Robotics and Autonomous Systems 59 (2011) 296-309

journal homepage: www.elsevier.com/locate/robot

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

Attention-driven monocular scene reconstruction for obstacle detection, robot

navigation and map building”
E. Einhorn®P*, Ch. Schréter?, H.M. Gross?

2 Neuroinformatics and Cognitive Robotics Lab, [lmenau University of Technology, Germany

b MetraLabs GmbH, Germany

ARTICLE INFO ABSTRACT

Article history:
Available online 5 March 2011

Keywords:
Shape-from-motion
Visual obstacle detection
Monocular vision
Attention

In this paper, we present a feature-based approach for monocular scene reconstruction based on Extended
Kalman Filters (EKF). Our method processes a sequence of images taken by a single camera mounted
frontally on a mobile robot. Using a combination of various techniques, we are able to produce a precise
reconstruction that is free from outliers and can therefore be used for reliable obstacle detection and 3D
map building. Furthermore, we present an attention-driven method that focuses the feature selection
to image areas where the obstacle situation is unclear and where a more detailed scene reconstruction
is necessary. In extensive real-world field tests we show that the presented approach is able to detect

EKF obstacles that are not seen by other sensors, such as laser range finders. Furthermore, we show that
visual obstacle detection combined with a laser range finder can increase the detection rate of obstacles
considerably, allowing the autonomous use of mobile robots in complex public and home environments.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction and related work

For nearly ten years we have been involved in the development
of an interactive mobile shopping assistant for everyday use
in public environments, such as shopping centers or home
improvement stores. Such a shopping companion autonomously
contacts potential customers, intuitively interacts with them, and
adequately offers its services, including autonomously guiding
customers to the locations of desired goods [1]. As part of long-
term field trials, 9 shopping robots have been in daily use in
three home improvement stores in Germany since March 2008.
Currently, we are developing an interactive assistant that operates
in home environments as companion for elderly people with mild
cognitive impairments (MCI) living at home alone. Both, public
environments like home improvement stores, as well as home
environments like kitchens or living rooms, contain a large variety
of different obstacles that must be detected by an autonomous
robot.

For obstacle detection the robots are equipped with an array
of 24 sonar sensors at the bottom and a laser range finder SICK
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S300 mounted in front direction at a height of 0.35 m as shown
in Fig. 1. Using these sensors, most of the obstacles can be reliably
detected. However, during the field trials it became apparent that
there remain certain obstacles which are very difficult to recognize.

The main extent of some obstacles like shopping carts or
tables are mainly located above the plane that is covered by
the laser range finder. Also, small obstacles like flat pallets are
difficult to perceive since they lie below the laser range finder
and can hardly be seen by the sonar sensors due to the diffuse
characteristics and low precision of the latter. Therefore, it turned
out to be necessary to use additional methods for robust and
reliable obstacle detection. Vision-based approaches are suitable
for this purpose since they provide a large field of view and supply
a large amount of information about the structure of the local
surroundings.

Recently, time-of-flight cameras have been used successfully
for obstacle detection [2]. Similar to laser range finders, these
cameras emit short light pulses and measure the time taken until
the reflected light reaches the camera again. Due to their high
costs these cameras may be suitable for robot prototypes but at
present are no option for a series product that we are planning to
develop. Another alternative is to use stereo vision as described
in [3]. However, a stereo camera for detecting distant obstacles
requires a large base distance. Compared to a single camera it is
therefore less compact and difficult to protect from damage and
vandalism.

In [4] a monocular approach for depth estimation and obstacle
detection is presented. Information about the scene’s depth
is drawn from the scaling factor of image regions, which is
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determined using region tracking. While this approach may work
well in outdoor scenes where the objects near the focus of
expansion are separated from the background by large depth
discontinuities, it will fail in cluttered indoor environments like
home improvement stores. In [5] we propose an early version
of a feature-based approach for monocular scene reconstruction.
This shape-from-motion approach uses Extended Kalman Filters
(EKF) to reconstruct the 3D position of the image features in real-
time in order to identify potential obstacles in the reconstructed
scene. Davison et al. [6,7] use a similar approach and have done a
lot of research in this area. They propose a full covariance SLAM
algorithm for recovering the 3D trajectory of a monocular camera.
Both the camera position and the 3D positions of tracked image
features or landmarks are estimated by a single EKF. Another visual
SLAM approach was developed by Eade and Drummond [8]. Their
graph-based algorithm partitions the landmark observations into
nodes of a graph to minimize statistical inconsistency in the filter
estimates [9].

However, Eade and Drummond’s “Visual SLAM” as well as
Davison’s “MonoSLAM” are both mainly focusing on the estimation
of the camera’s motion, while a precise reconstruction of the
scenery is less important. As we want to use the reconstructed
scene for obstacle detection and local map building, our priorities
are vice versa. We are primarily interested in a precise and dense
reconstruction of the scene and do not focus on the correct camera
movement, since the distance of the objects relative to the camera
and the robot respectively is sufficient for obstacle avoidance.
Actually, we are using the robot’s odometry to obtain information
on the camera’s movement. In contrast to Eade et al. and Davison
et al. who use a hand-held camera which generally is moved
sidewards in their examples, our camera is mounted in front of the
mobile robot and, therefore, moves along its optical axis (see Fig. 1).
Compared to lateral motion, this forward motion leads to higher
uncertainties in the depth estimates due to a smaller parallax as
proven in a sensitivity analysis by Matthies et al. [10]. This makes
the monocular reconstruction more difficult and the estimation
must be applied over a longer base distance.

The approach presented in [11,12] is most related to our work.
The authors also use a single camera that is oriented towards
the robot’s movement direction in order to obtain information
used for obstacle detection. For that purpose, features are tracked
in two consecutive frames. The optical flow vectors formed by
the corresponding features are used to compute time-to-contact
values that resemble the estimated time until a collision occurs
and are an implicit measure for the obstacle distances. However,
the approach does not use a single closed-form solution to
handle the problem. Instead, three different types of movement
like constant motion, accelerated lateral motion and rotational
motion are distinguished using the robot’s odometry and are
handled separately. Therefore, the algorithm may fail if the
robot’s movement is not well represented by one of these three
motion models. Additionally, the time-to-contact measurements
are evaluated using two frames of the image sequence only,
without taking into account information that was inferred in
previous iterations. Although the resulting noisy and oscillating
measurements have been reduced in [12], accumulating all
information in a probabilistic approach could lead to more stable
results.

Most of the aforementioned feature-based approaches apply
interest operators like the Shi-Tomasi corner detector or the Harris
corner detector for feature selection. These detectors provide
a bottom-up feature selection scheme where the position and
number of the chosen features depend on the content of the input
images. This results in a risk of missing obstacles. Taking top-down
knowledge into account could lead to better results by choosing
features in image regions that result in the largest information gain
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Fig. 1. The robot platform SCITOS A5, a joint development of MetraLabs GmbH and
the Neuroinformatics and Cognitive Robotics Lab, that is used for our experiments
and field trials is equipped with sonar sensors, a laser range finder and a frontal CCD
camera that is tilted towards the ground.

for the environment knowledge instead of choosing the features
based on the information content of the images only.

