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Abstract This paper describes the objectives and the

state of implementation of the ROREAS project which

aims at developing a socially assistive robot coach for

walking and orientation training of stroke patients in

the clinical rehabilitation. The robot coach is to au-

tonomously accompany the patients during their exer-

cises practicing their mobility skills. This requires

strongly user-centered, polite and attentive social nav-

igation and interaction abilities that can motivate the

patients to start, continue, and regularly repeat their

self-training. The paper gives an overview of the train-

ing scenario and describes the constraints and require-

ments arising from the scenario and the operational

environment. Moreover, it presents the mobile robot

ROREAS and gives an overview of the robot’s system

architecture and the required human- and situation-

aware navigation and interaction skills. Finally, it de-

scribes our three-stage approach in conducting function

and user tests in the clinical environment: pre-tests with

technical staff, followed by function tests with clinical

staff and user trials with volunteers from the group of

stroke patients, and presents the results of these tests

conducted so far.
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1 Introduction

As motor and cognitive learning are not passive pro-

cesses, patients recovering from a stroke must play an

active role in the rehabilitation process if improvement

is to occur (Andrade et al. 2014). Against this back-

ground, a new trend in rehabilitation care is promis-

ing vast medical as well as economic potential - the

so-called self-training of the patients. This finding was

the context and the motivation for the research project

ROREAS (Gross et al. 2014) running from mid 2013

till the beginning of 2016, which aims at developing a

robotic rehabilitation assistant for walking self-training

of stroke patients in late stages of the clinical post-

stroke rehabilitation. The robotic rehab assistant is to

accompany patients who already got the permission

to walk on their own without professional assistance

during their walking exercises, practicing both mobil-

ity and spatial orientation skills. It shall also address

the patients’ insecurity and anxiety (“Am I able to do

that”, “Will I find my way back?”) which are possible

reasons for not performing or neglecting self-training.

The assistant is also supposed to monitor and document

the exercises and store clinical records for accounting

and clearing with insurance funds, thus combining im-

proved training capabilities for patients and organiza-

tional efficiency for the rehabilitation clinic.

The project requires consistent integration of in-

tuitive assistive functions allowing customized individ-

ual exercise plans, advanced human-robot-interaction

(HRI) skills, and robust and polite autonomous nav-

igation in populated public environments. Beside the

user-centered development and implementation of the

robotic training assistant, comprehensive user tests with

volunteers from the group of stroke patients and a de-

tailed analysis of the results shall quantify its medical
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Fig. 1 Robotic walking coach “ROREAS” during a walk-
ing tour in our test site, the “m&i Fachklinik” rehabilitation
center in Bad Liebenstein (Germany)

effectiveness and reveal factors promoting or impeding

the acceptance of its application.

Building on preceding own projects in socially as-

sistive robotics for public operation (Gross et al. 2009)

and domestic use (Gross et al. 2012), (Gross et al.

2015), the aim of the ROREAS project is (i) to com-

plete the spectrum of robotic functionalities and ser-

vices that are required for a robotic walking coach, and

(ii) to evaluate the usability, the usefulness, and the

added value of the rehab assistant for the patients dur-

ing their clinical post-stroke rehabilitation.

The remainder of the article is organized as fol-

lows: Sect. 2 first gives an overview of the training sce-

nario and describes the constraints and requirements

arising from this specific rehabilitation scenario, while

Sect. 3 discusses related work in the field of mobile

rehabilitation robotics with a focus on walking train-

ing. Based on this, Sect. 4 presents the ROREAS pro-

totype, an application-tailored mobile robot developed

within the ROREAS project to meet the requirements

to a personal training robot. Then Sect. 5 gives a brief

overview of the robot’s functional system architecture,

while Sect. 6 introduces essential HRI and navigation

skills required for a robot coach that can operate au-

tonomously in such a challenging real-world environ-

ment like a rehab center. Using these functionalities,

Sect. 7 introduces our three-stage approach in conduct-

ing the function and user tests in the clinical environ-

ment, presents first encouraging results of these tests

conducted under clinical everyday conditions with vol-

unteers from the group of stroke patients, and gives an

outlook on upcoming user studies. Finally, Sect. 8 sum-

marizes our main contributions.

2 Robotic walking coach in the rehab scenario

In this section, we outline a typical training session

with the robotic walking coach, describe the specifics

Fig. 2 GUI-based interaction between patient and walking
coach “ROREAS”. (left) intro-question regarding the desired
length of a walking tour. (right) after training: floor plan with
the route walked

and challenges of the clinical setting, and define the re-

sulting technical requirements for the robotic walking

coach.

2.1 Typical training session

During the specification phase of the project, it was de-

fined that only physically impaired stroke patients who

already got the permission by their doctor in charge

to walk on their own without professional assistance

(usually using walking aids) are to be involved in this

robot-assisted Walking training. The initially intended

robot-assisted Orientation training of cognitively im-

paired stroke patients who require a dedicated training

of their cognitive skills, e.g. by spatial exploration of the

whole building or elevator usage, was completely post-

poned to a follow-up project due to the high complexity
and the medical and ethical challenges and restrictions

of this type of self-training. The duration of a walk-

ing training session was limited to no more than 20-30

minutes, depending of the physical conditions of the re-

spective patient. However, it was allowed that multiple

sessions can be scheduled on the same day to intensify

the training.

In the following, a sketch of a typical walking train-

ing session is given as it is supposed to be realized till

the final user tests at the end of the project. The train-

ing session is initiated either by the robot by sending

a text message to the phone in the patient’s room or

optionally by the patient, who can call the robot by

telephone. The robot then autonomously drives to the

patient’s room and takes a non-blocking waiting posi-

tion at the door. It observes the corridor for a person

emerging from the respective room door and then starts

a verbal greeting, for instance: “Good morning, I am

your personal walking coach. Please touch my screen.”

Then the patient logs in via touching a start button on
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the screen as asked by the robot. After that, the re-

identification module on the robot learns the current

appearance of the patient based on the present cloth-

ing, which is required for keeping track of the right user

during a training session in a crowded environment.

Based on the training progress in preceding train-

ing sessions, the patient is offered a suggestion for the

upcoming walk by means of speech and GUI output,

for example: “On my screen you can see your last walk.

You did the way to the first resting point twice. I think

you can make it to the second resting point today.”

Then the patient has to select a way (see Fig. 2, left)

to walk or can cancel the session, if s/he feels too weak.

After that, the robot gives instructions on the way and

follows the patient: “Let’s go to the first target point. I

will follow you. Touch my screen, if you need my help.”

If the patient takes the wrong way at the beginning

or during a tour, the robot, which is following in a dis-

tance of two to three meters, detects this, points the

patient on this issue, and waits for the patient to go

the right way. If the patient does not react accordingly,

the training session is canceled and the nursing staff

gets informed by means of a text message.

On the way during the walking session, the robot

points out possibilities for having a rest (the resting

places ‘R’ in Fig. 3) and also remarks orientation fea-

tures (e.g. pictures on the wall, plants, etc.) which are

helpful for finding the way back on longer tours. Thus,

the patient can either go on or take a seat to revive. If

the robot detects, that the user has sat down too often,

it suggests to finish the training and offers going back

to the patient’s room or calling for the nurse. Also mid-

way of the planned walk, the robot mentions that and
suggest to return.

Depending on the interval of breaks and the distance

gone, the robot reacts by means of motivating and en-

couraging speech and GUI outputs, such as: “Compared

to our last session, you went a much longer way before

you needed a break. This is a great improvement. Keep

on going!” At the end, back in front of the patient’s

room, the robot offers to continue the training and walk

a bit further, if there is time left, or it summarizes the

training (see Fig. 2, right), reminds the next scheduled

appointment, and says good bye, for example: “We are

back at your room. Today you made 50 meters. That

is 10 meters more than last time. I will be here for our

next training tomorrow at 5 pm, if you like. Good bye!”

“Guiding” and “Following” patients are two differ-

ent modes of accompanying the patients by the robot.

In both modes, the patients are physically active as

they are walking - with or without walking aids - along

the corridors of the rehab center. However, consider-

ing the cognitive difficulty, the “Following” mode is

Fig. 3 Plan of one floor of the eight-floors rehabilitation cen-
ter (m&i Fachklinik) in Bad Liebenstein (Germany) used as
test site in the ROREAS project. The length of the corridor
is about 170 meters. R marks resting places for the patients
during their walking training along the corridor

more demanding for the patients than “Guiding”, as

the patients have to take the initiative and walk in

front of the robot which is only observing them and

their walking behavior. Thus, the patients need to ori-

entate themselves and avoid all obstacles along the tour

more actively. “Guiding” mode is only entered if the

patients have lost orientation to guide them back to

their room. As mentioned above, this shall address the

patients’ insecurity and anxiety (“Will I find my way

back?”) which is a possible reasons for not performing

self-training.

