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Abstract. This paper’s intention is to adapt prediction
algorithms well known in the field of time series analysis A
to problems being faced in the field of mobile robotics and s(t)
Human-Robot-Interaction (HRI). The idea is to predict
movement data by understanding it as time series. The

observed trajectory

<>

prediction takes place with a black box model, which P predicted

means that no further knowlgdge on motion_ dynamics is T trajectory

used then the past of the trajectory itself. This means, the o S >
. | ——

suggested approaches are able to adapt to different T.D 3‘3 t

situations. Several state-of-the-art algorithms such as —

Local Modeling, Cluster Weighted Modeling, Echo StateFigure 1: The observed trajectory (green) is to

Networks and Autoregressive Models are evaluated angredicted (red) for up to 50@re steps (about 8.3 sec

compared. For experiments, real movement trajectories 060 Hz). This is achieved only by exploiting the [

a human are used. Since mobile robots highly depend amajectory's characteristics using a window (yellow)Idf
real-time application, computing time is also considered.points equally spaced with interval

Experiments show that Echo State Networks and Local

Models show impressive results for long term motionFor applying these approaches with the described scenario,
prediction with a prediction horizon of up to eight secondsit js necessary that the algorithms fulfill some constraints
for online application. First of all, calculation time is an
1 Introduction important criterion. But, since most of the approaches rely
on the trajectories’ past, it has also to be considered, how
much data is needed to generate a useful prediction.
1 bserving a person for several seconds before being able
to predict her motion, doesn’t seem to be applicable. This
Broblem is also discussed in the experiments, but the focus
IS to the prediction qualitiy.
nThe next section introduces our time series analysis
gpproach to mobile robotics and HRI. Furthermore, the
techniques are discussed, which are chosen to be tested.
combinations are used to solve this problem ‘Se(;tion 2:1 _discusses Echo State networks, which. build
) irthe|r prediction by use of a randomly connected hidden

First of all, to be able to perform an adequate navigation, layer, which is iteratively fed by the past trajectory points.

Is hecessary to knpw the past mo_tion_t_raje_ctories of th%\utoregressive Models from section 2.2 assume a linear
surrounding dynamic objects. For simplification, a tracker )

; N . ! . “.relation in the time series which means that any time series
is assumed, which is able to provide such trajectories in ; : : -
. o value can be determined by using a linear combinatign of

real-time. Scheidig [7] , for example, presents a person_ "° : o
revious values. Local Models try to find similar states of

tracker, which provides the person’s position and he . . o
: : . he observed trajectory (see Section 2.4). Similar to Local
motion _trajectory projected onto the ground plane. odels are Cluster Weighted Models (Section 2.5).

Furthermore, it is possible to use a system tracking each owever, for this approach the state space is clustered. In

the person’s limbs. This results in a complex trajectory in__ . ! . : : o

L P section 3 the comparing experiments with their conditions

3D space as it is shown in Figure 2. In both cases, thg . . '

: ) . X . and results are presented, while the paper is concluded in
given trajectory of the motion can be interpreted as a tim

series7 with valuess, for time stepsi=0,1,...,n-1: T = Section 4.

(s()7sl7"'7sn—1)' . . - .

For predicting the data coming from the tracker, an2 11Me€ Series Prediction

assortment of time series analysis algorithms has beeDur approach aims at the interpretation of movement data

implemented and comparatively tested. as time series to perform a long-term prediction. Within
the field of time series analysis, a variety of algorithms

For autonomous social robots, like SCITOS [3], it is
important to predict their own movement as well as th
motion of people and other robots in their environment, fo
example to avoid collisions or to interact with moving
people. Hence, further actions can be planned mor
efficiently. Most approaches in this field focus on optimal
navigation strategies [6], [5]. This paper suggests spendi
more effort into prediction of the motion of the moving
objects instead. Often, only linear approximations or linea
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Figure 2: Example of movement data from the Uaisity of Glasgow. Shown are the body points from which di
available (a) and an exemplary trajectory of the movement of the left ankle while walking in circles (b).

does exist, coming from multiple applications with “echo” in the reservoir. That is the reason why only the
different backgrounds. Their fields of application reachcurrent time series valug is needed as input.

from prediction of economic data to climate and biologicThe weights of the reservoir determine the malik’ . In
data, such as neural activities [1]. To provide a significan{4], it is mentioned that the spectral radigsec of this
survey, state-of-the-art neural networks, probabilistic angnatrix' is an important parameter and must not have
deterministic approaches are selected for evaluation values above 1.0 to guarantee stable networks. The
The algorithms presented in this paper are intended to h@ndomly initialized reservoir matridV" can easily be
used for motion prediction to enable a mobile robot a MOr@dapted to a matrix with a desired spectral radius.
anticipative navigation in dynamic environment. In suchyy,\ever [9] argued that networks with a spectral radius
an environment the robots has to avoid collision withyoqe o slightly above 1.0 may lead to better results. Both

moving objects (humans, balls) or has to interact with,, piities are evaluated for their suitability for motion
them. For this purpose, the robot needs to predict th rediction

