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In this paper a person-specific saliency system and subsequently two architectures for the
recognition of dynamic gestures are described. The systems implemented are designed
to take a sequence of images and to assign it to one of a number of discrete classes where
each of them corresponds to a gesture from a predefined small vocabulary. Since we think
that for a human-computer interaction the localization of the user is essential for any
further step regarding the recognition and the interpretation of gestures, in the first part,
we begin with describing our saliency system dedicated to the person localization task in
cluttered environments. Successively, the intrinsic gesture recognition process is broken
down into an initial preprocessing stage followed by a mapping from the preprocessed
input variables to an output variable representing the class label. Subsequently, we utilize
two different classifiers for mapping the ordered sequence of feature vectors to one gesture
category. The first classifier utilizes a hybrid combination of Kohonen Self-Organizing
Map (SOM) and Discrete Hidden Markov Models (DHMM). As second recognizer a
system of Continuous Hidden Markov Models (CHMM) is used. Preliminary experiments
with our baseline systems are demonstrated.

Keywords: person localization, gesture recognition, hybrid stochastic-connectionist sys-
tem, Hidden Markov Model, self organizing map.

1. Introduction

Gestures are part of everyday natural human communication. They are used as an
accompaniment to spoken language and as an expressive medium in their own right.
Recently, there have been strong efforts to develop intelligent, natural interfaces
between users and systems based on gesture recognition. The optimal interaction
has to be natural, intuitive, not require any remembrance and is similar to that we
are familiar, thus the interaction with other people. Such intelligent interfaces cover
a broad range of application fields in which an arbitrary system is to be controlled
by an external user or in which system and user have to interact immediately 123,
In our special case, we aim at a naturally behaving human-robot interface that
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combines different, especially visual and auditory sensor modalities. This interface
is to be used as a framework for intelligent human-robot interaction in service-
system domains. In this paper, we exclusively concentrate on the description of the
visual part of that interface.

We state that a proper person localization is an absolute prerequisite for any
further gesture recognition process, especially in cluttered and un-engineered en-
vironments. Therefore, we propose a person-specific saliency system combining
different feature modules into a multiple-cue approach. The features at hand are
skin color, facial structure, and structure of the head-shoulder-contour respectively.
The utility of the different parallel processing cue modules i1s to make the saliency
system robust and independent of the presence of one certain information source in
the images. Hence, we can handle varying environmental circumstances much eas-
ier, which, for instance, make the skin color detection difficult or almost impossible.
Due to its reliability and robustness against varying environmental conditions, this
system represents the starting point for any further precessing step.

One of the crucial problems in recognition of gestures is the handling of their
varying temporal and spatial structure. That difficulty stems from the high variabil-
ity of each movement associated with a gesture to be detected. Gesture’s segments
may overlap, have varying lengths, and vary across speakers. Even the same user is
not ever able to produce exactly the same movement for the same gesture. More-
over, the complexity of the automatic recognition task is related to robustness to
environmental conditions, vocabulary size, number and movement characteristics of
users in user independent recognizers, and so on.

This paper is structured as follows. Starting from our saliency system for person
localization * (section 2), in section 3 we provide an overview of the process which
is to be carried out to describe the user’s postures. We propose to combine skin
color-based 1mage segmentation with shape analysis by means of invariant moments.
Section 4 mentions some basic ideas of the theory of both Self-Organizing Maps and
Discrete Hidden Markov Models, and section 5 describes how we exploit these tools
for gesture recognition. An alternative stochastic architecture relied on Continuous
Hidden Markov Models is suggested in Section 6. Finally, a description of the
preliminary results and some final considerations can be found in Section 7 and
Section 8, respectively.

Figure 1 introduces our mobile robot PERSES, a standard B21-platform (Real
World Interfaces Inc.). This robot acts as the experimental system for human-robot
interaction. Besides ultrasonic and infrared distance sensors PERSES comes with a
multi-camera system, consisting of two frontally aligned cameras (stereo head) and
one omnidirectional camera covering the surroundings of the robot by a circular
image.

2. Saliency System for Person Localization

The saliency system for person localization is divided into two subsystems: one
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Fig. 1. The mobile robot PERSES.

subsystem uses the images coming from the omnidirectional camera and performs
a motion-based foreground-background segmentation, whereas the second one pro-
cesses the 1mages acquired by one of the two frontally aligned cameras and applies
a multiple-cue approach. The results of both subsystems are properly combined
the yield a satisfying person localization. The motion-based segmentation gives us
some candidate regions that indicate where persons could be in the surroundings of
the robot. By turning the robot towards those candidate regions the multiple-cue
approach analyzes that regions in much more detail and decides finally if there is a
person that wants to interact with the robot.

2.1. Motion-based segmentation of the omnidirectional tmages

An omnidirectional view covers the surroundings of the robot in a one-shot manner,
without the need of any movement (camera or robot). On the other hand, because of
the rather low detail resolution of those images, a movement-based method seems to
be a proper choice to detect moving objects (persons). Our implemented method is
similar to that suggested in the Pfinder system °, but differs in the following aspects:
(1) The statistical models for foreground and background pixels were simplified to
boxes, and (ii) the foreground and background models are continuously adjusted.
The model simplification led to a lower computational complexity resulting in a
performance speed-up, surprisingly without almost non lost in sensitivity. The
latter is to take into account that the robot cruises its surroundings which makes it
impossible to use only one stationary background model.
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Fig. 2. Movement-based person detection. Left: original image. Right: segmented image; the
two marked regions correspond with two persons at different distances to the robot.

After the alignment of all image pixels to the foreground and background model,
respectively, a simple grouping mechanism is applied to get closed moving regions
and to suppress noise and very little regions. Figure 2 illustrates the method.

