Robotics and Autonomous Systems 69 (2015) 28-39

journal homepage: www.elsevier.com/locate/robot

Contents lists available at ScienceDirect

]

[l |

>

=

;

o

2

E
i8R
i i

Robotics and Autonomous Systems

14

Generic NDT mapping in dynamic environments and its application

for lifelong SLAM~

Erik Einhorn*, Horst-Michael Gross

Ilmenau University of Technology, Germany

—
@ CrossMark

HIGHLIGHTS

We present a new mapping approach that combines normal distribution transform (NDT) and occupancy mapping.
The mapping approach is fully generic and suitable for 2D and 3D mapping with different sensors.

We describe a method for detecting and handling dynamic objects to allow mapping in highly dynamic environments.
Based on the mapping algorithm a graph based SLAM algorithm is described.

The presented SLAM approach allows lifelong mapping and localization in real world applications.

ARTICLE INFO ABSTRACT

Article history:
Available online 30 August 2014

Keywords:

Lifelong SLAM

Detection and tracking of moving objects
2D and 3D mapping

Normal Distribution Transform
Occupancy mapping

Map registration

Mobile robots

In this paper, we present a new, generic approach for Simultaneous Localization and Mapping (SLAM).
First of all, we propose an abstraction of the underlying sensor data using Normal Distribution Transform
(NDT) maps that are suitable for making our approach independent from the used sensor and the dimen-
sion of the generated maps. We present several modifications for the original NDT mapping to handle
free-space measurements explicitly. We additionally describe a method to detect and handle dynamic
objects such as moving persons. This enables the usage of the proposed approach in highly dynamic envi-
ronments. In the second part of this paper we describe our graph-based SLAM approach that is designed
for lifelong usage. Therefore, the memory and computational complexity is limited by pruning the pose
graph in an appropriate way.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Simultaneous localization and mapping (SLAM) is one of the
fundamental challenges in mobile robotics. It constitutes a difficult
problem as consistent mapping depends on the knowledge of the
robot’s current position, while robust self-localization on the other
hand requires an accurate map of the environment. Therefore, the
localization and the mapping process are inherently coupled [1].
Consequently, the SLAM problem has been thoroughly analyzed for
decades and researchers came up with many different solutions.
However, when it comes to the practical application of SLAM, it is
often used for map acquisition exclusively during an offline map
learning phase as part of the initial setup of the robot in its novel
environment [2]. During the robot’s operation phase, this map then

* This work has received funding from the German Federal Ministry of Education
and Research as part of the ROREAS project under grant agreement no. 165V6133.
* Corresponding author. Tel.: +49 3677 69 4168.
E-mail address: Erik.Einhorn@tu-ilmenau.de (E. Einhorn).

http://dx.doi.org/10.1016/j.robot.2014.08.008
0921-8890/© 2014 Elsevier B.V. All rights reserved.

is used for robot localization, i.e. pose tracking, for instance by
using particle filter based Monte Carlo localization [3].

In our previous real-world applications where we implemented
tour guide robots and interactive shopping assistants [4], we also
followed the philosophy of a map learning phase and a separate
operation phase. However, todays complex applications such as
robot companions that assist elderly people in their home envi-
ronments [5] require a paradigm shift. Typically, these environ-
ments are semi-static or dynamic, i.e. the location of obstacles like
chairs or tables change over time. Therefore, a separate map learn-
ing phase is no longer acceptable. Instead, the mapping phase must
continue during the whole operation time of the robot to perma-
nently adapt the map to the changes in the environment. This re-
sults in the so called lifelong SLAM problem.

A lifelong SLAM algorithm that is suitable for such scenarios
must be able to constantly update the map of the environment
without increasing the complexity for map updates with new mea-
surements. Moreover, it must operate in realtime to continuously
provide estimates of the robot’s location to other navigation mod-
ules, like path planners.

http://dx.doi.org/10.1016/j.robot.2014.08.008
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2014.08.008&domain=pdf
mailto:Erik.Einhorn@tu-ilmenau.de
http://dx.doi.org/10.1016/j.robot.2014.08.008

E. Einhorn, H.-M. Gross / Robotics and Autonomous Systems 69 (2015) 28-39 29

(a) Environment.

(b) Occupancy grid-/voxel-map.

e "r--l'.r

3

- - 4%- :!W

(c) NDT map.

(d) Hybrid NDT occupancy map.

Fig. 1. Different grid-based map representations for the same environment (a room) that is shown on the left. Occupied cells are drawn in black, free cells are colored white,

while unknown, unobserved cells are shown gray.

Modern assistance robots typically have a variety of sensors that
provide different kinds of information about the robot’s environ-
ment. Laser Range Finders provide two dimensional range data that
can be used to create 2D maps. Depth cameras on the other hand
provide depth images that are suitable to create 3D maps. Also a
single camera mounted in front of the robot can provide such 3D in-
formation when it is used for monocular scene reconstruction [6].
Therefore, we are interested in applying a generic mapping and
SLAM approach that is able to process such 2D and 3D information
equally well.

In this paper, we describe such a generic and sensor-
independent graph-based SLAM system that integrates different
recent approaches such as:

Normal Distribution Transform (NDT) occupancy mapping [7,8]
NDT map registration [9]

robust pose-graph optimization [10]

pruning of the pose-graph for lifelong operation [11].

In addition to describing how these techniques can be combined
in a consistent way, another major contribution of this paper is
a method for Detecting And Tracking Moving Objects or persons
properly, which is also known as DATMO [12]. This method is
integrated seamlessly into our mapping approach and allows its
application in highly dynamic environments, even if sensors with
limited fields of view are used.

Aside from that, there are several minor contributions such
as an efficient occupancy update method, the proper handling of
range shadows that are caused by structured-light sensors, and im-
provements in NDT-to-NDT registration.

In summary, the proposed mapping and SLAM approach:

1. is implemented in a generic way for 2D and 3D mapping using
different sensors such as laser or depth cameras

2. operates in semi-static or dynamic environments and adapts
the map to the changing environment

3. operates in realtime and allows for online robot localization

4. allows for lifelong mapping with constant complexity.

This paper is organized as follows. Section 2 outlines the state of
the art in SLAM and robot mapping. In Section 3, we describe the
generic mapping approach in detail. Section 4 depicts an exten-
sion for the mapping algorithm that allows to detect and handle
dynamic objects properly. In Section 5, we finally combine the de-
scribed mapping algorithms to a SLAM approach. In Section 6, we
show several results that we have obtained using the presented ap-
proaches for different kinds of sensors. Finally, we conclude with
an outlook on future work.

2. Related work

As stated before, a large variety of different SLAM approaches
is available. Some techniques interpret the SLAM problem as

a filtering problem and apply Extended Kalman filters [13] or
Rao-Blackwellized Particle Filters [14,1] to solve it. Others ap-
ply smoothing techniques [15,16] to solve the full SLAM problem,
i.e. beside the estimation of the most consistent map they keep
the complete robot trajectory as part of the estimation problem.
While these approaches provide direct solvers for the SLAM prob-
lem, others, e.g. g20 [17] exploit the sparsity of the SLAM problem
by formulating it as a pose graph optimization problem. The prob-
lem of such optimizers is that they are not robust against outliers in
data association. Hence, wrong loop-closures have a catastrophic
impact on the resulting map and the robot’s pose estimates. This
problem is addressed in [10] by also including the topology of the
pose graph into the optimization procedure. It allows the algorithm
to switch off erroneous constraints. As a result, the optimization
of the pose graph becomes extremely robust against false loop-
closure constraints.

Another disadvantage of most graph-based techniques is the
increasing complexity that grows with the length of the trajectory
since more and more vertices are added to the graph over time.
Consequently, this would prohibit the usage of such graph-based
techniques for lifelong SLAM. In [11] this problem is tackled by
merging vertices of the pose graph so that it only grows when the
robot acquires relevant new information about the environment in
terms of expected information gain.

Most implementations of the aforementioned SLAM ap-
proaches use laser range finders as sensors and occupancy grid
maps as representation of the environment. With new devices, like
3D laser range finders, stereo cameras, time-of-flight cameras, or
other depth sensing cameras using structured light, that have be-
come available in recent years, 3D information of the local sur-
roundings can be acquired. However, these sensors produce a huge
amount of data and an appropriate representation is needed for
processing this data efficiently.