Erur?e?;:{[zr;e;t inttt:]risse tﬂznarrnelgi(?tli)({uﬁdfso.r B:asé%al:cﬁ}J?eFurthermore, the sparseness of the reservoir matrix plays
P 9 . pr . an important role. A sparse reservoir matrix means that
point on the trajectory is done iteratively for up to 500

. . -most of the weights in the reservoir are set to zero. This
time steps (this corresponds to about 8.3 seconds of motig 9

if using a sampling frequency of 60 Hz) (Figure 1). This isc'?;\n be interpreted as the reservoir being decomposed into

far beyond the abilities of a usual motion tracker, whichSUbSEtS’ which are responsible for basic signals being

only has to gap missing frames or deal with noisy sensoz\éiﬂ?go(%/ ;? ?hgl\ispe)?g;r:?syz:é A;\(satst,ggzge?cs)ted in [4] and [9],
data. '

The prediction in general takes place with the so-calleélb‘nOther characteristic of ESNs is that only the output

black box model which means that no further backgroun _elghts Wou are adapted and learned. All other weights
. S . . input, reservoir, feedback) are chosen randomly and stay
information is used than the past trajectory itself. The

aspired prediction shall follow the trajectory’s static.
characteristics, which can be found in their past. 12  Training and Aoolication
Furthermore, no explicit trajectory models are given, to bé& ~“ 9 pplication

able to freely adapt to completely new situations. For training, the network is initialized randomly, and the
The output of the tracker is given as described in section fraining time series is used as network input step by step.
Hence, thes, can be assumed as the tracked object’sThe m_ternal sta_tesn are calculated by using the following
position, e.g. in a three dimensional Cartesian state spagcursive equation:

s,=(z,y,2)" (see Figure 2) rn = F(W - Trot + Win - Sn + Whaok - On_1)
2.1 Echo State Networks r, describes the internal state at time stepV " stand for
the reservoir matrix, whilev,, andw,,, are the weights at

It is commonly known, that Neural Networks are well the respective edges (see Figure 3), whikethe transfer
suited for function approximation tasks. For the specific b 9 9 '

task of predicting time series, Echo State Networks (ESNsSdnC“O” of the reservoir neurons, which can be the Fermi-

are often used in the recent years [4], [9]. nction or the_hyperboli_c tangent. .
From a predefined starting point, the internal stajesan

211 Basic Idea be combmed to a_matnR. The adaptauoq step_ for th(_e
output weightsw,,; is a linear regression using this matrix

ESNs have some specific features which differ from?nd the vector of the related output valges

“standard” neural networks: The hidden layer consists o
neurons which are randomly connected (see Figure 3). If Wout = (RTR)_IRTO
the connectivity is low, this layer provides independent

output trajectories. For this reason, the hidden layer is alsd

called reservoir. Furthermore, there are neurons which ai%rrt]-:‘dllcuor}. Therzto, the_ networzlf IS fed aggln W'thlfthﬁ
connected to circles in the reservoir, so that past stated0'€ trajectory data as input, this time step by step. It the

! The spectral radius of a matrix equals to the largest Eigenvalue.
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7 reservoir™. linear combination op previous values. The parameter
d is the only one that needs to be defined. The general
equation for calculation is as follows:

n—1
S, = E Vi 8;

i=n—p

The v, are the AR coefficients of the previous values and

have to be calculated to predict future values. There are
several possibilities to determine these coefficients. Three
of them are discussed in the following.

-

Figure 3: The design of Echo State Networks has s 2.2.1  Wiener Filter
characteristic features. In addition to the randc
connected reservoir,, the training algorithm is rptty
simple for neural networks: Only the output weights,
are adapted.

The Wiener Filter simply does a linear regression with all
points in the training time series [10]. In the literature
usually the lastp points are used. A matriE with all
points of the training time series and a veaiowith the

o . ] ] output values for each embedding point are generated. The
point in time) the output is fed back to the input. So, the

last network output is used as the next input to be able to v = (ETE)_lEToT
generate more than one prediction step. In ou

experiments, up to 800 prediction steps are generated. Unlike as it is suggested in [10] to use only the last

values, the embedding discussed in section 2.3 is presented

213 Enhancements as input for the Wiener Filter. Experiments show that using
- o the embedding leads to better results.

In [9] a few additional Echo State Network features arenote that this algorithm has similarities to the Local

introduced, like an online adapting rule and a plasticitymodeling described in section 2.4 with the used regular

rule to adapt the Fermi transfer function parameters in th@mbedding. However, the nearest neighbor search, needed

reservoir {ptrinsic plasticity. Furthermore, additional for the Local Modeling algorithm, does not take place
weights such as a direct input-outpsit,() weight and a pere.