In [13,14] such a top-down approach is presented, not for
feature selection, but for feature tracking using an improved
active search strategy. In [15] the authors present a visual SLAM
approach for hand-held cameras that instructs the user to perform
position and orientation changes of the camera to optimize the
localization. The actions and movements are chosen so as to
maximize the mutual information gain between posterior states
and measurements.

Another active vision approach is presented by Frintrop and
Jensfelt [16], where the camera is controlled by an active gaze
control module according to three behaviors for redetection of
known features, tracking of features and detection of new features
in unknown areas. Using a predesigned decision tree the system
switches between these behaviors depending on the number and
expected location of known features.

In summary, the above visual SLAM algorithms use the active
vision approach basically for controlling the camera’s viewing
direction in a way to improve the camera’s position estimates and
to enhance loop closings.

One main contribution of this paper is a monocular feature-
based approach for scene reconstruction that combines a number
of different techniques that are known from research areas like
Visual SLAM or stereo vision. A second important contribution is
an attention-driven approach for feature selection. In contrast to
some publications mentioned above, we are using a fixed camera
with a wide-angle lens whose viewing direction cannot be altered
dynamically. However, instead of moving the whole camera we
can choose particular image regions that our algorithm pays more
attention to. By combining bottom-up and top-down information
we select features in those image regions that provide the highest
information gain for our obstacle detection algorithm. By choosing
new features at the right places we can detect more obstacles,
allowing us to reduce the total number of reconstructed features
without increasing the risk of missing obstacles. This results in an
improved performance of the whole obstacle detection algorithm.

In the next section, we describe our approach for monocular
scene reconstruction in detail. In Section 3 we present methods
that transform the reconstructed information into different three-
dimensional representations of the robot’s environment like
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occupancy voxel maps and textured triangle meshes. These
representations are finally used for navigational tasks like obstacle
avoidance. Additionally, the created voxel maps provide top-
down information for our novel attention-driven feature selection
scheme that is presented in Section 4. Finally, we present
experimental results and conclude with an outlook for future work.

2. Monocular scene reconstruction

As stated before, we use a single calibrated camera that
is mounted in front of the robot (see Fig. 1). During the
robot’s locomotion, the camera captures a sequence of images
(-vvyle—q, Ity Ie4q, .. .) that are rectified immediately according
to the intrinsic camera parameters in order to correct the lens
distortions. Without loss of generality we notate the latest image
that was captured at the current moment with Iy, while I; with
i > 0 denotes images, that were previously recorded. Using
the robot’s odometry data, the corresponding camera position,
expressed by its projection matrix P; = KR;[I| —¢;], can be
computed for each image I;, containing the orientation R;, the
position ¢;, and the intrinsic calibration matrix K of the camera
(see [17] for details). Both the camera’s position and its orientation
are expressed with respect to a global reference coordinate frame.

This preprocessing step yields different two-dimensional views
of a scene including the projection matrix of the corresponding
ideal pinhole camera. For scene reconstruction we use a feature
based approach. Distinctive image points (image features) are
detected in the preprocessed input images and tracked over the
acquired image sequence while the 3D positions of these features
are estimated using EKFs. Similar to the camera’s pose, these
positions are computed with respect to the same global reference
coordinate frame.

The camera pose obtained using the odometry is used for
feature tracking only. For most of the other processing steps,
we use a corrected camera pose in order to achieve a better
accuracy. Therefore, we perform an odometry correction step
that uses the tracked features to correct systematic and non-
systematic odometry errors. We will get back to this with some
more information in Section 2.6. The complete architecture of our
approach is depicted in Fig. 2.

2.1. Feature selection

For feature detection, we are currently using the Shi-Tomasi
corner detector [ 18]. Previously, we applied the “FAST” high-speed
corner detector [19], which in general achieves similar results
while requiring less computation time. However, it occasionally
produced inferior detections during our field tests and selected
image points that were difficult to track and hence resulted in
wrong estimations.

In contrast to other authors and our previous publications, our
current implementation does not select the features uniformly
over the image. Instead, we use an attention-driven selection
scheme that focuses the feature selection to image areas where
the highest information gain for obstacle detection and mapping
can be achieved by selecting new features. More details on this
attention-driven feature selection follow in Section 4.

We also experimented with SIFT features [20] for feature
selection and tracking. However, SIFT still requires too much
computation time and does not allow one to process as many
frames per second as we require. Additionally, using the SIFT
descriptor for tracking did not improve the results of the scene
reconstruction compared to our tracking approach.

2.2. State representation

Davison et al. [6,7] use a single EKF for full covariance SLAM,
i.e. for recovering the camera’s pose as well as the 3D positions of
the tracked image features simultaneously. In this algorithm the

inversion of the innovation covariance matrix as part of the EKF
update will dominate the overall runtime, resulting in a complexity
of 0(n®), where n denotes the number of features. Currently, such
an approach is able to handle only up to 100 features in real-time.

In [21] the computation of pose and structure is split into
two steps. In the first step, a single EKF is applied to recover
the camera’s position using a fixed number of reconstructed
features. During the second step, n EKFs are used to recover the
3D positions of n features, where one EKF is used per feature.
Both steps are repeated in an interleaved way. Obviously, this
is a coarse approximation of the full covariance SLAM since
correlations between the different features are not taken into
account. However, this approximation results in a heavy reduction
of the computational complexity to 0(m®) + 0(n). Here O(m?3) —
the complexity of the pose estimation during the first step — is
constant, since the number m of features that are used in the first
step remains constant, too. Thus, the overall complexity for large
feature counts n is O(n). Since we require a dense reconstruction
of the scene for obstacle detection, we have to cope with a large
number of features, which cannot be handled by a full covariance
SLAM approach in real-time. Therefore, we also use one EKF per
feature to recover the structure of the scene similar to [21]. Each
feature j is associated with a state vector y that represents the
3D position of the feature and a corresponding covariance matrix
3J. For better readability we drop the superscripts for different
features in the following.

Different parameterizations for the 3D positions of the features
have been proposed in the literature. The most compact represen-
tation is the XYZ-representation where the position of each feature
is parameterized by its Euclidean coordinates in 3D space. Davison
et al. [7] have shown that this representation has several disadvan-
tages since the position uncertainties for distant features are not
well represented by a Gaussian distribution. Instead, they propose
aninverse depth representation, where the 3D position of each fea-
ture j can be described by the following vector:

y=(c0,0,1)", (1)

where ¢ € R3 is the optical center of the camera from which the
feature was first observed, and 6, ¢ is the azimuth and elevation of
the unit ray that points from ¢ to the 3D point of the feature. This
ray is given by its direction vector:

m (0, ¢) = (cos @ cos @, cosf sing, —sinf) " . (2)

The last element X of the state vector in equation Eq. (1) denotes
the inverse of the features depth d = A ~! along the ray.