The segmented candidate regions are labeled according to their distance to the
robot. Subsequently, the robot will turn itself towards the nearest hypothesized
person and apply a multiple-cue approach for person localization, which is described
in the following subsection.

2.2. Multiple-cue approach

Figure 3 provides a coarse sketch of the multiple-cue approach for user local-
ization. A multiresolution pyramid transforms the images acquired by one of the
frontally aligned cameras into a multiscale representation. Two cue modules sensi-
tive to facial structure and structure of a head-shoulder contour, respectively, op-
erate at all levels of a grayscale pyramid. The cue module for skin color detection
uses the original color image. Its segmentation result is transformed into a pyramid
representation, too, to obtain an uniform data structure for the different cues. The
utility of the different parallel processing cue modules is to make the saliency sys-
tem robust and independent of the presence of one certain information source in the
images. Hence, we can handle varying environmental circumstances much easier,
which, for instance, make the skin color detection difficult or almost impossible.
Furthermore, high expense for the development of the cue modules can be avoided
(see &7 too).

The output of the cue modules serves as the input for the saliency pyramid
at each resolutional level. The maps are topographically organized neural fields
containing dynamic neurons interacting among each other (see ®9). In the saliency
maps all those regions shall become prominent that most likely cover the upper part
of a person.
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Fig. 3. Architecture of the multiple-cue approach for person localization.

In our previous work (see 1) the three cues were assumed to be of equal impor-
tance. After a period of practical experiences, we had to face that the shape-based
approach provides much more reliable contributions to the localization process com-
pared to the skin color and facial structure cues. The reasons are quite obvious:
Skin color detection is highly influenced by illumination. Although we use an ad-
ditional color adaptation method (see '!) to yield constant color sensation, robust
skin color detection cannot ensured in general. Further, solving the localization
problem becomes more interesting the farther away the person is. Necessarily, rele-
vant features should appear even on rather coarse resolutional scales so that details,
as facial structures, are less prominent. Facial structure can be detected confidently
only if the distance between person and camera is not too large. Otherwise, the
region covered by the face becomes to small to be localized.

Against this background, the method for head-shoulder-contour detection was
improved significantly. The actual method is described in more detail in the follow-
ing subsection. Since the other cues can only support the person localization, but
cannot ensure the localization alone, their methods were reduced to rather simple,
but computationally efficient algorithms. The following subsections describe the
cues for person specific saliency in more detail.
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2.2.1. Head-shoulder contour

The contour which we refer to is that of the upper body of frontally aligned persons.
Our simple contour shape prototype model consists of an arrangement of oriented
filters doing a piecewise approximation of the upper shape (head, shoulder) of a
frontally aligned person. The arrangement itself was learned based on a set of
training images. Applying such a filter arrangement in a multi-resolutional manner,
this leads to a robust localization of frontally aligned persons even in depth.

Arrangements of steerable filters — motivation and related work: The
idea of this method refers just to a description of the outer shape of head and
shoulders and is based both on some physiological considerations as well as on
psychophysical effects.

The visual cortex consists in several parts of cells with oriented receptive fields.
A lot of investigations have shown that the profile of receptive fields of simple cells
in the mammalian primary visual cortex can be modeled by some two-dimensional
mathematical functions. Gaborian '? and Gaussian functions (incl. low order deriva-
tives) 13 appear to provide the typical profiles for visual receptive fields. So, local
operations decompose the visual information with respect to the frequency space.

Psychophysical aspects for the contour-shape based approach, e. g., good contin-
uation or symmetry (both belonging to the Gestalt laws), obviously describe effects
which necessitate grouping mechanisms. Against this background, we have chosen
the approach of an arrangement of oriented filters.

Because each section of the contour should be approximated by a special oriented
filter, localizing a person would require possibly as many differently oriented filters
as orientations belong to the arrangement. Since that would be computationally
very costly, we turned to steerable filters.

Determining the course of contour: Steerable filters have the nice property
that an a-priori limited number of convolutions is sufficient to derive any orien-
tation information within an image. Thus, their use provides an extended set of
orientations, avoids the necessity of numerous additional filters, and enables a more
accurate computation of the course of contour.

Our complete data set consists of images showing ten persons in front of a homo-
geneous background under three different viewing angles (0°,4+10° and —10°, where
0° corresponds to an exactly frontally aligned body). All these images have been
recorded under identic conditions (position, illumination, distance). Additionally,
in order to achieve a symmetrical contour model the whole data set was vertically
mirrored extending the data set to 60 images. Subsequently, the 256 x 256-images
(grayscale) were low-pass filtered and scaled down to 16 x 16. Then, we applied a
Sobel operator to the images enhancing the edges of each image. Next, all of those
edge-marked intermediate images were averaged, since the contour to be determined
on average should match the real outer contour. After this, we thresholded to find
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that edge representing the typical contour shape.

This way, we got the course of the contour of interest resulting in a 16 X 16 binary
matrix where the elements along the contour are set to 1, the others remain 0. We
refer to this contour matrix, our template, as A*. The local orientation of each
contour element is determined by means of the steerable filters (see below). These
are applied to the binary contour shape so that for each element of A* with value
1 an angle of orientation can be determined resulting in a matrix A (see figure 4).

Fig. 4. The determined shape of contour A: orientation angles coded by gray values (0°: black;
90°: medium gray; 180°: white). Note that around the forehead transitions from 180° to 0° occur.
The contour shape is symmetric since the original data set was mirrored.

Applying steerable filters After determining the binary contour, we measure
the local orientation by means of a set of filters which are oriented in every direction.
We take the powerful approach of steerable filters (see '*) for orientation estimation.
It provides an efficient filtering output by applying a few basis filters corresponding
to a few angles and then interpolating the basis filter responses in the desired
direction. Steerable filters are computationally efficient and do not suffer from the
orientation selection problem.