loop at the output neurosw(,,) are suggested. Apart from

the online rule, all other of those enhancements were 2 2  Dpurbin-Levinson
evqluqted anq t.est_ed. . . This algorithm is based on the autocorrelation function
Intrinsic plasticity is performed online. It helps to adjust ACF) p(h) which has to be determined before [8]. The
the reservoir transfer functions for better adapting to thé\CF dp ibes t tend th If similarit 'f th

current prediction task. It takes place before starting th escribes 10 some exten € sell similarity ot the

learning of the output weights and shouldn't last Iongelg'venbltm:jelse”gs’t by spe_u{ylng tLhet_correla_non T%f altlh
than 200 time steps, otherwise predictions could ge ossibie delays between points on the ime series. 1 hen he

instable. Unfortunately, intrinsic plasticity has the effec R coefficients can be calculated recursively to a defined

t
that the eigenvalues and thus the spectral radius of tf%iu?tzpthp' Values aroungy=100 often lead to the best

reservoir matrix increases.

Since in Echo State Networks a huge number o . - n .
recursion step: the n-th coefficient v, is computed.

e upper index stands for the recursion step, while the
Eower specifies the coefficient.

parameters can be adjusted, a more automated proc
would be reasonable, especially, for those networ
weights, which are not changed during the regular trainin

process, i. e. thev,, w,,.., and W'. We suggest to use w pn) = r v p(n — k)
multiple instances of the network, as a kind of simple Un = S )

stochastical search in the parameter space. All instances o o o 1

are trained using the same input data after initializing thé\ll existing  coefficients V.V, from  the  last
fixed weights differently (in a random manner). During therecursion step are adapted as follows:

trgining process, the_ output of each netw_or_k is cqmpared o = Uz—l _ U;va:i k=1,2,... . n—1

with the corresponding values of the training trajectory.

The network s_h_owmg the b_est prediction results for the Yeb 53 vule-Walker

unknown training data is then selected for further

application. The last method for determining the coefficients uses the

Yule-Walker equations [8]. For this approach, the ACF is
22  Autoregressive Models needed again, but this time in its unnormalized version, as
' u 9 auto-covariance functiop(h). Afterwards, the following

The next type of time series analysis algorithms introducedquation system can be solved to get the AR coefficients:
here are Autoregressive Models (AR). These models

assume a linear relation in the time series which means
that any time series value can be determined by using a
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¥(0) = v1y(1) + ... + v7(p) +ng classification in true and false neighbors, but a random
selection of around 5% to 10% of the time series

v(h) =vy(h—1)+...+vy(h—p), h=1,2,...,p embedding points.
To find neighbors, in general a distance measure is
necessary. In this paper, the Euclidian distance is used to
separate true and false neighbors. The embedding
. dimension D is increased step by step starting Withy.
2.3 Embedding Space If a significant difference in a point's distance betwden
For applying the approaches introduced in sections 2.4 arehd D + 1 is observed, then this point is detected as a
2.5, an embedding in a higher dimensional space ifalse neighbor. Otherwise this point seems to be a true
necessary. The resulting trajectory can not be directly usegeighbor. If the proportion of false neighbors falls below a
as input for most of the discussed algorithms. Therefore, dertain value, then the associated valueDofs used as
has to undergo several preprocessing steps. embedding dimension.
On the one hand, time series literature states that the me@g avoid this extensive search for paramet&rand D,
has to be removed from the time series, and, thereforgve, furthermore, used genetic algorithms instead. During
from the trajectories. On the other hand, a highethe training phase, the best combinations of embedding
dimensional embedding for the time series is generatedimension and embedding delay at a time are mutated. The
The well known sliding window approach can also beprediction results from the subsequent algorithm (Local
regarded an embedding. An observation window with sizélodeling or Cluster Weighted Modeling) are used to
T -Dis put on the trajectory (Figure 1). From this window, determine which mutation works best.
each T-th time step is used to generate the embedding.
This kind of embedding is calleeégular embeddin@nd 2 4 | ocal Modeling
two parameters are needed: the embedding dékyd the
embedding dimensionD. Such an embedding can be
generated for each point of the trajectory from time Step
-D on. The following equation shows the regular
embeddinge, at time step for time series values.

Unlike the Durbin-Levinson algorithm, now all
coefficients are determined at once.

