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Abstract

The paper describes a multi-modal scheme for human-robot interaction suited for a wide
range of intelligent service robot applications. Operating in un-engineered, cluttered, and
crowded environments, such robots have to be able to actively contact potential users in
their surroundings and to offer their services in an appropriate manner. Starting from a real
application scenario, the usage of a robot as mobile information kiosk in a home store,
some reliable methods for vision-based interaction, sound analysis and speech output have
been developed. These methods are integrated into a prototypical interaction cycle that
can be assumed as a general approach to human-machine interaction. Experimental results
demonstrate the strengths and weaknesses of the proposed methods.
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1 Introduction

Intelligent service robots, a research field that became more and more popular over
the last years, cover a wide range of application scenarios, from robotic assistance
for disabled or elderly people up to climbing machines for cleaning large store-
fronts. Our specific scenario is aimed at the development of an intelligent inter-
active shopping assistant, working as a mobile information kiosk in a home store
(see fig. 1). In contrast to the application of personalized robots, where robot and
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Fig. 1. Our experimental platformPERSES operating in a home store, a cluttered and
un-engineered environment.

user can adopt to each other, such a robot has to be able to interact with anybody.
Furthermore, these people typically know neither the scope of the robot nor its
functional capabilities. People have no idea of how the robot works, if it has a
name by which it may be called, or if it understands speech at all. In general, for
robots working in public places, an intuitive interactive behavior is a necessary pre-
requisite for the acceptance of such robots by their potential users. When looking at
stationary information terminals often placed in shopping centers, these terminals
are almost always an eyesore. One major reason for that fact is that these terminals
are not interactive in a natural sense. They cannot detect if there is anybody inter-
ested in the information provided, but repeat their information repertoire endlessly.
To preserve service robots from the same fate, we suppose that a natural, intuitively
understandable interaction scheme is urgently needed. Such an interaction scheme
should contain components everybody is familiar with, during everyday human-to-
human interaction. Consequently, vision and acoustics should play the major role.
During the past decade, a variety of approaches to intelligent human-robot inter-
faces has been proposed ([3, 15, 7]). Most of them argue, as we do, that the com-
bined utilization of speech and vision channel seems the most appropriate way for
building such interfaces.
As stated above, we are particularly interested in a more general framework, whereas
most of the previous approaches are very specific for a certain domain.
First of all we want to summarize typical behavioral skills of an interactive service
robot. The system has to contact potential users in its surroundings, to verify if the
person is interested, to offer its services, and finally to keep continuous contact dur-
ing the whole interaction process. This collection takes into account the necessities
of our application scenario, but the mentioned skills are valid for service robot ap-
plications in general.
In our proposed interaction scheme, the first step contains the generation of hy-
potheses concerning people in the surroundings of the robot and is calledperson
detectionthroughout the paper. Here, a vision-based movement detection and an
analysis of acoustic signals are combined into an attentional process, that results in
a turning of the robot towards the most salient direction. Then, aperson localization
procedure rechecks if there really is a person and if the person could be interested
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in using the robot. For the case that an interested person approaches the robot, the
robot welcomes and offers its services. This is realized by means of situation de-
pendent speech output and a graphical user interface running on a touch-screen. As
long as the current user remains in the (visible) surroundings of the robot, the robot
tries to keep continuous contact to its user viaperson tracking.
The remainder of the paper is structured as follows. After introducing the robot and
its technical setup, section 2 describes the developed methods in detail. In section
3, experimental results are given and an exemplary interaction process is demon-
strated. Section 4 contains ongoing and complementary work as well as some sum-
marizing conclusions.

2 Methods for Multi-modal Human-Robot Interaction

2.1 The Robot PERSES

Fig. 2 shows the robotPERSES, an extended version of a standard mobile robot
B21 by RWI (IS Robotics). In addition to the common equipment of two sonar
and one IR-layers,PERSESutilizes (i) an omnidirectional color camera with a360o

panoramic view used for user localization and tracking, self localization and lo-
cal navigation, (ii) a binocular 6 DoF active-vision head with 2 frontally aligned
color cameras used for user localization and tracking, odometry correction and ob-
stacle avoidance, (iii) a binaural auditory system for acoustic user localization and
tracking, and (iv) a touch-screen for immediate user-robot interaction.