In general, a function f is considered to be steerable if the following two condi-
tions are satisfied. First, its basis filter set is made up of M rotated copies of the
functions %1 ... f*™ on any certain angles o . ... Second, a rotated copy f” of
it on some angle ¥ has to be obtained by a superposition of its basis set multiplied
by the interpolation functions k;(¥) as in

£ =3 k()5 )
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In our work, we take a quadrature pair by using the second derivative of a
Gaussian and an approximation of its Hilbert transform by a third-order polynomial
modulating a Gaussian. From the steering theorem * these functions are steerable
and need M = 7 basis functions. To measure the orientation along the contour,
we use the phase independent squared sum of the output of the quadrature pair.
This squared response as a function of the filter orientation ¥ at a point (z,y)
represents an oriented enerqgy E(x’y)(ﬁ). Because of the symmetry of the functions,
the energy at every pixel is periodic with period w. To accurately estimate the
dominant local orientation one could pointwise maximize the orientation energy by
taking ﬁg\?j/)x = argmax{E@Y)(9) | 9 € [0,7)}. However, to find this maximum
value we do not search degree-wise for the maximum because there already exists
an analytical solution for the maximization '*. We further refer to the matrix of all
these angular values ﬁg\?j/)x corresponding to the image as ®@. Furthermore, there
exists a separable basis set in Cartesian coordinates which considerably lowers the
computational costs.

Computing the neural field input The previous section describes the theory
and use of steerable filters. By means of those filters, we calculate both the matrix
A describing a typical course of the head-shoulder-portrait and the matrix @ (com-
puted from the image wherein a person is to be found) containing the dominant
local orientation values.

Subsequently, we search for the presence of the visual cue head-shoulder-portrait,
represented by the kernel A, within the matrix ®. To do this, we utilize a matching
technique based on a similarity measure m®¥). Due to the m-periodicity of the
outcome of the steerable filters and in order to properly describe the likeness between
two elements of A and O, the similarity function requires the same periodicity.

I-1J-1

1 st L T
>0 5 {COS (2 N = iy 2T ) + 1}
i=0 7=0 2
(my) — _ruiZ0 9
m card (supp (A)) (2)
. . .o (v+i-L y+i-2)
Herein, A; ; refers to the element of A at position (7, j) and ¥, , 5 to the

one of @ at (z 4+ ¢ — %,y +3j - %) I = J = 16 represent the dimensions of the
matrix A. The normalization to the cardinality of the support of A (the support
of a matrix considers only nonzero elements) ensures m(®¥) € [0, 1] for the further

processing. Figure b summarizes the processing steps.

2.2.2. Skin color

For the generation of a skin color training data set, portrait images of different
persons of our laboratory were manually segmented. The images were acquired
under appropriate lighting conditions typical for our laboratory environment. Since
we want the color analysis to be unaffected by the presence of shadows or by changes
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Fig. 5.  Starting from a multi-resolution representation of the image, each level is treated by

steerable filters. Applying the filter arrangement we determine a distance measure which is taken
as input to a three-dimensional field of dynamic neurons. The resulting blob (locally delimited
pattern of active neurons) is used to localize a person.

in illumination, this should allow to classify a point exclusively according to its hue
and not to its intensity. In order to obtain almost constant color sensation, we

first map the RGB color space into a fundamental color space and employ a color

adaptation method (see '!'). Then we return in the RGB-image space and we

. . . . _ R _ G
consider the normalized (chromatic) color coordinates r = yeewemy RN wey

and b = ﬁ. Since their sum is equal to 1, we can take any two of them to
define the new color space (plane).

Representing our color data set in such a coordinate system, we obtain a color
distribution as depicted in figure 6. Now we have to face the problem of modeling
the color distribution by a probability density function. To density estimation
given the finite number of data points, we consider a parametric method in which
a specific form for the functional model is assumed. That model contains a number
of adjustable parameters which have to be optimized to fit the model to the data
set. Due to the form assumed by the real data distribution (see figure 6) and to
its well-known properties, we decide to take as density function the d-dimensional

multivariate normal probability function:

_ 1
P = Gmyisire

S5

—He-w) "= (@—p) (3)

Here g 1s the d-dimensional mean vector, 3 the d X d covariance matrix, while
the factor (2m)%2|2|"/? ensures that [ p(®)de = 1. Because X is symmetric it
has d(d + 1)/2 independent parameters. Considering also the additional d parame-
ters of the mean vector s, the density function is completely described by d(d+3)/2
parameters. Furthermore, after a person (face region) could be successfully local-
ized, a new Gaussian model is created, more specific for the illumination and the
skin type at hand. Via this model, the detection of skin colored regions, especially
hands, can be improved. This is of special importance because the hand regions
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Fig. 6. Skin classification by means of a parametric model within the r-g-color space. On the left
the histogram of the color sample data is depicted. For that data set the mean vector has the
coefficients p = (0,43180; 0,30078)T. The matrix of covariance for the data set has the following
coefficients & = ((0,0016; —0,00013) T; (—0,00013; 0,00046) T). On the right the statistical model
with the above parameters is depicted.

cannot be segmented by structural information (see 15 and sec. ).

A Mahalanobis-based distance measure is employed to compute the similarity
between the color value of each pixel and the color model. To achieve an appropriate
input for the 3D dynamic neural field, the resulting similarity map is recoded into
an activity map, where the highest activity stands for the highest similarity.

2.2.3. Facial structure

We assume that a person is willing to interact with the system if her face is oriented
towards the robot.