Local Modeling [2] is based on the aforementioned regular
embedding. The principle idea is a simple nearest neighbor
search in the embedding space of the last point in the time
seriese, -, for which the prediction needs to be calculated.
With the found nearest neighbore;, and their
corresponding outputs, the prediction is generated.
“Near” means again a low distance in Euclidean space, but
So, the time series is transformed intaDadimensional also other distance measures are possible.

space — the embedding space. To each embedding belorigsthe general case, a polynomial is estimated for the
an outputo,, which stands for the successgr, of the  prediction describing the relationship between embedding
selected window. e, and outpuio,. The nearest neighbors are used to define
The two introduced parametefdand D don’t need to be the polynomial's coefficients applying linear regression.
defined by hand. Time series analysis offers techniques t6he influence of each neighbor can be controlled by a
automatically determine these parameters. For theveightw, depending on the distance to the embedding of
calculation of the embedding delay T, the average mutuahe last point in times,- ;:

information functionl(T) is typically used. It is sufficient

to search the first minimum in this function and to choose

T
€ = (St, St—T,8t—2T5--- :St—(D—l)T)

v = (PLPw) 'PL, .o

the right value forT’ as embedding delay [1]. Though, the weighted polynomial for each neighbor is
P(st,si_1) represented in matri¥,, by putting the polynomial’'s
I(T)= > P(st,st 1)logy W monomialg into the matrix elements,, is the weighted
St:S¢-T ¢ =T vector of the neighbors outputs.

Discretized histograms from the observed time series ar practice, the polynomial degrgeis usually low. Often
needed to calculate the probabilitigs,,s, ), P(s,), and its enough to usg=0 (Local Averaging Modglor g=1
P(s.). Proper values for the number of histogram bins(Local Linear Model. S

are between 15 and 30. In most cases, the smaller value!f the first case, the polynomial simplifies to a constant
used to keep the calculation time low. and the linear regression to a weighted mean of the
For the calculation of the embedding dimensibnthe ~ Neighbors outputs:
embedding delayl" is needed. Afterwards, so called true ZN w20
and false neighbors in embedding space need to be found. V= sﬁ”d = %
The idea behind the approaches for prediction is to find Do WP

parts of the trajectory in their past, which are similar to th pred . o :
one from which prediction needs to approximated. HencgNhere S is the prediction in time step The weights

a true neighbor is a real state space neighbor and qualifi% the neighborsw; can be d_etermlned n ma_”'fo'q ways.
for a prediction. False neighbors only seem to be neighbofa"€ €xample can be found in [2]. The basic idea is to rank
because of a too low embedding dimension. If thethe_ neighbors _accordlng to the|r_d|stanpe. This means, that
dimension is increased, what is equivalent with a furtheP€ighbors, which are far away, i.e. which belong to a less
look into the past, different behavior will be observed fromSimilar trajectory, have less influence.

such false neighbors. To speed up the whole embedding

procedure, not every embedding point is used for thg

elementary part of the polynomial, consisting of only one term
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Figure 4: Prediction of the 3D movement trajectory from Figure 2 using Local Average Model. The prediction starts at
time step 1000 and is calculated for 500 steps. No information about the actual trajectory is provided to the prediction
algorithm from time step 1000 on. On the left side (a), the three dimensions are plotted over time. The right plot (b) shows
a visualization in 3D space. The original trajectory is plotted in blue, while the prediction is in red color.

If the Local Linear Model is used, then the maff*xis  dimensional spaces. Otherwise, a covariance matrix would
filled with the embeddings of alV neighbors and with be necessary [2].

ones in the first column for the constant part of theThe output terms(ole,c,) determine the membership in
polynomials. The polynomial is now a linear function the output space which is assumed to be one-dimensional,
depending on the embedding. i.e. the next time step of the time series.

2
1 e 1 —(o=f(eBm))

P(ole,c,,)) = —-¢ 207,
(l’ ) \/m

The so called cluster functigfe,s,) represents the mean

After determining the coefficients) the prediction is of the Gaussians. This function can be understood as

P =

1eN

calculated as follows: similar to the polynomial in the Local Modeling (see
D section 2.4).
spred — g +Zen71,i71vi The following fraction can be understood as a weighted
p mean of the cluster function valug®,,,,) of all clusters.

The weighting takes place with the product from Input

Herev, stands for the constant of the polynomial. . )
To get good prediction results, it is crucial to chooseDomamP(e"lC ) and the general cluster weigh{c,,).

m,

proper parameters, such as the embedding paraniEters J ZM—I f(en, Bm)P(en|em)Pcm)
and D and the number of the nearest neighbdfs sp == D P
Especially with higher polynomial degrees, the algorithm 2im=1 P(enlem) P(em)

Therefore, an evolutionary algorithm was implementedrqr each cluster, the mean and variance for the Gaussians
which often leads to good results as recommended in [2]. iy empedding space and output space is needed.