During the user trials, our partners from social sci-

ences (SIBIS Institute Berlin) observe and evaluate the

training procedure. However, for the later practical use

of the robot coach in daily clinical routine in the near

future, it is not planed to have clinical staff members

being involved. The robot will accompany the patients

and document the training session and the achieved re-

sults (length of the walking tour, duration of training,

average walking speed, number of resting breaks, num-

ber of wrong decisions, etc.) autonomously. However,

the robot is not supposed to suggest modifications of

the training procedure, as this can be done only by the

doctor in charge. But the recorded training data pro-

vides an objective, quantitative basis for adapting the

patient’s training procedure to the measurable progress

in the rehabilitation.

2.2 Specifics and challenges of the clinical setting

Our test site for doing this walking training, the “m&i

Fachklinik” rehabilitation center in Bad Liebenstein, is

a complex U-shaped environment (Fig. 3) which ac-

commodates more than 400 patients. The building has

eight-floors, so that the robot coach must be able to

navigate across different floor levels. However, the autono-
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mous elevator usage could not yet be integrated into the

training application so far due to warranty regulations

of the elevator producer.

Moreover, the operational environment is highly dy-

namic and often very crowded. Staff working in the

patients’ rooms and patients are moving in the cor-

ridors and in the public areas, many of them using

walking aids (wheeled walkers, wheel-chairs, crutches)

which makes person detection and re-identification very

challenging. Often beds, supply and cleaning carts, or

wheel-chairs are occupying the hallways, resulting in

very restricted space conditions at some times (see Fig. 1).

All this requires situation-aware and polite navigation

and interaction abilities to guarantee a successful and

joyful walking training that will be accepted by both

patients and staff.

2.3 Technical requirements for the walking coach

Based on the described training procedure and the speci-

fics and challenges of the clinical setting, the main tech-

nical requirements we obtained from the requirement

specification with medical and physiotherapeutic ex-

perts in clinical post-stroke rehabilitation as well as our

own experiences from former assistive robotics projects

are summarized subsequently.

An intuitive and robust patient-robot interaction

plays a central role in our scenario, as the patients are to

be motivated repeatedly using the robot coach during

their self-training. Therefore, for (I)nteraction between

robot and patient, the following requirements have been

defined as mandatory:

I1: to reliably detect and keep track of moving, stand-

ing, or sitting persons in the local surroundings of

the robot even under hard conditions, for example,

if patients use walking aids or sit in wheel-chairs,

I2: to autonomously orient towards the current user or

drive in a position facing the user as prerequisite for

GUI-based interaction,

I3: to robustly re-identify the current user to avoid too

many mis-matches and training breaks if the user

was temporarily out of view or occluded by other

persons or obstacles,

I4: to follow the user in adequate distance during the

training,

I5: to guide the user during the training through the

center,

I6: to express interaction interest by controling the view-

ing direction of the robot’s eyes in the robot head,

and

I7: to realize an intuitively understandable multi-modal

(GUI, touch, speech synthesis) dialog for getting

and staying in contact with the user (see Sect. 4).

For autonomous, human- and situation-aware (N)a-

vigation of the walking coach, the following require-

ments were specified as crucial:

N1: to allow for a simple and quick mapping of the

operational area in the rehab center during the in-

stallation of the robot by manually driving the robot

around,

N2: to guarantee a robust and precise autonomous self-

localization of the robot at all levels of the rehab

center,

N3: to drive to any given destination in the center,

N4: to reliably avoid collisions with all possible static

and dynamic obstacles in the operational area,

N5: to politely pass standing or walking people guar-

anteeing a socially acceptable navigation,

N6: to predict and evaluate forthcoming critical dead-

lock situations and react proactively, e.g. by waiting

in an undisturbing position in front of the bottleneck

and leaving oncoming persons pass by, and

N7: to autonomously drive and dock to the charging

stations in the center.

Taking the training scenario and the requirements

and constraints of the clinical setting into account, the

following section briefly discusses related work in the

field of rehabilitation robotics with a focus on socially

assistive robots for walking and orientation training.

3 Related work

A comprehensive overview of current robotic technol-

ogy in rehabilitation care is given in (Andrade et al.

2014), (Wade et al. 2011) and (EU-Robotics 2015).

According to that, up to now the common approach

in the field of rehabilitation robotics is the application

of orthoses – robotic solutions that physically interact

with persons with motor deficits. This includes lower

extremity devices such as the LOKOMAT and ALEX

(Active Leg EXoskeleton) and upper extremity devices

that measure and apply forces and torques to the pa-

tient’s arm to assess or encourage specific motor task

practice. A systematic review of studies and publica-

tions dealing with robot-mediated upper limb rehabili-

tation in stroke is presented in (Basteris et al. 2014).

Intelligent walkers, so-called smart walkers or iWalkers

(Rodriguez-Losada et al. 2005), (Hirata et al. 2007),

equipped with navigation and guiding capabilities also

have some bearing to ROREAS, as they try to assist

elderly or disabled people in walking alone using the

active physical motion support of the walker.
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These works in rehabilitation robotics are, however,

less relevant for our approach, as ROREAS belongs to

the field of Socially Assistive Robotics (SAR). SAR is

defined in (Wade et al. 2011) as “provision of assistance

through social (not physical) interactions with robots.

A SAR system uses noncontact feedback, coaching, and

encouragement to guide a user during the performance

of a task. SAR systems can demonstrate task goals,

monitor the user, and provide augmented performance

feedback”. Although SAR has shown promise in a num-

ber of domains, including skill training, daily life assis-

tance, and physical therapy (Feil-Seifer and Mataric

2011), there is no SAR project known that aims in

the same direction as ROREAS - the development of

a mobile robot coach which can accompany inpatients

fully autonomously during their walking and orienta-

tion training within a clinical setting.

Therefore, the so called tour guide robots are at

least of a certain relevance for ROREAS. Among them,

there are such well known robots as Rhino, Minerva,

and Sage, the exposition guide RoboX, or the robots

Mona/Oskar at the Opel sales center at Berlin (see

(Jensen et al. 2005) for an overview). Usually, all these

robots guide visitors to a set of exhibits while offer-

ing related information, and thus show some similarity

to the walking coach function in ROREAS. The same

also applies to the still relatively small group of robotic

shopping assistants, such as RoboCart (Kulyukin et al.

2005), the ShopBot robot (Gross et al. 2008), and its

successor TOOMAS (Gross et al. 2009). These shop-

ping guide robots contact potentially interested cus-

tomers within the stores and offer their main service,

namely to guide the customers on the shortest possi-

ble route to the goods shelves with the wanted prod-

ucts. Of similar relevance are the Zuse-Guide project

(Stricker et al. 2012), where a robot-based mobile vis-

itor information system guides visitors to labs and of-

fices in a crowded multi-level university building, or the

SPENCER-project (Triebel et al. 2015) where a so-

cially compliant mobile robot, that can assist, inform,

and guide passengers in large and busy airports, is be-

ing developed. In this context, socially acceptable col-

lision avoidance for mobile robots that navigate among

pedestrians is a hot topic, e.g. in (Shiomi et al. 2014).

What all these robots have in common is the need

for solving hard technological challenges, as for exam-

ple politely moving in a crowded environment, guid-

ing interested people and distinguishing them from by-

standers, and robustly localizing the robot within this

environment. In contrast to the ROREAS-project, all

these robot guides only have an instrumental function

- namely guiding an interested user on a pre-defined

tour or on the shortest possible route to a target po-

sition. In these application scenarios, the robot guide

typically takes the initiative, and the user has to fol-

low the robot more or less strictly with goodwill. In

ROREAS, however, the patient takes the initiative and

decides how and how long the walking training has to

proceed, whereas the robot has to accompany and ac-

tively observe the patient and the training process to

assist in appropriate manner if necessary. For such a

robot coach that is supposed to train with the same pa-

tient again and again for a few weeks, besides the pure

instrumental training function a patient-robot relation-

ship needs to be established. In this relationship such

social-emotional factors, like the co-experience (how in-

dividuals develop their personal experience based on

social interaction with a robot), safety (the feeling of

security when interacting with a robot), and joy of

use (the perceived enjoyment when interacting with a

robot) (Weiss et al. 2011) will play an important role

for the acceptance and success of a robot-assisted train-

ing.