Parsley and Julier [22] have shown that this inverse depth
A might become negative during the EKF update and proposed
an alternative negative logarithmic parameterization where the
inverse depth A is replaced by | = — log(d). In our experiments,
this parameterization resulted in an inferior convergence of the
EKFs. Therefore, we keep using the inverse depth parameterization
here.

2.3. Feature state initialization

After new features were selected their 3D positions, i.e. their
corresponding EKF states, must be initialized using a suitable
a priori estimate. For this purpose various methods have been
proposed in the related literature. A common way is to assume a
constant depth of the features [21] and to compute the features’ 3D
positions along the ray that is defined by the camera’s position and
the image position of the feature (see Eq. (3)). This may be valid if
the extent of the object is limited and its approximate distance to
the camera is known. However, if the camera is moving through
a large indoor or outdoor environment, this kind of initialization
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Fig. 2. The architecture of our approach. The black arrows show the main information flow between the components that are described in this paper. Features are selected
in the input images using an attention-driven approach. After computing a reliable initial estimate using a classic depth estimation approach the features join the main scene
reconstruction loop, where they are tracked in the captured image sequence while reconstructing their 3D positions using EKFs. The resulting point cloud is then filtered
before building a voxel map that is used for navigation tasks and that provides information for the attention-driven feature selection.

yields large initial errors, slow convergence and inferior position
estimates.

Another method for initializing the features is to choose their
depths in a way that the height of the initial feature position is
zero, i.e. the features are initialized on the ground plane. This
kind of initialization can be used for tilted cameras. It has certain
advantages when used for obstacle detection since false positive
detections are reduced. Using this method, we achieved good
results for obstacle detection, although it leads to high initial model
errors, since many points are initialized at too large depths.

A different method is to choose the depth of new features
according to the reconstructed 3D position of older features in
the image neighborhood, whose positions have already been
estimated during previous iterations.

A more sophisticated approach was presented in [23] where
new features are first estimated using a particle filter (PF) until
they join the EKF estimation framework. Although the initialization
is less important for the convergence of the EKFs if an inverse
depth parameterization is used [7], it is essential for an approach
used for obstacle detection to obtain a reliable estimate as
early as possible in the estimation process. Therefore, a delayed
feature initialization using particle filters is not applicable for our
purposes.

Instead, we have proposed another method in [5] which uses a
classic multi-baseline stereo approach for initializing new features.
The approach uses the images that were captured before the
features were first detected and therefore can immediately obtain
valid depth estimates for newly detected features. Hence, such
a hybrid approach can react quickly on obstacles that suddenly
appear in front of the robot.

The approach is inspired by the work of Bunschoten and
Krose [24], where a multi-baseline depth estimation algorithm for
panoramic image data is presented. Based on their work we are
using a similar correlation-based algorithm for pinhole cameras.

Let Xo be the image position of a newly detected feature in
the image I, (see Fig. 3), then its corresponding 3D scene point
y must be located on the back-projected ray in homogeneous
coordinates':

¥ (1) = Py%o + A&, (3)

1 For better differentiation we notate homogeneous vectors as X and Euclidean
vectors as X, where X = (X, 1)T -s,s €R.

Fig. 3. Epipolar geometry of two cameras Py and P;. The 3D point y is located on
the ray defined by the camera’s center ¢y and the image point X,. The corresponding
image point x; can be found along the epipolar line 1;.

where Py is the pseudoinverse of the camera projection matrix
and ¢y is the camera’s center in image Iy. If the 3D scene point y is
visible in a previously recorded image I; from a different position,
it must be located on the projection of the ray on the image plane
of image I;:

Xi (\) = PP Xo + APiCo. (4)

This equation is the parametric description of the epipolar line
that Xy induces in image I;. In order to estimate the depth of the
image point Xg, we subsequently move along the epipolar line by
varying the inverse depth parameter A. For each candidate x; the
similarity with pixel xq is evaluated. As measure of correlation
we use the sum of absolute differences (SAD) between windows
centered at X; and Xq. As in [24] and [25] we accumulate the SAD
values obtained for different images I; for the same Xo and A.
Eventually, the most likely depth value for the given pixel X, can
be determined immediately by means of the parameter A* which
yields the minimal accumulated SAD.

This inverse depth value A* is used as reliable initial inverse
depth estimate to initialize the EKF of the newly detected feature.
Additionally, the variance of the SAD values near the minimum A*
is computed and used for initializing the error covariance matrix ¥
of the feature’s EKF. For computing the variance, the SAD values for
each computed A around the minimum A* are normalized so that
their sum equals 1. Hence each SAD value (respectively its inverse)
can be treated as a probability p(1). The variance o2 is then defined
by:

o2 =) (A= 1xp().

A

(5)
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For the described multi-baseline depth estimation the approach
automatically chooses different previously recorded images where
the corresponding camera positions have a base distance of at
least 0.1 m to each other. Since the buffer for storing the recorded
images has a fixed size, the number of used images depends on the
frame rate and the robot’s speed. It typically varies between 3-5
images.

2.4. Feature tracking

While the robot is moving, previously selected image features
are tracked in subsequent frames. In [5] we used a feature matching
approach that finds correspondences between homologous fea-
tures in subsequent frames based on a bipartite graph matching.
Such an approach is suitable if features are extracted in each frame
independently as it is done with SIFT or SURF features. However,
with less complex feature descriptors like image patches it has sev-
eral shortcomings and tracking over long image sequences is less
stable.

Therefore, we now use a guided active search for tracking the
features through the image sequence. As descriptor we utilize a
16 x 16 pixel image patch around each feature. As measure of
similarity we again use the sum of absolute differences (SAD).
This simple tracking approach has a low computation time
and achieves good tracking results for image sequences of a
moving camera. Descriptors that are invariant to rotation and
scale do not improve the tracking results significantly since scale
changes between consecutive frames of the image sequence are
small.

For tracking, the image position X~ of each feature is predicted
by projecting the current estimate of its 3D position y back onto the
image plane using X~ = h (y, P) with the measurement function:

hy.P) =P (xé + <“‘ @ ‘/’))) . (6)

As stated before, the camera’s projection matrix in the above
equation is computed using the robot’s odometry that may contain
errors. Hence, the predicted image position might be erroneous too
and the corresponding image point must be searched in the current
image in a search region around the predicted image position x™.
This is done by computing the SAD with the image patch that is
stored as a descriptor of the feature. The image point that yields the
lowest SAD is chosen. To achieve sub-pixel precision, we fit a 2D
parabola into the computed SAD error surface around the chosen
image point and use the coordinates of the apex as position of the
corresponding image point. The search is restricted to an elliptical
region that is defined by projecting the error covariance X of the
feature’s 3D position estimate to the image plane. The covariance
matrix of this elliptical region is computed within the EKF and is
known as the innovation covariance:

S=HXH' +R, (7)

where H denotes the Jacobian of the measurement function in
equation Eq. (6) and R is the 2 x 2 measurement covariance
matrix that is set to R = 5I in our implementation. The
measurement covariance matrix also represents the uncertainty in
the camera’s position, since an error in the camera’s pose results
in an erroneous projection on the image plane and hence an
erroneous measurement.