) ] Furthermore, the cluster functigife,,(3,) and the cluster
2.5 Cluster Weighted Modeling weight P(c,,) must be determined.
The Cluster Weighted Modeling, which is described alsol'ypically an Expectation-Maximation-algorithm (EM-
in [2], is operating in the embedding space, too. Thealgorithm) is used to optimize most of the algorithm’s
viewpoint lies not on single embedding points like in theparameters. This subroutine calculates in the E-step a a-
Local Modeling. Now the embedding space is clusteregosteriori distributionP(c,lo,e) of the existing data as
and covered with Gaussian representation. Each clggster follows:
has a Gaussian repres_entatiBfe|cm) in the embedding P(ole, ) P(€]cm) P(cm)
space and another one in the output sg&ede,c,,). P(cmlo,e) = —7
The so-called Input DomainP(e|c,) specifies the 2 i1 Plole, ;) Pe|c;) P(ci)
membership from each cluster to the embedding for th
last point in the time series which is to be predicted.

th the following M-step the parameters are updated. The
algorithm can be found in detail in [2]. After several

D 1 — i —#m,)? iterations, the EM-algorithm leads to a local minimum in
P(e|len) = H — e ma the parameter space.
i=1 /2702, ; Only the number of clusters and the cluster function

remain to be chosen manually. All other parameters are
Note that the dimensions assumed to be independent iaitialized randomly and adapted using the EM-algorithm.
simplify the equation given above especially in high-As cluster function, similar functions like the Local
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Figure 5: The graphs shows the STE (a), (c) and LTE (b), (d) plotted for each of the investigated algorithms tested with
sine (a). Lorenz-attractor (b), and movement data (c), (d). The ordinate is scaled logarithmically. Hence, lower values mean
a better prediction. The error bars represent the standard deviation from the mean. For the STE, all results lie relatively
close together while the simple reference algorithm (red line), which is explained in section 3.1.2, can only be beaten
clearly by the Echo State Networks. Longer predictions show more differences in the results of the algorithms. Also the
mean errors are higher than STE, as being expected in longer predictions. The reference is beaten more clearly in genere
Local Average Models (LAM) and Echo State Networks show the best results.

Modeling polynomials can be used. Since, calculation timéBesides the movement data coming from the University of
strongly depends on the number of clusters, the value dblasgow, periodical and “standard” chaotic time series are
these parameter should not be too high for an onlinesed. As chaotic time series the Lorenz-Attractor is used.

application. It is a simple system of differential equations where the
single dimensions are not independent. This time series is
3 Motion Prediction a typically chaotic one, so small changes in a state leads to

) ) ) ] huge differences after a short time period.
The algorithms presented in this paper are intended to bghe periodical trajectories consist of up to three added sine

used for motion prediction to enable a mobile robot tqyayes, where each dimension is independent from the
navigate and to interact with humans in a dynamicyipers.

environment. To be comparable and reprogucible,

movement data taken from the University of Glasg@av .

used. This benchmark data is available as 3D coordinat%‘l Test Conditions

representation for each limb of a human performing alhe movement data has a resolution of 60 time steps per

certain action, e.g. walking (see Figure 2). Using this datg§econd, so that an average prediction horizon of about 500

is even more challenging, because several basic motioféePs corresponds to a prediction of 8.3 seconds into the

are combined (i.e. intrinsic movement, e.g. of the fooffuture. Most movement prediction techniques, as they are

combined with the walking direction). The data setused for tracking, are designed to predict an objects

consists of 25 trajectories containing 1,500 up to 2,50@osition for the next time frame or at least to gap a loss of

sampled points in Cartesian space. An example of e objectduring aonly a few frames.

prediction of the 3D movement data using Local Linear

Models (see Section 2.4), is shown in Figure 4. 3.1.1 Quality Measures

For comparing the prediction results, some kind of quality

3 measures for comparison are necessary. The used quality
http://paco.psy.gla.ac.uk/data ptd.php measures are based on the normalized mean square error
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Figure 6: The graphs show the STE (a) and LTE (b) plotted for each of the Echo State Network version tested on 1D and
3D movement data. The ordinate uses a logarithmic scale. Hence, lower values mean a better prediction. The error bar
represent the standard deviation from the mean. The different tests are labeled with “Jaeger” and “Steil” using the networks
presented in [4] and [9] respectively. For Jaeger networks, two versions are tested. On the one hand, parameters, like
number of neurons, spectral radius, and sparseness of the reservoir, where set to fixed values. On the other hand, thos
parameters are obtained randomly. For Steil networks, the number of neurons is increased (25, 100, 250). Additionally,

version 3 of Steil network uses inpyt, and s-, as input (not only,_, as for all other tests)

NMSE. Hence, the standard mean square error iseries analysis literature. Afterwards the results from the

normalized using the varianeg of the time series. motion data set are presented.
N
1 ; MSE i - i i
NMSE = - Z(Sfred —079Y2 = . 3.21 Smg gnd Lorgnz Attractor trajectorl_es _
N-o% H~ o In the prediction of sine trajectories, the Wiener Filter

) ) ) ) ) shows the best results in the mean for STE and LTE (see
Since the trajectories are three-dimensional angkigyre 5(a)). Note that Autoregressive Models can build
dimensions with greater difference are supposed to bgy o high values, so that the standard deviation in this
more important, the highest variance of all dimensions i$qe is very high.
used as normalization. _ With worse mean errors the standard deviation is also
Two different kinds of the defined measure are used. Thgywer. The Local Model and Echo State Networks lead
first one, the short term error (STE), is responsible forz|so to quite good prediction results, while the reference is
evaluating a short period of the prediction. It uses the firspeaten clearly by all prediction algorithms, as expected.