At the functional level of real-world navigation and

human-robot interaction, some similarities also exist

to the so-called care robots supporting the indepen-

dent living at home, developed for example in the Ger-

man projects WiMi-Care (Jacobs and Graf 2012) or

SERROGA (Gross et al. 2015), or in the EU-FP7

projects CompanionAble (Gross et al. 2012), (Schroeter

et al. 2013) or Hobbit (Fischinger et al. 2014). However,

none of these care robots was or is involved in such chal-

lenging training tasks with disabled people as required

in ROREAS. What is still lacking in all these applica-

tions of assistive robotics is a strongly human-aware,

polite and attentive social navigation and interaction

behavior as it is necessary for a rehab assistant that

can motivate patients to start, continue, and regularly

repeat their self-training with joy.

4 Robot platform ROREAS

For realization of the functionalities and requirements

defined in Sect. 2, the technology of the robot platform

requires high performance computational units for the

execution of all interaction, navigation and service al-

gorithms often running in parallel, intuitive interfaces

adequate for disabled people, and multiple sensor sys-

tems to perceive the robot’s environment and the user.

Moreover, the system design had to consider that the

robot typically needs to move in a narrow and popu-

lated clinical environment. As a consequence, numer-

ous requirements to the design, the technical realiza-

tion, and the sensor equipment of the robot platform

were derived which have directly influenced the design

process and the functionality of the robot assistant. In



6 H.-M. Gross et al.

1
.5

 m
, 7

0
 k

g 

Sensors Actuators 

Panoramic color vision system 

Controllable 6 DoF eyes 

Touch displays with GUIs and 

loudspeakers 

Three Asus RGB-D cameras 

Differential drive with castor 

Two 270° SICK-Laser scanners 

Closed bumper strip 

Bumper strips 

Fig. 4 Robot platform ROREAS developed as part of the
project on the basis of a SCITOS [saitoz] G3 robot of Me-
traLabs Robotics Ilmenau with its main equipment for envi-
ronment perception, navigation, and HRI.

addition to these functionalities and a pleasant design,

later production and operating costs and the longevity

of system components had to be considered.

According to the specific requirements for a robotic

walking coach, an appropriate training platform has

been developed in the project (Fig. 4). Its relatively

small size of 45 x 55 cm footprint and a height of 1.5

meters is optimized for a friendly appearance and an er-

gonomic operation even under limited space conditions.

Drive system: The drive system of the robot is a

differential drive with a castor on the rear which gives

the robot a good maneuverability and stability in spite

of its size and weight of 70 kg and allows a maximum

driving speed of up to 1.2 m/s.

Sensor equipment: For user perception, human-aware

navigation, and collision avoidance, the robot is equipped

with an innovative sensor concept consisting of two

SICK laser range finders with a total scanning range

of 360o placed at a height of 20 cm above the floor,

three Asus RGB-D cameras (two in driving direction,

one backwards), and a panoramic color vision system

mounted on top of the head.

Human-robot interaction: For interaction with the

patients, ROREAS is equipped with two 14 inches touch

displays for use while standing as well as sitting, a sound

system, and a robot head with two eyes with six degrees

of freedom (DoF). The touch displays are the central

communication interfaces to the robot, and the head

gives the robot a smart but still technical appearance,

which encourages users to interact with it. The head

has the following degrees of freedom: lifting and low-

ering of the head (+20o,−7o), rotation of the whole

head (350o), synchronized up and down movement of

the eyes, synchronized left and right movement of the

eyes, opening and closing of the eye lids (independently

for each lid). This way, the head directly supports the

user-robot interaction by the controllable viewing di-

rection of the eyes. This eye contact has proven to be

very helpful for successful interaction and exercising.

Power capabilities and operating time: With all the

sensors and actors running, a hierarchical energy-saving

concept in conjunction with energy-saving units enables

a long run-time of about 8 hours until the robot needs

a break for recharging. Assuming a maximum duration

of one hour for a training session, the robot can ac-

company eight patients over a full work shift without

breaks. It can be recharged by the integrated charg-

ing system in about 6 hours. As the robot can au-

tonomously dock to its self-charging station, a 24/7 op-

eration is possible if the resting periods of the patients

are strictly used for recharging.

Safety mechanisms: In addition to the laser- and

vision-based 2D and 3D obstacle detection (see above)

and the reactive navigation skill used for obstacle avoid-

ance and navigation safety described in Sect.6.5, the

robot is equipped with multiple bumpers, to detect pos-

sible physical collisions with obstacles. This additional

safety system involves a closed bumper strip about 4

cm above the ground, and bumper strips at both touch

displays. All bumpers are directly coupled to the drive

unit and guarantee an immediate safety stop, whenever

a collision is registered. For safety reasons, continuing

the tour requires an explicit confirmation by the user.

For an early detection of stairs going down, the robot is

additionally equipped with a distance measuring Tera-

Ranger One ToF-sensor which is 45o tilted in forward

direction and placed beneath the touch screen.

In comparison to the preliminary experimental plat-

form presented in (Gross et al. 2014), this new robot

platform is explicitly tailored to the user group of stroke

patients with a focus on easy usability while standing

or sitting, joy of use, and positive user experience, but

also on later production and operational costs.

5 Functional system architecture

The functional system architecture of the robot coach is

a further development of the architectures of our shop-

ping guide robots (Gross et al. 2008) (Gross et al.

2009). In comparison with these, however, the ROREAS

architecture is more complex, includes more human-

and situation-aware navigation and interaction skills

and behaviors (Fig. 5), and allows more flexibility in

realization of future new applications (training func-

tions). In the ROREAS architecture, all robotics related

methods and skills have been consistently abstracted
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Fig. 5 Multi-layered functional system architecture of the ROREAS training assistant consisting of Hardware Layer, Skill
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Application Layer implementing the specified applications for post-stroke self-training. Only the reddishly highlighted modules
will be covered in this paper as they are of particular relevance for a human- and situation-aware navigation of the robot coach.

from the applications itself resulting in a flexible, lay-

ered system architecture. The bottommost Hardware

Layer encloses the hardware (sensors and actuators)

and the operating system. The low-level sensor infor-

mation is processed in the next higher level, the Skill

Layer, which covers the whole spectrum of required nav-

igation and HRI skills that are executed in the Hard-

ware Layer in parallel.

Above the skills there are diverse modules represent-
ing the Behavior Layer which make use of the HRI and

navigation skills in the layer below. Here, for example,

a “Guide user” behavior is realized, other behaviors are

“Approach user”, “Follow user”, or “Wait aside” which

are necessary for direct interaction as well as a polite

human-aware navigation. These behaviors are exclusive

units each representing an individual control loop for

accomplishing the different navigation and interaction

functions of the robot. To do so, the currently used

behavior activates, deactivates, and parametrizes the

required skills. Furthermore, the Behavior layer oper-

ates as an interface for the Control Layer where two

finite state machines, the GUI- and the Behavior State

Machine, and the Training Database are implemented.

This layer contains the behavior control, which makes

use of the basic features provided by the HRI and nav-

igation skills and is orchestrating the behaviors. Based

on the Training Database and closely coupled to the

Graphical User Interface (GUI) and the Speech Syn-

thesis, the GUI State Machine is responsible for the

patient-specific training process taking into account per-

sonalized therapy plans and the already achieved pro-

gress in self-training. The Behavior State Machine com-

prises a set of states where each state is associated with

one of the behaviors in the Behavior Layer. Transitions

between the states are triggered by navigation events,

person tracking events, GUI interaction, or via the ad-

ministration remote interface. The highest layer, the

Application Layer, implements the specified applica-

tions and services, the “Walking coach” as the currently

most important training functionality, and leaves room

for further applications, such as the “Orientation train-

ing”, the “Exploration training” or “Elevator training”.

The robot’s basic functionalities for user tracking,

navigation, and interaction are implemented using

MIRA, a middle-ware developed for robotic applica-

tions, providing a framework suited to the requirements

of distributed real-time software. For an introduction to

MIRA and comparison to the popular robotics software

framework ROS (Quigley et al. 2009), see (Einhorn

et al. 2012).

6 Human- and situation-aware navigation and

interaction skills

Since a complete description of all services, behaviors,

and skills of the robot coach required for the walking

and orientation training would go beyond the scope of
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this paper, subsequently only an overview of those skills

and behaviors is given that are of direct relevance for

a human- and situation-aware navigation and training

to meet the technical requirements for navigation and

interaction defined in Sect. 2.3.

