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Kurzfassung

SOFCOM - Selbstorganisierendes
System zur Optimierung des
Verbrennungsprozesses in
Kohlekraftwerken

Die Verbrennung in kohlenstaubbefeuerten
GroBkraftwerken ist aufgrund kontinuierlicher
Verdnderungen der Kohleeigenschaften und
deren Verteilung zwischen mehreren Brennern
oft nicht optimal.

Das SOFCOM-Projekt entwickelte hierzu einen
selbstorganisierenden Ansatz zur weitestge-
hend vollautomatischen Integration und Aus-
wertung von Hochgeschwindigkeits-Kamera-
daten. Die darauf aufsetzende adaptive und
lernféhige Reglerstrukiur ist mit dieser neuarti-
gen Information in der Lage, sich automatisch
an Verdnderungen des Verbrennungsprozes-
ses anzupassen.

Optimierungsziele sind Lambda-, NO,- und
CO-Reduktionen sowie verbesserte Asche-
qualitét und veridngerte Kesselstandzeiten.

Die entwickelten Algorithmen funktionieren gut
und liefern robuste und stabile Ergebnisse im
On-line-Betrieb bei zeitvarianten Prozessbe-
dingungen. Im Vergleich zu Standard-Einstel-
lungen reduziert das SOFCOM-System den
Luftiiberschuss um 0,7 Volumenprozent und
NO, um 20 mg/Nm?®. Das System erwirtschaf-
tet einen zusétzlichen Nutzen von 385.000 €
pro Jahr aufgrund von Effizienzsteigerungen,
reduziertern Liifterbetrieb und reduzierten Ein-
spritzwassermengen.

Dariiber hinaus wird ein signifikanter Gewinn
aus dem verldngerten Volllast-Betrieb der An-
lage erzielt.
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Introduction

In 2004 the combustion control system, the PiT
Navigator by Powitec Intelligent Technologies
GmbH, was installed at the Vattenfall Tiefstack
plant in Hamburg. This system is based on op-
tical information from the flames and neural
network models. The results of this system are
decreased fuel consumption by 0.8 % and the
amount of unburned carbon in fly ash.

One drawback was the system’s inability to
adapt automatically to changing process condi-
tions. Therefore, an improved system with
high-speed cameras and more advanced signal
processing and control algorithms was required
in order to achieve a more adaptive system.

The new approach comprises two main differ-
ences in comparison with the installed PiT
Navigator: use of completely new visual high-
frequency information provided by CMOS-
cameras instead of CCD-cameras. This allows
a more detailed and sophisticated description
of the combustion process concerning coal
particle size, volatiles and ash content. Based
on this additional information it was expected
that more accurate process models could be
produced and thereby achieving a more accu-
rate control.

The second difference is that a human had to
define all inputs, all controls and the structure
of the whole controller. This process is very
time- and cost-consuming and increasing the
risk of making wrong decisions. The new sys-
tem uses instead data-mining techniques to
detect relationships between inputs, states and
control variables in order to make an automat-
ed, designer-independent and purely data-
driven controller design.

Project target and approach

The SOFCOM project was mainly aiming at
the development of a system to optimise com-
bustion. This system is based on camera in-
formation from the flames in addition to nor-
mal process data. The main objective of the
project has been to optimise combustion air
the distribution in order to:

— reduce the air/fuel ratio (Lambda) below

1.16,
— reduce NOy and CO and
— increase ash quality and the boiler lifetime

by

— using advanced high-speed cameras to cap-
ture flame information,
— designing a self-organising system that
will automatically
—extract relevant information from the
image data,
— find relationships between inputs and tar-
gets, and
— select a suitable control strategy.

Description of the Tiefstack plant

The Tiefstack CHP plant (Figure 1) is lo-
cated close to the Hamburg city centre. The
plant was commissioned in 1993 and gener-
ates nearly half of the heat required for the
local district heating network.

The thermal power plant consists of a base
load plant with two hard coal-fired steam gen-
erators and one turbine. The base load plant is
of forced flow Benson type with steam data of
180 bar and 540 °C. The maximum thermal
power is 285 MWy, and the maximum electri-
cal power is 205 MW.