N = 75 prediction steps (which means 1.25 sec) with @redicting the chaotic Lorenz-Attractor (see Figure 5(b))
weighting of 1/f of the fth prediction step. On the other the Local Linear Models leads to the best results. Echo
hand, the performance is evaluated using the long ter8tate Networks perform also well — especially with higher
error LTE, which uses all prediction steps with a weightingnumbers of neurons. Here, the reference algorithms are

of 1/,/ , since some of the algorithm show the tendency toutperformed clearly, as well. The standard deviation in
drift away the prediction quality is relatively high.

3.1.2 Reference Algorithms 3.2.2 Real-world movement data

Additional simple reference algorithms were used whichin the prediction of movement data, the Echo State
should be outperformed clearly to get a useful predictionNetworks lead to the best results for the STE as it is shown
The first algorithm is a simple repetition of the last timein Figure 5(c), while for long term prediction Local
series value. Also a linear approximation is used adlodels have slightly better results (Figure 5(d)). The
reference, which simply does a linear approximation using\utoregressive Models perform barely better than the
the last two points of the time series. Both algorithms areeference. Here the Durbin-Levinson algorithm achieves
tested on each data set. For a clear presentation of tHee best prediction quality. Cluster Weighted Models show
experimental results in Figure 5 and Figure 6 the referencdée worst performance and their mean errors stay even

algorithm performing best is plotted as reference. behind the simple reference algorithms. The best
algorithms still beat the simple references clearly and are

3.2 Results and Comparison able to predict movements for several seconds (about 100
rediction steps) very well.

The following _tests : show the_ advantages - an n general, the difference between each of the algorithms
d|sadvantage_s O.f the different algorithms presented her nd the reference is much smaller than for the predictions
gor_(;hz apghca;llon, a nlljmger IOf pz;\]rame_lt_?]rs h?d to b8 the sine or Lorenz-Attractor trajectories. Nevertheless,

ecided to be able to apply the algorithms. The values Usgfie pqg; algorithms still beat the simple references clearly
are chosen after extensive tests, which are not d|scuss§-i d are able to predict movements for several seconds
?_Ere in d?ta'lf' h . he si dL (about 100 prediction steps) very well.

e results for the experiments on the sine an orenq—% can be assumed that the prediction of movement data is
Attractor dat.a set are d_|scussed at first. The PUrpOS€ Qf narder problem than predicting standard chaotic
these tests is the intention to stay comparable with imgie 1ories such as the Lorenz-Attractor. This is caused

by unique unexpected and unpredictable behavior, which
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Figure 7: The graphs show the STE (a) and LTE (b) plotted for the most promising algorithms of the previous tests (Local
Average Model (LAM), Local Linear Model (LLM), Echo State Networks ESN) in a similar fashion as in Figure 5. Each
plot is separated into 3 sections. From left to right, these sections show the results for the test with the subsampled
trajectory, the interpolated trajectory, and the comparison with the normal trajectory.

can be observed in the movement data. Therefore, theell, because they have a similar function like the
choice of the number of neurons in the Echo Statdeedback weightsv,,,,.

Network reservoir for example has only a minor effect. InJaeger [4] suggests to use 50 up to 2000 neurons for the
tests the difference in the prediction results of movementeservoir. Because, a higher number of neurons doesn't
data between 25 and 250 neurons were insignificant. It caead to significant better results, the size of the reservoir is
be presumed that the structure of the movement data dosst to lie between 25 and 250 neurons.

not allow a higher accuracy in the prediction unlike otherSteil [9] advises to apply intrinsic plasticity (adaptation of

chaotic time series [4]. transfer function parameters) for the first 200 time steps to
improve classification results of the network. Those
3.2.3 Acloserlook on Echo State Networks benchmark results in [9] were gained by applying the

Since, Echo State Networks performed as one of the be8flline learning rule. Since only offline learning rule is
algorithms for motion prediction, this section provides aused here, the results could not be confirmed. In both types
closer look at different versions. The literature providesf networks, intrinsic plasticity seems to have only minor
slightly different variants of Echo State Networks, two €ffécts when the offline learning rule is applied.