6.1 Person detection and tracking skills

In order to guarantee a successful walking training,

at any time the robot needs to know the exact po-

sition of its current training partner and other peo-

ple (staff, patients, visitors, other bystanders) stand-

ing, sitting, or walking around in its vicinity (require-

ment I1). For this purpose, we utilize a probabilistic

multi-hypotheses people detection and tracking system

(Fig. 5, Skill layer) developed in our lab (Volkhardt

et al. 2013). This system is able to track walking peo-

ple and people in standing or sitting poses. It is based

on a 7D Kalman filter that tracks the position, velocity,

and upper body orientation of the respective persons.

The tracker processes the detections of different, asyn-

chronously working observation modules: a 2D laser-

based leg detector, a face detector, and an upper-body

shape detector (Weinrich et al. 2012). The laser-based

person detection is well suited for detecting pairs of

legs as indicator for the presence of people in the vicin-

ity of the robot. However, in a rehab center we have

to deal with stroke patients who often need walking

aids. These tools occlude or touch the legs of the pa-

tients. Therefore, we have advanced the aforementioned

leg detector by introducing generic distance-invariant

laser-scan features that are then utilized to train classi-

fiers for detecting people without walking aids, people

with walkers, people in wheelchairs, and people with

crutches (requirement I1). Using this new approach for

laser-based people detection, in comparison to the first

approach based on (Arras et al. 2007) we could sig-

nificantly improve the detection of persons with and

without walking aids, and now even can classify the dif-

ferent walking aids with 86% correct classification rate

(Weinrich et al. 2014).

6.2 Person re-identification skill

As the self-training is to be performed in the corridors

of the rehab center, often many other people will be

present in the surroundings of the robot (see Fig. 6). To

hold contact with the current user, the robot must con-

tinuously track the user, and when the person was tem-

porarily lost from view, it must be able to re-identify the

user by its visual appearance (requirement I3). How-

ever, re-identification of a person by a mobile robot

Fig. 6 The Person following behavior needs an efficient and
reliable Re-identification skill to succeed during rush-hour
times in a clinical environment.

is very challenging due to the real-time requirements,

motion blur in the video data, a very dynamical envi-

ronment with many different lighting conditions, and

many objects, that trick state-of-the-art visual person

detectors to false positive detections. The narrow floors

of the building often lead to partial and temporally

full occlusions of the user by other people. The user

may also be only partially visible, if standing near the

robot, due to the camera mounted on top of the robot’s

head. Additionally, the size of the image regions con-

taining the user varies a lot with the distance to the

robot. Therefore, the person re-identification skill (see

Fig. 5, Skill layer) has to be robust to image motion

blur, varying resolution and illumination, occlusions,

people with walking aids, and false positive detections.

Moreover, the model of the current user needs to be

learned very effectively and quickly (see Sect. 2.2) while

the user is standing in front of the robot during logging

in via the robot’s touch screen (maximum one second

for model training). When re-identification is necessary

during the training, the current user should be correctly

recognized in at least 95% of all cases to avoid too

many mis-matches and training breaks (requirement

I3). This target number is based on the assumption,

that system failures (the number of misidentifications)

can be modelled by a Poisson process, where the time-

to-failure is exponentially distributed. With 95% cor-

rect re-identification rate, the probability to complete

a 250 meters long training tour without any person mis-

matches is 84%, so a typical training tour with a length

of only 100 meters could be completed without breaks.

A more detailed explanation for this estimate is given in

Sect. 7.1.3. When a decision between two nearby person

hypotheses is hard to make, the robot should stop and

ask the user to make itself felt. When it even loses con-

tact to the user and cannot re-detect its user again, the

robot first drives to the nearest resting place to check
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Fig. 7 Overview of our appearance-based person re-identification module running in real-time on the robot (from (Eisenbach
et al. 2015a)).

if it can find its user there. If this is without success, it

drives back to the patient’s room and waits there for a

few minutes.

To meet these requirements, we have developed a re-

identification workflow that is optimized regarding pro-

cessing speed, but does not decrease recognition accu-

racy. Fig. 7 gives a coarse overview: First, all persons in

the image have to be detected and tracked (see above).

Then, their appearance is described by multiple com-

plementary features. The current user is represented by

a multi-modal template composed of features extracted

during the log-in at the beginning of the training. To re-

duce the size of the user template, similar appearances

are fused by clustering. To accurately compare all per-

sons in the scene with the template of the current user,

we apply a distance metric that has been trained on
a scenario-specific dataset. To compose the matching

results for the different features, information fusion at

score-level (Ross and Nandakumar 2009), (Eisenbach

et al. 2015b) is performed. Afterwards, the person hy-

pothesis is chosen by a track-based decision consider-

ing preceding observations. Additionally, if the user can

be identified securely, the template is updated. Imple-

mentation details and experimental results of this re-

identification module on diverse standard benchmark

datasets are presented in (Eisenbach et al. 2015a).

6.3 2D/3D perception and mapping skill

In complex environments, such as the described reha-

bilitation center, many obstacles are very hard to recog-

nize by the robot’s 2D laser-range-finders, mostly since

the main extent of the obstacles is located above or

below the plane that is covered by the laser scanner.

To reliably avoid collisions with all possible static and

dynamic obstacles in the corridors and public spaces

(requirement N4), we additionally use three Asus RGB-

D cameras to obtain 3D information about the struc-

ture of the local surroundings. However, these sensors

produce a huge amount of data, and hence an appro-

priate representation is needed for processing this data

efficiently. We use a map representation that is based

on the Normal Distribution Transform (NDT) (Mag-

nusson et al. 2009). Such maps achieve a significantly

higher accuracy than voxel maps when the same cell

resolution is used (Stoyanov et al. 2011). The high ac-

curacy is necessary for a precise navigation especially in

narrow corridors. As described in (Einhorn and Gross

2015) in more detail, our NDT mapping approach is

able to model free-space measurements explicitly. More-

over, it detects and handles dynamic objects such as

moving persons directly within the generated maps.

This enables its usage in highly dynamic environments.

In addition to the 2D laser-based oocupancy grid maps,

the generated local 3D-NDT maps are used for local

navigation and obstacle avoidance (see Sect. 6.5).

6.4 Deadlock recognition skill

Due to the structure of the building with long rela-

tively narrow corridors which are often still further nar-

rowed by medical trolleys, stretchers, or wheel-chairs,

the robot is often confronted with narrow passages which

permit movements only in one direction at a time. Mov-

ing in such a confined space imposes (i) deadlocks in

narrow passages caused by a forthcoming person and

(ii) the problem of queuing, when the robot and a per-

son are attending the narrow passage in the same di-

rection. Fig. 8 schematically illustrates both situations.

Since a polite and proactive navigation is an important
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(a) Deadlock situation with a forthcoming person

(b) Queuing situation with a person moving in the
same direction as the robot.

Fig. 8 Schematic depiction of conflicting situations caused
by a narrow passage typical for the clinical setting.

requirement for a mobile robot assistant (requirements

N5 and N6), these situations must be recognized in ad-

vance to trigger a proactive reaction of the robot, that

is (i) driving to an undisturbing waiting position to give

way for the forthcoming person or (ii) forming a queue

by following the person through the narrow passage.

In our approach, these situations are characterized

by a set of features describing a narrow passage in con-

junction with a predicted space conflict with a moving

person and the spatial relationship between the person,

the robot, and the narrow passage. A possible space

conflict is detected by predicting the trajectories for all

tracked persons and for the robot through the narrow

passage. A collision can be described as that point in

time and space, where the predicted trajectories inter-

sect. Narrow passages are detected by calculating the

lateral distances to obstacles along the planned path of

the robot. The obstacles are extracted from the local

2D/3D navigation maps (see Sect. 6.5). Along with the

predicted collisions of all tracked persons, features de-

scribing the spatial situation around the narrow passage

are extracted. To provide the required polite behaviors

at narrow passages, currently we distinguish three dif-

ferent classes: Waiting, Queuing, and Proceed for non-

conflicting situations. As situation classifier, we use a

hand-designed decision tree. If class Waiting is recog-

nized, the robot rapidly needs to find an appropriate

undisturbing waiting position in front of the deadlock.