One major problem of patch-based approaches for feature
matching are occlusions near object edges, where the patch
covers two different objects with large depth discontinuities (see
Fig. 4(a)). During the matching, this leads to a decision conflict
since the part of the patch that belongs to the background object
moves in a different way than the foreground object. As a result,

SSE register (128 bit)
pm————— y—————— - [ Siatimpi oty vy i
11 1 a1 / [y 12
1 1 1 | 1 : |
1 1 1 | T - |
1 1 3 1
1 ] 1
1 [ 1
1 [ 1 . |
[
1 i
| |
I |
1
1
1
1
B

MMX register (64 bit)

a

Fig. 4. (a) The correlation window is split into 5 sub-windows and allows better
tracking along object boundaries. The black square indicates the center pixel. (b)
For computing the SAD of each sub-window the data can be stored efficiently in
SSE/MMX registers.

the reconstructed 3D points along object borders are blurred in
different depths. For stereo matching, various adaptive window
approaches have been proposed to tackle this problem.

Here, we apply a variation of the multiple window approach
presented in [26,27]. Instead of using a single 16 x 16 pixel
correlation window, the window is split into five sub-windows as
shown in Fig. 4. The SADs are computed for each sub-window C;.
The final correlation value C is formed by adding the correlation
value C, of the central sub-window and the values of the two best
surrounding correlation windows C, and C;:

C=GC+GC +C, b = argmin G, s = argmin G;. (8)

i>0 i>0,ib

This measure of similarity performs better near object bound-
aries since at least two sub-windows are located on a single object
in most cases. Depending on the dominant image structure, the
correspondence is either attached to the foreground or the back-
ground object, reducing the blur along the reconstructed object
borders. Using the SSE2 processor instruction PSADBW, the cor-
relation values can be computed efficiently. This instruction si-
multaneously computes the SAD for 16 consecutive pixels within
one 128 bit SSE register. In doing so, the SADs for the first 8 pix-
els that belong to the left sub-window are summed separately
from the back most pixels that belong to the right sub-window.
Therefore, splitting the window into 5 sub-windows results in very
little computational overhead compared to using a single corre-
lation window. This performance improvement is a major reason
for choosing the SAD as similarity measure. Besides the correlation
value, we compute an occlusion score by adding the correlation
values of the two worst matching surrounding sub-windows:

Cocc = Cp + Cs, b = argmax G, s = argmax G;. (9)

>0 i>0,ib
Both the correlation value C and the occlusion score Cy are
normalized by the number of pixels in the used sub-windows.

2.5. Descriptor update

Davison et al. [7] also use the image patch around the feature
as a descriptor. While they capture this descriptor only once
when the feature is first observed, we used a contrary philosophy
in [5], where we update the descriptor every time the feature is
tracked in a new image. Both variants have pros and cons. If the
descriptor is never adapted, the feature cannot be tracked over long
distances since the appearance changes too much due to affine
and perspective deformations, especially when using a forward
moving camera or robot. If, on the other hand, the descriptor is
updated with every frame, tracking errors might be accumulated
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over several frames, and the descriptor could move along the
edges of object boundaries and would not represent a single fixed
feature. This usually occurs near occlusions and leads to incorrect
estimates.

Therefore, we use the aforementioned occlusion score Cycc
to determine whether updating the descriptor is reasonable or
not. If the normalized occlusion score C,. exceeds a certain
threshold the descriptor remains unchanged, otherwise it is
replaced by the corresponding patch in the current image. Using
this technique, most features can be tracked over long distances
while the projective deformations are compensated by permanent
descriptor updates. Feature descriptors near occlusions are not
updated to allow stable tracking along object boundaries.

2.6. Odometry correction

As stated before, we use the robot’s odometry to retrieve the
position of the camera for each image. However, due to latencies
in transmitting the image data from the camera to the memory
the time when the images were captured cannot be determined
precisely. Depending upon the current CPU usage and load on the
main bus, the delay may vary between 30 and 50 ms. Therefore,
the odometry data cannot be assigned exactly to an image. These
inaccuracies constitute a negative impact, especially if the angular
velocity of the robot is changing rapidly. Additional errors are
caused by the joggle of the camera when driving over a bumpy
floor.

To correct these inaccuracies, we tried to estimate the camera’s
position using different methods: In addition to the EKFs of the
features’ positions, we used another EKF in an interleaved way
similar to [21]. Alternatively, we applied a Gauss-Newton method
to estimate the orientation of the camera by minimizing the back-
projection error. Both, the EKF and the Gauss-Newton method
were able to recover the camera’s pose or orientation respectively
but did not achieve a higher precision than SCITOS’s odometry,
which already has a good accuracy. As an alternative we tried
to use a particle filter (PF) for estimating the camera pose. First
the particles are updated using a motion model. Then we choose
a constant number of m = 15 features that were tracked
in the current image. Thereby, features whose 3D positions are
estimated with sufficient precision are chosen in a way to cover the
image uniformly. The importance weight of each particle k is then
computed by adding the squared Mahalanobis distances between
the projected 3D positions x; ® _ h(y;, Py) of the selected features
and their tracked image position x; with respect to the innovation
covariance S; from Eq. (7):

wy = — log (f (x;<’<> - xi)T 5! <:¢”‘) - x,-)> : (10)

i=0
where Py is the projection matrix computed from the camera’s
pose that is estimated by the k-th particle.

This PF achieves better results than the Gauss-Newton method
and the EKF for pose estimation. We assume that this is a result of
the shape of the error function that is minimized by both methods.
Although the error function is smooth in large scale, it is bumpy
near the minimum due to slightly erroneous image measurements
making it difficult to find the proper minimum for an iterative
method. However, this needs to be further investigated.

2.7. Measurement update

After the features are tracked and the camera’s pose is refined,
the 3D positions of the features are updated using the common
EKF update equations leading to a more precise reconstruction of
the scenery. This step is straightforward and is described in [7,5] in
more detail.

3. Obstacle detection and 3D map-building

For obstacle detection, we perform the described monocular
scene reconstruction for 200-300 salient features of the scene
simultaneously. Before the reconstructed features are used to build
a representation of the environment, they have to undergo some
post-processing where unreliable estimates are removed. From
all features that were tracked in the current frame, we only use
those that meet the following two criteria: First of all, the variance
of the estimated inverse depth must be smaller than a threshold
of 0.005 (i.e. a standard derivation of ~0.07 m) to ensure the
usage of reliable estimates only. The variance is taken from the
error covariance matrix X; that is estimated by the EKFs. Besides,
the estimated distance to the camera must be smaller than 3 m.
This condition removes most virtual features that arise where the
boundaries of foreground and background objects intersect in the
image. These features do not correspond to a single 3D point in the
scene and cannot be estimated properly.

