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Abstract

Efficient and robust techniques for people detection and tracking are basic prerequisites when dealing with Human–Robot Interaction (HRI)
in real-world scenarios. In this paper, we introduce a new approach for the integration of several sensor modalities and present a multi-modal,
probability-based people detection and tracking system and its application using the different sensory systems of our mobile interaction robot
HOROS. These include a laser range-finder, a sonar system, and a fisheye-based omni-directional camera. For each of these sensory systems,
separate and specific Gaussian probability distributions are generated to model the belief in observing one or several persons. These probability
distributions are further merged into a robot-centered map by means of a flexible probabilistic aggregation scheme based on Covariance
Intersection (CI). The main advantages of this approach are the simple extensibility by the integration of further sensory channels, even with
different update frequencies, and the usability in real-world HRI tasks. Finally, the first promising experimental results achieved for people
detection and tracking in a real-world environment (our institute building) are presented.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Dealing with Human–Robot-Interaction (HRI) in real-world
environments, one of the general tasks is the realization of
stable people detection and the respective tracking function.
Depending on the specific robot application that integrates
people detection, different approaches are possible. Typical
approaches use visual cues for face detection, a laser range-
finder for the detection of moving objects, such as legs, or
acoustic cues for voice detection.

Projects such as EMBASSI [1], which aim to detect only
the users’ faces, usually in front of a static station like a
PC, typically use visual cues (skin-color-based approaches,
sometimes in combination with the detection of edge-oriented
features). Therefore, these approaches cannot be applied for a
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mobile robot, which has to deal with moving people with faces
that are not always perceptible.

Other approaches, e.g. TOURBOT [2] or GRACE [3], which
try to perceive the whole person rather than only the face,
use laser range-finders to detect people as moving objects.
Drawbacks of these approaches occur, for instance, in situations
where a person stands near a wall and cannot be distinguished
from the background, in scenarios with objects yielding leg-like
scans (such as table or chair legs), or if the laser range-finder
does not cover the whole 360◦.

In [4], a skin-color-based approach for a mobile robot is
presented using an extension of particle filters to generate object
configurations which represent more then one person in the
image [5]. Another skin-color-based approach was presented
in [6], where a multi-target tracker was realized by using
multiple instances of a simple condensation tracker [7]. The
major problem of skin-color-based approaches is that, in a
natural environment, typically many skin-color-like objects
exist that are not humans.

For real-world scenarios, more promising approaches
combine more than one sensory channel, such as visual
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cues and the laser range-finder scan. An example for these
approaches is the SIG robot [8], which combines visual
and auditory cues. People are detected by a face-detection
system and tracked by using stereo vision and sound-source
detection. This approach is especially useful for scenarios
realizing face-to-face interaction. Further examples are the
EXPO-ROBOTS [9], where people are first detected as moving
objects by a laser range-finder (resulting from differences from
a given static environment map). After that, these hypotheses
are verified by visual cues. Other projects, such as BIRON [10],
detect people by using the laser range-finder for detecting leg
profiles and combine this information with visual and auditory
cues. The essential drawback of most of these approaches
is the sequential integration of the sensory cues. People are
detected by laser information only and are subsequently verified
by visual or auditory cues. These approaches typically fail, if
the laser range-finder yields no information, for instance, in
situations when only the face of a person is perceptible because
of leg occlusion.

Therefore, we propose a multi-modal approach, which can
be characterized by the fact that all used sensory cues are
concurrently processed and integrated into a robot-centered
map using a probabilistic aggregation scheme. The overall
computational complexity of our approach scales very well
with the number of sensors and modalities. This allows a
simple extension by integrating further sensory channels, such
as sound sources.

As sensory channels, we use the different sensory modalities
of our experimental platform HOROS: the omnidirectional
camera, the sonar sensors, and the laser range-finder
(see Section 2). Using these modalities, we generate
specific probability-based hypotheses about detected people
and combine these probability distributions by Covariance
Intersection in the aggregation scheme (see Section 3).
Experimental results will be shown in Section 4, followed by
a short summary and outlook in Section 5.