For this purpose, we use a combination of cost functions

that assess the suitability of possible positions with re-

gard to a set of specific criteria: (i) to allow the robot to

wait near walls, (ii) not to obstruct moving people, (iii)

to place the robot as close as possible to its current po-
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Fig. 9 Detailed view of the navigation skills shown in Fig. 5
right. The Topological Path Planner (Strategical navigation)
and the Metric Path Planner (Tactical navigation) inject
global knowledge into the Reactive Navigation via the navi-
gation objective “Path to (moving) goal”.

sition, and (iv) to allow the robot to continue observing

the narrow passage. By using a Particle Swarm Opti-

mization (PSO) approach (Kennedy 1995), the pose

with minimum costs is used as temporary waiting posi-

tion. A detailed description of the Deadlock recognition

skill is given in ?.

6.5 Navigation and obstacle avoidance skills

In addition to a reliable and intuitive human-robot in-

teraction, robust and user-centered navigation is a fun-

damental requirement for an autonomous robot coach.

The core components of our navigation architecture can

be classified in reactive, tactical (based on metric path

planning), and strategical (based on topological path

planning) navigation located within the Skill Layer (see

Fig. 5, right). These components are shown more de-

tailed in Fig. 9.
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On the reactive level, the DWA-based motion plan-

ner (Fox et al. 1997) and so-called navigation objec-

tives determine motion commands for the robot’s mo-

tor controllers according to the current task, which is

set by the current behavior localized in the Behavior

Layer (see Fig. 5). Each navigation objective is a sepa-

rate software plugin specialized for a certain navigation

sub-task, such as following a path to a goal position,

following the current user, approaching a standing or

sitting person, respecting personal space, or avoiding

obstacles by means of the robot’s 2D/3D perception and

mapping skill (see Sect. 6.3). This allows us to add new

objectives easily, when new tasks and behaviors become

necessary without changing existing parts of the navi-

gator. A detailed overview of all implemented objectives

is given in (Gross et al. 2014).

The output of the objectives is then used by the

DWA-based Motion Planner (Fig. 9, bottom left) to

generate motion commands that are then sent to the

robot’s motor controllers. For evaluation of all possible

motion commands within the DWA, the objectives re-

quire additional information from other modules of the

Skill Layer, such as person hypotheses from the per-

son tracker (see Fig. 5, left). Therefore, the objectives

can access this information directly from these mod-

ules. To rate all possible motion commands and search

for the currently best suited one, most objectives use

short-term predictions of the robot’s clothoid-shaped

local motion trajectories (Fig. 9, bottom left) in com-

bination with the cost maps (Fig. 9, middle left) which

are based on 2D occupancy grid maps. In these occu-

pancy maps all static obstacles (walls, doors, etc.) and

dynamic obstacles (persons, wheel chairs, supply and

cleaning carts, etc.) captured by the robot’s sensor sys-

tem (see Sect. 4) are represented. To include the knowl-

edge about static and dynamic obstacles represented in

the local 3D-NDT map (see Sect. 6.3) into this motion

planning, the local 3D-NDT map is simply projected

down to the 2D plane and merged with the laser-based

2D occupancy map.

To allow path planning across multiple floors and

to decrease the computing effort for path planning on

metrical maps, we utilize a hybrid, hierarchical topo-

logical map for path planning at the strategic level (see

Fig. 9, top), which allows us to model the elevators

as transitions between the different floors of the rehab

center. On the coarsest level of this graph, each node

represents a single floor of the building. Each node is

further subdivided into sub-nodes that represent the

aisles of each floor, etc.. On the finest level, the leaf

nodes contain metric occupancy maps. The path plan-

ning starts on the coarsest level using a general Dijkstra

algorithm and is iteratively refined up to the metric oc-

cupancy maps (Fig. 9, middle), where we finally apply

the computationally more expensive E* path planning

algorithm (Philippsen and Siegwart 2005). This hierar-

chical approach combines fast path planning on a topo-

logical map and the ability of dynamic re-planning that

is supported by the E* algorithm.

7 Field tests of the walking coach

Before it was possible to evaluate the walking coach to-

gether with stroke patients in user trials, it had to be

assured that all the required skills and behaviors for

HRI and human-aware navigation (see Fig. 5) did work

as expected in the clinic setting. Therefore, our field

tests were tripartite: First, we evaluated all skills and

behaviors in a controlled setting in the operational envi-

ronment of the rehab center under everyday conditions.

We began with the evaluation of the navigation skills.

Afterwards, we added skills and behaviors that included

interaction with a user. For security reasons, we did not

interact with actual patients at this stage, but replaced

them by briefed technical staff of our robotics lab as

described in Sect. 7.1. When the functional field tests

had been completed successfully, in the second stage

we tested the walking coach with clinical staff imitat-

ing the walking behavior of stroke patients, to ensure a

correct behavior of the robot coach in all defined situa-

tions (Sect. 7.2). Based on this, when the walking coach

had proven to be reliable and suitable, we started with

first user trails with actual stroke patients, which are

described and analyzed in Sect. 7.3.

7.1 Functional field tests with project staff members

To ensure, that all skills and behaviors required by the

walking coach do work accurately and securely, we at

first performed functional on-site field tests with staff

members of our robotics lab. This required the defi-

nition of benchmarking scenarios and systematic stud-

ies (EU-Robotics 2015). To this end, the requirements

defined in Sect. 2.3 were assessed in these functional

tests. With respect to the navigation functionality, the

requirements N1, N4, N5 and N7 could be fulfilled suc-

cessfully from qualitative point of view. Only require-

ments N3 (drive to any given destination in the center),

N2 (self-localizing at all levels), and N6 (handling dead-

lock situations) are still ongoing issues that need to get

solved the elevator control problem and the early de-

tection of deadlock situations. However, this was not an

impediment to the user trials, since the walking training

(in comparison to orientation training) will only take
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Tested Skills and Driving Guiding Following
Navigation Objectives (N3) (I5) (I4)
2D Obstacle Avoidance D1 - -
3D Obstacle Avoidance D2 - F1
Personal Space D3 - -
Deadlock Recognition D4 G1 -
Driving on the Right D5 - -
Person Re-Identification - G2 F2

Table 1 Overview of the conducted tests for the assessment
of the basic behaviors and use cases “Driving to specific goals”
(N3), “Guiding a person”(I5), and “Following a person” (I4)
together with the skills and objectives activated in each test
case.

place on a single floor, and handling of deadlock situa-

tions is necessary in guiding mode only. In the Walking

coach user trials with patients, the robot shall follow

them most of the time and guide them in rare cases of

emergencies only (e.g. when patients loose their bear-

ings).

A detailed quantitative analysis of the robot’s navi-

gation capabilities regarding obstacle avoidance, polite

distances to humans, the utility of considering the user’s

personal space, or the recognition of forthcoming dead-

lock situations will be presented subsequently. Regard-

ing the required HRI functionality, the situation is very

similar - most of the use cases have already been tested

on-site with volunteers and could be demonstrated suc-

cessfully from qualitative point of view. Additionally,

first quantitative results of benchmarking the HRI func-

tionality are presented subsequently.

7.1.1 Test design and realization

Extensive functional testing was performed in Febru-

ary 2015 over the course of 4 days and a driven dis-

tance of 15,000 meters within several floors of the “m&i

Fachklinik” rehab center in Bad Liebenstein at differ-

ent times throughout the day. This was done to assess

the robot’s basic behaviors under varying conditions,

such as challenging building-structures, changes in illu-

mination, and a variable amount of people within the

corridors. Table 1 provides an overview of the basic be-

haviors that were evaluated during functional testing,

namely “Autonomous driving to specific goals” (N3),

“Guiding a person”(I5), and “Following a person” (I4)

together with the skills and objectives (see Fig. 5 and 9)

used in each case (e.g. 2D vs. 3D obstacle avoidance).

The general setup for the functional tests was as fol-

lows: The robot had to drive autonomously back and

forth between navigation points that were located at

both ends of three hospital floors (see Fig. 10), with

an activated skill set depending on the current test

case (see Table 1). For quantitative assessment of these

skills, measures, as e.g. the number of collisions or per-

son mismatches, or the needed travel time, were deter-

mined. Additionally, an external observer was present,

who accompanied the robot and documented its be-

havior, but always from far distance to prevent any

distraction. Regarding the navigation performance, the

observer counted the number of (i) close (less than 10-

15 cm) passings of obstacles, (ii) close passings of per-

sons, and (iii) manually triggered emergency stops. Re-

garding deadlock recognition at narrow passages (an-

alyzed separately for people moving in the same and

in the opposite direction compared to the robot’s cur-

rent course), it was counted if a deadlock situation was

correctly recognized by the robot (true positives), ig-

nored (false negatives), or erroneously detected (false

positives). Regarding person recognition during guiding

and following, it was determined, whether and how of-

ten the robot confused the current user with a different

close-by standing person.