In our previous work, the detection of facial structure employed eigenfaces (see 10:9).
The disadvantage of that method is their computational complexity, resulting in
time consuming calculations. Due to real-time constraints, a new, similar method
was implemented. First, a prototype (mean) pattern of a frontally aligned face (15
x 15 pixels) was created by means of the images contained in the ORL data set
(http://wuw.cam-orl.co.uk/facedatabase.html). Then we calculate the simi-
larity between each image region and the prototype pattern via normalized con-
volution. The higher the convolution result, the higher the similarity, and the
convolution result can be directly used as the input for the saliency pyramid. A re-
lated approach was also proposed by SiM ET.AL. ', but differs in the used distance

measure.
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2.2.4. The saliency pyramid as a 3D nonlinear dynamic field

To achieve a good localization, a selection mechanism 1s needed to make a defi-
nite choice among those regions within the multi-scale pyramid where rather high
similarity measures concerning the different cues are concentrated. Since dynamic
neural fields are powerful for dynamic selection and pattern formation using simple
homogeneous internal interaction rules, we adapted them to our purposes. In order
to localize persons even at different distances, we use five fine-to-coarse resolutions
in our scale space (see figure 3), as described above. Therefore, a neural field for
selecting the most salient region should be three-dimensional, too. That field ¥
can be described as a recurrent nonlinear dynamic system. Regarding the selection
task, we need a dynamic behavior which leads to one local region of active neurons
successfully competing against the others, i.e., the formation of one single blob of
active neurons as an equilibrium state of the field. The following equations describe

the system:
d
Taz(r,t) = —z(r,t) —cph(l) + cl/ wlr — v y(r' )d*s' +ciz(r,t) (4)
R
_3|,,=_,,,/|2 _|,,,_,,,/|2
wr—7r') = 2exp(T) - exp(T) , (5)
1
y(r,t) = and (6)

1+ exp(—z(r,1))
L) = /Ry('r'”,t)d'r'” (7)

Herein » = (z,y, z) denotes the coordinate of a neuron, z(r, ) is the activation
of a neuron 7 at time ¢, y(r,?) is the activity of this neuron, z(r,t) denotes the
external inputs (corresponding to the re-coded similarity measures for the differ-
ent cues, combined by a Min-Max fuzzy operator), h(t) is the activity of a global
inhibitory interneuron, w(r — #') denotes the Mexican-hat-like function of lateral
activation of neuron » from the surrounding neighbourhood N C R>. For one r,
N is symbolically marked as dark regions in figure 5 (right). Further, 7 is the time
constant of the dynamical system and o is the deviance of the gaussians determin-
ing the function of lateral activation. For the computation we used the following
values for the constants: ¢, = 0.025, ¢, = 0.1, ¢; = 0.1, 0 = 2 (halved z-direction),
7= 10 with AT = 1 (AT sampling rate). The range R of the function of lateral
activation reachs over b pixels and 3 pixels in z-direction, respectively (anisotropic
neighbourhood).

As also illustrated in figure 5, to use a three-dimensional neural field, we have
to consider the local correspondences between the resolution levels. Therefore,
we apply a re-coding into a cuboid structure. One side effect is that the coarser a
pyramid level is the less we can locate something by means of the similarity measure.
However, without particularly treating this effect we just noticed that those levels z
of the neural field activated from the rather coarse pyramid levels take a little few
more steps to develop a blob (or a part of a blob, respectively).
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2.3. Results of the multiple-cue approach

The results of the multiple-cue approach are qualitatively illustrated in figure 7.
The images of the rightmost column show the state of three layers of the dynamic
neural field in a snapshot at that moment when the activity change of the most
active neuron became less than 1%. On average, the system takes 11 iteration steps
using a time-discrete Euler method. The range of the blob is not restricted to one
plane. To get a more precise specification of the distance of a person one could
interpolate the z-coordinate of the blob center within the field.

B ¢ ¥ Ta ] " .
- oo rd '
L3 - Lo
' b
- -
- .
'? [ i- L} L |
=
Fig. 7. Localization results in an indoor environment (middle three layers of the multiscale

representation): The localization of a person occurs not sharply at one of the pyramidal planes,
the originating spatial blob (rightmost column) is most strongly developed on the central of the
five planes. Each row contains the results of one of the five (distance 1/\/5) computed resolution
steps. The seven columns depict the following: input, results of the orientation filtering for selected
angles 0°, 45°, 90° and 135°, the result of the filtering with the filter arrangement and finally the
result of the selection within a three-dimensional field of dynamic neurons.

The novel approach with a three-dimensional dynamic neural field can be as-
sessed as a robust method for the selection process.

To emphasize finally the performance of the multiple-cue approach, figure 8
shows typical results in a highly structured indoor environment.

Furthermore, what we really need is a most possible non-ambiguous person lo-
calization which can only be ensured if only one correct localization is achieved,
but, unfortunately, this is not often the case. In general we have a (very limited)
number (2-5) of candidate regions (see figure 8), and one of these candidate re-
gions typically covers the person we look for. To make the final selection we use
both, the motion-based segmented image provided by the omnidirectional camera
which covers the whole surroundings of the robot, and the result of the multiple-cue
approach.

After a person could be successfully localized a gesture recognition process is
started. The remainder of the paper focuses on that gesture recognition process.
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Fig. 8. Person localization with the previously described multiple-cue approach in a highly struc-
tured indoor environment.

3. View-based Posture Description

Throughout this paper the following definitions are considered.

Definition 1 [Posture/Pose] A4 posture or pose is a couple determined by the only
static hand locations with respect to the head position. The spatial relation of face
and hands determines the behavioral meaning of each posture.

Definition 2 [Gesture] A gesture is a series of postures over a time span connected
by motions.

3.1. Posture segmentation

The segmentation of face and hands as the gesture relevant parts is exclusively
based on skin color processing. Therefore, we presuppose that skin color is always
present within an image. Segmentation is a decision process where we have to decide
whether a pixel belongs or not to the hands or the head of the user. Obviously after
this decision a significant amount of information is lost because there is no way to
infer the original image content from the segmented image.