The two boilers have three burner levels
equipped with two burners each that are fed
by one mill for each level. Coal is pneumati-
cally transported to the burners by the staged
air flow (Figure 2) comprising of primary
and secondary air.

Theory and methods

Introduction
The basic theory behind the SOFCOM system
is as follows:

— Collect high-dimensional, high-speed data
from burner flame camera images,

Figure 1. Photo of the Tiefstack plant.
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Figure 2. Diagram of the Tiefstack plant.

— Apply signal-processing algorithms that ex-
tract camera data information and process
data information and aggregate this infor-
mation into so-called features that can be
used for control,

— Apply control algorithms using the extract-
ed data and a chosen set of control com-
mands to optimise both the total air amount
and its distribution with respect to the tar-
gets of decreased oxygen level, CO content
and NOy content in the flue gas.

The latter two also include algorithms that are
adaptive in order to follow typical process
changes caused by e.g. different coal types
and fouling.

Camera-based measurement system

Six CMOS cameras have been installed at the
Tiefstack plant in Hamburg. Every camera
shows one burner from the side. The hardware
required by every camera is shown in Fig-
ure 3.

Figure 4 depicts a spectrogram from such a
high-speed sequence of a CMOS camera. The
underlying spectra are computed by a stand-
ard Fast Fourier Transformation (FFT) and
show the energy distribution over different
frequencies of brightness changes over time.
It is obvious that most energy is in the area of
lower frequencies, but sometimes also higher
frequencies of brightness changes occur.

Both, the high-resolution images as well as
the spectra calculated from high-speed image
sequences, provide the raw data providing pri-
mary information about the flames. The fol-
lowing section will describe how to automati-
cally extract control-relevant information
from those high dimensional raw data.

Information extraction

There is plenty observable data from the pow-
er plant that are delivered by the control sys-
tem and the camera system. In fact, there is
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too much data to handle for any artificial in-
telligent control system. Moreover, several
channels are not containing useful informa-
tion, but only add distractions. Hence, it is
required to extract information.

Thereto, raw and high-dimensional CMOS
camera data is transformed into so-called fea-
tures, which are low-dimensional but highly
informative. The feature’s relevance regarding
target prediction is evaluated by an informa-
tion-theoretic criterion, which is used after-
wards to iteratively improve the transforma-
tion. This method is called maximise mutual
information (MMI)

Figure 3. Powitec camera installation for one
burner. The upper box contains the
CMOS camera, the lower box provi-
des cooling and purging air to keep
the lenses clean from dust.

This reduced information is now joined by the
normal control system data (DCS) and subject
to a final feature selection to decide which
channels will be used in the new control strat-
egy.

The feature selection module decides
for each available channel if it is relevant
enough to be used by the controller. The de-
cision is again based on criteria of informa-
tion theory. This way it is ensured that only
channels are presented to the controller that
actually carry information. The final system
uses an approach called MIFS (Mutual In-
formation for Feature Selection). It computes
the relevance of a given channel with respect
to the desired outputs and it also takes into
account any redundancies the input channels
may contain.

Log10 (power spectrum)

Frequenz in cycles/(256 pixels)

Figure 4. The spectrogram of the CMOS-high-speed image sequence shows the development of
power frequency spectrum over time frames.
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Figure 5. Working principle. An Artificial Neural Network is used to

predict the future behaviour of a target given different hypo-
thetical control actions a, b, and ¢, The one that evaluates
best is executed on the real process.

Figure 6. Simplified functioning of Bayesian process control for a

single input-single output system (SISO). First, the distribution
of raw data is modelled by a number of Gaussians. This so
called probabilistic process model is used afterwards in the
inference step, where for the given distribution of the target
set point possible distributions for control solutions are

Control strategy

Traditional control approaches like the Linear
Model Predictive Control (MPC) as well as
new developments from the Reinforcement
Learning Domain like the Cooperative Syn-
apse Neuro-evolution (CoSyNE) and probabi-
listic approaches are used as control strategy.

In the Reinforcement Learning Paradigm the
learner is not told which actions to take, as in
most forms of other control methods, but in-
stead it must be discovered which actions
yield the most reward by trying them. Actions
may affect not only the immediate reward but
also all subsequent rewards. These two char-
acteristics — trial-and-error search and de-
layed reward — are the two most important
distinguishing features of reinforcement
learning.