For the sake of an interruption-free testing process,

the external observer used a control interface on a tablet-

computer (called control tablet), which was specifically

developed for this purpose. Using this handy tool dur-

ing the field tests of the following behavior, the observer

was able to make real-time adjustments to skills (such

as person detection and recognition) and compensate

erroneous decisions of those skills which are still under

development. This way, the functional tests in the real

clinic environment could be started much earlier than

this would have been possible from the readyness level

of the respective skills. Moreover, the developers got ob-

jective and situation-specific feedback about the func-

tioning of their algorithms. At the same time, each man-

ual intervention (type and quantity) was documented

and stored within the device and could be condensed

into a graphical event-log afterwards.

7.1.2 Evaluation of navigation skills

2D vs. 3D Obstacle avoidance (D1 vs. D2): In extensive

field studies, we evaluated the performance of our 3D

perception and mapping skill (see Sect. 6.3) in compar-

ison with a standard 2D approach to meet requirement

N4 at best. In these tests conducted on three different

floors of the rehab center, the robot was driving au-

tonomously between two navigation points that were

located at both ends of the floors (see Fig. 10). The

traveling distance between the two goals was 172 m.

The robot’s total mileage in these tests was 12,000 m.

Hence, the robot commuted between both goals approx.

70 times. The average driving speed was 0.6 m/s, the

maximum 1.0 m/s, which is sufficient as the patients’

typical walking speed is significantly lower. To evalu-
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ate the obstacle avoidance capabilities, we counted the

collisions and close encounters (less than 15 cm) with

obstacles that nearly resulted in collisions. The latter

were identified and tagged manually via the control

tablet by the observer who supervised the robot’s be-

havior. The obstacles that had to be avoided between

the two goals were three medical trolleys, three seating-

accommodations, two or more wheel chairs, and depen-

dent on daytime, up to three supply carts of cleaning

staff and up to 30 people (patients, clinical staff, visi-

tors) as dynamic obstacles.

During the first 2,000 m of these tests (D1), the 3D

perception was disabled, and the robot sensed its lo-

cal surroundings solely using its 2D laser range find-

ers. In these tests, we counted 23 collisions and 18

near-collisions, which on average correspond to 12 col-

lisions and 9.4 near-collisions per kilometer. Due to

the high risk of colliding with obstacles or patients, we

aborted these tests after 2,000 m. During the remaining

10,000 m of our test runs (D2), we activated the 3D per-

ception. As a result, the number of collisions could be

dramatically reduced. There were only one collision and

4 near-collisions, which on average correspond to 0.1

collisions and 0.4 near-collisions per kilometer. Having

measured these mean failure rates, we could conduct

a reliability analysis in order to estimate the proba-

bility for finishing a training successfully without colli-

sions. The mean traveling distance for the robot to per-

form a full training with a patient can be expected as

s = 250 m, including the way to the room of the patient

and the training itself. Just like other system failures,

the number of collisions can be modelled by a Poisson

process, where the time-to-failure (here the driving dis-

tance to a collision) is exponentially distributed. Hence,

the probability for driving a distance s without collision

is given by p(x > s) = e−λs where λ denotes the fail-

ure or collision rate (Balakrishnan and Basu 1996).

Using the measured collision rates, the probability to

complete a 250 m training tour without any collision is

97% if 3D perception is activated. If no 3D perception

was used, the chance for a successful training decreased

to only 5%. It should be noted, that for our 3D per-

ception and obstacle avoidance approach the real-time

requirements were always met, while the module only

used 5-10% of the on-board computational power of the

i7-CPU on average.

Influence of considering personal space (D3): To eval-

uate the capabilities of our approach for politely re-

specting the personal space of bystanders while navi-

gating to a goal (requirements I4 and N5), a similar

setup to the 3D obstacle avoidance evaluation was used

(see Table 2). In these tests, we used the same goals on

3D perception 3D percept. +
only Person. space

Mileage 1,500 m 8,000 m
Persons 23 (15 per km) 133 (17 per km)
Near encounters 11 (7 per km) 4 (0.5 per km)
(less than 15 cm)

Table 2 Results from the evaluation of the Personal Space
objective (see Fig. 9).

the three different floors. The complete evaluation cov-

ered a total mileage of 9,500 m. The evaluation was split

into two runs again. During the first 1,500 m, the robot

ignored the personal space, while during the remain-

ing 8,000 m the personal space was respected. Due to

the convincing result of the 3D perception and obstacle

avoidance, we enabled the 3D perception for both test

runs. For evaluating the capabilities, again an observer

counted critical near encounters with persons, i.e. when

the robot drove too close to a person (less than 15 cm),

as this causes discomfort by confusing the person about

the robot’s interaction intention or even violating the

person’s privacy. Since this measure strongly depends

on the traffic volume, we conducted the tests at the

same time of subsequent days. To compare the traffic

volume, the overall number of persons who passed the

robot in a radius of 2 m was counted. Both test runs

had a comparable traffic volume. Regarding the near

person encounters, the first run ignoring the personal

space had 11 encounters with an average of 7 near en-

counters per kilometer. During the second run with the

personal space enabled, only 4 encounters were counted,

resulting in an average of 0.5 encounters per kilometer.

From these results, we conclude the necessity of a nav-

igation behavior considering the personal space for the

clinical environment.

Polite behavior at narrow passages: In this test, we

evaluated the performance of the Deadlock recognition

skill relevant for requirement N6. For minimizing the

risk of collisions or disturbance of patients, we enabled

the 3D perception skill and Personal space navigation

objective (see Sect. 6.5) for this test. During the test,

we let the robot autonomously drive between different

goals or guide a single person to these goals. In total a

distance of 4,700 m was traveled, and 157 bystanders

(staff members, patients) were crossing the robot’s way

in a 2 m radius. From these 157 bystanders, 35 per-

sons caused potential deadlock situations (15 queuing

and 20 waiting situations) at narrow passages on the

corridor the robot had to react on. The test conductor

manually counted the decisions taken by the Deadlock

recognition skill. The results are as follows: 34 of 35

deadlock situations were correctly classified (true posi-
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tive rate of 97%), only one deadlock situation was not

recognized by the robot. From these 34 correctly classi-

fied deadlock situations, 30 were assigned to the correct

deadlock type (accuracy of 88%). However, there was a

not negligible number of false positives - 26 of 122 un-

critical situations were classified as deadlocks (false pos-

itive rate of 21%) initiating a stopping of the robot and

waiting aside. For an everyday suitable walking training

with patients, this is still an unacceptable result, as the

wrong deadlock decisions again and again would un-

necessarily interrupt the training process with negative

consequences for the user acceptance. By critically ana-

lyzing these results, it revealed that the performance of

the Deadlock recognition strongly depends on the accu-

racy of the situation describing features which in turn

depends on the person tracker, the narrow passage de-

tection, and the space conflict prediction. Analysis of

the false positives revealed that 19 of 26 false positives

are caused by false detections of the person tracker. In

these cases, the deadlock recognition assumed to have

a conflicting situation with a person, even though there

was no person present at all. The remaining 7 false pos-

itives were caused by dynamic obstacles, e.g. moving

persons or objects moved by persons. Since the nar-

row passage detection uses the navigation map which

currently is not yet able to distinguish dynamic ob-

stacles from static ones, this movement could not be

considered in the space conflict prediction and leads to

false predictions. Thus, for a more robust human-aware

situation recognition further improvement of the per-

son tracker and the deadlock recognition are required,

which is subject of ongoing work. For the functionality

of the Walking coach, however, this behavior is not ab-

solutely necessary at the moment, as in this mode the

robot is following the patient, and the patient has the

initiative and tries to avoid deadlocks.

7.1.3 Evaluation of user re-identification

Test Design: To evaluate the benefit for the robot to uti-

lize the user Re-identification skill for resolving ambigu-

ity in user tracking, we also performed live tests in the

rehab center. Over a period of six hours, the robot fol-

lowed and guided three probands through one corridor

of the center (Fig. 10). Their appearances cover typical

clothing: dark/black, light/gray, and colored clothes.