2. The interaction-oriented robot system HOROS

To investigate the respective detection and aggregation
methods, we use the mobile interaction robot HOROS (HOme
RObot System) as an information system for employees,
students, and guests of our institute. The system’s task includes
that HOROS autonomously moves in the institute, detects
people as possible interaction partners and interacts with them,
for example, to answer questions like the current whereabouts
of specific people. Therefore, HOROS has to realize a user-
based interaction, where the robot has to analyze its user,
the gender, the age, the facial expression, the pose and the
distance of the person to himself, and subsequently adjust its
dialog strategies and presentation modes to adapt to the current
user. To realize such an interaction-oriented personal robot,
stable methods for people detection and tracking are basic
prerequisites.

HOROS’ hardware platform is an extended Pioneer-based
robot from ActiveMedia. It integrates an on-board PC (Pentium
Fig. 1. Sensory and motor modalities of the mobile interaction-oriented robot
HOROS (HOme RObot System). The laser range-finder, the sonar sensors, and
the omnidirectional camera are used here for people detection and tracking.

M, 1.6 GHz, 512 MB) and is equipped with a laser range-
finder (SICK) and sonar sensors. For the purpose of HRI,
this platform was mounted with different interaction-oriented
modalities (see Fig. 1). This includes a tablet PC for touch-
based interaction, speech recognition and speech generation.
The robot was further extended by a robot face that integrates
an omnidirectional fisheye camera, two microphones, and
two frontal webcams for the analysis of the user features.
Subsequently, the laser range-finder, the sonar sensors, and the
omnidirectional camera are discussed in the context of robust
multi-modal people detection and tracking.

2.1. Laser-based information

The laser range-finder is a very precise sensor with a
resolution of 1◦, perceiving the frontal 180◦ field of HOROS

(see Fig. 2 left). It is fixed on the robot approximately 30 cm
above the ground. Therefore it can only perceive the legs of
people.

Based on the approach presented in [11], we also analyze
the scan of the laser range-finder for leg-pairs using a heuristic
method. The measurements are segmented into local groups
of similar distance values. Then each segment is checked
for different conditions such as width, deviation and other
conditions that are characteristic for legs. The distance between
segments classified as legs is pairwise computed to determine
whether this could be a human pair of legs. For each pair
found, the distance and direction to the robot is extracted. This
approach yields very good results for the distances of people
standing less than 3 m away. For a greater distance, legs are
relatively often missed due to the limited resolution of the laser
range-finder (the gaps between single rays become larger than
the width of legs). The strongest disadvantage of this approach
is its false-positive classification detection of table legs or
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Fig. 2. Exemplary sensory inputs from the laser range-finder (left), the sonar (middle), and the fisheye camera (right) in a typically situation, where two people are
standing in front of the robot.
chair legs and also other narrow objects similar to legs. People
standing sideways on to the robot or wearing long skirts do not
yield appropriate values of the laser range sensor to detect their
legs, resulting in a relatively high false-negative rate.

2.2. Sonar-based information

Furthermore, HOROS has 16 sonar sensors arranged on
the Pioneer platform approximately 20 cm above the ground.
Because of this, people detection using the sonar sensors
only works by analyzing the sonar scan for leg profiles (see
Fig. 2). The disadvantage of these sonar sensors is their high
inaccuracy. The measurement depends not only on the distance
to an object, but also on the object’s material, the direction of
the reflecting surface, crosstalk effects when using several sonar
sensors, and the absorption of the broadcast sound. Because
of these disadvantages, only distances of less than 2 m can
be considered for people detection using these sonar sensors.
This means that the sonar sensors yield pretty unreliable and
inaccurate values, a fact that has to be considered in the
generation of hypotheses for people detection. For the purpose
of very simple people detection using this sensory modality, we
assume that all measurements less than 2 m could be hypotheses
for a person. These hypotheses could be further refined by
comparing the position of each hypothesis with a given local
map of the environment. If the hypothesis corresponds to an
obstacle in the map, it could be neglected. The disadvantage
of this refinement strategy is that people standing near to an
obstacle often are not considered as valid person hypotheses.