Note that during the trial-and-error search, the
algorithm will continuously increase the
knowledge about the process. This knowledge
will be used for future control and the control
performance will therefore improve until it
has been fully learned. Only when new condi-
tions arise, e.g. if fuel is used that has never
been used before, the performance will de-
grade temporarily until adaptation to the new
conditions has been finished.

The PiT Navigator

The PiT Navigator is a Model-based Predic-
tive Controller (MPC). It is a standard product
by Powitec and was available even before the
SOFCOM-project started. The basic idea is to
first build a process model and then to use
that model to calculate a control sequence that
drives the simulated targets as good as pos-
sible to the predefined set points. If the proc-
ess model matches the process well enough,
also the real process will be driven to the set
points given the same control sequence.

The PiT Navigator uses Artificial Neural Net-
works to build a process model from histori-
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calculated.

cal data. Afterwards, several hypothetical con-
trol sequences are simulated internally and
the best evaluated sequence is executed in re-
ality. Figure 5 depicts this principle.

The Bayesian controller

The Bayesian controller [10] was motivated
by the fact that real and especially industrial
processes show uncertainty in many ways.
There are for instance noisy, unreliable, or
even missing measurements, as well as un-
known hidden process states. This results in
ambiguous and noisy process data that com-
plicate or even prevent traditional process
modelling,

In contrast to traditional approaches for proc-
ess modelling, which operates on scalar num-
bers, the Bayesian approach is operating on
probability density functions. This way noisy
data do not have to be reduced to their mean
value; instead they can be described correctly
by statistics. Based on that improved data rep-
resentation, the Bayesian controller uses proc-
ess data to build a probabilistic process model.
Again, this operates on high dimensional
probability density functions describing the
probability of different process outcomes giv-
en an uncertain input constellation.

Figure 6 shows for a very simple system
with only one control and one target variable
(SISO) the principle functioning of Bayesian
process modelling and control.

Once this probabilistic process model is built,
it can be applied to a so-called inference-pro-
cedure, which is able to calculate that control
sequence that most probably drives the proc-
ess into a desired state. That control sequence
will be applied to the real process.

Due to correct, but complex representation of
uncertain data, this control approach takes
much computational effort, but is still fast
enough.

The CoSyNE controller

In addition to both control approaches de-
scribed before, a Neuro-evolution method was
tested, called Cooperative Synapse Neuro-ev-
olution (CoSyNE) [9]. CoSyNE applies evo-
lutionary strategies to evolve a non-linear
controller (Figure 7) based on recurrent
neural networks, which drive the process as
fast and accurate as possible into a desired
target state.

Unfortunately, evolutionary algorithms for
control require extensive tests of individual
controllers with the plant in order to deter-
mine their performance, the so-called fitness.
Obviously, that extensive testing is not appli-
cable for industrial processes with real-world
constraints like irreversibility and control
cycle periods. Thereto, the original approach
was extended by a couple of alternative proc-
ess models, which replace the real plant for
extensive closed-loop controller tests.

Instead of a single process model, a couple of
different models were favoured, because that
diversity ensures the development of a robust
controller. On the contrary, operating on a sin-
gle process model would be sub-optimal,
since any model failure may mislead the
evolutionary search process for an optimal
controller to a suboptimal solution or even a
dead-end.

Analysis of the information
extraction methods

Robustness analysis of automatic information
extraction

The feature extraction algorithm [7] uses
measures from information theory to estimate
the mutual information (MI) between chan-
nels. It is trained with different settings in or-
der to analyse its robustness with respect to
different pre-processing of the raw camera
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fFigure 7. Schematic overview of the CoSyNE control method. The upper half shows the learning
cycle of the algorithm. From data acquired in the plant, different models using neural
networks are built. Several controllers (neural networks as well) form a population
which is evaluated on the models. Good controllers are modified to improve and bad
controllers are removed. The best controller of this population is then used to control

the plant.

data, different training periods, and different
image regions for spectral analysis. From a
robust algorithm it is expected to provide sim-
ilar results on these cases. In summary, this
expectation could be fulfilled - the algorithm
provided robust results.