A very popular 3D environment representation are voxel
maps [18]. Similar to 2D occupancy grid maps, the robot’s sur-
roundings are partitioned into regular cubic volumes (voxels). Each
voxel stores a probability whether the volume is occupied by an ob-
stacle or free (see Fig. 1(b)). These maps, therefore, allow to model
free space and unknown areas explicitly using the stored occu-
pancy value. Voxel maps are usually stored using octree represen-
tations [19-22] that allow to store large regions of free space more
efficiently.

A different map representation is the Normal Distribution
Transform (NDT). It was originally proposed in [23] for efficient
laser scan matching and was later extended to three dimensions
[24]. Similar to octree-based maps, the mapped volume is subdi-
vided into voxels. However, instead of estimating an occupancy
probability for the whole voxel, the observed range measurements
within each voxel are represented by a normal distribution (see
Fig. 1(c)). As shown in [25], such NDT maps achieve a significantly
higher accuracy than voxel or octree-based maps when the same

30 E. Einhorn, H.-M. Gross / Robotics and Autonomous Systems 69 (2015) 28-39

cell resolution is used. Moreover, NDT maps are continuously dif-
ferentiable and hence enable efficient map registration algorithms.
Despite of its advantages, the Normal Distribution Transform has
not yet been widely accepted by the SLAM community.

The original formulation of NDT maps as they are used in
[23-25] has a major drawback: It models the distribution of ob-
stacles only, while free space is not taken into account at all. This
disallows their usage for mapping in dynamic environments, since
objects and obstacles that were removed in the environment can-
not be removed from the map and hence lead to inconsistencies.

In [7,8] an extension is proposed that models an occupancy
probability for each cell, in order to overcome this disadvantage.
For each measurement, a ray is cast through the cells of the NDT
map. If - due to a dynamic obstacle that has moved - the consis-
tency of an observation with respect to an occupied cell containing
a normal distribution is low, the occupancy probability of the cell
is decreased using a forward sensor model. The occupancy proba-
bility for empty cells and cells ‘hit’ by an observation are adapted
by a constant amount without using a sensor model.

3. Normal distribution transform mapping

Independently from the work of Saarinen et al. [7,8], we devel-
oped a similar method for NDT mapping, that also combines the
ideas of occupancy grid maps and NDT maps, in order to add the
capability to integrate information about free space into the maps.

In contrast to [8] where a ray casting approach is used for updat-
ing the cells, we use a different method that is better suited for our
map representation and achieves a better performance. Moreover,
we present a fully generic implementation that allows to gener-
ate 2D as well as 3D maps without any changes in the algorithms.
Therefore, we also derive a generic beam sensor model, that is used
for updating the occupancy probability for all cells.

Similar to occupancy grid maps and occupancy voxel maps, we
partition the mapped volume into discrete cells. These cells are
managed in a tree structure. This allows to generate maps with an
adaptive resolution that is adjusted depending on the level of de-
tail of the mapped surroundings (not covered in this paper). For 2D
maps, we use a quadtree, and for 3D maps we use an octree. How-
ever, in the following we do no longer distinguish between 2D and
3D maps and quadtrees and octrees. Instead, we use a generalized
tree similar to the N%-tree that was presented in [22]. Depending
on the dimensionality d of the map, our data structure splits the
cells in each dimension. Consequently, each cell is subdivided into
24 child cells, which results in a standard quadtree for 2D maps and
in an octree for 3D maps.

As in [24], each cell ¢ of such a 2¢ tree stores the mean u, €
RY and the covariance £, € R? x RY of a normal distribution
N (|, X¢). It approximates the surface points of the object that
is covered by the cell as a probability distribution and therefore
achieves a higher precision than a sole voxel map. The totality of
all such normal distributions of all cells of the map M can be con-
sidered as a Gaussian mixture model that models the probability

pxe8) =D weN Xl Zo)
ceM

whether a point x € R? belongs to the set of surfaces $ of objects
and obstacles in the environment.

To be able to represent free space explicitly, we combine the
ideas of occupancy maps and NDT maps and additionally store an
occupancy value o, in each cell which acts as a prior for the stored
normal distribution in the cell. The final probability distribution of
surface points is then expressed as o..V (i, X.). In other words,
o, models the probability o. = p(c = occ) whether the volume
that is represented by the stored Gaussian is occupied by an object
or free. In empty cells that do not store a Gaussian, we assume a
uniform distribution of the occupancy probability. Fig. 1(d) shows
such a hybrid NDT occupancy map.

3.1. Mapping-backend and sensor-frontends

As described in the introduction, we want our mapping ap-
proach to be generic and suitable for a broad spectrum of distance
measuring sensors. As stated above, the used tree-structure for
representing the map is already independent from the dimension-
ality of the used sensor. Moreover, many operations of the map-
ping algorithm can be implemented independently from the used
range sensor. We encapsulate these operations in a mapping back-
end. These operations are described in the next subsections.

Beside the mapping backend, we have different sensor frontends
for each type of range sensor as shown in the left part of Fig. 7.
These frontends act as an abstraction layer between the sensor data
and the mapping backend. The advantage of this architecture is,
that the task of each sensor frontend is simplified to processing the
range data of the respective sensor and calling the backend to per-
form abstract operations such as updating a cell as occupied or free.

3.2. Updating the map with range measurements

A priori, the state of all cells is unknown. For this reason, the co-
variance in each cell is set to “infinity”. As the occupancy probabil-
ity is truncated to the volume of each cell, the probability mass will
initially take up the whole cell uniformly. This justifies the use of a
uniform distribution for unknown or empty cells to represent the
occupancy probability, as stated above. Moreover, the occupancy
value is initially set to o, = 0.5 to indicate that the state of the
whole cell is unknown.

With new measurements of the used range sensor, the map is
updated. Basically, the map update consists of two steps. In a first
step the “shape” of the map is updated by adapting the Gaussians in
the occupied cells according to the sensor measurements or rather
according to the surfaces of the objects. In a second update step
the stored occupancy probability of each cell is adapted. Here, free
cells, that do not contain a Gaussian, are updated as well using the
range measurements.

Each single range measurement is defined by the sensor’s posi-
tion p within the map, the direction d of the range measurement
and the measured range z. Using this information the endpoint
x € RY of the measurement is defined by x = p+zd. This endpoint
is usually located on the surface of an object in the environment. To
integrate the measurement into the map, the mapping algorithm
first determines the cell ¢ that is “hit” by the measurement, i.e. the
cell where the endpoint of the measurement is located in. This is
done using an efficient lookup as described in [26]. Afterwards, the
normal distribution in this cell is updated using the following in-
cremental update rule:

’L/c =ap.+(1—a)x

T =aX+a(l—a) (e —X)(pe —X) " (1)
ki =ke+1

where @ = k./(kc + 1) and k. expresses the number of updates
of the cell. In a static environment this update rule gives the max-
imum likelihood estimate of the mean and covariance of all mea-
surements that fall into the same cell. However, since we use our
approach in dynamic environments with moving objects and per-
sons, we limit the value of k. for each cell. As a result, the above
update rule then computes an exponentially weighted moving av-
erage and covariance where new measurements have a stronger
influence than older ones. This allows the normal distributions of
each cell to adapt easily to a change in the objects positions.

3.3. Occupancy update using a generic beam-sensor-model

Beside updating the normal distribution of the hit cell, the map-
ping algorithm also updates its occupancy value and the occupancy

E. Einhorn, H.-M. Gross / Robotics and Autonomous Systems 69 (2015) 28-39 31

Fig. 2. One dimensional map along the sensor beam where the kth cell is hit by the
range measurement z.

a 08
0.6

0.4

p(r|2)

0.2

0

on

0.8

0.6

0.4

p(r|z)

0.2

0

0.8

o

0.6

p(r|z)

0.4

0.2

2 4 6 8 10 12 r

Fig. 3. Plots of the used inverse sensor models. The graph shows the probability
p(r|z) plotted against the distance r from the sensor’s origin for a sensor
measurement z = 8. The bars indicate the occupancy probabilities for the cells
of the expected map E[m|z] given the sensor reading z. (a)-(b) The inverse sensor
model shown for different variance parameters of the assumed sensor noise. (c) A
modified inverse sensor model that provides evidence for free space only.

values of all cells along the sensor beam between the sensor’s po-
sition and the endpoint of the measurement according to:

logit(o.) = logit(o.) + logit(p(r|z)) (2)

with logit(p) = log(p) —log(1— p) being the log-odds representa-
tion of a probability p. This is the standard update rule of occupancy
maps as described in [27]. The probability p(r|z) is the inverse
sensor model. It yields the probability for a cell at distance r be-
ing occupied when a range measurement of z was obtained.