After detecting the location of the head as described in the previous chapter, we
consider a region of interest around it which we call head box (figure 9, left). Then
we characterize the distribution of the pixel values inside that region of interest by a
multidimensional Gaussian with centroid location and covariance matrix describing
the local distribution around the centroid. By doing that, we adapt the skin color
model to fit more specific for the illumination and the skin type at hand. Therefore
the detection of skin colored regions can be improved. We handle multiple scales
by choosing head boxes of different sizes according to the level in the pyramide.

By using the chromatic projections r and ¢ (see section 2.2.2) of each pixel inside
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the head box, the actual color model 1s uniquely determined by the multivariate
normal density of equation 3 where the mean g is a two-dimensional vector and X
is a 2 x 2 covariance matrix. Using the Mahalanobis distance from & to g, any pixel
@ of the image is then classified to be or not a member of the skin class according
to an empirically determined threshold value (figure 9, middle).

In order to reshape the segmented regions we filter the binary image by using the
median filter. In case of binary image this correspond to just set the central mask
point with the value which appears more times in the neighborhood. On binary
images, median filters act as dilation operator as well as erosion operator according
to the number of on-values around the actual pixel and the mask size. The filter fills
small holes or cracks and smoothes the contour line of the regions while removes
small regions originated by outliers.

Assuming the hands and head regions to correspond to the three greatest ones
we need a process for extracting them. The selection process is executed by a
winner-take-all (WTA) neural network. Beginning from the winning neuron the
underlying region is segmented and its area is computed. When the measure of this
area is less than a fixed percentage, called percentage threshold of the largest hitherto
segmented region, 1t is considered as a noisy region and the selection task is stopped.
Otherwise, the region is inhibited and a new competitive process begins. In any
case, the selected region has to be permanently inhibited in order to avoid that it
is selected again in the next competition task. Without inhibition the currently
selected region would be always selected again (it is the largest!) and would not
permit smaller regions to win the competition. We can see that according to the
choice of the percentage threshold may happen that the WTA selects less than three
regions. Anyway, at least one region is always selected.

Further we determine the centers of gravity of the selected regions and we model
each of them separately as a circle around its centroid. Now one problem arises.
How should we choose the radius for the circles? The first idea is to calculate the
multivariate normal density for every region and to use the lengths of the principal
axes of the associated ellipsoid as radius. Although this seems to be well-founded,
it turns out not to be.

Let us make a step back to the color segmentation task. If we had chosen a
higher (lower) threshold value during the segmentation, the shape of the remaining
regions would be now bigger (smaller). Moreover even totally different regions could
have been selected. A different threshold value means different multivariate normal
densities, and, consequently, different principal axes values. To avoid ambiguous
posture modeling, the solution 1s simply to use an arbitrarily constant value for the
radius (see figure 9, right).

3.2. Feature extraction

Frequently, the features extracted from the input data which are invariant under
the requested transformations base on moments of the original data.
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Fig. 9. From left to right: head localization result; thresholded skin classification by means of
an adapted color model derived from the pixel distribution around the head location, and finally,
modeling of the hand and head regions as circle around their centers of mass.

Given an arbitrary two-dimensional function f(z,y) and two integer numbers p
and ¢, the (p + ¢)th order regular moment my, is defined by

Mpg = 7 7xpyqf(l‘,y)dl‘dy (8)

— 00 —0O0

For our purpose, we consider a finite image plane and therefore the integrals are
over that finite surface. In that case, they have to be replaced by discrete sums, so
that equation 8 becomes

Mpq = szpyqf(l’ay) (9)

It has been proved '7 that, when the function is sufficiently well behaved math-
ematically, by using a sufficiently large number of moments we merely obtain a
different but complete description of it. The moments constitute the coefficients
in a series expansion of some complete figure description. Thus, every function
f 1s uniquely determined by, and uniquely determines the set of the infinite mo-
ments my,. Considering only a subset of the moment set, only a partial function
reconstruction can be obtained.

The calculation of the moments furnishes a systematic procedure for extracting
a set of features from an image, i.e., the extraction of features from the original
input data which are invariant under some given transformations as for example
translation, scaling, rotation, reflection, and so on.

By centering the x and y axes at the centroid of the function f, we can define
its (p + ¢)th order central moment p,, as

upq:Zpryqf(x—j,y_g) (10)

Mmio Mmo1
Moo Moo
centroid, respectively. Although the central moments are invariant under translation

where & = and y = represent the x and y coordinates of the image
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in their continuous form, the use of that moments in discrete form gives only an
approximate translation invariance due to the edge effects and the finite sums.

Applying the theory about algebraic invariants '® we can extend the invariance
properties of the central moments by making them invariant also to scaling. Thus
we obtain the (p+ ¢)th order normalized central moment vy,

Vpg = %3%4) (11)
Hag
It is easy to verify that they remain simultaneously unchanged under image
translation and size changes.
The computation of these moments for binary image yields theoretically an error-
free estimate of the continuous moments which is also independent of illumination
as opposed to the value deriving from greyvalue images.

3.2.1. Choice of the invariants

From the binary posture model (figure 9,c) we compute one feature vector v
containing 15 translation and scale invariant elements. The aim is to characterize
as well the shape of the segmented scene as the spatial relations among the regions
within it.

180—192\ ///// \\

Py 1
TPy \

\

‘ |
‘
Py

Fig. 10. The new defined coordinate system with origin centered in the centroid describing the
head region. The two points (p1,91) and (p2,92) represent the polar coordinates of the left and
right hand centroids.

As first invariant values we take seven of the ten normalized central moments
up to the third order. We drop out as well the zeroth order moment vy as those of
the first order because they always assume value one and zero, respectively.