Comparing MMI-based information
extraction with traditional PCA

Based on a parameter study in the previous
section, the information content of MMI-
based extracted features was compared with
those extracted by the standard PCA-approach
(Principal Component Analysis).

First, both PCA and MMI were applied to
CMOS-image data for all six burners from the
Tiefstack plant. Subsequently, neural networks
were trained on extracted features in order to
learn a prediction of interesting target chan-
nels like CO, NO,, and O,. If the MMI-meth-
od is superior to the PCA-approach, one
would expect a better prediction of these
target channels using MMI-inputs.

It could be stated that the prediction errors of
the Neural Networks operating on MMI-based
features were lower. That means that the
MMI-approach provides more informative
features in comparison to standard PCA com-
pression.

Online behaviour of automatic information
extraction approaches

Since previous investigations stated that the
new approach on automatic feature extraction
produced robust results and is superior to
standard approaches like PCA, a practical ap-
plication would be the next step. Thereto, an
online comparison of the traditional approach-
es Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA) was car-
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ried out with the newly déveloped approach to
Maximize Mutual Information.

This investigation with respect to adaptivity is
necessary, since it was searched for an archi-
tecture that is able to cope with time varying
processes in the SOFCOM project. The need
for adaptivity not only concerns the control-
ler, but must also be extended to feature ex-

traction to be able to adapt to changing meas-
urements.

The architecture has to be permanently adap-
tive since there is no a priori information
about process changes. To make sure that the
controller does not get confused by fast se-
mantic changes of extracted features, only
slow and smooth changes of feature extrac-
tion are allowed.

After running a stable and robust automatic
feature extraction online, also the online be-
haviour of the feature selection to be finally
used by the controller had to be tested. There-
fore different parameter seftings and different
data sets (time ranges) were investigated
where additional information-free dummy
channels and manually pre-selected informa-
tive channels were introduced into the test
scenario. The tests demonstrated that the pro-
posed approach for automatic feature selec-
tion is usable for online operation.

Analysis of the control strategies

Comparison of control strategies
by simulation

For the first stage of testing different candi-
date control approaches, a simple combustion
simulator mimicking basic relations of com-
bustion was used as benchmark. These tests
were focused on different approaches from
Reinforcement Learning domain. One con-
tender from each of the three basic groups of
Reinforcement Learning was chosen. The
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Figure 8. Comparison of four control approaches with respect to NO,. Since NO, strongly
depends on the amount of excess air, data have been split into comparable oxygen
classes. The upper diagram shows NO, emissions of all four controllers within these
oxygen classes. Vertical bars indicate the standard deviation inside that class. The
diagram in the middle shows differences between “no-control” mode and the other
three controllers. The lower diagram shows a histogram of test data with respect to
oxygen. Note that it is important to check this diagram before drawing conclusions
Since comparisons on more frequent oxygen classes are more reliable than less

frequent ones.
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Figure 9. Comparison of four control approaches with respect to CO. Since also CO strongly
depends on the amount of excess air, data were split into comparable oxygen classes.
The upper diagram shows the number of CO peaks of all four controllers within these
oxygen classes. A CO peak is considered to be higher that 25 mg/Nm?®. Vertical bars
indicate the standard deviation inside that class. The diagram in the middle shows
differences between “no-control” mode and the other three controllers. The lower
diagram shows a histogram of test data with respect to the oxygen classes.

CoSyNE approach proved to be the most
successful method. Afterwards the CoSyNE,
the most successful representative of the
Reinforcement Learning group, was com-
pared against a Bayesian Process Controller
and a Model Predictive Control approach.

For the Model Predictive Control approach, it
was concluded that the simple and straight-
forward version with consecutive linearisation
of the non-linear process model was not able
to satisfactory control the Simple Combustion
Simulator.

As aresult of simulator tests, it was concluded
to implement the Bayes controller and the
CoSyNE controller in the Tiefstack power
plant because both methods reached smallest
set point deviations.