2.3. Fisheye camera

As a third sensory cue, we use an omnidirectional camera
with a fisheye lens yielding a 360◦ view around the robot. An
example of an image resulting from this camera is depicted in
Fig. 2 (right).

To detect people in the omnidirectional image, our skin-
color-based multi-target tracker [6] is used. This tracking
system is based on the condensation algorithm [7]. It has
been extended to allow the visual tracking of multiple objects
at the same time. This way, particle clouds used to estimate
the probability of people in the omnidirectional image can
concentrate on several skin-colored objects. A typical problem
of this simple feature extraction for observation is the possible
tracking of a large spectrum of skin-color-based but non-
human objects, such as wooden shelves, etc. We used this
straightforward approach for visual people detection because
it is much faster than subsampling the whole image, trying to
find regions of interest, and is resistant to minor interferences
due to the observation skin-color-model that is used [6].

People detection using omnidirectional camera images
yields only hypotheses about the direction of a person but not
about his/her distance. Assuming a mean size of a human face
and a mean body height, it would be possible to give a rough
estimate of the distance of a person to the robot based on the
size of the skin colored region and the distortion parameters of
the omnidirectional camera. Due to sensor fusion with the other
modalities, such a rough distance estimation is expendable.
Therefore, it was expected that the fusion of the hypotheses
from the camera with the hypotheses of the laser range-finder
and the sonar sensors would result in a more powerful people
detection system. Subsequently, the method developed for the
aggregation of several sensory systems will be discussed in
detail.

3. Generation and tracking of object hypotheses

3.1. Generation of sensor-specific position hypotheses

For the purpose of tracking, the sensor-specific information
about detected humans is converted into Gaussian distributions
φ(µ, C). The mean µ equals the position of the detection in
robot-centric polar coordinates, and the covariance matrix C
represents the uncertainty about this position. The form of
the covariance matrix is sensor-dependent due to the different
sensor characteristics described in Section 2. Furthermore,
the sensors have different error rates of misdetections that
have to be taken into account. All computation is performed
in the robot-centric r, ϕ space. Examples for the resulting
distributions are shown in Fig. 3.

3.1.1. Laser-based information
The laser range-finder yields very precise data, hence the

corresponding covariances are small and the distribution is
narrow (see Fig. 3, bottom left). The radial variance is fixed for
all possible positions, but the variance of the angular coordinate
is distance-dependent. A sideways step of a person standing
directly in front of the robot changes the angle by more than the
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Fig. 3. Examples for generated hypotheses in a situation, where two people were standing in front of the robot. The top row shows the input of the different sensory
systems and the bottom row shows the generated hypothesis.
same movement at a distance of 2 m. The smaller the distance
of the hypotheses, the larger its variance has to be. Despite the
insufficencies (see Section 2), the probability of a misdetection
is the lowest of the used sensors, but the laser range-finder
only covers the front area of the robot due to its arrangement,
so people behind the robot are ignored when processing laser-
based information.

3.1.2. Sonar information
Information from the sonar tends to be very noisy, imprecise

und unreliable. Therefore, the variances are large and the
impact on the certainty of a hypothesis is lower (see Fig. 3,
bottom middle). Nevertheless, the sonar is included to support
people-tracking behind the robot. With that, we are at least
able to form an estimate of the distance for a vision-based
hypothesis.

3.1.3. Fisheye camera
In contrast to the other detectors, the camera can only

provide information about the angle of a detection, but not
about the distance of a person (see Section 2). Therefore, for
the radial variance of the distance coordinate, a very large value
was selected, with a fixed mean value (see Fig. 3, bottom right).
The angular variance is determined directly from the angular
variance of the particle distribution generated by the skin-
color based multi-person tracker, yielding the visual detection
hypotheses (see Section 2.3).

The importance of the detection hypotheses is determined
by the position of the hypotheses. In front of the robot, the
influence is lower, because the laser sensor is considered to be
a more reliable sensor. Behind the robot, the image is the only
source to obtain information about the presence of a person; the
sonar has only a supporting character. Thus, the relative weight
of a visual hypothesis should be higher behind the robot.