For our approach, we derive a generic one-dimensional beam-
sensor model, that can be used for most sensors, whose single
distance measurements are obtained along a narrow beam, such
as laser range finders, depth- and stereo-cameras, and even ap-
proaches for monocular scene reconstruction [6]. Sonar sensors —
on the other hand - cannot be represented by such a 1D model, as
their sensor beam is wide and covers a large volume.

To derive the inverse sensor model p(r|z), we compute the con-
ditional expectation of a 1D map m whose cells are located along
the sensor beam as shown in Fig. 2:

Elm|z] =n) myp(z|my)p(my). (3)
k

The above equation sums over possible 1D maps my, where
p(z|my) yields the probability for measuring z given a map my,
which is known as forward sensor model, and p(my) expresses the
probability that the given map occurs in the set of all possible 1D
maps. One can verify that it is sufficient to sum over a special type

of 1D maps, namely those maps m; where the first k — 1 cells are
empty, the kth cell is occupied and the rest of the cells are un-
known, expressed by an occupancy of 0.5:

m; = (0,0,0,...,0,1,0.5,0.5,0.5,...). (4)
D e —— ‘
k—1 times k

One can verify that the probability p(m,) for drawing such a
map from all possible 1D maps decreases exponentially with an
increasing k:

p(my) oc 275, (5)

Let now m; be a 1D map, whose kth cell is hit by a range measure-
ment z. With the above considerations, the expectation in Eq. (3)
can be computed in closed form by folding the map m;; with the
forward sensor model weighted by the exponential probability dis-
tribution of Eq. (5). The expected value E[m|z] can be interpreted
as inverse sensor model:

w
0, r<z-——
2
w w
p(r|z) =pz|rN27" {1, 2—5 §r<z+5 (6)
05, z+= <
.5, —<r
2
m

where the map my is expressed as piecewise-defined function and
w denotes the width of each cell of the map. For our used sensors,
we assume a Gaussian noise with variance o' and therefore use
the normal distribution ¥ (z|r, %) as forward sensor model. This
allows us to derive the inverse sensor model according to Eq. (6) as:

(riz) = h r—z+1 o lh r—z 1 o 7)
rlz) = =>—)—3 -5
b w 2w 2 w 2w
1 1 s?In2 +x
with h(x,s) = = + = erf<7+)
2 2 V2s

where erf denotes the Gauss error function. In Fig. 3(a)-(b) the de-
rived inverse sensor model is plotted for different variance param-
eters o2. Apparently, there is a sharp peak in the inverse sensor
model if the variance is small, while the sensor model becomes dif-
fuse for larger variances. In the latter case, the occupancy of cells
near the measured distance is changed only by a small amount, as a
large sensor noise does not allow a precise location of the measured
obstacle. Depending on the used sensor, we increase the variance
with the distance of the measurement, as the accuracy of the sen-
sors decreases with larger distances. We will come back to this in
Section 3.5.

3.4. Maintaining a multi-scale representation

With each new range measurement, the update algorithm per-
forms the above update steps for all affected cells that are associ-
ated with the leaf nodes at the deepest level of the underlying 2¢
tree. After all cells are updated, the changes are recursively prop-
agated to the parent nodes of those cells and thus to higher lev-
els within the tree. To do so, the mean, covariance and occupancy
value of a parent node p is computed from its child nodes i as fol-
lows:

By =D Wik,
i i

k=Y ki =Y (8)
i i

where w; = k;/k;,. This allows us to generate a multi-scale map
where each level in the tree represents a different level of detail
similar to an image pyramid.

Ty = wii+ Bilp, —)"

32 E. Einhorn, H.-M. Gross / Robotics and Autonomous Systems 69 (2015) 28-39

(T Vo
Vo Ty
1 o 1 [[A
\

Vo H H '
IR H N
[T Vit

Vo RREET
Vg Vg
Vg Vil

T T
v ofi g wifin
Vi wifin
Vil i
. Wi
W why

Fig.4. For updating the occupancy probability of each cell, random points are sam-
pled according to the occupancy distribution and projected onto the image plane of
the depth camera. left: For occupied cells the points are sampled according to the
stored normal distribution. right: For empty cells, they are sampled uniformly.

3.5. Depth-image sensor frontend

After having described the operations and the sensor model that
are implemented in a generic mapping backend, we now exem-
plarily describe a sensor frontend that is specialized for processing
depth images obtained using a range sensor such as the Microsoft
Kinect. We will describe how the range data is processed in order
to invoke the operations for updating the map, that are provided by
the backend. Frontends for other sensors such as laser range find-
ers are implemented in a similar way.

Updating occupied cells is trivial. Knowing the intrinsic camera
parameters of the depth sensor, for each pixel of the depth image
the corresponding 3D position X in the scene, i.e. the endpoint of
the measurement, can be computed. Finally, the cell, where this
point is located in, is updated as described in Section 3.2.

Updating the occupancy of cells along the sensor beam as indi-
cated in Section 3.3 is more complex. Other mapping approaches
like [8,21] traverse the cells along the measurement ray via ray
casting. However, as ray casting is a complex operation in a tree-
based map structure, this can be very time-consuming, especially
for dense range data, where many rays pass through the same cells.
For this reason we use a contrary approach. Instead of spreading
out rays from the image plane, we project the cells of the map onto
the image plane of the depth camera.

For each cell, we sample random points according to the prob-
ability distribution of the occupancy in that cell. For occupied cells
this distribution is represented by the stored Gaussian of the Nor-
mal Distribution Transform. For empty cells, we assume a uniform
distribution as stated above. Each sampled point is projected to the
depthimage as shown in Fig. 4. At the projected position, we obtain
the depth measurement z directly from the depth image. Further-
more, we compute the distance r between the sample point and
the sensor. Both values are then used to compute the probability
p(r|z) of the cell being occupied given the depth measurement us-
ing the inverse sensor model in Eq. (7) and to finally update the
overall occupancy probability of the cell according to Eq. (2).

As previously indicated, the variance parameter o2 of the in-
verse sensor model, which models the sensor noise, is increased
with the measured distance z, since the accuracy of the sensors de-
creases with a larger distance.

For laser range finders and time-of-flight cameras the standard
deviation of the sensor noise increases linearly with the measured
depth. However, for stereo cameras and the Kinect depth camera
the standard deviation o increases with the square of the depth z.
We therefore use the following model for the sensor uncertainty:

0(2) = 0p2°

with oy = 0.02 cm. More sophisticated noise models and calibra-
tion methods can be found in [28] or [29].

camera projector

f

Fig. 5. Top view of the camera and projector geometry of the used Kinect depth
camera with base distance b and focal length f. The plane in the foreground casts a
shadow on the wall in the background. The depth of the shadow volume z; at the
pixel x; can be computed using the last valid depth measurement z; at pixel xo.

For some pixels in the depth image, the depth camera cannot
provide any depth measurements, e.g. since the measured objects
are located too far away. If a sample point is projected onto such an
erroneous measurement, we update the corresponding cell using
a separate and constant sensor model: p(r|z) = 0.4. This model
decreases the occupancy probability by a very small amount. The
assumption here is, that the affected cell is free, otherwise an ob-
ject would have been measured by the sensor. This seems to be a
strong assumption at first glance but holds well in real applications
and is essential to fade out dynamic objects that move in the fore-
ground while the distance of the background cannot be measured.
Otherwise, such dynamic objects would reside as artifacts and dis-
allow to use the maps for robot navigation.