Comparison of different control approaches
in closed loop plant operation

The following control approaches were im-
plemented and tested at the Tiefstack plant:

— “No control”™: This control mode refers to
original plant operation, where air is dis-
tributed by a fixed setting between all three
burner levels, between two burners of each
level, and also between secondary and terti-
ary air. Furthermore, the amount of total air
is not reduced at all, i.e. oxygen is expected
to be controlled by the O; controller of the
DCS system at pre-defined load dependent
set points.

— Pnav: This control mode refers to “old” PiT
Navigator that has been installed in the first
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stages of the SOFCOM project for com-
parison to newly developed controllers. PiT
Navigator adjusts air distributions accord-
ing to its internal model predictive control
strategy (MPC). It then uses some manually
selected DCS channels and some manually
selected features from cameras. In contrast
to “no control”, an additional oxygen opti-
miser tries to reduce the amount of total air
as far as possible. The limits for that air re-
duction were defined by the plant operator
from a safety perspective and care about
calculated oxygen, CO emissions and steam
temperature.

— CoSyNE: The newly developed CoSyNE
control mode applies its control policy that
was found using evolutionary algorithms.
In contrast to the Pnav, it does not operate
on manually extracted or selected features
instead it uses the newly developed ap-
proaches for automatic feature extraction as
well as selection from both DCS- and cam-
era data. As in the Pnav-mode, the same
oxygen optimiser reduces excess air as low
as possible.

— Bayes: The newly developed Bayes proba-
bilistic control approach operates as well as
CoSyNE on automatically extracted and se-
lected features from both DCS and camera
data. As in the Pnav- and CoSyNE-mode,
the oxygen optimiser reduces excess air as
low as possible.

As motivated in detail in the previous section,
these tests were run in normal daily operation
with typical load changes and different coal

eg

types. The four control modes were run se-
quentially for 10 hours each. To make a fair
comparison, the following time ranges were
excluded from further evaluation:

— Plant load below 30 %,

— Powitec-system not activated by the plant
operator. This is mainly the case in abnor-
mal plant situations like shutdown or restart
procedures,

— Plant load changed by more than 10 %
within the last hour. This is not done be-
cause the controller would not work, but the
number of those transient parts would be
different for all tested controllers and this
comparison would not be fair,

— 30 minutes after switching the operating
controller, because the process takes some
time to adjust to the new control settings,

— Exploration time ranges of all controllers:
These take about two hours and are used to
explore other control settings in order to
detect process changes and to improve.

To make the resulting data comparable, data
from only the same coal type were compared.
To get rid of load case impacts and air to fuel
ratios, the evaluations were split into different
load and oxygen classes. Figure 8 showsa
comparison of all four control approaches
with respect to NO, emissions. Except for the
5 %-oxygen class, all three controllers outper-
form the “no-control”-mode. The Bayesian
controller performs best.

Figure 9 shows the corresponding evalua-
tions for CO. Neither of the controllers in-
crease the number of CO peaks to a consider-
able extent. All controllers keep the number
of CO peaks at the same level.

Figure 10 finally plots the total amount of
oxygen that was reached. All three controllers
can reduce the oxygen level in comparison to
“no-control”-mode, which represents original
plant operation with a pre-defined load de-
pendent oxygen level.

The same evaluation that has been presented
in Figure 8 to Figure 10 has been performed
for 12 other coals types from April until Octo-
ber 2009. To compress these very detailed
comparisons, total reductions in CO peaks,
NOy, and O, were calculated for each coal
type, weighted by their reliability, The result
isshownin Figure 11.All controllers’ per-
formances correlates with “coal type”. On the
one hand, there are coal types that cause prob-
lems for all approaches, on the other hand,
combustion of some coal types can be im-
proved strongly. It has to be noted that a major
plant inspection was carried out between coal
type K and L. As can be seen, the investigated
controllers cope well with all process changes
caused by that plant overhaul.