different ones are evaluated here. On the one hand\dditionally, Steil networks were extended in a TDNN-
networks with a structure from [4], called in the following "k? fashion, using more than only the last point of the
Jaeger networks and on the other hand, networks with %ajectory as input (labeled “Steil 3" in Figure 6). It can be
structure from [9] (Steil networks). For both networks, theobserved that this leads to better predictions in the very
spectral radius is set differently. While Jaeger [4] usedi'St steps (about 5 steps) but may destabilize the
spec=0.8, with Steil networks it is set tepec=1.0. prediction in the following _st_eps. Since t_he quality
Both networks are evaluated on real-world movement datq'€@sures sum over 75 prediction steps, no improvement
(see Figure 6). As already mentioned, the movement da@@" be observed in the results.

is available as a trajectory in 3D Cartesian space. These o

3D points are used directly as input for the network3-2-4 Reduced set of training data

(labeled “3D” in Figure 6), or they are split into three 1D The evaluation discussed in the previous paragraphs used a
time series, predicted independently with three networkséime horizon of 1000 time steps for training. Towards
(labeled “1D” in Figure 6). online application, such a long training phase would
It is recommended in [9] to initialize all Steil network require to observe the moving object for several seconds.
weights to 0.05. Since only weights to the output layer ar&ince, this is not possible in most cases, the tests depicted
adapted during training process, all other weights stay ah Figure 7 are executed with less data. Only 300 time
0.05. Actually, this value could not be confirmed with thesteps of the trajectory are used now. For the three left most
test on movement data. It could be shown for both networkesults in Figure 7(a) and Figure 7(b), those 300 points in
versions, that the feedback weigkts,,, must be scaled time are subsampled, as it would be the case when using a
very low (about 17% to guarantee stable networks. slow tracker. As it can be expected, the prediction quality
Furthermore, the input weights,, are set to values of significantly decreases (compared to the three right most
about 10°. For all other weights the influence of the results in Figure 7(a) and Figure 7(b)). A logical step at
chosen values is not that significant. this point is to use interpolation to fill the missing gaps.
Steil networks have additional weights to the output layeFor the test in Figure 7, a spline interpolation is used to
(w,.W,,.). These weights can be included in the learninggain 300 time steps of training data again. The results can
process as it is suggested in [9]. Unfortunately, in oube compared to the ones using the original trajectory
experiments this leads to instable networks, so that theggompare the three midway results in Figure 7(a) and
weights can not be learned for predicting the movemenfigure 7(b)).

data. These weights should be scaled low abotf’ 53
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Furthermore, it can be observed in general, that the resulfgediction into the navigation algorithm could be realized.
become worse than tested with a training period of 100@ne drawback for predicting movement data is the fact

points (Figure 5). that human beings may perform unexpected motion. Since
the discussed algorithms rely on the known characteristics,
3.2.5 Calculation Time it is possible to use them for detection of such unexpected

For any online application, the calculation time is of highP&havior.
importance, since the movement is supposed to be

predicted before it continues. Since, only MatLab5 Acknowledgments
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around 1,000 till 2,500 time steps, only a first estimationy . doing the evaluation work and contributing helpful
can be given here. ideas

Autoregressive Models and Echo State Networks with

lower number of neurons show a calculation time of abou

0.7 to 10 ms per prediction step. This is absolutel References

complying with online requirements. [1] Abarbanel, H., Parlitz, U., “Nonlinear Analysis of
Local Models and Cluster Weighted Models need longer Time Series Data”, In: Handbook of Time Series
calculation times between 50 and 250 ms. In the first case Analysis, WILEY-VCH, pp. 1 — 37, 2006

(Local Models), most calculation time is spend on the[2] Engster, D., Parlitz, U., “Local and Cluster Weighted
search for the nearest neighbors in the high number of Modeling for Time Serie Prediction”, In: Handbook of
training data. The Cluster Weighted Models are slow  Time Series Analysis, WILEY-VCH, pp. 38 — 65,
because of a long optimization time (the EM-algorithm). 2006

As already said, the calculation times are only intended &3] Gross, H.M., Béhme, H.J., Schréter, C., Miller, S.,
a first estimation. For example, the nearest neighbor search Koénig, A., Martin, C., Merten, M., Bley, A,

for Local Modeling is implemented straight forward and, “Shopbot: Progress in developing an interactive
hence, quite time consuming. Nevertheless, it is clear to  mobile shopping assistant for everyday use” In: Proc.
see, that Echo State Networks deserve further interest. IEEE Internat. Conf. on Systems, Man and