Fig. 2. Experimental platformPERSES.
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2.2 Movement Detection within the Omnidirectional Images

For every mobile service robot, one major problem consists in the robust detection
and localization of a potential user in its operation area. Our vision-based user de-
tection performs a motion-based foreground-background segmentation in the input
images provided by the omnidirectional camera. In the waiting position or while
standing still, the motion-based segmentation provides some candidate regions that
indicate if and where people could be in the surroundings of the robot. The imple-
mented method is similar to that suggested in thePfindersystem [21], but differs
in the following aspects: (i) the statistical models for foreground and background
pixels were simplified to boxes, and (ii) the foreground and background models are
adjusted to the current situation. The model simplification led to a lower compu-
tational load resulting in a performance speed-up, surprisingly almost without any
loss in sensitivity. By adaptation of the foreground and background models, we take
into account that the robot cruises its surroundings which makes it impossible to
use only one stationary background model, but in fact, the method presupposes that
the robot does not move itself during movement detection. After the alignment of
all image pixels to the foreground and background model, respectively, some ap-
propriate heuristics are used to assess the motion for every angular direction. These
heuristics are needed to determine what direction the most attractive one could be.
The corresponding assessment parameter relies on three different aspects: (i) The
direction of motion indicates, if the person is moving towards the robot or not, and
a person moving away from the robot or passing the robot is probably no candidate
for interaction. (ii) The size of the moving regions gives information concerning
the distance of that object (person) to the robot. The lower the size of the moving
region the larger the distance between object and robot can be assumed. (iii) The
angle difference between the robot’s current orientation and the direction(s) where
motion is detected gives a measure of how long the robot will take turning to that
direction. For the case that several people surround the robot, this distance should
be rather small, leading to fast turns to the nearest standing (moving) person. The
implementation of those heuristics leads to the following behavior: the robot prefer-
ably turns towards people that are moving towards the robot and that are relatively
close to the robot.

2.3 Sound Localization

For the acoustic detection of a potential user clapping her hands or shouting a com-
mand, we developed a biologically inspired model of binaural sound localization
using inter-aural time differences and spikes as temporal coding principle [13].
This subsystem realizes (i) the detection of the sound direction in the horizontal
half-planes by processing the inter-aural time-delays and (ii) a simple but effective
front-behind discrimination on the basis of the differences in the spectral shapes
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of the left and right sound stream supplied by the microphones mounted on top of
PERSES(Fig. 1). It detects pitch onsets in the signals and calculates the angle to
the sound source from the phase shift between the binaural signals. Details of this
model and localization results are presented in [16].

2.4 Fusion of Motion Detection and Sound Localization

The integration of auditory saliency makes it easy for the user to attract the atten-
tion of the robot to accelerate the localization process significantly. Both methods
supply an angle by which the robot has to be turned. In case both angles drive the
robot to the same direction, that direction is strongly supported. Otherwise, motion
detection and sound localization work autonomously. In case motion detection and
sound localization indicate different directions the robot will choose that one that
would cause the lower turning movement. Consequently, a potential user can attract
the robot’s attention via ego-motion or, alternatively, by emitting a sound.