To check, if there is still contact to the current user,

the person re-identification module frequently has to

compare all persons in the robot’s surroundings with

the currently valid user model learned during logging

in. In each run, one of the probands was guided and

followed by the robot (tests G2 & F2 in Table 1) as

shown in Fig. 10 for a distance of 400 m. The probands

Other 

Persons 

Position 

of Robot 

Follow 

Hypothesis 

Visualization of Re-Identification Result 

Start and End Point Turning Point 

Fig. 10 Map of one floor of the rehabilitation center in Bad
Liebenstein. Center: Exemplary visualization of appearance-
based re-identification where three probands were standing
around the robot.

could freely choose their route and walking speed, but

were instructed to behave like stroke patients (i.e. no

running). The behavior of the robot was observed and

manually corrected via the control tablet whenever the

robot did not succeed. In these cases, the correct posi-

tion of the test person was manually marked within

the local map shown on the control tablet, and the

robot had to continue. We repeated guiding and follow-

ing until a pure driving time of one hour was reached

for each proband and test. Therefore, the robot guided

the probands for an overall distance of 2,000 m and fol-

lowed the probands for 2,400 m. The behavior of the

robot was rated as correct, if it could follow or guide

the correct person continuously. Short stops, for a max-

imum of three seconds, were accepted for situations

where the robot was uncertain (e.g. when the person

was not detected for several consecutive images). Then

it had to continue. If contact to the test person was

lost, the robot had to stop, and was not allowed to fol-

low/guide other persons. Otherwise, the stop was forced

manually via the control tablet, the correct person hy-

pothesis was reset, and the robot had to continue.

To evaluate, which decision the robot would have

made, if it had not used the appearance-based visual

re-identification, a reference approach was run simulta-

neously: whenever the user track broke, it simply did

choose the new track with the shortest spatial distance

to the last observation. The robot was forced, how-

ever, to ignore this distance-based decision and behave

like the re-identification module suggested, as only the

number of these failure events was of interest. We ex-

pected a significant reduction of person switches us-

ing visual re-identification in comparison to the simple

spatial distance-based approach. For all these tests, the

3D perception, Personal space, and Deadlock recogni-
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Following the User

Mism. Mism.
Near Gener. Mism. Non- Unnec. Pers.

Run Persons Tracks Pers. pers. stops Ref.
1 15 748 1 1 0 2
2 13 701 0 0 1 3
3 14 262 1 0 1 1
4 11 772 0 0 0 1
5 8 241 0 1 0 3
6 6 275 1 0 0 0∑

67 2999 3 2 2 10

Guiding the User

Mism. Mism.
Near Gener. Mism. Non- Unnec. Pers.

Run Persons Tracks Pers. pers. Stops Ref.
1 8 386 0 1 1 1
2 13 465 0 0 2 1
3 10 847 0 0 0 0
4 5 247 0 0 1 0
5 12 154 0 0 0 1∑

48 2099 0 1 4 3
.
Table 3 Re-identification performance in live tests in the re-
hab center. Near Persons: number of nearby persons while
following the user for a distance of 400 m along the floor
of the rehab center. Gener. Tracks: number of assigned
tracking IDs for new person hypotheses (including all tracks
for near and far persons and valid false positive detections).
Mism. Pers.: number of mismatches of the current user with
other persons. Mism. Non-pers.: number of mismatches of
the current user with non-person objects, not caused by re-
identification. Unnec. Stops: number of unnecessary stops
triggered by the re-identification module, even though the
user was visually still observable. Mism. Pers. Ref.: number
of mismatches of the current user with other persons using the
reference method (see text) without visual re-identification.

tion skills were activated in combination with Person

re-identification.

Table 3 shows the results for following and guiding

the user. As can be seen, the implemented person re-

identification performs well and helps the robot to de-

crease the number of mismatches with other persons. A

drawback of visual user detection is the occasional con-

fusion of the current user with non-person objects (see

Table 3 - Mism. non-pers.). This happens if misaligned

images showing background structures or false posi-

tive detections appeared during the user model learning

phase after logging in. Then, the learned user template

incorrectly consists of correct user observations but also

of erroneous images of other person-like objects in the

scene, that may produce false positive matches with

these objects later on. In these cases, manual interven-

tion was necessary three times, when the robot followed

false positive detections and could not resolve the situa-

tion by itself. Since the number of mismatches needs to

be further reduced, the accuracy of the used Person de-

tection skill has to be improved further to guarantee an

error-free user template training after log in. The robot

did very well in stopping when the user was temporarily

not visible. At rush-hour times, where the reference ap-

proach (see Table 3 - Mism. pers. Ref.) fails clearly, the

visual re-identification performed very well. For exam-

ple, in the situation shown in Fig. 6, the robot had to

follow the proband on a zigzag course through a group

of seven people. The user was traced almost through

the group, but then he was lost during an evasive ma-

neuver. The robot immediately stopped as desired.

Summarized, during the two hours of following and

guiding probands on a track of 4,400 m, the robot came

in close contact with 115 other people. Overall, the

user was mismatched only three times. Even at rush-

hour times, the robot was able to reliably follow and

guide probands through the corridor of the rehab cen-

ter. We can expect 0.6 mismatches with other people

per kilometer, or 1.2 mismatches per kilometer in to-

tal (additional mismatches with false positive detec-

tions). As described in Sect. 7.1.2, the occurrence of

mismatches can be modeled as Poisson process. Using

the measured mismatch rates, the probability to com-

plete a 250m training tour without any person mis-

matches is 84%. Considering also false detections, the

probability to complete the training without any re-

identification errors is 74%. The current performance is

acceptable for first user trials with actual patients, de-

scribed in the next section, when an observer can cor-

rect the rare wrong decisions via the control tablet. For

autonomous long-term operation with patients, how-

ever, the re-identification performance still needs to be

improved further.

7.2 Functional tests with clinical staff

After successfully completing the functional tests with

staff members of our robotics lab, in May 2015 we eval-

uated the walking coach again - but this time with the

help of clinical staff. In these trials, trained clinical staff

imitated the walking behavior of typical stroke patients,

and the robot had to accompany them during their self-

training. This included extended human-robot interac-

tion, like interaction via touch screen, acoustic feed-

back to the user via speech output, and continuous eye

contact with the currently tracked user to intuitively

demonstrate the current point of interest. As in the first

functional tests, the trial observer could correct wrong

decisions of the robot’s skills via the control tablet.

With this support, all skills and behaviors proved to

be accurate and secure, so we could begin with the first

user trials with actual stroke patients in June 2015.
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7.3 User trials with stroke patients

In these user trials, only volunteers from the group of

stroke patients who already got the permission for do-

ing self-training by their doctor in charge have been in-

volved. On the day of the testing, these volunteers got

a demonstration and training of the robot’s functions

and abilities. Throughout the whole tests, the users’

activities were temporarily logged in specific log-files

used in ROREAS for automatic recording of the service

usage, unexpected events, and necessary corrections of

the external observer via control tablet. During the user

trials, an instructor and technical staff was present at

all time to guaranty safety for the patients. The tech-

nical staff observed the intentions of the robot on the

control tablet and intervened early whenever the robot

replied that it is unsure about its decisions (e.g. in re-

identification) or did not behave as expected. Due to

data protection regulations, we only were allowed to

store a limited amount of data. Therefore, we can only

report first quantitative results.

First user trial in June 2015: The first user study

was performed during low traffic times with defined

training routes at the ward. The robot performed eleven

walking training tours with five different patients (1-3

per patient depending on their fitness) who used dif-

ferent walking aids. The training only took 62 min-

utes, and a distance of 873 meters was covered. Dur-

ing these tests, the robot collided three times with ob-

stacles. These collisions resulted from rotational move-

ments near walls with handrails that could not be ob-

served by the robot’s sensors. Moreover, the robot came

in close contact with 78 people. Only twice, the robot

violated the personal space of a person. In both cases,

this behavior was hard to avoid due to high traffic on

the cooridors. Manual intervention by means of the con-

trol tablet was performed 19 times, to interact with the

re-identification module. Only two of these cases were

false decisions, the others were feedback due to uncer-

tainty of the recognition module.

Second user trial in September 2015: After these

first user trials with patients, we analyzed failures, im-

proved the skills and behaviors of the robot coach, and

successfully re-tested the robot coach with staff mem-

bers in August 2015. After this, in September 2015 we

conducted a second user trial with stroke patients in

a more advanced setting, which included longer train-

ing routes that could be chosen by the patients and

a training even during rush hour times. In this trial,

the robot performed 21 walking trainings with seven

different persons (2-4 per patient depending on their

fitness). The robot followed the patients for 2,109 me-

ters in 142 minutes (including all interactions and short

resting breaks). The number of collisions with obsta-

cles was reduced to one. Probably, this was caused by

an outage of the 3D sensor that did not recognize a

small wheel of a medical trolley. Also the number of

violations of personal space was reduced to one, where

a patient sitting in a wheel chair was not recognized by

the Person detection skill.