The features that pass the above filters are used to build a
three-dimensional model of the environment that can be used for
subsequent navigational tasks. Depending on the task we use two
different models. For obstacle avoidance and local path planing we
use a volumetric model that is built in realtime. Since our main focus
is on these two areas this volumetric model is most important for
our purposes. However, additionally a surface model can be built
offline after all the data has been processed and all 3D points have
been reconstructed.

3.1. Volumetric voxel-based model

For building the volumetric model we partition the robot’s
surrounding three-dimensional volume V = {v;} into disjoint
cube-shaped 3D cells (voxels) v;. Similar to 2D occupancy grid
maps each voxel v; is associated with an occupancy value p(v;)
which specifies the probability of the volume covered by the
voxel being occupied by an obstacle. The voxel map is modeled
as a Markov Random Field (MRF) of order 0, where the state of
each individual voxel can be estimated as an independent random
variable.

At the beginning all voxels are initialized with a probability
of 0.5 to indicate that nothing is known about the robot’s
environment. After a new frame I, ; has been processed, the voxel
map is updated using the estimated features in a similar way
as laser and sonar range scans are inserted into a 2D occupancy
grid map. The estimated 3D position X; of each feature, its error
covariance matrix X; and the current camera’s projection matrix
P, are used to form a measurement

t+1
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For each measurement zj[[H] the new occupancy probability
p(vi[“rl]) of each voxel v; can be updated recursively from its
previous value p(vi[”) using Bayes rule [28] as follows (for better

readability we drop the superscripts of v/ and zj[t“] on the right
side):

1
p(vi) p(vilz) ] (1)
1—pQ) 1—pvilz)

where p(vi|z;) denotes the inverse sensor model, which we will
describe in the following. Each measurement z; = (x;, X, P)
is considered to be a range measurement along the viewing ray
r(P, x;) that is defined by the position of the camera’s center
taken from the camera’s projection matrix P and the estimated
3D position x; of the feature. The features position is estimated
during the scene reconstruction in terms of a trivariate normal

p(v,-[t+ﬂ|vi[t],zj“+”) =1- |:1 +



Fig. 5. Each feature x; is inserted into the voxel map by updating the voxels along
the ray r(P, x;) according to an inverse sensor model by taking the error covariance
matrix P of the reconstructed feature into account.
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Fig. 6. Occupancy probabilities for an ideal sensor and our Gaussian sensor model.

probability distribution that is defined by the mean value x; and the
corresponding covariance matrix X;. As seen in Fig. 5 the position
uncertainty of a reconstructed point is larger in the depth direction,
i.e. along the ray, while the uncertainty orthogonal to the ray is
minor and smaller than the width of a voxel. Therefore, it is a
sufficiently good approximation to update only the voxels along
the ray when inserting the measurement into the voxel map.

This allows us to apply a one-dimensional sensor model
where we take the marginal probability of the trivariate normal
distribution along the ray into account. On this ray s denotes the
distance of the reconstructed point X; to the camera which is
located at its origin. Let us first assume that our measurement
is free from errors. Then we can update the voxels along the ray
according to the ideal sensor model, where the occupancy value for
the voxel that contains the estimated point X; is set to poec = 1.0
since it is occupied by the surface of an object where the feature is
located on. The occupancy values of voxels that are located on the
ray in the line-of-sight between the camera and the estimated 3D
point are set to pgee = 0.0, since these voxels are free — otherwise
the feature had not been visible to the camera. The state of voxels
that lie ‘behind’ the estimated feature position is unknown since
they cannot be observed. The characteristic of this ideal sensor
model pigear (vilZj) is shown in Fig. 6 and can be described formally
as follows:

Diree Ui <
pideal(vi|zj) = yDocc Vi=S=V; (12)
0.5 otherwise

where v; and v; denote the starting and end position of the area that
is covered by the voxel v; along the ray r (P, X;), while s denotes the
position of the reconstructed point X; along the same ray.

However, in practice the positions of the features are error-
prone and given as probability distributions as stated before.
Therefore, we apply an inverse sensor model that takes the
Gaussian error distribution into account. While most researchers
use an approximated sensor model, we derived our inverse model
analytically. Using Kolmogorov’s theorem [28] one can verify
that the real sensor model can be obtained by convoluting the
above ideal sensor model with a Gaussian (0, o2). Taking the
discretization of the voxels into account, the real sensor model can
be described by:

Preal(VilZ) = Pidear(Vils) * N (0, %)

= F(ii5,0%) — 2F (5,0%) (13)
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Fig. 7. A 3D voxel map that was created while driving through a test environment.
Each place was only visited once. The colors of the voxels indicate their heights
(green: <0.10 m, yellow-red: 0.10 m-1.15 m). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

whereF (x, u, 02) = [*_ N (1, 0'?) is the cumulative normal dis-

tribution. The variance o2 is taken from the error covariance ma-
trix ¥; and expresses the position uncertainty of the reconstructed
point in depth direction.

The resulting voxel representation (see Fig. 7) that is built
using the above update rules can finally be used for path planning
and obstacle avoidance. However, most of the existing navigation
algorithms still operate on 2D occupancy grid maps. Therefore,
the 3D voxel representation can be transformed into such a 2D
occupancy grid map by choosing the maximal occupancy value of
all voxels located in the column above each grid cell.

3.2. Textured surface model

Beside obstacle detection we also use our approach for scene
reconstruction to build 3D maps consisting of boundary surfaces
with associated textures. Such 3D maps can e.g. be used for visual
robot localization using appearance based techniques. Using the
textured map virtual views of the environment can be computed.
By comparing these virtual views with its actual camera image the
robot can estimate its location e.g. using particle filters.

For building a 3D surface model we use an approach similar
to the algorithm presented in [29], where a modification of
Kohonen’s two dimensional self-organizing feature map (SOFM)
is used to reconstruct the 3D surfaces of a noisy point cloud. The
reconstructed 3D points are assumed to be uniformly distributed
over the objects’ surfaces and are used as training input for the
SOFM. If each 3D point of the training input is chosen randomly,
the SOFM will unfold along the surface of the scene.

In contrast to [29], we use a different method for initializing
the SOFM to ensure a fast and correct convergence. We use the
voxel representation that was described in the previous section to
obtain the initial position of the SOFM’s nodes and its structure.
Each voxel is marked if it contains at least one reconstructed 3D
point. Afterwards, the eight corners of each marked voxel are
added as neurons to the SOFM. Additionally, the four neurons
that belong to the same face of a marked voxel are connected by
edges if the neighboring voxel, that is adjacent to that face, is not
marked. This simple method produces a coarse surface that covers
all reconstructed points as shown in Fig. 8(b).