2.5 Person Localization

To evaluate if there really is a person and if she could be willing to interact with
the robot, we developed a localization system that integrates different visual cues.
This system should highlight the regions that most likely cover the upper part of
a person. Concentrating on the upper part of a person has the following reasons:
One has less difficulties concerning (partial) occlusions, and the features described
below are very person-specific and indicate if the person is roughly aligned towards
the robot. Execution of person localization is triggered, when the robot was turned
by the person detection module. Fig. 3 gives an overview of the corresponding ar-
chitecture. Due to the turn of the robot, the potential customer should be localized
in front of the robot, allowing to observe her by the frontally aligned cameras as
well as by the omnidirectional camera. Because we want to localize people even
at different distances from the robot, a multi-resolution pyramid (scale space with
five fine-to-coarse resolutions) transforms the images into a multi-scale representa-
tion. Two cue modules sensitive tofacial structureandstructure of a head-shoulder
contour, respectively, operate at all levels of the gray-scale pyramid. The cue mod-
ule for skin colordetection uses the original color image. After superposition of
the corresponding feature maps, a 3D-Winner-Take-All process within the saliency
pyramid selects that region most likely covering the upper part of a person.
The utility of the different parallel processing cue modules is to make the local-
ization system robust and independent of the presence of one certain information
source in the images. Hence, we can more easily handle varying environmental
circumstances that, for instance, make the skin color detection difficult or almost
impossible.
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Fig. 3. Multiple-cue approach to user localization.

For person localization and the subsequent tracking process, both camera systems
(omnidirectional as well as frontally aligned stereo system) are utilized.

Contour Modelling: The contour which we refer to is that of the upper part of the
body of a frontally aligned person. First, we generated a statistically determined av-
erage head-shoulder contour by collecting views of different people. Then, a model
was learned based on this set of training images (see fig. 4). This simple contour
shape prototype consists of a course of orientations along the modelled contour and
realizes a piecewise approximation of the upper shape of a person (head, shoulder).
Applying such a contour model in a multi-resolutional manner leads to a robust lo-
calization of frontally aligned people even in depth. For computing the orientation

Fig. 4. Illustration of the statistically determined contour model by the binary contour shape
(left) and the local orientation values along the contour (right). Orientation angles are coded
by gray values (0o: black;90o: medium gray;180o: white).

along the contour, a tensor-based method proposed in [11, 2] was implemented.
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Compared to classical orientation-specific filtering with Gabor-wavelets [12] or
steerable filters [9], this method is faster by orders of magnitude. Orientation fil-
tering provides a pair containing the dominant orientation angle and the strength of
the contour at that point. The bandpass dimension determines the extent of the local
area where the orientation is calculated. By varying the dimension of the applied
bandpass filters it is possible to create a feature jet for each pixel. The compo-
nents (tuples) of such a jet code different dominant orientations, dependent on the
applied bandpass filter. For contour localization, we utilize a specific distance mea-
sure taking into account the difference between extracted and expected orientation
value at every contour point as well as the contribution of each contour point to the
whole contour model. Furthermore, the discontinuity between 0 and 180 degree
(angle wraparound) is handled by doubling the angle within distance calculation.
Distance measure and jet representation allow a two-step coarse-to-fine search in
orientation space (see fig. 5). First, a pre-selection is done via a coarse distance
threshold and the orientation values obtained with one bandpass dimension (two-
dimensional manifold of orientation space) resulting in a few candidate contour
locations. Then, these preselected candidates are finally checked using the whole
orientation space. This procedure is much less time consuming compared to apply-
ing the fine search for every image location.

Fig. 5. Illustration of the two-step coarse-to-fine contour localization method. The upper
row contains the results of the coarse contour localization (pre-selection), whereas the bot-
tom row depicts the remaining contour hypotheses after the fine analysis using the whole
orientation space. The shown five layers of the scale space cover a distance range from 0.5
up to about 3 meters.

Skin Color Detection: Skin color is a typical feature for person detection and per-
son tracking. Usually, a color space is employed where color and intensity informa-
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tion are uncorrelated. A widely used skin color modelling procedure was suggested
in [22] and is also applied in our system. A set of skin colored pixels was gen-
erated by acquiring images of different people (skin types) under varying lighting
conditions (illumination colors). This data collection is transformed from theRGB
color space into the dichromaticr-g color space and subsequently modelled by a
bivariate normal distribution (fig. 6).

Fig. 6. Skin color distribution inr-g color space.