The computation of the remaining feature vector elements i1s carried out with
the goal to compensate the shift variation of the person gesticulating in front of
the camera. Thus, we choose for each image a suitable coordinate system by fixing
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its origin point at the current determined head’s center of mass. That allows to
calculate the other feature components relating to the head position and regardless
to the position of the user within the image. In this new coordinate system, we
use the polar coordinates of both hands’s centers of gravity (figure 10) and the
normalized Euclidean velocities of the hand centroids along both the x and y axes,
in order to ensure invariance also with respect to image size changes. The chosen
features are listed and described in table 11.

Feature Nr. Symbol Description
1...7 Vpg | p,g=1...3 | Normalized central moments of second and
third order.
8,9 Jq, 0, Values in the range [—180, 180] indicating the

angle expressed in degree between the x axes
and the segment connecting the origin with
the centroid of the right and the left hand,
respectively (see figure 10).

10,11 S1562 Let p1 and py indicate the length of the seg-
ments connecting the origin with the centroid
of the right and the left hand, respectively
(see figure 10); these value are defined as
respectively.

£1 and P2
max{p1,p2} max{py,p2}’
12,13 URe, URy With the above definition these values repre-
sent the Euclidean velocity of the right hand
centroid normalized by max{p1, pa}.
14,15 Viz, ULy As the previous two features but regarding
centroid of the left hand.

Fig. 11. Description of the components of the feature vector.

It is worth to notice that the normalizing factor max{p1, p2} used in the defini-
tion of the last six features (from number 10 to number 15) of table 11 is required
to ensure size invariance. Moreover, we can see that the two invariants ¢; and ¢
always assume values within the range [0, 1] and at least one of them is exactly 1.

3.2.2. Whitening rescaling

Figure 12 shows the values of the feature components from a segmented binary
image. As we can see the single components have values which differ in a significant
manner also by some orders of magnitude. Because that size dissimilarity does not
reflect the relative importance of the individual components, it 1s useful to rescale
them.

There are a lot of techniques for data normalization or rescaling. In our work, we
perform a linear rescaling known as whitening which allows for correlation among
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Fig. 12. Left: First 11 out of the 15 elements of one feature vector are depicted but
only the first four are visible due to their different order of magnitude. The depicted
vector assumes the component values: (52,1,127,0.98,0.00413,0.0000829,0.000329,0.00008057
0.00721,0.000516,0.0000977). Right: the feature values which could not have been represented in
the left table are now visible by using a different scale.

the variables considered. From the training set made up of N feature vectors
{f1...fn} we calculate component-wise the mean vector g and the covariance
matrix 3 with respect to the data point of the training set. Let us consider the
eigenvector equation for the symmetric matrix ¥ in matrix notation

A=U"3U (12)

where A is a diagonal matrix whose elements consist of the eigenvalues of X,
while U is a matrix whose columns consist of its eigenvectors and satisfies the
condition UTU = UU" = I. The proper whitening transformation acts on any
input variable x as follow

& =AU (x—p) (13)

The matrix A"2U T is called whitening matriz. In that transformation the data
distribution is whitened by means of its eigenvectors together with the corresponding
eigenvalues. In the new coordinate system the data set has zero mean and unitary
covariance matrix.

4. Stochastic Recognition with HMM’s

Hidden Markov Models 2% are probabilistic finite state machines well-suited in
dealing with the statistical and sequential nature of time-varying input patterns.
They are the basis for a lot of applications especially in the field of speech recogni-

tion 212223 hand-writing recognition 2432° 26,27

, and recognition of gestures
A HMM consists of a finite number of states connected one another by directed
arcs according to a predefined topology. Each arc is associated with one probability

value that 1s called state transition probability. At regular time intervals the model
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undergoes a change of state according to the set of transition probabilities. Also
a change back to the same state is possible. Each state computes the estimation
of the likelihood for a certain input observation vector by means of a probability
density distribution function which can be discrete or continuous. After defining
also an initial state distribution, the HMM can be used as a generator of sequences
of observations or as a model for an observation the sequence is generated by.

There are two concurrent stochastic processes associated with each HMM: a set
of state output processes that models the local stationary character of the observa-
tion at each time step, and the state sequence that models the temporal structure
of the signal being modeled. Because this latter state sequence is not directly ob-
servable the Markov model is called hidden.

In our work, we used as many HMM’s as the number of gestures to be detected.
The training and decoding of the models are based on the posterior probability
P(M|X}) that the feature vector sequence X§ = XX ... X, has been produced
by the model M. In the learning phase, the set of parameters maximizing that
probability are sought for every sequence X associated with the model M. This
strategy is referred to as the mazimum a posteriori criterion. During the recognition
stage, given an observation sequence X% and a fixed set of parameters, the goal is
to find out that model M among many models that maximizes P (M |X}).

Unfortunately, the learning process generally does not consent (Andrea?) to
expressly characterize P(M|X6) but permits the characterization of the probability
P(X}|M) that a given model generates certain feature sequences. Using the Bayes’
rule, one can express P(M|X}) in terms of P(X§|M) as

P(X;|M)P(M)

P(M|X6): P(Xg)

(14)
where P(M) is the prior probability of the model, P(X %) is the prior probability of
the vector sequence, and P(X§|M) is referred to as the likelihood of the data given
the model. Because we suppose each gesture to be the same prior probability, P(M)
is a constant term. In addition since P(X}) can be assumed constant because it
does not depend on the models, the estimation of equation (14) is equivalent to
calculating only the likelihood P(X§|M). In that case, when the training criterion
aims at the maximization of the quantity P(X§|M), it is referred to as mazimum
likelihood criterion. This is exactly the learning strategy we adopt.