The modeling and integration of additional sensory cues,
such as human voice localization or other features from the
camera image (like face structure or movement), can be
performed in a similar way to that described here.

3.2. Multi-hypotheses aggregation and tracking

Tracking based on probabilistic methods attempts to
improve the estimate xt of the position of people at time t .
These estimates xt are part of a local map or model M that
contains all hypotheses around the robot. Fig. 4 shows the
principle architecture of the tracking system, which will be
explained in detail in the following section. The local map
M is used to aggregate the sensor hypotheses. Therefore, the
movements of the robot {u1, . . . , ut } and the observations about
humans {z1, . . . , zt } have to be taken into account. In other
words, the posterior p(xt |u1, z1, . . . , ut , zt ) is estimated. The
whole process is assumed to be Markovian. So, the probability
can be computed from the previous state probability p(xt−1),
the last executed action ut , and the current observation zt . The
posterior is simplified to p(xt |ut , zt ). After applying the Bayes
rule, we get

p(xt |ut , zt ) ∝ p(zt |xt )p(xt |ut ) (1)

where p(xt |ut ) can be updated from p(xt−1|ut−1, zt−1) using
the motion model of the robot and the assumptions about the
typical movements of people.

In the map or model, a Gaussian mixture M =

{(µi , Ci , wi )|i ∈ [1, n]} is used to represent the positions of
people, where each Gaussian i is the estimate for one person.
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Fig. 4. The architecture of the tracking system: The observations zcamera
t,i , zlaser

t,i
and zsonar

t,i (see Section 3.1) of the different sensory cues are combined in a local
map Mt that contains a time-varying number n(t) of estimates xt, j around the
robot using the Covariance Intersection rule [12].

φi (µi , Ci ) is a Gaussian centered at µi with the covariance
matrix Ci . The weight wi (0 < wi ≤ 1) contains information
about the contribution of the corresponding Gaussian to the
current model.

Next, the current sensor-specific hypotheses zt have to be
integrated, after they have been preprocessed as described
above. If M does not contain any element at time t , all generated
hypotheses from zt are copied to M . Otherwise data association
has to be performed to determine which elements from zt
and M refer to the same hypothesis. For that purpose, the
Mahalanobis distance dm and the Euclidian distance de between
the respective Gaussians φi ∈ zt and φ j ∈ M are used as
association criteria. In a series of experimental investigations,
it turned out that the Euclidian distance leads to better tracking
results:

dm = µC−1µT with µ = µi − µ j
de = |µ| C = Ci + C j .

(2)

This determined distance is compared to a threshold. As
long as there are distances lower than the threshold, the sensor
hypothesis i and the map hypothesis j are merged. This
is done by means of the Covariance Intersection rule [12].
This technique does not need any information about the
correlation between the hypotheses, unlike a Kalman filter. The
covariances Ci (sensor hypotheses) and C j (map hypotheses)
are transformed into the so-called Information Space by
computing the respective inverses. Then the matrices are
combined using a weighted linear combination and propagated
back to the original space. The new mean is computed with
respect to the Information Space:

C−1
new = (1 − ω)C−1

i + ωC−1
j

µ−1
new = Cnew

[
(1 − ω)C−1

i µi + ωC−1
j µ j

]
ω =

|Ci |

|Ci | +
∣∣C j

∣∣ .
(3)

The purpose of the weight ω is to minimize the resulting
determinant by preferring the sharper distribution in the
intersection process. With that, a very unreliable sensor input
will have only a minimal influence on the resulting hypothesis.