In order to compress these results even fur-
ther, average reductions for all emissions

VGB PowerTech 03/2011
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Figure 10. Comparison of four control approaches with respect to O,. Since O, strongly
depends on plant load, test data was split into comparable load classes. The upper
diagram shows average oxygen levels that were reached by the oxygen optimiser in
cooperation with alf four controllers, separated by load classes. Vertical bars indicate
the standard deviation inside that class. The diagram in the middle shows differences
between "no-control” mode and the other three controllers. The lower diagram shows
a histogram of test data with respect to load ciasses.
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Figure 11. Comparison of all four control approaches for alf comparable coal types between
April and October 2009. Note the different durations of these coal types (shown within
parenthesises in days). The comparison is made in relation to the “no-control” mode,

which is the zero-level in these plots.

weighted by the duration of corresponding
coal type were calculated. Figure 12 shows
the results. There are no considerable increas-
es in CO peaks for any of the controllers. NO,
emissions could be significantly reduced by
all controllers by approximately 20 mg/Nm?.
Note that for all controllers real NOy reduc-
tion exceeds this number, because in this
comparison the impact of oxygen reduction is

BT o e T ———— e
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intentionally excluded! At best performs the
Bayesian controller, who slightly outperforms
the Pnav and CoSyNE. The largest reduction
of excess air measured by oxygen is achieved
by the Bayesian controller, which could re-
duce O, by 0.66 %. This value is clearly above
the average of all load cases and all coal types.
Also CoSyNE works better than the Pnav by
0.04 %.

Self-optimising strategy for combustion control

Economical results

Four main causes for economical results

through the SOFCOM system have been iden-

tified:

— Increased efficiency due to a continuous re-
duction of excess air,

— Reduction of air and its impact on mainte-
nance,

— Reduction of air fan operation (decreased
energy consumption),

— Reduction of spray water for steam tem-
perature control.

In the following sections the economical ben-
efits are assessed.

Boiler oxygen reduction

Calculations about the economical savings

due to the reduction of oxygen by reducing

excess air are based on the following assump-
tions:

— Full load operation (5,500 hrs/y): SOF-
COM with A = 1.16 versus manual opera-
tion with A = 1.24, equals to 5.4 Nm?¥/s less
excess air,

— Part load operation (2,500 hrs/y): reduction
of 2.7 Nm®/s of excess air

- Gas enthalpy = 159 kJ/Nm®
— Calorific value coal = 25,000 kJ/kg

— Coal price incl. CO, emission costs
= 100 €/t

This results in a yearly savings of (859 kl/s -
5,500 h + 429 kJ/s - 2,500 h)/25,000 kJ/kg
3,600 s/h - 100 €/t = 83,500 €

Reduced fan operation costs

The economical benefits resulting from re-
duced fan operation due to less excess air are
estimated on the basis of the following as-
sumptions:
— Efficiency in condensation operation:

37.5 %.
— Electric savings ID-fan = 125 kW,

FD-fan = 40 kW.

This results in yearly savings of
8000 h - 3,600 s/h - (125 kW + 40 kW) - 100/
37.5 %/25,000 kJ/kg - 100 €/t = 50,000 €

Spray water reduction

The turbine has a high-pressure and a low-
pressure steam cycle. Two spray water tem-
peratures control the HP-part steam tempera-
tures one the RH-part. The most theoretical
efficient operation would be to eliminate RH-
injection.

From operational experience with the
SOFCOM-system, optimising both air distri-
bution and air amount, the heat distribution
has improved in a way that less spray water is
used in the RH-part by about 1 kg/s. Assum-
ing the following
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Figure 12. Comparison of all four controllers for CO peaks, NO,, and O,.

— Total amount of spray water is 76 kg/s,

— Coal consumption = 250,000 t/y,

— Boiler efficiency = 93 %.

— 1 % spray water reduction = efficiency fac-
tor increase of 0.13 %

results in yearly savings of

250,000 t/y — (250,000 t/y - 93 %/(93 % + 1 kg/
§/76 kg/s - 0.13 %)) - 100 €/h =~ 45,500 €.

Prolonged time of full-load operation

Due to excess air reduction the plant can run
longer at full load. Especially shortly before
an inspection, fans are polluted and their effi-
ciency is reduced. At some point, fans cannot
transport all exhaust gases, even if they run at
maximum speed. In this case, the plant’s load
has to be reduced. It is hardly possible to reli-
ably calculate the economical impact of that
effect, because there are many external influ-
ences like heat demand, weather conditions,
generator limits and coal types. However, it is
the opinion of plant personnel that the pro-
longed boiler run-time significantly increases
income.