5. Hybrid SOM/DHMMSs for Gesture Recognition

5.1. Self-organizing maps for symbol production

The goal of the posture analysis is the extraction of local features along the hand
trajectory, yielding a sequence of time ordered multi-dimensional feature vectors.
The further step is concerned with the quantization of these feature vectors into a
sequence of symbols.
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A Self-Organizing Map (SOM) 22 is used to preserve the topology of the high-
dimensional feature space by mapping the feature vectors onto a two-dimensional
space. Due to the sequential nature underlying each gesture such a topology-
preserving map can be exploited to constitute trajectories where the SOM best-
matching neurons are recorded during the process. A similar approach has been
used by Waldherr 27.

The SOM clusters the unlabeled training feature vectors which lie near one
another in the feature space. During the training phase as well the codebook vector
most sensitive to the actual training vector as those in its (variable) neighborhood
are tuned maintaining a well-balanced set of weight values with respect to the input
density function.

The weight adjustment is carried out using the Euclidean distance between
the actual multi dimensional input vector and the connecting weight vectors, a
time-dependent learning rate, and a neighborhood function that decays like the
Gaussian probability density function when the topological distance between the
best-matching unit and the actual vector increases.

We start the learning process with a large radius covering all the units in order
to prevent the formation of undesired outliers in the clustering due to the limited
training data set. Our SOM has 800 nodes organized in a 40 x 20 grid. The feature
vectors are 15-dimensional and the SOM is trained by decreasing the neighborhood
radius from 6 to 1 and the learning rate from the value 0.9 to 0.

After the clustering process, each neuron of the network corresponds to a cluster
in the input feature space. Proceeding from the self-organizing process we tune the
weight vectors using the unsupervised Learning Vector Quantization (LVQ) method
causing the weights to approach the decision boundaries 5.

In order to utilize the SOM for classification, we divide each gesture of our vo-
cabulary in subgestures or posture classes and we label each of them with a different
symbol (see figure 13 for the hand-waving-right movement). We divide the gestures
of our vocabulary into altogether 32 subgestures (9 for each left- right-waving; 5 for
each go left /right; 4 for stop). For class discrimination purposes we hand-label each
SOM cluster. These labels were assigned to the units according to the subgesture
subdivision as depicted in figure 13 by using the recorded training samples as input.

5.2. Using DHMMs for classification

In subsection 5.1 we assigned each feature vector to a symbol which corresponds
to a codeword in the codebook created by LVQ. The feature vectors of the data
set for training were vector quantized. The need of a vector quantizer to map the
continuous observation vectors into discrete symbols arises from the choice to use
DHMM’s as recognizer.

For the choice of the model topology, there is no theoretically way to rely on.
The choices we made depend on the gesture being modeled. For each movement to
be detected, we create one left-to-right DHMM (figure 14) with as many states as
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N

Fig. 13. Waving-right gesture hand-labeling. That movement is divided in 9 subregions each
covering exactly 20 grad of the two-dimensional plane surface the gesture is projected on. Each
subregion is labeled by one symbol.

the subregions which this gesture is divided in. In such a model, each DHMM state
is associated with a single movement’s subgesture (figure 13).

In the learning phase, the parameters of each DHMM are optimized so as to model
the training symbol sequences from the corresponding gesture. More precisely, the
parameter of each model are estimated with symbol sequences of the according
gesture samples applying the Baum-Welch training algorithm '°. The latter is an
iterative procedure based on the Maximum Likelihood criterion aiming at maximiz-
ing the probability of the samples given the model at hand and can be considered
as a form of the expectation-marimization algorithm 29,

Because we consider a gesture as a sequence of subgestures the recognition pro-
cess consists in comparing a given sequence of symbols with each DHMM. That ges-
ture associated with the model which best matches the observed symbol sequence
is chosen as the recognized movement.

6. Continuous HMMs for Automatic Gesture Recognition

Up to this point, we have considered the case when the observations were char-
acterized as discrete symbols from a finite alphabet. In this situation, we could
use only discrete probability density functions within each model state. The main
problem with this approach is the need to quantize the continuous feature vectors
via codebooks. Because that quantization process might be accompanied by dis-
tortion or loss of information, it could be advantageous to utilize the HMMs with
continuous observation density functions. In this case, these density functions are
some parametric probability distributions or mixtures of them.

The most common parametric distribution used is the mixture of Gaussian den-
sity which can be expressed for a generic state ¢ as
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p(x|state 1) pP(x|state j) p(x|state k)
| = | x Tk
AN AN AN
State | State | State k

Fig. 14. Left-to-right DHMM. This model is called left-to-right or Baskis model because it has
the property that as time increases the state changes proceed from left to right. The dashed arrows
depict the transition probabilities among the states. Here only transitions from a state to the next
one or to itself are allowed. The probability distribution functions assume discrete values.

M
pi(X) = cimN(X, pipn, Bim) (15)
m=1
where M is the number of mixtures (M = 3 in our experiments), X is the vector
being modeled, ¢;y, is the mixture coefficient for the m-th mixture in state 7 and A
is any strictly log-concave or elliptically symmetric density function with covariance
matrix X;,, and mean vector p,,, in state ¢ for the m-th mixture.
With D-dimensional data (here D = 15 is the dimension of the feature vectors)
and using the Gaussian function as parametric probability distribution, the function
N(X, Py Yyq) in equation (15) can be expressed as

(S 2 X g ) TR (X )

(27T)D/2|Eim|1/2

N(X phin, Zim) = (16)
As the dimension of the feature vectors increases, as well the length of the mean
vectors as the size of the covariance matrices becomes greater. But while the increase
in size of the mean vectors is proportional to the one of the observation vector, the
enlargement in size of the covariance matrices is even square proportional to the
vector dimension. Hence, with multi-dimensional observation vectors, the number
of parameters of the mixture of Gaussian is very large and its estimation becomes
computationally expensive. Additionally, with insufficient training data to estimate
some of these parameters will assume more or less arbitrary values.
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To avoid a huge number of parameters and, at the same time, to have represen-
tative models, we approximate the covariance matrices by diagonal matrices, and
we tie it over the whole model. Under that simplification the model parameters can
be estimated faster by using the Baum-Welch learning algorithm ° again.