Cybernetics (IEEE-SMC), pp. 3471-3478, 2008

4 Conclusions and Future Works [4] Jaeger, H., Haas, H., "Harnessing nonlinearity:

The intenti  thi ¢ tth -k predicting chaotic systems and saving energy in
€ intention ol this paper was 10 connect the Well-known =\ eless telecommunication”, Science, pp. 78 — 80,

field of time series prediction and movement data handling April 2004

from robotics or from human robot interaction in a 5] Owen, E., Montano, L., “Motion planning in dynamic
consistent way. Different behaviors from the tested timé environments using' the velocity space” In: Proc. of
series analysis algorithms were observed. Generally, it can RJS/IEEE IROS, pp. 997 — 1002, 2005 ’ ’
be resumed that movement data behaves different th%@] Ly '

data from period_ical and chaotic time series. . - robot within a dynamic environment” In: Proc. of
The tested algorithms show very good results in predicting European Conf. on Mobile Robots, pp. 116 — 121
several seconds of the movement data. Echo State ,q5g ' B '

Networks and Local Models pointed out to be suitablem Scheidig, A., Miiller, S., Martin, C., Gross, H.M
algorithms for movement prediction I SR Lo o

Pett, S., Fraichard, T., “Safe navigation of a car-like

X . “Generating person’s movement trajectories on a
Autoregressive Models and again Echo State Networks are mobile robot’, In: Proc. of International Symposium

al_ale to predict fast enough for an online applic_ation on Robots and Human Interactive Communications
without any further adaptation. From the current point of (RO-MAN), pp. 747 — 752, 2006

view, Echo State Networks are the “winning” approache%] Shumway, R.H., Stoffer, D.S., “Time Series Analysis

which are able to solve the problem best. TS : ; g
. and Its Applications”, Springer Texts in Statistics,
Local Models can be a good alternative to Echo State 2000 bp pring

Networks if they could be accelerated without loss o(l;[g]
quality. Besides this, enhanced versions of th - . .
Autoregressive Models such as ARMA or ARIMA Models Etlgfélﬁggr:?;;? cﬁg[lc;g?g'}\laélsvr;rdkescggelsygsa?’nti %%T
could be tested. Furthermore, the usage of an irregular 5q; ' ' '
embedding is imaginable. 10]

It could be shown that the quality of the prediction resulté
strongly depends on the number of training data. On the
other hand, reducing the number of training points is67
needed to go towards online application. Effort has to b
spend to provide the approaches with the necessajyms
amount of data. This data has to be provided in a sma
way for not raising calculation time. For example, some
cluster approaches allow to present the data to the Loc
Model in a way to speed up the nearest neighbor search. .
In the introduction, it was mentioned to support af |
navigation task by the prediction. So, as a next step, |
should be investigated, how the integration of the

Steil, J.J., “Online reservoir adaptation by intrinsic

Wiener:;, N., “Extrapolation, Interpolation, and
Smoothing of Stationary Time Series”, Wiley, 1949

Biography

Sven Hellbach is Ph.D. student at the
Neuroinformatics and Cognitive

Robotics Lab at llimenau Technical
University since 2005. His research
focus is set to motion analysis in the
field of mobile robotics. The project, he
is working for, is closely affiliated with




in: Australian Journal of Intelligent Information Processing Systems, 10 (2009) 3

the Honda Research Institute Europe GmbH. He studied
Computer Science at llmenau Technical University from
2000 to 2005.

Julian Eggert studied physics at the
Technical University of Munich,
Germany, where he also received his
Ph.D degree in theoretical biophysics
(Prof. van Hemmen) in 2000. In 1999,
he joined the Honda Research Institute
in Offenbach, Germany, concentrating
on biophysically realistic large-scale
models for vision systems. Since 2003,
he worked as a Senior Research Scientist and since 2007
as a Chief Scientist heading a research division at the
Honda Research Institute (HRI) Europe GmbH at
Offenbach, Germany. His interests include probabilistic
modeling of cognitive systems, perception models for
dynamic scene interpretation and gating in hierarchical
neural networks via feedback and attention.

Edgar Korner received his Dr-Ing in
1977 in the field of biomedical
engineering, and his Dr. of Science
(habilitation) in 1984 in the field of
biocybernetics, both from the Technical
University Ilmenau, Germany, where he
became full professor and head of the
department of neurocomputing and
cognitive systems in 1988. From 1992 —
97 he was a chief scientist at Honda R&D Co. Wako,
Japan. In 1997 he moved to Honda R&D Europe
(Germany) to establish the “Future Technology Research
Division”, and since 2003 he serves as the president of
Honda Research Institute Europe GmbH at Offenbach,
Germany. Since October 2007, he additionally serves as a
co-director of the Research Institute for Cognition and
Robotics at the University of Bielefeld. His research
interest covers brain-like intelligence, with a special focus
on self-referential control architectures, self-organization
of knowledge representation, and autonomous robots.

R\

Horst-Michael Gross is full professor of
Neuroinformatics and head of the
Neuroinformatics and Cognitive
Robotics Lab at the llmenau University
of Technology. He received his doctoral
degree in Computer Science in 1989
_ W from the Illmenau University of
Technology. Among his current research interests are
neural computing, cognitive robotics, and multi-modal
human-robot interaction in real world enviroments.