Sensor readings that do not match any hypothesis of M are
introduced as new hypothesis in M . The weight wi represents
the certainty of the corresponding map hypothesis, coded as a
Gaussian. The more sensors support this hypothesis, the higher
this weight should be. If the weight passes a threshold, the
corresponding hypothesis is considered to be a person. To get
a temporal smoothing, the weight is increased recursively as
follows:

wi (t + 1) = wi (t) + α(1 − wi (t)), (4)

if that map hypothesis could be matched to a sensor hypothesis.
The constant α ∈ [0, 1] is chosen with respect to the current
sensor in order to integrate the availability and reliability
of the sensor system into the aggregation framework (see
Section 3.1). The more reliable the sensor, the higher that the
α-weight is. These values were determined before by means
of experiments. In the case of an unmatching hypothesis, the
weight is decreased:

wi (t + 1) = wi (t) − (1 − θ)
tnew − told

tv
. (5)

The term tnew is the current point of time and told is the
moment that the last sensory input to the hypothesis was
processed. A person is considered to be lost in the map if tv
seconds have passed and no sensor has made a new detection
that can be associated with this hypothesis. This temporal
control regime is sensor dependent too. Finally, all hypotheses
with a weight lower than the threshold θ are deleted from the
map.

4. Experiment, investigation and discussion

The system that is presented is in practical use on our robot
HOROS in a real-world environment (our institute building).
The fact of a change in illumination in different rooms and
hallways and numerous distractions in the form of chairs and
tables is quite challenging.

Fig. 5 shows a typical aggregation example. In this
experiment, the robot was standing in the middle of an office
room and did not move. Up to three people were moving around
the robot. The enviroment contained several distracting objects,
such as table legs and skin-colored objects. No sensor modality
alone was able to detect people correctly. Only the aggregation
over several sensor modalities and temporal integration led to
the proper result.

To measure the detection rate of our system, an image
sequence of the scene was recorded by a camera on the
ceiling. The test sequence consists of 300 images over 30 s.
These ground-truth data were labeled by hand to determine the
position of the people in the scence. The proposed tracking
system was able to track multiple people correctly with a
detection rate of 93% in the experiment. This means that 93%
of the labeled ground-truth data were detected by the tracker
correctly.
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Fig. 5. Aggregation example. The left picture shows the real office scene from a bird’s eye view. Three people are surrounding the robot, who stands in the middle.
The three figures in the middle row show the current hypotheses generated by fisheye camera, laser-range-finder, and sonar from top to bottom. No sensor on its
own can represent the situation correctly. The final picture on the right displays the aggregated result from the sensors and the previous timestep. This is a correct
and sharpened representation of the current situation.
In most cases, false-negative detections occured behind the
robot. The rate of false-positive detections is higher—about
every fourth hypothesis was a misdetection. This is due to the
simple cues integrated into the system. But, for the intended
task of HOROS, the interactive office robot, it is considered
to be more important not to miss too many people than
finding too many. But there are ways to reduce the amount
of false-positive detections. Most misdetections occur from
static objects in the environment, so, based on the movement
trajectories created by the tracker, they can be separated from
correct hypotheses.

In our experiments, the sonar and the laser sensor worked at
10 Hz. The omnidirectional camera produced hypotheses with
an update rate of about 7 Hz. As described in Section 3.2,
all different sensors are handled independently of each other.
Therefore, the resulting map was updated about 27 times per
seconds. Overall, the whole tracking system (including the
recording of the sensor information and the preprocessing
processes) uses about 40–50% CPU load on a 1.6 GHz Pentium
M.

The system that is presented improved the detection
performance for the area behind the robot only slightly
compared to a simple skin-color tracker. This is because the
sonar-based sensors do not provide much useful information for
the tracking task. The main contribution of the sonar sensors
is the addition of distance information to existing hypotheses
extracted from the fisheye camera and the prevention of
precipitate extinction of hypotheses in case of sudden changes
in illumination. In this case, the skin-color tracker will
presumedly fail but, if the sonar-based information still
confirms the presence of the person at the respective position,
the hypothesis will not be deleted until the skin-color tracker
has recovered.

In front of the robot, the multi-modal system clearly
outperforms single sensor-based tracking. Here, the influence
of the sonar on the result is not observable because, in most
cases, the laser range-finder generates much more precise
hypotheses. The laser reduces the deficiency of the skin-color
tracker, while the skin-color-based information compensates
the shortcomings of the laser. These results are observable
in Fig. 5. This leads to the assumption that the inclusion
of additional sensory systems generating hypotheses about
interacting people (e.g. sound-source hypotheses of speaking



C. Martin et al. / Robotics and Autonomous Systems 54 (2006) 721–728 727
Fig. 6. Left: A trajectory showing a person coming straight towards the robot.
Right: The person is crossing from left to the right. In doing so, the robot is
avoided. The varying time intervals between the movements and the associated
weights are not visible in the figure.

people [13]) will further improve the performance of this multi-
modal tracking system.