Summary

In total, all savings total to about 179,000 € a/
boiler. For the two boilers at the Tiefstack site
the savings are 358,000 €/a.

Additionally the plant generates increased in-
come due to the possibility to run the plant at
full load. This effect is, however, very hard to
estimate in economical terms.
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Conclusions and future work

Conclusions

The combustion control system at the Tief-
stack plant was improved. Camera-based
flame information and advanced algorithms
are used in an adaptive system to control dis-
tribution and total air amount.

The technical conclusions from the project
can be summarised as follows:;

— The SOFCOM system reduces excess air
by 0.7 volume-%, and NO, by 20 mg/Nm>,
In spite of these reductions the increases of
CO peaks is only 0.03 % (same oxygen
level in flue gas). If it is taken into account
that O, is reduced by the controller, NO,
will be reduced even further.

— With much less human effort, the new auto-
matic control architecture in the SOFCOM
system achieves slightly better improve-
ments compared to the Pnayv, the predeces-
sor of SOFCOM. Installations in different
plants will require less effort, still reaching
optimum control.

— The developed signal processing algo-
rithms, the automatic feature extraction
and feature selection, are working well in
online operation under time varying proc-
ess conditions, provide robust and stable
results, and outperform traditional ap-
proaches like Principal Component Analy-
sis (PCA).

\Y==

— The economical benefits of the developed
combustion control solution have been es-
timated and can be summarised as fol-
lows:

— With SOFCOM the plant works at a mi-
nimum excess air, leading to increased
efficiency and yearly savings of about
83 500 €.

— Reduced air fan operation and reduced tem-
perature control spray water adds 95,500 €
per year.

— In total the SOFCOM system saves Vatten-
fall Tiefstack approximately 358,000 € per
year (179,000 € per boiler).

— Due to the reduction of excess air, the boiler
may also be run longer at full load, espe-
cially before inspection. This increases sub-
stantially the income which is very hard to
estimate in economical terms.

References

[1]  Hellwig, S.: Policy Iteration fiir die intelli-
gente Regelung unter Beriicksichtigung des
Stabilitéts-Plastizitdts Dilemmas, Diploma
thesis Ilmenau University of Technology, Oc-
tober 2009.
Schaffernicht, E., Stephan, ¥, Debes, K., and
Gross H-M.: Machine Learning Techniques
for Selforganizing Combustion Control, Con-
ference on Artificial Intelligence (KI 2009),
September 2009,
Schaffernicht, E., Stephan, V., and Gross
H-M.: Adaptive Feature Transformation for
Image Data from Non-stationary Processes,
International Conference on Artificial Neural
Networks (ICANN), September 2009.
Barth, C.: Vergleich von Reinforcement
Learning Verfahren in kontinuierlichen Zu-
stands-Aktions-Rédumen, Diploma thesis I1-
menau University of Technology, July 2008.
Rosner, C., Répell H., Wintrich, E, and
Stephan V.: Wirkungsgradverbesserung an
steinkohlegefeuerten Dampferzeugern mit-
tels lernfahiger videogestiitzter Luftvertei-
lungsoptimierung, VGB-Fachtagung “Brenn-
stofftechnik und Feuerungen®, 2008.
Reinhardt, M,: Konzeption und Implemen-
tierung eines Systems zur StellgréAenbewer-
tung und Komposition von Makrooperationen
fiir die intelligente Feuerungsfiihrung, Diplo-
ma thesis Ilmenau University of Technology,
November 2007.
Niegowski, R.: Selbstorganisierende Merk-
malsextraktion durch adaptive Datenfilter,
Diploma thesis Ilmenau University of Tech-
nology, September 2007.
Neuhaus, M.: Feature-Selection fiir nicht-
lineare Realweltprozesse zur videobasierten
intelligenten Feuerungsfithrung, Diploma
thesis Ilmenau University of Technology,
February 2007.
Gomez, E, Schmidhuber, J. and Miikulainen:
Efficient non linear control through neuroev-
olution, In European Conference on Machine
Learning (ECML), pp 654-662, 2006.
[10] Bishop, C.: Pattern Recognition and Machine
Learning. Springer, 2006. O

[3]

[4]

(5]

6]

(71

(8]

(9]

VGB PowerTech 03/2011