Invalid measurements can also have a second cause that is re-
lated to the measurement method of the Kinect, where a projector
emits a structured light pattern that is captured by a camera (see
Fig. 5). If there is a large depth discontinuity in the scene, the fore-
ground object may cast a shadow in the structured light beam. Con-
sequently, for no object within this shadow volume a valid depth
estimate can be obtained. This is shown in Fig. 5, where a plane in
the foreground casts a shadow on the wall in the background. In the
area of the shadow, no depth estimates can be obtained. This needs
to be distinguished from the case where no estimate is possible due
to a too large distance. Otherwise, we would slowly update the
cells on the wall within the shadow volume as free which would
result in holes in these areas. For each pixel with no valid mea-
surement, we therefore compute the depth, at which the shadow
volume starts, that is cast by a foreground object. This is done in a
preprocessing step for each scan line. The processing is performed
from right to left, since the shadows are always cast to the left due
to the arrangement of the projector and camera. With the help of
Fig. 5 and by using the intercept theorem one can verify, that in
pixel x; the casted shadow starts at a depth of:

Zobf
ZS = —
ZoXs — ZoXo + bf

(9)

where xg and zy are the pixel and the corresponding depth of the
last valid measurement on that line. b is the base distance between
the projector and the camera, and f denotes the focal length.

Knowing the depth of this “shadow border”, we can safely up-
date cells in front of it as free. We therefore slightly modify the in-
verse sensor model in Eq. (7). Instead of folding the 1D map given
in Eq. (4) with the forward sensor model and an exponential dis-
tribution, we use a map where the first k cells are empty, with k
being the cell where the shadow volume starts:

m, = (0,0,0,...,0,0.5,0.5,0.5,...). (10)
— ——

k times

E. Einhorn, H.-M. Gross / Robotics and Autonomous Systems 69 (2015) 28-39 33

W)

b3 A
et i

Fig. 6. A person (red ellipse) crosses the field of view (orange) while the robot
(blue circle) is moving forward. left: The cells near the person’s previous position
are correctly seen and updated as free (A) while the cells at the person’s current
position are occupied (B). right: Due to the robot’s forward movement the person’s
previous position (C) is no longer within the field of view and the corresponding
cells are not updated as free although the person has moved to a different position
(D). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

This leads to the following inverse sensor model:

1 o 11
+3.2) (a1

which only gives evidence for free space as its probabilities stay
below or equal to 0.5. Cells within the shadow volume are not af-
fected. This free space sensor model is plotted in Fig. 3(c).

r—2Zs

1
p(rizs) = h(

4. Detection and tracking of moving objects

In the previous section, we have described our hybrid NDT oc-
cupancy mapping approach that can be used in dynamic environ-
ments as it explicitly models free space and therefore can clear
moving objects from the map when the corresponding region is ob-
served as free by the sensors. However, in dynamic environments
problems can still arise if sensors with a narrow field of view are
used, such as stereo or other depth cameras. Fig. 6 shows an ex-
ample where a person moves through the narrow field of view of
the robot while the robot is moving itself. As long as the person
stays within the field of view, cells occupied by the person in pre-
vious time steps are correctly seen and updated as free (A) when
the person moves on. However, when the robot moves forward, the
region that was occupied by the person may move out of the sen-
sor’s field of view. Hence, the corresponding cells cannot be seen
and updated as free (C), although the person has moved to a differ-
ent location (D). This results in artifacts that remain in the map.

When the mapping is used for creating local maps for obstacle
avoidance and local path planning, these artifacts result in unnec-
essary and spurious avoidance movements of the robot. Further-
more, these artifacts are also unwanted when creating maps of the
environment using the SLAM approach, described in the next sec-
tion of this paper.

We therefore implemented a method to detect and track mov-
ing objects in order to propagate their occupancy probability mass
even if the objects left the sensor’s field of view and to eventually
fade them out if necessary.

4.1. Detecting dynamic map content

Beside the occupancy probability o. = p(c = occ) described
in the previous section, we additionally store a second occupancy
probability s, = p(c = socc) for each cell c, that expresses the
probability of the cell being statically occupied.

The first occupancy probability o, can be thought of as a short-
term occupancy state that is estimated using the recent sensor

readings, and it may quickly change for regions with moving ob-
jects or persons. The static occupancy probability s. is adapted
slowly and represents the long-term occupancy state. This prob-
ability will be high for occupied cells that represent objects that
belong to the static environment, such as walls and furniture.

Just like the occupancy probability o, we also represent the
static occupancy s, using log-odds and update its value similar to
Eq.(2):

logit(s.) = logit(sc) + logit(p(c = socc|c = occ)) (12)

where p(c = socc|c = occ) gives the probability whether the cell
is statically occupied when the current short-term occupancy state
is given by o.. Currently, we use the following ad hoc model to com-
pute this probability:

p(c = socc|c = occ) = (13)

N[= N =

1
= O — —) C, O >
2+(c 2)2 c

The constants ¢c; < 1and ¢c; < 1 control how fast the static oc-
cupancy probabilities are adapted. The smaller the constants, the
slower is the update of the long-term occupancy state. In our ex-
periments, we choose c; to be about 5 times larger than ¢, in order
to achieve a stronger influence of free space evidence on the long-
term occupancy state.

Having estimated the (short-term) occupancy probability o,
and the long-term occupancy probability s., we use both values
to classify each cell as belonging to the static (S) or dynamic (D)
environment as follows:

h:cw— {S,D}

D, o.—s.>0

S, otherwise (14)

with h(c) = {
with 0 being a threshold that we set to 0.6. Hence, a cell is classified
as “dynamic cell” if the cell is free according to the long-term
occupancy probability but is currently observed as being occupied,
e.g. when a person is moving through a region that was previously
observed free.

4.2. Tracking moving objects

After the cells have been classified as dynamic or static, neigh-
boring and connected dynamic cells are fused to hypotheses of dy-
namic objects using a bottom-up clustering algorithm, that starts
at the leaf node and recursively fuses neighboring dynamic cells to
hypotheses. Each such hypothesis h corresponds to a moving object
whose shape is approximated by a normal distribution A (pp,, C).

For each hypothesis, we estimate the object’s position p, and
its velocity v, using a linear Kalman Filter. Hence, the augmented
state to be estimated is given by x, = (p;, v})" and its correspond-
ing covariance matrix Xy. In the next time step, each hypothesis is
predicted using a linear motion model:

Xp = Fxy +wy, where w, ~ & (0|Q) (15)
with
At4l At3l
I Y | _| 72" 2
_[0 1} and Q= | & 2 (16)
TI At

and I being the d x d identity matrix, where d denotes the di-
mension of the map. Furthermore, At is the time interval that has
elapsed since the last Kalman Filter update.

34 E. Einhorn, H.-M. Gross / Robotics and Autonomous Systems 69 (2015) 28-39

After the positions of the dynamic object hypotheses have been
predicted, they are tracked by matching each predicted hypothesis
from the previous time step with the closest hypothesis that
was clustered in the current time step. The position of the new
hypothesis is taken as measurement to perform the Kalman Filter
update. This allows us to track moving objects and to estimate their
position and velocities iteratively.

4.3. Propagating occupancy of moving objects

As each tracked hypothesis corresponds to a cluster of dynamic
cells that are occupied by a moving object, we use them for
propagating the occupancy probability of these cells according to
the object’s motion. We do this by modifying the prediction step
of the binary Bayes Filter that provides the underlying theoretical
framework for the occupancy update given in Eq. (2).

Usually, the occupancy state of each cell is assumed to be con-
stant over time and independent from other cells. However, given
the above motion hypotheses and the occupancy probabilities of
the neighboring cells, we can compute an a priori occupancy prob-
ability that is injected by a moving object into each cell. The general
idea is to collect the occupancy probability of the moving cell clus-
ters, represent it by the normal distribution of the corresponding
object hypothesis, move it according to the above motion model,
and distribute it back into the cells of the map.

For each hypothesis, we therefore sum the occupancy probabil-
ity of all cells that belong to the cluster represented by the hypoth-
esis. This sum sy, is stored with each hypothesis h. It resembles the
total occupancy probability mass that is “carried” by the moving
object. In the next time step, the positions of the hypotheses are
predicted as specified in Eq. (15) using the estimated velocities of
the objects. This moves the occupancy probability of each hypoth-
esis to neighboring cells where it is redistributed to the cells.

This is done after the “shape update” of the NDT map has been
computed using the current sensor readings according to Sec-
tion 3.2 to ensure that the Gaussians in the cells, where the object
is located now, are already adapted to the new object location.