After the SOFM is trained as described in [29], the triangulation
of the reconstructed surface can be obtained immediately by
means of the SOFM’s topology. Finally, a texture is mapped to
each triangle. For each triangle its texture is obtained from that
image of the input sequence where the area of the back-projected
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(b) initialization of the SOFM.
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(d) textured scene.

Fig. 8. Different steps for creating a textured 3D map. Based on the reconstructed point cloud (a) a SOFM is initialized (b). In (c) the reconstructed surface is shown after
training the SOFM for 5000 epochs. The lower right image shows the final texture-mapped scene (d).

triangle onto the image plane is maximized. An example of the final
texture-mapped scene is shown in Fig. 8(d).

4. Attention-driven feature selection

As stated before, most approaches select their features uni-
formly in the whole image using feature detectors. These detectors
choose the strongest features in the input images, i.e. pixels that
yield the strongest response of a certain interest operator. There-
fore, the positions of the selected features depend on the image
content only. In this section we use a more biologically inspired
attention-driven approach that chooses new features in image ar-
eas that are most relevant for obstacle detection and for preventing
a collision. This procedure is similar to humans and animals who
usually turn their gaze to areas where the obstacle situations are
unclear in order to use monocular and stereo cues that help them
to ascertain if they can move on safely. Especially close obstacles
are watched carefully to observe their precise position and to avoid
a potential collision.

In order to achieve the desired behavior, our approach first
computes an attention map that has the same dimensions as each
image of the captured sequence. For all pixels X' € Iy of the input
image Iy the attention map A = {a(x')|x’ € Iy} contains values
a(x’) € R which indicate the importance of selecting new features
in a certain region of the input image.

The actual feature selection is performed by a standard feature
detector like the Shi-Tomasi detector in a region of interest R C Iy
which is a subset of the input image. Since most standard feature
detectors rely on the rectangular shape of the input images we
use a rectangular region of interest R with a fixed size. In our
experiments the size of Ris set 3-4 times smaller than the complete
image. Applying the feature detector in the region of interest
makes a big difference compared to detecting features in the whole
image, as the detector will select the strongest features in a local
image region only. These features usually do not belong to the
globally strongest features and would not have been selected if
the feature detector were applied on the whole image. Hence, by
choosing the position of the region of interest R we can control the
location of newly selected features. The position of R is chosen in a
way to maximize the sum of the attention values that are covered
by the region:

R = argmax Z a(x). (14)

R'Cly X R

Adding new features in this region therefore maximizes the gain
for the whole approach.

For computing the attention map, different measures and
objectives o; can be taken into account. For computing the final
attention values a(x’) the weighted sum of the attention values
0;(x") of all objectives is used:

alx) = Z (wio; (x')) - (15)
1

Currently, we use two different objectives — an obstacle
uncertainty objective and an inhibitory objective. In order to
allow the objectives to compute their attention value based on
the current scene reconstruction and using information from the
navigator about the planned path we implemented a feedback-
loop as seen in Fig. 2. Hence, the feedback-loop provides top-down
information that is used to guide the feature detector.

4.1. Obstacle uncertainty objective

The most important objective is the obstacle uncertainty
objective which is used to focus the feature selection to areas where
the obstacle situation is unclear and where more observations are
necessary. As a measure for the uncertainty we use the entropy
of the voxel map that was described in the previous section. The
entropy is known from information theory and defined as: H(X) =
— Y " p(x) log, p(x). The entropy H(v;) of a single voxel v; is given
as the binary entropy function:

H(vi) = —p(vy) logp(vi) — [1 — p(vi)]log[1 — p(v))]. (16)

It is maximal when the voxel is initialized with 0.5 and
nothing is known about that part of the environment. With
additional observations using the reconstructed features the
entropy decreases and will finally converge near zero after the
voxel has been explored and is classified as either free or occupied.
Obviously, each measurement z; decreases the expected entropy
H(v;) of the voxel and leads to an expected information gain that
can be expressed by the mutual information:

I(vi; z)) = H(vi) — H(vi|z) (17)

where H(vi|z) is the entropy of the voxel v; after inserting the
measurement z; according to Eq. (11) in Section 3.

If a pixel xj’- is selected as a new feature in the input image, the
resulting measurement z; will affect the occupancy probability and
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hence the entropy of each voxel v; along the ray r (P, x/) in different
ways, depending on whether the reconstructed point X; is located
inside, behind or in front of the voxel v;. Unfortunately, the location
x; of the point is still unknown when the corresponding pixel x]f is
selected as a feature. However, using the occupancy probabilities
we can compute the probability for the point X; to be located in a
certain voxel along the ray r(P, x]f). If e.g. the occupancy value of
a voxel v, on the ray is near 1.0 while the values of the previous
voxels vg, ..., v,_1 on the ray are near 0.0, the point will most
likely be located in v,. In general, the probability for the point X;
to be located in v, is:

n—1

p(xj € vp) =pwa) [ [ 1 - p(w) (18)
i=0

while the probability for the point to be located in some voxel
behind v, is:

p(; > vp) = [ [1—pw). (19)
i=0

In the first case the voxel is assumed to be occupied, its occupancy
probability is increased and its entropy changes to H (v;|occ). In
the latter case the voxel is assumed to be free, the occupancy
probability is decreased and the entropy changes to H(v;|free).
Taking these considerations into account we can predict the
expected information gain I(v;; x;) for each voxel v; along the ray

r(P, x;) after selecting the feature x;:
I(vi; ) = H(vi) — p(X; € vy)H (vi|occ)
— p(Xj > vy)H (vj|free). (20)

For computing the entropies H (v;|occ) and H (v;|free) we simulate
updating the voxel as occupied and free using Eq. (11). In order
to simplify the computation we use the ideal sensor model here
which is sufficient for this purpose. To approximate the real sensor
model coarsely the models parameters are chosen to po.c = 0.8
and pgee = 0.2.

In Fig. 9 the information gain for a single voxel is plotted against
the occupancy probability of the voxel according to Eq. (20) using
the ideal sensor model with different values for poec and prree.
In all graphs the information gain drops at both ends. Hence,
updating voxels that are already identified as free or occupied with
a high certainty does not lead to a significant information gain.
Surprisingly, the function of the information gain may have a local
minimum for occupancy values near 0.5 depending on the chosen
parameters pocc and pyee. This is a result of the characteristics of the
the binary entropy function with its steep slope for probabilities
near 0 and 1. Small changes in the probability lead to large
information gains for these values. The occupancy update function
counteracts this tendency. Here, the change in the probability for
cells with a occupancy probability near 0.5 is dominant compared
to those with probabilities near 0 or 1. For diffuse sensor models
the binary entropy function will dominate the characteristics of
the information gain and updating voxels whose occupancy state
is completely unknown is expected to yield a smaller information
gain compared to voxels where at least some information is already
available and where additional observations can ascertain their
real states. However, when using values pocc > 0.8 and pgee < 0.2
for the ideal sensor model this effect disappears.

