp. 4705–4713.

Xie, S., R. Girshick, P. Dollár, Z. Tu, and K. He (2017). “Aggregated residual trans-
formations for deep neural networks”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1492–1500.

Yang, Z., Y. Sun, S. Liu, X. Shen, and J. Jia (2019). “STD: Sparse-to-Dense 3D Ob-
ject Detector for Point Cloud”. In: IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1951–1960.

Yang, Z., Y. Sun, S. Liu, and J. Jia (2020). “3DSSD: Point-based 3D Single Stage
Object Detector”. In: IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 11040–11048.

Yi, Z., H. Zhang, P. Tan, and M. Gong (2017). “Dualgan: Unsupervised dual learn-
ing for image-to-image translation”. In: Proceedings of the IEEE international
conference on computer vision, pp. 2849–2857.

Yu, F., V. Koltun, and T. Funkhouser (2017). “Dilated residual networks”. In: IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 472–480.

LIV

Bibliography

Yang, B., W. Luo, and R. Urtasun (2018). “PIXOR: Real-time 3D Object Detection
from Point Clouds”. In: IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 7652–7660.

Yan, Y., Y. Mao, and B. Li (2018). “SECOND: Sparsely Embedded Convolutional
Detection”. In: Sensors 18.10, p. 3337.

Yogamani, S., J. Horgan, G. Sistu, P. Varley, D. O. Dea, M. Uricar, S. Milz, M.
Simon, K. Amende, C. Witt, H. Rashed, S. Chennupati, S. Nayak, S. Mansoor,
X. Perroton, and P. Perez (2019). “WoodScape: A multi-task, multi-camera fisheye
dataset for autonomous driving”. In: IEEE International Conference on Computer
Vision (ICCV), pp. 9308–9318.

Yoo, J. H., Y. Kim, J. S. Kim, and J. W. Choi (2020). “3D-CVF: Generating Joint
Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D
Object Detection”. In: European Conference on Computer Vision (ECCV).

Yu, F., H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Dar-
rell (2020). “BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask
Learning”. In: IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2633–2642.

Ye, M., S. Xu, and T. Cao (2020). “HVNet: Hybrid Voxel Network for LiDAR Based
3D Object Detection”. In: IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1631–1640.

Yin, T., X. Zhou, and P. Krahenbuhl (2021). “Center-based 3d object detection and
tracking”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11784–11793.

Zhang, W., H. Zhou, S. Sun, Z. Wang, J. Shi, and C. C. Loy (2019). “Robust multi-
modality multi-object tracking”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 2365–2374.

Zhang, X., F. Wan, C. Liu, R. Ji, and Q. Ye (2019). “FreeAnchor: Learning to Match
Anchors for Visual Object Detection”. In: Advances in Neural Information Pro-
cessing Systems 32, pp. 147–155.

Zhao, S., B. Li, X. Yue, Y. Gu, P. Xu, R. Hu, H. Chai, and K. Keutzer (2019). “Multi-
source Domain Adaptation for Semantic Segmentation”, Advances in Neural In-
formation Processing Systems”. In.

Zhang, H., H. Chang, B. Ma, N. Wang, and X. Chen (2020). “Dynamic R-CNN:
Towards High Quality Object Detection via Dynamic Training”. In: European
Conference on Computer Vision (ECCV).

LV

Bibliography

Zheng, W., W. Tang, S. Chen, L. Jiang, and C.-W. Fu (2021). “CIA-SSD: Confident
IoU-Aware Single-Stage Object Detector From Point Cloud”. In: AAAI.

Zheng, W., W. Tang, L. Jiang, and C.-W. Fu (2021). “SE-SSD: Self-Ensembling
Single-Stage Object Detector From Point Cloud”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 14494–14503.

Zhu, J. Y., T. Park, P. Isola, and A. A. Efros (2017). “Unpaired Image-to-Image
Translation Using Cycle-Consistent Adversarial Networks”. In: IEEE Interna-
tional Conference on Computer Vision (ICCV), pp. 2223–2232.