For each cell c, that is covered by a dynamic object hypothesis h,
we compute the cell’s occupancy probability o, from the summed
occupancy mass sy of the hypothesis as follows:

Oc = NWc,hSh (17)

where 7 denotes a normalization factor, and the weight w, , cor-
responds to the proportion the Gaussian of the cell ¢ takes up in
the object hypothesis h, which itself is represented by a Gaussian
as mentioned above. The weight can be computed as the integral
of the product of both Gaussians:

wep = / N Xl TN (XIBn, € + £)dx

= N (RelBro Zc + € + 35) (18)
where u. and X, describe the Gaussian of the NDT cell, py, is the

predicted position of the moving object and f)i the corresponding
covariance matrix which is also computed in the prediction step of
the Kalman Filter and expresses the uncertainty in the position es-
timate. The covariance matrix C, describes the shape of the moving
object as mentioned above. The normalization factor is computed
asn =" /Zc wy tO ensure the normalized weights sum up to 1.
After the a priori occupancy probabilities for the cells, covered
by the predicted dynamic object hypotheses, have been computed
according to Eq. (17), the occupancy probabilities are updated
using the sensor measurements as described in Section 3.3.
Although it is a coarse approximation to represent the overall
occupancy probability of a dynamic cell cluster by a single Gaus-
sian, it has proven to work well in our tests. In contrast to other

approaches such as [30,31], where the transition of the occupancy
probability between neighboring cells is estimated and computed
at cell level, our approach can be computed very efficiently and
only adds a very small computational overhead.

When using the proposed methods for detecting and handling
moving objects, the problems and artifacts that are caused by these
objects near the borders of the sensor’s field of view as described
at the beginning of this section, can be resolved. If a moving object
leaves the field of view, its movement will be further propagated
according to Eq. (15). As there will be no further observation of the

object, the covariance matrix iﬁ, i.e. the uncertainty of the position
estimate, will increase continuously as more and more uncertainty
is added by the matrix Q in Eq. (16). As a result the object
hypothesis will become increasingly diffuse and its occupancy will
be distributed across more cells and will eventually fade out.

5. Lifelong SLAM

After having described our mapping approach in detail, we will
now show how the above algorithms can be integrated into a SLAM
approach. Similar to [11], we use a graph-based formulation of
the SLAM problem, which models the poses x;., of the robot’s
trajectory as vertices vy., of a pose graph. Constraints between two
poses of the trajectory that typically arise from odometry, sensor
measurements, and loop-closures are stored within edges between
the corresponding vertices. Each constraint between two vertices
v; and v; is represented by a transformation 4 that describes the
pose X; as seen from X; and a corresponding information matrix €;;.

The SLAM problem can then be described by the following op-
timization problem:

X" = argmin Z e(X,‘, Xj, Sji)TSZﬁE(X,', Xj, (Sj,‘) (19)
ij

withX = (x{,...,x,})" being the vector of the pose estimates of

all vertices in the pose graph. The error function e(x;, X;, §;;) mea-

sures how well the pose estimates X; and X; satisfy the constraint

i [17].

For solving the above optimization problem, we use g2o [17],
an open source framework for graph optimization. This optimiza-
tion step of a graph-based SLAM algorithm is also known as
SLAM-backend. The result of the optimization process is the most
consistent set of pose estimates XJ.,, that represent the robot’s tra-
jectory.

In this paper, we focus on the SLAM-frontend, which is re-
sponsible for generating the pose graph with its vertices and con-
straints. In the following, we give an overview of our approach
shown in Fig. 7, before we discuss its components in more detail.

In our approach, each vertex additionally stores an NDT map
fragment which is a small piece of the overall map. During the
robot’s locomotion the previously described mapping algorithm
incrementally integrates the range sensor measurements into the
current map fragment, i.e. we combine multiple sensor readings in
a single vertex of the pose graph. This is necessary since the single
measurements of range sensors with a low measurement range or
small field of view, like depth cameras, do not allow to perform
loop closures robustly. The position estimates that are necessary
for the mapping are obtained from the robot’s odometry. Since
the odometry is erroneous, this will of course induce a small error
in the created map fragment. This error grows continuously with
the covered distance. For this reason we cut the map fragment
and start a new one whenever the uncertainty in the robot’s
movement exceeds a certain threshold to limit the effects of the
odometry errors in the built map fragment. The uncertainty of the
robot’s movement is computed using a probabilistic motion model
similar to the one described in [27] but approximated using normal
distributions.

E. Einhorn, H.-M. Gross / Robotics and Autonomous Systems 69 (2015) 28-39 35

Mapping

Range-Scan
T g—f} Laser Frontend

i ———
7 Depth-Image
—b

&

' Mapping
Backend

Depth-Image
Frontend

Lifelong-SLAM
Pose Graph Loop-Closure
Generation Detection —
SLAM
Backend
(g20)
Vertex Fusion / Map Registration —P
Map Merging / Matching

Fig. 7. The flow diagram of our complete mapping pipeline with the mapping component consisting of the mapping backend and different sensor frontends as well as the

components of the actual SLAM approach.

With each new map fragment, a new vertex v, is added to the
pose graph. The new vertex is connected with the previously added
one v,_; by an edge that stores the robot’s relative movement
from that vertex. The corresponding covariance is taken from the
probabilistic motion model.

Afterwards, our approach checks for potential loop closure can-
didates (see Fig. 7, top right). Therefore, it propagates the uncer-
tainties of the pose estimates through the pose graph starting at the
newly added vertex. This is done similarly to the belief propagation
in a Bayesian network along the minimum spanning tree with v, as
root node. As the result of this process, the marginalized covariance
of each pose estimate is known relatively to the newly added ver-
tex. This covariance is used in a x? test to determine if the map of
another vertex is most likely to overlap with the map of the newly
inserted vertex. In this case, a loop-closure edge is created between
the new vertex v, and the loop-closure candidate v,, by aligning
the two overlapping maps M, and M,, using different map regis-
tration algorithms to obtain the relative pose of the two vertices.

According to [10], we increase the robustness by weighting the
error function of a loop-closure constraint with a switch variable
wj; that controls the influence of that constraint. Beside the pose
vertices, the switch variables are also adapted within the graph
optimization procedure and hence allow to disable erroneous
constraints. Consequently, there is no need to perform any kind of
outlier rejection in order to remove wrong map registration results.
Instead, the invalid loop-closure constraints will be switched off
automatically during the pose graph optimization.

After all loop closure candidates were processed and the pose
graph was updated respectively, the SLAM backend is run to
optimize the pose graph while taking the newly added poses and
constraints into account in order to update the estimated poses
of the robot’s trajectory. The entirety of all map fragments at
the estimated poses constitutes the complete map. Thus, unlike
other SLAM algorithms, our approach does not need to perform
an additional mapping pass to integrate all sensor readings into a
map using the corrected pose estimates. If a single map instead of
the map fragments was required, all map fragments could be easily
merged. Consequently, no sensor readings need to be stored — the
approach is completely online. Furthermore, at this point a fresh
estimate of the robot’s current location within the environment is
generated and can be directly used by navigation algorithms such
as path planners. Afterwards, the whole process starts again by
adding the next vertex containing the next map fragment that was
created in the meantime.

5.1. NDT map registration of loop closure candidates

For the alignment of the two NDT maps, we use two different
registration algorithms. The general idea of the map registration is
closely related to [9] and therefore only briefly described here.

We try to minimize a distance metric between the two NDT
maps M, and M,, which is defined as:

d(My, Min, $um) =) _ djf (R,

ieMp

R, ZR. + %) 'd; (20)

with j = argminiy, i — mill and dy = Rumbti + tum — 1.
This metric sums the pairwise distances between each normal
distribution ; of map M, and its closest neighbor distribution A;
of map M,,. This is closely related to the Iterative Closest Point
(ICP) algorithm. We will come back to this point later. In the above
equation, 8., denotes a transformation consisting of a rotation
R, and a translation t,,, that transforms all normal distributions
(p;, X;) of map M, and therefore the whole map into the reference
frame of map M,,. Consequently, 8., is the desired transformation
that relates the two vertices vy, v, of a loop closure.

In the registration process the transformation &, is varied to
minimize the distance metric iteratively. The initial estimate of this
transformation is taken from the current pose estimates x, and X,
of the two loop close vertices in the pose graph.

If the initial estimate has a small uncertainty, i.e. if the propa-
gated covariance of the loop-closure candidate is below a thresh-
old, we use the Levenberg-Marquardt (LM) method for solving the
non-linear minimization problem. Since NDT maps are piecewise
differentiable, the necessary derivatives can be computed as de-
scribed in [9]. The LM method works fine if the initial estimate of
the transformation is near the correct value. Otherwise, it tends to
converge to local minima that do not reflect the correct transfor-
mation.