As stated before, Eq. (20) yields the information gain of a single
voxel along the ray after selecting a new feature x]f. In order to
obtain the total information gain for selecting the feature x; the
gains of all voxels along the ray have to be accumulated. This can
be implemented efficiently using ray casting. Putting all together
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Fig. 9. Information gain I(v;; x}f) of a single voxel plotted against the occupancy
probability of the voxel using different values p,cc and pgee of the ideal sensor model.

we get the final attention function for the obstacle uncertainty
objective:

01(x) = Y u()I(vi; X). (21)

1

In this equation we added an additional weight function u(v;)
that can be used to control the importance of a each voxel. For
obstacle avoidance, for example, the occupancy states of voxels
along and near the path that was planned by the navigator are
more important than voxels that are far away. Additionally, we use
higher weights for voxels near the robot than for distant voxels.

4.2. Inhibition of Return — Objective

The second objective we apply is an inhibitory objective. It is
required to avoid the attention getting stuck at the same image
region while other parts of the image are never chosen for selecting
new features. Inhibition of Return — Objective manages an activity
map M = {m(x)|x’ € Iy} that has the same size as the
attention map and the input image. This activity map keeps track
of the image regions R;_1, R;_», . . . previously selected for feature
selection according to Eq. (14). Therefore, each element m(x’) of
the current activity map M = M; is updated as follows:

1 X e Ri_1

m(x') = nme_1(x') + B (X/) . where § (X/) = {0 otherwise.

Here, n denotes a decay rate that decreases the previous activation
me_1(X'). It is chosen as n = 0.95 in our experiments.
The parameter 8 denotes some activation parameter that adds
activation to all elements in the activity map that correspond
to the image region R;_; chosen for feature selection in the
previous iteration. Reasonable values for this parameter are § =

0.1, ..., 0.2. Finally, the attention value of this objective can be
easily defined as:
0,(x) = —m(x), (22)

where the activation that accumulates the positions of the
previously selected regions has an inhibitory influence on the
overall attention a(x") in Eq. (15).

Using the Inhibition of Return — Objective together with the
Obstacle Uncertainty — Objective results in a movement of the
region of interest used for feature detection similar to the saccade-
like movement of the eyes of vertebrates, allowing one to cover the
whole field of view while concentrating on the most interesting
parts of the environment.

Although the above objectives were designed to handle our
obstacle detection problem, the approach is very flexible and can
be modified depending on the purposes the scene reconstruction is
used for by applying different objectives. If a dense reconstruction
for building precise 3D models is desired, one could use an
objective that ensures a dense and uniform coverage of the
reconstructed points over the whole 3D scene. If the framework is
used for visual odometry on the other hand, an objective that leads
to a uniform feature distribution in the images is more suitable.
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Fig. 10. Comparison of maps created from visual information (red dots) and laser range finder (blue). The robot’s trajectory and moving direction is denoted by the dashed
line. The ground truth is highlighted in gray. The visual map consists of about 8200 reconstructed points. Obstacles detected using vision only are labeled using numbers.
The images on the right show the obstacles as seen by the front camera. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
5. Results

In our experiments we used a 1/4” CCD fire-wire camera for
image acquisition. The camera is mounted in front of our robot at a
height of 1.15 m and tilted by 35° towards the ground (see Fig. 1).
For processing, our robot is equipped with an Intel Core 2 Duo,
2 GHz CPU. In spite of utilizing one core only we are able to process
up to 30 frames per second while reconstructing 200-300 features
simultaneously. Depending on the robot’s driving speed (up to 1
m/s), we only need to process 10-15 frames per second leaving
enough CPU resources for other applications like map building,
navigational tasks, user tracking and human-machine interaction.

The following results were derived from four extensive tests,
where two were carried out inside of a home improvement store,
one took place outside in a garden center of a home improvement
store and one test was conducted in a home environment.

For visualization purposes only, we additionally used a laser
based SLAM approach for correcting the odometry before creating
the maps printed on the following pages. In our final application
the robot’s corrected odometry is sufficient for mapping since we
are only interested in the local environment in relation to the robot
for obstacle detection, where slight position errors and a drift in the
orientation can be neglected.

5.1. Obstacle detection

Fig. 10 shows a map that was created by merging the
reconstructed obstacles that were detected by our approach with
information provided by a laser range finder. The occupancy
map that was created using the laser range finder is colored
in blue where the different shades of blue correspond to the
probability that a cell is occupied. The position of the features that
were reconstructed using visual information with the approach

presented in this paper are colored in red. In the map, a total
number of about 8200 visual features is shown. While creating the
map, a total number of ca. 15,400 points was reconstructed, where
about 6000 features were filtered due to a bad variance, ca. 1000
features were classified as belonging to the ground and 100 were
detected as outliers.

For better evaluation and for visualization purposes a ground
truth map was created and is highlighted in gray in the background
of Fig. 10. For building the ground truth, we took images of
the scene using a hand held Canon EOS 350D 8.0 megapixel
camera and used a bundle adjustment tool? for creating a precise
reconstruction of the scene which finally was edited and labeled
manually.

The map covers an area of 14 m x 12 m within a home
improvement store. This test area contains typical obstacles that
we identified as problematic during the field test since they cannot
be detected by the laser range finder due to their reflection
properties, their form or too low height. Some of these obstacles
are numbered from 1 to 5 in Fig. 10. In detail these obstacles are:

. an empty Euro-pallet with a height of 11 cm

. aladder

. alow shopping cart with goods that jut out at both ends
. a high shopping cart

. shelves that extend into the scene.

g W IN =

All of these obstacles cannot be seen by the laser range finder
and, therefore, might result in collisions. However, using our visual
approach these obstacles can be detected robustly. In Fig. 11 we
try to quantify this result. For each obstacle, we have manually
labeled those parts of the outline that are relevant for navigation

2 Bundler: http://phototour.cs.washington.edu/bundler/.
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obstacle visual laser visual+laser
1 63% - 63%
2 1% - 1%
3 71% - 1%
4 68%  10% 68%
5 82% - 82%
others 85%  78% 96%
total 83% T12% 93%

Fig. 11. Percentage of obstacle boundaries that can be detected using the presented
visual approach, a laser ranger finder and a combination of both for the 5 labeled
obstacles and the rest of the scene shown in Fig. 10.

and obstacle avoidance during the above test run using the ground
truth map. The statistics in Fig. 11 show the percentage of the
relevant obstacle boundaries that were detected by our visual
approach, the laser range finder and a combination of vision and
laser. Although some obstacles were not detected by our visual
approach since these parts were not visible to the camera when
the robot was driving around corners, these results show that
major parts of the above-mentioned obstacles can be detected.
Furthermore, it can be seen that the detection rate for all relevant
objects in the scene can be increased significantly by 20% compared
to obstacle detection using a laser range finder only.

The home improvement store where we carried out the above
tests also contains a garden center where a bumpy stone floor leads
to strong vibrations. However, the increased shaking of the camera
did not result in degradation of the reconstruction (Fig. 12).