For skin color detection, the Mahalanobis-distance between the color values of a
pixel and this model distribution gives us the likelihood for being skin colored (see
the raw skin color classification in fig. 7b). To get closed skin colored regions, a
median filter is applied at every resolution level of the scale space, followed by a
segmentation algorithm.
Unfortunately, skin is not the only skin colored object. Therefore, some heuristics
have been developed to improve the separation between real skin color and other
skin colored image regions. For every resolution level the size of the skin colored
regions as well as their width-height relation is checked according to the expected
face region. Subsequently, regions that do not fit the applied criteria can be rejected.
Fig. 7 depicts an example for the described skin-color processing regime.

Face Detection:Several approaches to face detection have been described, rang-
ing from using Eigenfaces [19], feature based [23, 6] and neural network based
methods [14]. The advantages of applying neural networks for the face detection
task are quite obvious: The facial image is characterized directly in terms of pixel
intensities, and according to the two-class problem at hand (face, no face) a train-
ing pattern set can be used to adjust the parameters of the classifier. But, training
a neural network for face detection is challenging because of the difficulty in char-
acterizing prototypical ”non-face” images. As suggested in [14], one can avoid this
problem by using a bootstrap algorithm that adds automatically false positive classi-
fied image regions to the training pattern set as the training process progresses. The
module for face detection is implemented as a Cascade-Correlation Neural Net-
work (CCNNW, [5]). The reason for using that kind of neural network lies in its
capability to produce a network topology that fits optimally with the complexity of
the mapping problem. In contrast to the standard Multilayer Perceptron, where the
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Fig. 7. Processing steps for skin color detection: a) original image, b) raw skin color clas-
sification, c) smoothing by applying of a median filter for all resolution levels, d) result of
the segmentation algorithm, and e) final detection result according to the chosen heuristics
for every resolution level.

network topology has to be chosen in advance (see [14]), the CCNNW optimizes
the network parameters along with its topology during the same training process.
Starting with a minimal topology (direct linear input-output mapping), new hidden
nodes are trained to maximally reduce the networks output error, until a chosen
termination criterion is fulfilled. Fig. 8 depicts the finally obtained topology for the
CCNNW.

To generate a training pattern set for faces, 174 images out of a public data base pro-
vided by AT&T Laboratories Cambridge (http://www.cam-orl.co.uk/facetatabase.html)
were utilized. From these images,15×20 pixel sized regions covering only the face
were manually extracted. Initially, the non-face pattern set contains a collection of
randomly chosen images, and is extended during bootstrapping. An exemplary re-
sult obtained with the CCNNW-face detector is shown in fig. 9. Surprisingly, the
face detector performs quite well even on the polar-cartesian transformed omnidi-
rectional images, were in contrast to the training patterns local distortions of the
face region occur, but this is only to demonstrate the generalization abilities of the
face detector. A particular training of the face detector with face images coming
from the omnidirectional camera has not been done because at the moment person
localization is exclusively realized via the frontally aligned cameras.

Cue Fusion and Final Selection:The final step for obtaining the image region(s)
that most likely cover the upper part of frontally aligned people contains a simple
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Fig. 8. Topology of the CCNNW used for face detection.

Fig. 9. Exemplary results for face detection with the Cascade-Correlation Neural Network,
in front of highly cluttered background. From left to right: two images containing correct
and false positive detections, an image with only correct detection, and an image where the
face detection failed (only false positive detections).

fusion method and a subsequent selection mechanism. Only those image locations
where at least two out of the three cues supply a detection result, are allowed to
contribute to the final selection process (see fig. 10). To ensure that all cues are
equally weighted during the selection process, a uniform Gauss-shaped activity
blob is used to encode every detection result (image location).