In these cases, where the uncertainty in the initial estimate
is large, e.g. since the robot has covered a large distance
without performing a single loop-closure, we use Particle Swarm
Optimization (PSO) [32] to solve the above minimization problem.
As score function of the particles, the distance metric is used
directly.

To speed up the map registration we take advantage of our
multi-scale NDT maps. Instead of using the finest level of detail,
the above optimization algorithms operate on a coarser level of
the maps with typical cell sizes of 0.4 m. This considerably reduces
the overall computational complexity. After the registration on the
coarse level has converged, we perform a final second fine-grained
registration step using the LM method on the finest map level with
cell sizes of 0.05-0.1 m to achieve the highest possible precision.

5.2. Normal space sampling

As stated before, the map registration and the computation of
the distance metric in Eq. (20) is closely related to the Iterated
Closest Points (ICP) algorithm, that is used for the registration of
two point clouds. ICP associates the points of two point clouds also
using a nearest neighbor criterion.

36 E. Einhorn, H.-M. Gross / Robotics and Autonomous Systems 69 (2015) 28-39

a c"ﬁ\ /o°¢

C

b -pﬂ'-\ /o.,o L

Fig. 8. (a) If the normal distributions for the pairing during the map registration
are chosen uniformly, small features are suppressed. (b) If normal space sampling
is used, the normal distributions around the feature have a significant influence.
(c) The normal distributions are partitioned in a histogram according to the
direction of their normal vector. Afterwards, they are sampled uniformly from the
bins that correspond to the indicated regions on a half-sphere.

To improve the robustness of our map registration, we adapt
a variant of the ICP algorithm that is known as normal space sam-
pling [33]. Therefore, we slightly modify Eq. (20). Instead of com-
puting the sum of the pairwise distances for all normal distribution
MN; of map M,,, we sample a subset S, € M,, of these normal dis-
tributions. This further reduces the computational complexity as
the number of pairings decreases. More importantly, it allows to
choose a subset that leads to a better convergence of the map reg-
istration.

To find the correct alignment of the map, small features such as
small bulges in a flat hallway (see Fig. 8) can be essential. However,
if a uniform sampling scheme is used or all available distributions
are taken into account, the influence of these small features in the
overall costs of Eq. (19) are marginal (Fig. 8(a)). A stronger influence
of these features would be desirable as their NDT representations
have a different orientation than the normal distributions in the
other cells. This gives an important directional information during
the iterative registration process that leads to a better convergence
if exploited.

For this reason, we compute the orientation of each normal dis-
tribution ; of map M,, in terms of its “normal vector” mn;. As nor-
mal vector we use the eigenvector of the covariance matrix X; that
corresponds to the smallest eigenvalue. Hence, the vector points
into the direction of the smallest extend of the normal distribution
which corresponds to the normal of the represented surface. We
represent each normal vector in the angular space of a spherical
coordinate system by using two angles (altitude and azimuth) in
the case of 3D maps or a single angle in the case of 2D maps. This
allows us to put each normal distribution ; of map M,, into a his-
togram according to the angles of its normal vector. This procedure
is shown in Fig. 8(c) where it also becomes apparent that the bins of
the histogram correspond to the indicated cells on the surface of a
half-sphere. Finally, we form the subset S, of normal distributions
by sampling uniformly across the histogram bins. This set is then
used to compute the sum in Eq. (20) to ensure, that all orientations
are represented equally well (Fig. 8(b)).

5.3. Fusion of vertices for lifelong operation

By adding more and more map fragments and vertices the
size of the pose graph increases over time, and consequently, the
memory and computational complexity rises. To be able to use the
proposed SLAM approach over a long time period within a robotic
application we therefore need to prune the pose graph to reduce
the number of vertices.

This is done after each graph optimization step. Vertices whose
map fragments cover a similar region of the environment are

Fig. 9. 3D NDT map created using a Microsoft Kinect while driving three loops
through a home environment. Each normal distribution of an NDT cell is shown
as ellipsoid and colored according to its height. The pose graph with its vertices
and edges is indicated in blue. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

fused. However, merging vertices and their corresponding map
fragments poses the risk of consolidating inconsistencies and inac-
curacies. Therefore, only those vertices are merged whose relative
position between each other is known with a very high certainty,
e.g. if many successful loop closures were performed between the
vertices or their neighbors. To measure this uncertainty, we again
use the propagated covariance that was already computed to iden-
tify possible loop closure candidates. Two vertices v; and v; are
merged, if the propagated covariance from one vertex to another
is below a threshold. Without loss of generality we assume that
the vertex v; was added after v;. The fusion of the two vertices is
done by merging the information of v; into v; and removing the
vertex vj from the pose graph. To preserve the global behavior of
the SLAM error function (19) while removing vertex v;, we would
need to add edges for each pair of neighbors of v; [11]. However,
this would result in an increasing complexity of the pose graph. To
avoid this problem, we use the same approximation that was pro-
posed in [11] and connect all neighbors of v; to v; while adapting
the information stored in these edges as described in [11]. With this
approximation, removing v; and all of its edges will then reduce the
number of vertices and edges at least by 1. During the fusion of both
vertices, the map fragment of vj is also merged into the map of ver-
tex v;. This is done according to Eq. (8). Since v; was added to the
pose graph after v;, its map contains the more recent information
on the environment. Merging the map fragments in the proposed
order therefore ensures, that all map fragments are up-to-date and
that our approach is able to adapt to changes in the environment.

6. Results

We have tested our approach in different environments using
different sensors.

Fig. 9 shows a 3D map that was build using the Microsoft Kinect
depth camera mounted on our home assistance robot while driving
three loops through a narrow home environment with tables,
armchairs in the lower left corner and a couch in the right corner. In
the NDT map, the normal distributions of cells with an occupancy
probability larger than 0.8 are shown as shaded ellipsoids. The
colors correspond to the height of the cells. The mapped area has a
size of 5 x 8 m°.

In Fig. 10(a) 2D map is shown that was created using a laser
range finder while driving our tour guide robot manually through

E. Einhorn, H.-M. Gross / Robotics and Autonomous Systems 69 (2015) 28-39 37

Fig. 10. 2D NDT map created using a laser range finder while driving through an office building. The pose graph with its vertices and edges is indicated in blue. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

an office building. The mapped area has a size of 80 x 35 m?. The
normal distributions of the cells are shown as black small ellipses
that are merely larger than dots on this scale. Each cell of the
map has a resolution of 0.1 m. However, due to the benefits of the
employed NDT maps, the effective resolution is much higher and
allows to represent single chair legs and twigs of plants that were
standing around in the mid-right area of the map. While creating
this map, the robot covered a distance of 700 m. The corresponding
trajectory and the generated pose graph is depicted in blue color.
Due to the generic implementation no changes in the algorithms
were necessary for creating the 2D map and the above 3D map.

6.1. Performance

We tested the presented approach on a machine running on an
Intel Core i7, 2.70 GHz CPU which is identical to the hardware we
use on our robots.

The insertion of the 2D or 3D range data into the NDT map only
takes 10-20 ms. The map registration during a loop-closure is the
computationally most expensive part of the presented approach.
As described above, this step needs to be performed for each
inserted vertex and map fragment. Including all loop-closures, the
average computation time when inserting a new map fragment
with a cell resolution of 0.1 m is 300 ms for 2D maps and 500 ms
for 3D maps when running on a single CPU core. Depending on the
driving speed of the robot, a new map fragment is available every
500-1000 ms. Consequently, our approach is able to process the
incoming data in real-time for both 2D and 3D maps. It is therefore
suitable for online localization and mapping.

6.2. Lifelong operation

To test its ability for long term operations in a bounded envi-
ronment, we ran our approach for two days on one of our guide
robots [34] that operate in our office building on a daily basis to
autonomously guide visitors within the building. On a regular of-
fice day, when the robots typically operate for about 6 h, each robot
travels up to 4000 m.

During the two day test period, the total length of the driven
trajectory was 7000 m which corresponds to 3 h of continuous
driving. The tests were restricted to a single floor of the building
that is shown in Fig. 10. Since the guide robots are equipped with a
laser range finder only, this long term test was used to test the 2D
variant of our approach.