7. Preliminary Results

To train and test each HMM in both discrete and continuous case, we gathered the
data from four people performing five repetitions of the gesture to be described.
The categories to be recognized are five. Therefore, we take the same number of
left-to-right HMM’s each corresponding to one class.

Table 1. Recognition results using DHMM’s.

% of not | % of false | Recognition
Gesture classified | classified rate in %
patterns patterns
stop 9.2 13.2 77.6
waving right 8.4 111 80.5
waving left 8.7 10.0 81.3
go right 9.6 8.6 81.8
go left 10.2 9.6 80.2

The sequences were captured by a color camera at a frequency of 25 frames per sec-
ond and digitized into 120 X 90 pixel RGB images. Table 1 summarizes the achieved
performance concerning the recognition task by utilizing a recognizer based on
the SOM/DHMM hybrid architecture; Table 2 shows the recognition performance
achieved by using only CHMMs.

Table 2. Recognition results using CHMM’s.

% of not | % of false | Recognition
Gesture classified | classified rate in %
patterns patterns
stop 10.4 10.0 79.6
waving right 7.3 10.3 82.4
waving left 8.8 8.5 82.7
go right 7.4 7.8 84.8
go left 8.1 8.0 83.9

We consider an input as not classified if after feeding it into each HMM either
the difference between the highest and the second highest output is not over an
heuristically determined threshold or if all the outputs are under a given threshold.

Compared with continuous models, discrete distributions normally require less
parameters. This means that DHMM’s have less memory requirements and need
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less training data to achieve good generalization performance. Moreover, discrete
models require shorter recognition and training time since they do not have to calcu-
late any mixture of Gaussian distribution. For discrete models only quantization of
the observation vectors has to be performed while the state probability estimation
is replaced with a look-up table.

From a direct comparison of the recognition rates regarding our problem, we can
see how the CHMM-based system leads to slightly better results than the hybrid
SOM/DHMM-based one. We think that this is mainly due to the continuous intrin-
sic character of the feature vectors. The conversion of them into discrete symbols via
vector quantization can worsen the recognition task. In spite of our experimental
results, we do not state that CHMM’s outperform SOM/DHMM-based recognizers
in general. Due to the limited training data it would be a shaky conclusion, strongly
dependent on the implementation and the few data at hand.

Anyway, the recognition rate of both systems can be improved by using a dis-
criminative training algorithm instead of the Baum-Welch algorithm giving arise to
a poor discriminative power among different models.

8. Conclusions and Outlook to Future Work

Besides the performance concerning posture recognition, the person localization is
the most crucial but absolutely necessary prerequistite for the function of the whole
system. The use of multiple cues and their integration into a selection process via
3D dynamic neural fields led to a satisfying person specific saliency system. Using
a CHUGAI BOYEKI CD 08 video camera with maximum wide angle mode, the
multiscale representation covers a distance from 0.5 to about 2.5 meters. Within
this interval, the localization is very robust against slight rotations (up to 15°),
scene content, and illumination. Furthermore, the integration of the omnidirectional
camera makes it easier for the system to detect a person it its surroundings, which
significantly speeds up the localization process.

So far, both methods proposed for gesture recognition were tested on a small
set of simple gestures and thus have very limited scope. We are currently extending
both systems in order to overcome this limitation. The aim is to design a system that
can work with a larger vocabulary of gestures, and remain user independent. The
performances of the two architectures depend strongly on the number of training
pattern and also how well that patterns are representative for each class. It means
that the training patterns have to cover the maximum test pattern range as possible.

On the one hand HMM’s provide a good representation of the sequential nature
of the human movements, on the other they suffer from several limitations and
drawbacks because of the assumptions exploited for the implementation of their
learning and decoding algorithms 23. We refer, for example, to the strong statistical
assumption that the probability density functions associated with the states can be
described by a fixed parametric function. Again, it is supposed every state change
to depend only on the current and previous state and not on all the predecessor
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ones (first-order HMM). Also the likelihood of an observation vector is assumed
not to depend on the previous observations but only on the current state (context-
independent assumption).

In addition, HMMs consider the sequence of feature vectors as a piecewise sta-
tionary process. Hence, even though gesticulating is a non-stationary process, we
have to assume that over a short period of time the statistics of the movement un-
derlying the gesture do not differ from sample to sample neglecting the correlations
between successive feature vectors (statistical time-independence of the observation
vectors).

HMM’s trained with the non-discriminative Baum-Welch algorithm show also
poor discriminative capability among different models. Namely, by maximizing the
maximum likelithood instead of the maximum a posteriori, the HMMs are trained
only to generate high probabilities for its own class and not to discriminate against
models.

Due to their inherently discriminant nature and lack of distributional assump-
tions we are currently using and testing a system with neural networks to estimate
the probability for HMM states.

The overall system has to be understood as work in progress, undergoing con-
tinuous changes. Currently, the major constraints are that the gesture recognition
process does not work in real-time, whereas the localization process does, and that
the posture segmentation uses only skin color which causes problems when other
skin-colored objects are in the scene. The latter problem is currently to be elim-
inated by additionally using motion information, resulting in a search for moving
skin color.

In the long run, we want to develop a continuous action-perception cycle between
the robot and i1ts human user in service system domains, where the architecture

described here could be one building block.
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