The final selection process is realized by means of a dynamic neural field [1]. Since
dynamic neural fields are powerful tools for dynamic selection using simple homo-
geneous internal interaction rules, we adapted them for our purposes. Because we
use five fine-to-coarse resolutions in our scale space (see fig. 3), we can actually lo-
calize people even at different distances. Therefore, a neural field for selecting the
most salient region should be three-dimensional. The field is described as a recur-
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Fig. 10. One example for fusing the different cues for person localization. According to
the fusion rule, only those locations of the scale space are fed into the final selection pro-
cess were at least two cues supply a detection result. (From left to right): face detection,
head-shoulder contour detection, skin color detection, and fusion result.

rent nonlinear dynamic system. Regarding the selection task, we need a dynamic
behavior which leads toonelocal region of active neurons successfully competing
against the others, i. e. the formation of one single blob of active neurons as an
equilibrium state of the field (for a detailed description see [4]).
By using a three-dimensional neural field, we are able to consider the local corre-
spondences within as well as between adjacent resolution levels. This leads to an
interesting side effect: because outputs of the different cue detectors often occur at
the same location of adjacent resolution levels, such correspondences enhance the
selection of such locations, resulting in a much more robust localization.

2.6 Multi-modal People Tracking

The goal of people tracking is to keep continuous contact to the current user,
and person localization provides the initialization for the subsequent tracking pro-
cess. The general tracking procedure is based on theCondensationalgorithm [10],
widely accepted as a powerful and efficient method for tracking arbitrarily shaped
probability distributions [8].
In principal, visual tracking can be done via the omnidirectional camera as well
as via the frontally aligned cameras, but currently, only the omnidirectional cam-
era is used. The features underlying this part of the tracking process were derived
from the presented person localization procedure. A combination of head-shoulder
contour detection and skin color modelling turned out to be appropriate. Both cues
are subsumed by a Fuzzy-Minimum-Maximum operator. The output of this oper-
ator takes into account that both cues have to be present at corresponding image

11



locations up to a certain degree and determines the ”visual” weight of the samples
within the Condensation algorithm.
Facing the complex environmental conditions in the home store, the purely visual
tracking procedure suffers from highly variable lighting and scene background, re-
sulting in a non-satisfying robustness. Therefore, people tracking is extended into
a multi-modal approach combining visual and sonar information. Within the sonar
scan we assess the distance to the person localized via the method described above.
By continuously re-checking this distance measure against the visual cues silhou-
ette and color, it is possible to re-weight the condensation samples. The integration
of visual and sonar information leads to a very reliable people tracking method. A
more detailed description of the implemented tracking algorithm can be found in
[20].

2.7 Graphical User Interface, Speech Output and Robotic Face

Via the graphical user interface, running on a touch-screen that is mounted on top of
the robot, an immediate interaction between robot and human user can be realized.
In our application scenario, the customer can choose an item she is looking for or a
desired market area. Generally, this kind of ”classical” human-machine interaction
cannot be completely replaced in the near future. The reason is quite obvious: the
appropriate alternative would be a purely speech-based dialog between robot and
human, but, up to now, speech recognition methods do not possess the necessary
capabilities concerning vocabulary size, associative mapping, context dependency,
dialect and so on. Moreover, for service robots interacting with anybody, one cannot
assume that robot and human operate within the same reference frame. In other
words, the robot does not know what the human will say, and on the other side, the
human has no idea about the vocabulary the robot is able to recognize.

In our opinion, speech output is much more than only entertainment. Via speech,
the robot can tell its current state, can offer its services, or can ask its current user
to solve ambiguous or uncertain situations. For simplicity reasons, we currently
use prepared sound files, and their activation is triggered by certain situations. For
instance, after successful person localization the robot welcomes this potential user
and invites her to interact via the touch-screen.

Inspired by the smart face ofM INERVA, the robotic tour-guide described in [18],
PERSESwas equipped with its own face, created by eye-like camera fronts as well
as mouth and eyebrows made of controllable diode arrays (see fig. 11). Hence, the
current ”emotional” state of the robot can be transmitted in a more natural and
intuitive way.
Fig. 12 is to resume the overall interaction schema described so far. It contains the
different processing steps and clarifies the information flow throughout the system.
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Fig. 11. Face ofPERSES.

Fig. 12. Overall architecture of the proposed multi-modal interaction schema.