In the left diagram of Fig. 11 the number vertices of the pose
graph are plotted against the driven distance during the overall test

run. The solid blue line corresponds to the number of vertices in
the pose graph for our proposed lifelong approach. During the first
1000 m the number increases up to 400 vertices while the robot
explores most of its environment. Afterwards, it remains constant
for the rest of the test. After 3000-4000 m the vertex count slightly
increases as the robot visits areas of the building it has not seen
before. Consequently, more vertices are necessary to cover the en-
vironment which now became larger.

For comparison, we turned off the fusion of vertices in another
run. The corresponding graph is colored in red. Here, the number
of vertices increases indefinitely with the covered distance.

In the above test, we also measured the computational com-
plexity of the SLAM approach. Since the loop closure computations
during the insertion of a new map fragment are the most expensive
processes, the insertion time for a new map fragment is shown in
the right diagram of Fig. 11. Again, the blue line shows the graph
for our proposed approach, where the time for inserting a new map
fragment remains constant between 200 and 400 ms. If the fusion
of vertices is disabled (the red graph), the insertion time grows sig-
nificantly with the increasing number of vertices, since much more
loop-closure candidates need to be processed if there is a high den-
sity of vertices.

A second long run was performed using a smaller robot plat-
form within a typical home environment shown in Fig. 9. In this
test, a 3D map was created using a Microsoft Kinect sensor. Al-
though the driven distance of 250 m was much smaller in this test,
it is far sufficient to cover the whole home environment exhaus-
tively. The total number of loops was 12. The vertex count and the
time for computing the loop-closures are shown in Fig. 12. Again,
the vertex count and the performance stays constant over time for
our proposed approach.

These tests reveal both the temporal and spacial scalability
of the approach. The number of vertices within the pose graph
depends on the size of the operational area only and stays constant
in bounded environments. Moreover, the complexity of the loop-
closure computation is similar in small and large environments, as
itonly depends on the density of the pose graph vertices. Therefore,
it will not increase significantly even if the approach operates in
larger environments or for a longer period of time.

6.3. Dynamic environments

We also tested our approach in dynamic and semi-static envi-
ronments. Fig. 13 shows a sequence of four images where a per-
son moves through the field of view of the used Kinect sensor
while the robot is moving forward. The cells that represent the

38

1000
800
600
400
200

vertex count

0
0 1000 2000 3000 4000

driven distance [m]

5000 6000 7000

—— lifelong = NOo pruning

insertion time [ms]

E. Einhorn, H.-M. Gross / Robotics and Autonomous Systems 69 (2015) 28-39

1000
800
600
400
200
0 0 1000 2000 3000 4000 5000 6000 7000
driven distance [m]
= |ifelong no pruning

Fig. 11. left: Number of vertices in the pose graph during a 2 day long term test for the proposed lifelong SLAM approach (blue) and without fusing vertices (red). right:
Time for inserting a new map fragment and a new vertex into the pose graph during the test. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

100
80
60
40
20

0
0 50

vertex count

100 150
driven distance [m]

200 250

—— lifelong = NO pruning

insertion time [ms]

1000
800
600
400
200

100 150
driven distance [m]

200

= |ifelong === no pruning

Fig. 12. left: Number of vertices in the pose graph while creating a 3D map in a small home environment with pruning (blue) and without fusing vertices (red). right: Time
for inserting a new map fragment and a new vertex into the pose graph during the test. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

2
=\

=
=\

- Sd
2" -k

Fig. 13. While the robot was moving through its environment, a person walked through the field of view of the Kinect sensor. The cells that are classified as dynamic are
colored in green. The clustered moving person is marked by a red bounding box and the track of the person is shown as white line. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

person are correctly classified as dynamic (shown in green) while
the surrounding obstacles are static. The person is clustered as a
single moving object, which is indicated by the red bounding box.
The person is tracked through the complete sequence. The track
is shown as white line in the images. Moreover, the images show
that the person does not cause any artifacts as the occupancy is
correctly propagated according to the movement of the person.
Beside highly dynamic objects like persons, the SLAM approach
is also robust against changes in the environment. This was tested
in the home environment as shown in Fig. 14. During the mapping
we moved two armchairs and a table to the opposite corner of the
room. Despite these changes, the approach is able to keep the cor-
rect location within the environment using other parts of the room
that remained unchanged. In those parts of the room, enough map
fragments can still be matched successfully to establish correct
loop closures. After vertices of the pose graph that contain old and
new map fragments are merged, the changes in the environment
become apparent in the map as shown in the right image of Fig. 14.
Thus, the approach is able to adapt to the changed environment.

7. Conclusion

In this paper, we have presented a novel mapping technique for
NDT maps that combines NDT mapping and occupancy mapping in
a probabilistic sound way. We described an extension that is able to

Fig. 14. While the robot was mapping its environment, the table and the armchairs
visible in the left image, were moved to the opposite side of the room as shown in
the right image.

detect and handle dynamic objects like moving persons. The pro-
posed mapping approach is modular and independent from the di-
mensionality of the created maps. It allows to implement different
mapping frontends for different sensors. Exemplarily, we have pre-
sented our mapping frontend for Microsoft Kinect depth images.
The generated NDT maps are an abstraction of the underlying sen-
sor data and allow to develop a sensor-independent SLAM ap-
proach that was presented as a second contribution of this paper. In
the results we have shown that the presented algorithms are able
to generate 3D and 2D maps of different, complex environments in
real-time. Furthermore, we have shown that this performance re-
mains constant over the whole operation time and therefore allows
to apply the approach as lifelong SLAM and localization technique
in real-world applications.

E. Einhorn, H.-M. Gross / Robotics and Autonomous Systems 69 (2015) 28-39 39

Several videos of the proposed approaches are available at:
http://www.youtube.com/neurobTV.

References

[1] C.Schroéter, H.-M. Gross, A sensor-independent approach to RBPF SLAM—Map
Match SLAM applied to visual mapping, in: Proceedings of the IEEE/RS]
International Conference on Intelligent Robots and Systems, IROS, 2008,
pp. 2078-2083.

[2] U. Frese, R. Wagner, T. Rofer, A SLAM overview from a user’s perspective,
Kinstliche Intel. 24 (2010) 191-198.

[3] D. Fox, KLD-sampling: adaptive particle filters, in: Advances in Neural
Information Processing Systems, vol. 14, MIT Press, 2001.

[4] H.-M. Gross, H.-]. Bohme, C. Schréter, S. Miiller, A. Konig, E. Einhorn, C. Martin,
M. Merten, A. Bley, Interactive shopping guide robots in everyday use—final
implementation and experiences from long-term field trials, in: Proceedings
of the IEEE/RS] International Conference on Intelligent Robots and Systems,
IROS, 2009, pp. 2005-2012.

[5] H.-M. Gross, C. Schroter, S. Miiller, M. Volkhardt, E. Einhorn, A. Bley, C. Martin,

T. Langner, M. Merten, Progress in developing a socially assistive mobile

home robot companion for the elderly with mild cognitive impairment, in:

Proceedings of the IEEE/RS] International Conference on Intelligent Robots

and Systems, IROS, 2011, pp. 2430-2437.

E. Einhorn, C. Schréter, H. Gross, Can’t take my eye off you: Attention-driven

monocular obstacle detection and 3D mapping, in: Proceedings of the IEEE/RS]

International Conference on Intelligent Robots and Systems, IROS, 2010,

pp. 816-821.

[7] J. Saarinen, H. Andreasson, T. Stoyanov,]. Luhtala, A. Lilienthal, Normal
distributions transform occupancy maps: application to large-scale online 3D
mapping, in: Proceedings of the IEEE International Conference on Robotics
and Automation, ICRA, 2013, pp. 2225-2230.

[8] J.P. Saarinen, H. Andreasson, T. Stoyanov, AJ. Lilienthal, 3D normal distribu-
tions transform occupancy maps: an efficient representation for mapping in
dynamic environments, Internat. J. Robot. Res. 32 (14) (2013) 1627-1644.

[9] T. Stoyanov, M. Magnusson, A. Lilienthal, Point set registration through
minimization of the L2 distance between 3D-NDT models, in: Proceedings of
the IEEE International Conference on Robotics and Automation, ICRA, 2012,
pp. 5196-5201.

[10] N. Siinderhauf, P. Protzel, Switchable constraints for robust pose graph SLAM,
in: Proceedings of the IEEE/RS] International Conference on Intelligent Robots
and Systems, IROS, 2012, pp. 1879-1884.