During these trials, the robot came in close con-

tact with a total of 353 people (16.8 on average per

training). Manual intervention for re-identification was

performed 56 times. Again, most cases were sent stops

due to uncertainty of the re-identification module. The

issues identified are problems in person detection due to

larger distances between robot and patient, and chang-

ing lighting conditions from hallway to darker corri-

dors. Only in nine cases manual intervention via con-

trol tablet was necessary due to false decisions of the

Person re-identification skill. Relating to the number of

people standing nearby in these situations, this is about

the same performance as achieved during the functional

tests with staff members described in Sect. 7.1.3. The

main reasons for this were very closely standing persons

with similar appearance and false-positive person detec-

tions of the detector modules. To address this remain-

ing re-identification issue, for future user trials we plan

to additionally use an external technical device to be

carried by the patient which is emitting ultrasound sig-

nals that can be located by the robot by analyzing the

interaural time difference (ITD) of the arriving sound

signals. To this end, the robot still has to be equipped

with two additional ultrasound receivers. Fusing the de-

cisions of both cues, the vision-based re-identification

and the technical user tracking, should minimize man-

ual interventions drastically and, additionally, enable a

retraining of the appearance-based model of the current

user.

Apart from these issues still to be solved, the robot

coach has functioned technically robust in the clinical

setting, and the robot’s services were usable by the pa-

tients. Nevertheless, handling the robot’s GUI and its

services obviously needs some practice, and some func-

tions need to be improved till the next user trials sched-

uled for end of the year 2015. Most involved patients ap-

preciated the robot’s instrumental function as walking

coach, however, they rated the usefulness of the robot

in its current state as limited due to the restricted range

of training tours and the still rudimentary walking ex-

ercising.

For the last phase of the ROREAS project, which is

still running till March 2016, a number of further user

trials with stroke patients with increasing complexity

regarding the offered training routes and the available

human-robot interaction capabilities is already planned.
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In these studies, the usability of the training application

by the patients will be evaluated by our project partner

from social sciences (SIBIS Institutes Berlin) using the

indicators effectiveness, robustness, safety and joy of

use. As it is difficult to reproduce exactly the same con-

ditions for each run, a qualitative research design has

been chosen. Data is going to be collected by partici-

pative observation, and participants (experts observing

the patients’ self-training with the robot) are asked to

think aloud during the exercises. Subsequent to user tri-

als, semi-structured interviews will be conducted with

the patients and medical experts. Then we are going

to see how well the robot’s behaviors and offered train-

ing services fit into the self-training concept and can

foster the physical and mental wellbeing of the stroke

patients.

8 Summary and outlook

This paper describes the current state in developing and

evaluating an assistive mobile robot coach for walking

self-training of patients in clinical post-stroke rehabili-

tation. It gives an overview of the desired training sce-

nario and the challenges and requirements of the clin-

ical environment and presents the mobile robot coach

ROREAS explicitly developed for this kind of robot-

assisted walking training. Moreover, it describes the

robot’s functional system architecture and those HRI

and navigation skills required for a robot coach that

can operate autonomously in a clinical everyday envi-

ronment. Then it reports on our three-stage approach

in conducting function and user tests in the operational

environment of the rehab center under everyday condi-

tions. For security reasons, in the first stage we did not

interact with real patients but replaced them by briefed

technical staff of our robotics lab. Based on this, in the

second stage we tested the walking coach with clinical

staff imitating the walking behavior of stroke patients.

As the walking coach had proven to be reliable and

suitable, we started user trails with actual stroke pa-

tients at stage three. In these trials, the robot could ful-

fill almost all expectations regarding its navigation and

interaction capabilities, nevertheless, there are diverse

skills that need to be further advanced by algorithmic

improvements and technical solutions to guarantee an

autonomous walking training without the assistance of

external observers making the control tablet obsolete.

For the last phase of the project running till March

2016, a number of further user trials with stroke pa-

tients with increasing complexity regarding the offered

training routes and the available human-robot interac-

tion capabilities is planned.

The question, how such a robot assistant may prac-

tically be integrated in the clinical setting in the future

is still an open issue, that depends on numerous fac-

tors, such as the usability and acceptance of the robot

coach by the patients and the clinic staff, the therapeu-

tic benefit of a robot-assisted self-training, the everyday

and long-term suitability of the robot coach, its costs

for acquisition and operation, new opportunities for the

clearing of the training with health or pension insur-

ance funds, safety regulations of the German Technical

Inspection Agency (TÜV), or the certification of the

robot coach as medical device. The ROREAS project

can only try to clarify a few of these factors, and much

work still remains to be done to transfer our project re-

sults into clinical practice. We are also aware, that any

claims of real benefits of robotic assistance can only

be substantiated by controlled comparative studies di-

rectly comparing robot-based assistive services to rel-

evant conventional approaches (Andrade et al. 2014).

The ROREAS project hopes to make a significant con-

tribution by gathering information about the perfor-

mance of assistive technology in real life and in daily

clinical routine.
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S., Körtner, T., Weiss, A., Argyros, A. & Vincze,

M. (2014). Hobbit, a care robot supporting in-

dependent living at home: First prototype and

lessons learned. Robotics and Autonomous Systems,

doi:10.1016/j.robot.2014.09.029

Fox, D., Burgard, W. & Thrun, S. (1997). The dy-

namic window approach to collision avoidance. IEEE

Robotics and Automation Magazine, 4(1), 23–33

Gross, H.-M., Boehme, H.-J., Schroeter, C., Mueller,

S., Koenig, A., Martin, C., Merten, M. & Bley, A.

(2008). Shopbot: Progress in developing an interac-

tive mobile shopping assistant for everyday use. In

IEEE Internat. Conf. on Systems, Man, and Cyber-

netics (SMC), pp. 3471–3478

Gross, H.-M., Boehme, H.-J., Schroeter, C., Mueller,

S., Koenig, A., Einhorn, E., Martin, C., Merten, M.

& Bley, A. (2009). TOOMAS: Interactive shopping

guide robots in everyday use - final implementa-

tion and experiences from long-term field trials. In

IEEE/RSJ Internat. Conf. on Intelligent Robots and

Systems (IROS), pp. 2005–2012

Gross, H.-M., Schroeter, C., Mueller, S., Volkhardt, M.,

Einhorn, E., Bley, A., Langner, T., Merten, M., Hui-

jnen, C., van den Heuvel, H. & van Berlo, A. (2012).

Further progress towards a home robot companion

for people with mild cognitive impairment. In IEEE

Internat. Conf. on Systems, Man, and Cybernetics

(SMC), pp. 637–644

Gross, H.-M., Debes, K., Einhorn, E., Mueller, S.,

Scheidig, A., Weinrich, C., Bley, A. & Martin, C.

(2014). Mobile robotic rehabilitation assistant for

walking and orientation training of stroke patients: A

report on work in progress. In IEEE Internat. Conf.

on Systems, Man, and Cybernetics (SMC), pp. 1880–

1887

Gross, H.-M., Mueller, S., Schroeter, Ch., Volkhardt,

M., Scheidig, A., Debes, K., Richter, K. & Doering,

N. (2015). Robot companion for domestic health as-

sistance: Implementation, test and case study un-

der everyday conditions in private apartments. In

IEEE/RSJ Internat. Conf. on Intelligent Robots and

Systems (IROS), pp. 5992–5999

Hirata, Y., Hara, A. & Kosuge, K. (2007). Motion Con-

trol of Passive Intelligent Walker Using Servo Brakes.

In IEEE Transactions on Robotics, 23(5), 981-990

Jacobs, T. & Graf, B. (2012). Practical evaluation of

service robots for support and routine tasks in an

elderly care facility. In IEEE Workshop on Advanced

Robotics and its Social Impacts (ARSO), pp. 46–49

Jensen, B., Tomatis, N., Mayor, L., Drygajlo.& A, Sieg-

wart, R. (2005). Robots meet humans - interaction

in public spaces. IEEE Trans. Industrial Electronics,

52(6), 1530–1546

Kennedy, E.R. (1995). Particle swarm optimization. In

IEEE Internat. Conf. on Neural Networks (ICNN),

pp. 1942–1948

Kulyukin, V., Gharpure, C. & Nicholson, J. (2005).

RoboCart: Toward Robot-Assisted Navigation of



ROREAS - Robot coach for walking and orientation training in clinical post-stroke rehabilitation 19

Grocery Stores by the Visually Impaired. In

IEEE/RSJ Internat. Conf. on Intelligent Robots and

Systems (IROS), pp. 2845–2850
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