3 Experimental Results

The experiments shown below are to demonstrate an exemplary interaction cycle
between service robot and its user in the home store.
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Interaction starts with person detection. Within the omnidirectional view (top left

Fig. 13. Person localization via motion detection. The white arrow marks the view direction
(direction of the frontally aligned cameras,0o) of the robot, the angle runs clockwise.

in fig. 13) person P2 is moving towards the robot, whereas person P1 passes the
robot. Both people are detected via motion-based segmentation (top right). Subse-
quently, the robot estimates the most attractive direction by valuation of the two
different directions (bottom of fig. 13), and turns towards person P2.
Person detection is followed by person localization. Fig. 14 contains a collection

of localization results. The localization module provides an output only when cue
fusion and final selection (see section 2.5) supply a very strong result. To avoid
false localizations is very important, because otherwise the robot would start inter-
acting with uninterested people or even with inanimate items. In case a potential
customer has not been successfully localized, the customer can log-in directly via
the touch-screen. When successful localization happened, the robot welcomes the
customer by means of a typical speech sequence. Then, the customer can choose
the desired item or the interesting market area via the touch-screen. After selection,
the robot confirms the corresponding item and shows a map of the market, where
its current position and the goal position are indicated.
During the whole interaction cycle, the robot tries to keep continuous contact to
the current client via visual tracking. An exemplary tracking sequence is given in
fig. 15, where samples of a longer run of the tracking system (over several min-
utes) are shown. Both sequences clarify the advantage of the multi-modal (visual /
sonar) approach. By using the distance measure towards the people being tracked,
the tracking algorithm can handle the crossing of the people within the surround-
ings of the robot without loosing the person in front of the other one. Furthermore,
we avoid the utilization of a specific motion model for the tracked object. Such a
motion model could also be used to distinguish between different moving people
in the surroundings of the robot, but, unfortunately, it is very difficult to describe
typical movements of people.
Although robot navigation behavior was not explicitly described, it should be no-
ticed that people tracking and navigation have to be combined appropriately. For
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Fig. 14. Person localization results (black crosses) for different situations in the real home
store. People occur in front of highly cluttered background. Special emphasis has been
made to improve robustness, specificity and efficiency of the localization procedure. Cur-
rently, the system runs with0.5 Hz on a Double-Pentium III (500 MHz) with an image
resolution of about 200× 200 pixels (frontally aligned camera, depth range from0.5 up to
2.5 meters).

Fig. 15. People tracking experiments. Within the shown sequences (to read from left to
right), the frames in the images of the omnidirectional camera indicate those locations
where the tracked person is most likely expected.

example, when the robot tries to reach a predefined target location in the home
store, direction and speed of the movement are adjusted according to the current
tracking status. That means that the robot slows down when the distance to the
client becomes to large. As long as the contact to the current user can be continu-
ously updated, no articulation of the robot is needed. If the robot detects a situation
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where the user is lost, the robot stops and provides a speech output to ask the user
to reduce the distance to the robot. Alternatively, the guidance to a desired market
position is temporarily interrupted and the robot moves towards its present user to
prevent losing contact.

4 Conclusions and Outlook

The paper has described a multi-modal scheme for intelligent and natural human-
robot interaction. Special emphasis was placed on vision-based methods for user
localization, person localization and person tracking and their embodiment into a
multi-modal overall interaction schema. The proposed interaction regime should be
understood as work in progress, undergoing continuous changes. The experimental
results demonstrate the principal functionality of the corresponding subsystems.
Although the interaction cycle strongly relates to our home store scenario, it can
contribute to a wider range of service robot applications.
Future research will concentrate on the extension of the tracking system, which
is currently limited to roughly frontally aligned people. This includes the vision-
based methods as well as the integration of scan-based person tracking techniques
as proposed in [17]. Furthermore, we will work on the design and implementation
of a framework for modelling the interaction cycle to provide the robot with the
capability to learn and generalize from a series of interactions with different people.
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