5.2. 3D mapping

In Fig. 13 a 3D map of the test environment shown in Fig. 10
is depicted. In the upper left image the reconstructed features are
shown as colored dots, where the color indicates the estimated
height of each feature. The reconstructed features were used to
generate a surface model (Fig. 13(b)) as described in Section 3.2.
Using the textured model different synthetic views of the scene can
be rendered (Fig. 13(c-d)).

Additional tests were carried out in a special test area of our
lab that contains typical elements of a living room: two arm
chairs, a table and two shelves as well as a floor with a strong
repetitive texture. Furthermore, the lighting conditions are inferior
compared to the home improvement store. The top left image in
Fig. 14 shows the scene as seen by the front camera of the robot.
In the upper right image the reconstructed features are shown.
All obstacles that were seen by the camera are detected robustly,
while features on the floor are estimated correctly and classified
as free and passable. The two images at the bottom of Fig. 14 again
show two synthetic views of the environment.

5.3. Attention-driven feature selection

Fig. 15(a) shows an image of the scene taken in a home
improvement store as seen by the front camera. In Fig. 15(b) the
expected information gain is shown for each pixel of the image.
High values are drawn using red colors and indicate high benefits
for selecting new features in these regions. As seen in Fig. 15(b) the
highest information gain can be achieved by selecting new features
in the upper part of the image especially near the obstacle shown
in Fig. 15(a). According to Eq. (14) our approach selects the features
in this region as indicated by the blue rectangle in Fig. 15(a).
After the robot has approached the obstacle, our algorithm for
monocular scene reconstruction has estimated the 3D positions
of the selected features as seen in Fig. 15(c). The reconstructed
points are again shown as dots, where the color indicates their
estimated height. Since the obstacle has now been discovered
adding new features in this area results in minor information gain

as denoted by the blue and yellow colors in Fig. 15(d). Instead,
new features will now be selected in the image regions around the
detected obstacle in order to discover these unknown parts of the
environment.

Similar desired behaviors of our approach are shown in Fig. 16
where we tried to visualize the saccade-like movement of the
region of interest. The regions that were used for feature detection
during the last 10 frames are shown as transparent yellow
rectangles. Image areas that were used more often are more
opaque than areas where less attention was paid to. Fig. 16(a)
was taken while the robot was turning around a right-hand bend.
Here, our approach guides the feature selection to the upper right
image areas that newly became visible to the camera in order
to discover those parts of the environment not observed before.
This is important for local path planning since the robot must
react quickly to obstacles that suddenly appear behind corners.
Fig. 16(b) shows an image where the robot is moving along a
corridor. Here, most features are selected on distant objects in the
upper parts of the images. This is reasonable since these features
remain visible over more frames of the captured image sequence
compared to foreground features that move out of the field of
view very quickly due to the robot’s forward motion. Additionally,
the foreground objects have already been discovered by previous
measurements.

In Fig. 17 two occupancy maps are shown that were created
from a voxel map as shown in Fig. 7. While creating these maps
we reduced the number of features that are tracked per frame to
50-100 in order to show the advantages of our proposed guided
feature selection. The map in Fig. 17(a) was created by selecting
the features according to the attention-driven approach presented
in this paper while Fig. 17(b) shows a map that was creating using
features that were detected uniformly in each image.

Although the same number of features was used for creating
both maps, the map in Fig. 17(b) contains several cells whose
occupancy probability is unknown though they have been visible
to the camera. Additionally, some cells were erroneously estimated
as occupied. However, the map 17(a) that was created using our
guided feature selection approach contains significantly fewer
errors and fewer cells whose obstacle situation is unclear. These
results show that the guided feature selection can improve the
map-building and the detection of obstacles by reducing the
uncertainty in the created map and therefore by decreasing the risk
of missing an obstacle.

Further results and videos of our approach and the pre-
sented algorithms can be found on the following website:
http://www.youtube.com/user/neurobTV.

6. Conclusion and future work

In this paper, we have presented an algorithm for feature-based
monocular scene reconstruction and shape from motion. We have
described several improvements to [5] that make the reconstruc-
tion more reliable and help to reduce outliers. Furthermore, we
have described methods for creating textured surface maps as well
as volumetric voxel maps using the reconstructed 3D points. The
volumetric voxel maps are used for obstacle avoidance. Addition-
ally, they provide top-down information for an attention-driven
feature selection scheme which we have proposed in this paper.
Our approach selects new features in those image regions that
maximize the information gain. As a result, the created maps con-
tain fewer uncertainties and more obstacles can be detected with-
out increasing the number of reconstructed features and therefore
without increasing the runtime of the whole algorithm.

With realistic field tests in different environments, we have
shown that the described techniques allow the approach to be used
for robust real-time obstacle detection and 3D map building under
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a |

Fig. 12. (a) Front camera image. (b) The reconstructed scene where the height of the reconstructed features is coded by the color (green: <0.10 m, yellow-red:
0.10 m-1.15 m). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

a b

Fig. 13. (a)Reconstructed features that were classified as obstacles in the test environment shown in Fig. 10. (b) Mesh that was created using these features. (c-d) Synthetic
views of the scene created using a textured 3D model estimated by our approach.

a

Fig. 14. (a) Image of home environment as seen by the front camera. (b) The reconstructed features shown as dots, where the height is coded by different colors (c-d)
Synthetic views of the scene created using a textured 3D model estimated by our approach. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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b

Fig. 15. (a) Input image as seen by the robot’s front camera. The region that is used for feature selection is marked by the blue rectangle. (b) The information gain for each
pixel of the upper left image, where red color indicates high values and blue corresponds to low values. (c) Input image taken some frames later. The reconstructed features
are shown as dots, where the height is coded by different colors (green: <0.10 m, yellow-red: 0.10 m-1.15 m). (d) Information gain for each pixel of the lower left image.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

b

Fig. 16. Image regions that were used for feature selection during the last 10 frames are shown as transparent rectangles. Areas where more attention was paid to are more
opaque. Images were taken while (a) driving around a right-hand bend and (b) driving along a narrow corridor.

b

Fig. 17. Occupancy maps that were created from voxel maps. (a) Map created using the proposed attention-driven feature selection approach. (b) Map created by selecting

the features uniformly in each image.

different conditions. We were able to show, that some obstacles
which are not visible to active distance measuring sensors, like
laser range finders, can be safely detected by our vision based
approach and that a combination of visual obstacle detection with
a laser range finder can increase the detection rate of obstacles
considerably. Currently, we are carrying out long-term tests to
evaluate how much the number of collisions can be decreased
during the daily usage of the robots.

Moreover, we are developing a method to estimate the position
of moving objects. Using additional constraints the position of
moving objects that reach to the ground can be recovered. We hope

to publish the first results of that algorithm soon. In the approach
presented in this paper, features along moving objects are rejected
during feature tracking and filtered after the reconstruction due to
their high variance in the position estimates.
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