Zhu, J. Y., R. Zhang, D. Pathak, T. Darrell, A. Efros, O. Wang, and E. Shechtman
(2017). “Toward Multimodal Image-to-Image Translation”. In: Advances in Neural
Information Processing Systems (NIPS), pp. 465–476.

Zhu, X., W. Su, L. Lu, B. Li, X. Wang, and J. Dai (2020). “Deformable DETR:
Deformable Transformers for End-to-End Object Detection”. In: International
Conference on Learning Representations.

Zhang, L., Y. Li, and R. Nevatia (2008). “Global data association for multi-object
tracking using network flows”. In: IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, pp. 1–8.

Zoox (2021). Source. https://www.zoox.com/press/. Accessed: 2021-07-16.

Zeng Wang, D. and I. Posner (2015). “Voting for Voting in Online Point Cloud Object
Detection”. In: Robotics: Science and Systems (RSS), pp. 10–15607.

Zhang, R., T. Pfister, and J. Li (2019). “Harmonic unpaired image-to-image transla-
tion”. In: IEEE International Conference on Learning Representations (ICLR).

Zhou, Y. and O. Tuzel (2018). “VoxelNet: End-to-End Learning for Point Cloud
Based 3D Object Detection”. In: IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4490–4499.

Zhou, H., B. Ummenhofer, and T. Brox (2018). “DeepTAM: Deep Tracking and
Mapping”. In: European Conference on Computer Vision (ECCV), pp. 822–838.

LVI

https://www.zoox.com/press/

	Introduction
	Motivation
	Objective
	Contributions
	Outline

	Background
	Deep Neural Networks
	Neural Networks
	Convolutional Neural Networks
	Channel Pruning

	Deep Generative Models
	Generative Adversarial Networks
	Image to Image Translation

	Object Detection in Computer Vision
	Multi Object Tracking
	Multi Object Tracking via Labeled Multi- Bernoulli Random Finite Sets
	Unscented Kalman Filter
	Coordinated Turn Motion Model

	Single Shot 3D Object Detection on Point Clouds
	Motivation
	Related Work
	Baseline Model for 3D Object Detection on Point Clouds
	Point Cloud Preprocessing
	Feature Encoder Backbone
	Euler Region Proposal Network
	Loss Function

	Experiments
	Datasets
	Training and Optimization Details
	Applied Evaluation Metrics
	Results
	Ablation Study

	Related Work upon the Baseline Model
	Conclusion

	Joint Object Detection and Tracking on Point Clouds
	Motivation
	Related Work
	Model
	Efficient Visual Semantic Segmentation
	Point Cloud Preprocessing
	3D Object Detector
	Multi Object Tracking

	Experiments
	Datasets
	Training and Optimization Details
	Applied Evaluation Metrics
	Results
	Ablation Study

	Related Work upon Complexer-YOLO
	Conclusion

	Concept for Integration into an Application-Specific Scenario
	Motivation
	Application Scenario of the Autonomous Car
	Experimental Vehicle and Sensors
	Delimitation to State of the Art
	Model Integration

	Application-Specific Dataset
	Raw Recording
	Ground Truth Generation
	Semi Automated Annotation
	Dataset Analysis and Annotation Statistics

	Experiments on the Application-Specific Dataset
	Datasets
	Training and Optimization Details
	Applied Evaluation Metrics
	Results

	Point Cloud to Image Translation
	Related Work
	Conditional Generative Model
	Experiments
	Conclusion

	Conclusion

	Summary and Outlook
	Summary
	Conclusion and Outlook

	List of Abbreviations
	List of Figures
	List of Tables
	Light Detection and Ranging - Lidar
	Basics of Lidar Imaging
	Velodyne HDL-64E
	Valeo Scala Laser Scanner

	Public Datasets
	Overview
	Synthetic Datasets
	KITTI

	Error Measures
	Object Detection
	Multi Object Tracking

	Comparative Measures for Bounding Boxes
	Intersection Over Union
	Scale Rotation Translation Score

	Bibliography