[11] H.Kretzschmar, G. Grisetti, C. Stachniss, Lifelong map learning for graph-based
SLAM in static environments, Kiinstliche Intel. 24 (2010) 199-206.

[12] C.-C. Wang, C. Thorpe, S. Thrun, Online simultaneous localization and map-
ping with detection and tracking of moving objects: theory and results
from a ground vehicle in crowded urban areas, in: Proceedings of the IEEE
International Conference on Robotics and Automation, ICRA, 2003.

[13] AJ. Davison, L.D. Reid, N.D. Molton, O. Stasse, MonoSLAM: real-time single
camera SLAM, IEEE Trans. Pattern Anal. Mach. Intell. 29 (6) (2007) 1052-1067.

[14] G. Grisetti, C. Stachniss, W. Burgard, Improved techniques for grid mapping
with Raoi-Blackwellized particle filters, [EEE Trans. Robotics 23 (1) (2007)
34-46.

[15] M. Kaess, A. Ranganathan, F. Dellaert, iSAM: incremental smoothing and
mapping, IEEE Trans. Robotics 24 (6) (2008) 1365-1378.

[16] M. Kaess, H. Johannsson, R. Roberts, V. 113, J. Leonard, F. Dellaert, iSAM2: Incre-
mental smoothing and mapping with fluid relinearization and incremental
variable reordering, in: Proceedings of the IEEE International Conference on
Robotics and Automation, ICRA, 2011, pp. 3281-3288.

[17] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, W. Burgard, G2o: A general
framework for graph optimization, in: Proceedings of the IEEE International
Conference on Robotics and Automation, ICRA, 2011, pp. 3607-3613.

[18] H. Moravec, Robot spatial perception by stereoscopic vision and 3d evidence
grids. Technical report, Robotics Institute, Pittsburgh, PA, 1996.

[19] P. Payeur, P. Hebert, D. Laurendeau, C. Gosselin, Probabilistic octree modeling
of a 3-d dynamic environment, in: Proceedings of the IEEE International
Conference on Robotics and Automation, ICRA, 1997.

[20] N. Fairfield, G. Kantor, D. Wettergreen, Real-time SLAM with octree evidence
grids for exploration in underwater tunnels, J. Field Robotics (2007).

(6

[21] KM. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, W. Burgard, OctoMap:
a probabilistic, flexible, and compact 3D map representation for robotic
systems, in: Proceedings of the IEEE International Conference on Robotics and
Automation, ICRA, 2010.

[22] E. Einhorn, C. Schroter, H.-M. Gross, Finding the adequate resolution for grid
mapping—cell sizes locally adapting on-the-fly, in: International Conference
on Robotics and Automation, ICRA, 2011, pp. 1843-1848.

[23] P. Biber, W. StraBer, The normal distributions transform: A new approach to
laser scan matching, in: Proceedings of the IEEE/RS] International Conference
on Intelligent Robots and Systems, IROS, 2003, pp. 2743-2748.

[24] M. Magnusson, the three-dimensional normal-distributions transform—an
efcient representation for registration (Ph.D. thesis), Orebro University, 2009.

[25] T. Stoyanov, M. Magnusson, H. Almqvist, A. Lilienthal, On the accuracy of
the 3d normal distributions transform as a tool for spatial representation,
in: Proceedings of the IEEE International Conference on Robotics and
Automation, ICRA, IEEE, 2011, pp. 4080-4085.

[26] S. Frisken, R. Perry, Simple and efficient traversal methods for quadtrees and
octrees,]. Graphics Tools 7 (2003).

[27] S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents), The MIT Press, 2005.

[28] S.M. Olesen, S. Lyder, D. Kraft, N. Kriiger, J. Jessen, Real-time extraction of
surface patches with associated uncertainties by means of kinect cameras,
J. Real-Time Image Process. (2012) 1-14.

[29] J.-H.Park, Y.-D. Shin,].-H. Bae, M.-H. Baeg, Spatial uncertainty model for visual
features using a kinect sensor, Sensors 12 (7) (2012) 8640-8662.

[30] T. Gindele, S. Brechtel, . Schroder, R. Dillmann, Bayesian occupancy grid filter
for dynamic environments using prior map knowledge, in: IEEE Intelligent
Vehicles Symposium, 2009, pp. 669-676.

[31] S. Brechtel, T. Gindele, R. Dillmann, Recursive importance sampling for
efficient grid-based occupancy filtering in dynamic environments, in: Pro-
ceedings of the IEEE International Conference on Robotics and Automation,
ICRA, 2010, pp. 3932-3938.

[32] J. Kennedy, R. Eberhart, Particle swarm optimization, Proc. IEEE Internat. Conf.
Neural Netw. 4 (1995) 1942-1948.

[33] S. Rusinkiewicz, M. Levoy, Efficient variants of the icp algorithm, in: Interna-
tional Conference on 3-D Digital Imaging and Modeling, 2001.

[34] R. Stricker, S. Miiller, E. Einhorn, C. Schréter, M. Volkhardt, K. Debes, H. Gross,
Interactive mobile robots guiding visitors in a university building, in: RO-MAN,
IEEE, 2012, pp. 695-700.

Erik Einhorn is a Ph.D. student at the research lab for Cog-
nitive Robotics at the [lmenau University of Technology.
He received his diploma degree in computer science from
the Ilmenau University of Technology in 2007. His research
interests are visual 3D perception, environment modeling
and mapping for mobile robot navigation.

Horst-Michael Gross is full professor for Computer Sci-
ence with a focus on Cognitive Robotics at the IImenau
University of Technology and head of the research lab for
Cognitive Robotics. He received his Diploma degree (M.Sc.)
in Technical and Biomedical Cybernetics in 1985 and his
Doctorate degree (Ph.D.) in Neuroinformatics in 1989 at
the Ilmenau University. His research mainly focuses on the
development of robust and adaptive techniques for mo-
bile navigation and human-robot interaction that cover
aspects such as localization, map-building, SLAM, multi-

. modal user detection and tracking, human-aware nav-
igation, situation recognition, dialog adaptation, and several other aspects. As
challenging application field, his research is focused on socially assistive mobile
robots for public and home environments. He is a member of IEEE, INNS, ENNS, GI
and VDL

http://www.youtube.com/neurobTV
http://refhub.elsevier.com/S0921-8890(14)00166-3/sbref2
http://refhub.elsevier.com/S0921-8890(14)00166-3/sbref3
http://refhub.elsevier.com/S0921-8890(14)00166-3/sbref8
http://refhub.elsevier.com/S0921-8890(14)00166-3/sbref11
http://refhub.elsevier.com/S0921-8890(14)00166-3/sbref13
http://refhub.elsevier.com/S0921-8890(14)00166-3/sbref14
http://refhub.elsevier.com/S0921-8890(14)00166-3/sbref15
http://refhub.elsevier.com/S0921-8890(14)00166-3/sbref18
http://refhub.elsevier.com/S0921-8890(14)00166-3/sbref20
http://refhub.elsevier.com/S0921-8890(14)00166-3/sbref24
http://refhub.elsevier.com/S0921-8890(14)00166-3/sbref25
http://refhub.elsevier.com/S0921-8890(14)00166-3/sbref26
http://refhub.elsevier.com/S0921-8890(14)00166-3/sbref27
http://refhub.elsevier.com/S0921-8890(14)00166-3/sbref28
http://refhub.elsevier.com/S0921-8890(14)00166-3/sbref29
http://refhub.elsevier.com/S0921-8890(14)00166-3/sbref32
http://refhub.elsevier.com/S0921-8890(14)00166-3/sbref34

	Generic NDT mapping in dynamic environments and its application for lifelong SLAM
	Introduction
	Related work
	Normal distribution transform mapping
	Mapping-backend and sensor-frontends
	Updating the map with range measurements
	Occupancy update using a generic beam-sensor-model
	Maintaining a multi-scale representation
	Depth-image sensor frontend

	Detection and tracking of moving objects
	Detecting dynamic map content
	Tracking moving objects
	Propagating occupancy of moving objects

	Lifelong SLAM
	NDT map registration of loop closure candidates
	Normal space sampling
	Fusion of vertices for lifelong operation

	Results
	Performance
	Lifelong operation
	Dynamic environments

	Conclusion
	References