Our system was tested practically in the context of a survey
task. HOROS stood in a hallway in our institute building. Its task
was to attract the attention of people walking past it. As soon as
the system recognized a person in the defined interaction area
within a radius of 3 m, the robot addressed the visitor to come
nearer. It then offered to participate in a survey about the desired
future functionality of HOROS. The people-tracking module
was used to detect break offs. Thus, if the user was leaving
the robot before finishing the survey, the robot tried to fetch
them back and finalize the survey. After successful completion
of the interaction or a defined time interval with no person
coming back, the cycle began again, with HOROS waiting for
the next interaction partner. The experiment was performed in
the absence of any visible staff members, so that people could
interact in a more unbiased manner.

These efforts are repeated from time to time to gather more
information, and there is a second intention that is not obvious.
The tracking module was used to observe typical movement
trajectories of the users. In our future work, we will attempt
to classify the path of movement to gain more knowledge about
the person as a potential interaction partner. In the context of
adaptive robot behavior and user models, it is an important
issue to assess the interaction partner. The users’ movements
and the positions relative to the robot are a fundamental step in
this direction. If the robot can distinguish between people with
different goals, an appropriate reaction can be learned. The use
of a multi-person tracker is a prerequisite, since the experiments
show visitors often appearing in groups of two or more people.
Examples for typical different movement trajectories are shown
in Fig. 6. The most challenging aspects for a classification of
walking trajectories are, in our opinion, the varying speed of the
people and the search for typical movement schemes describing
the current interest of the potential users in interacting with a
robot. This is a typical recognition problem in human–human
interaction too.

5. Summary and outlook

We presented a flexible multi-modal probability-based
approach for detecting and tracking people. It is implemented
on our mobile interaction-oriented robot HOROS and works in
real-time. Because of the sensor fusion and the probabilistic
aggregation, its results are significantly improved compared
to a single sensor tracking system. In our future work, we
will extend the system with additional cues to further increase
the robustness and reliability for real-world environments
(especially in areas where the current sensory cues are
insufficient). Currently, we are working on the integration of
voice-based speaker localization [13]. In addition, it will be
investigated if a face detector could be integrated into the
aggregation scheme as an additional cue. Furthermore, we will
study the behavior of our system compared to other known
approaches and investigate the localization accuracy using
labeled data of reference movement trajectories.

References

[1] B. Froeba, C. Kueblbeck, Real-time face detection using edge-
orientation matching, in: Proc. Audio- and Video-based Biometric Person
Authentication, AVBPA’2001, 2001, pp. 78–83.

[2] D. Schulz, W. Burgard, D. Fox, A. Cremers, Tracking multiple moving
objects with a mobile robot, in: Proc. IEEE Conf. on Computer Vision
and Pattern Recognition, CVPR, 2001, pp. 371–377.

[3] R. Simmons, D. Goldberg, A. Goode, M. Montemerlo, N. Roy,
B. Sellner, C. Urmson, A. Schultz, M. Abramson, W. Adams, A. Atrash,
M. Bugajska, M. Coblenz, M. MacMahon, D. Perzanowski, I. Horswill,
R. Zubek, D. Kortenkamp, B. Wolfe, T. Milam, B. Maxwell, Grace: An
autonomous robot for AAAI robot challenge, AAAI Magazine 24 (2)
(2003) 51–72.

[4] C. Martin, H.-J. Boehme, H.-M. Gross, Conception and realization of a
multi-sensory interactive mobile office guide, in: Proc. IEEE Conf. on
Systems, Man and Cybernetics, 2004, pp. 5368–5373.

[5] H. Tao, H.S. Sawhney, R. Kumar, A sampling algorithm for tracking
multiple objects, in: Workshop on Vision Algorithms, 1999, pp. 53–68.

[6] T. Wilhelm, H.-J. Boehme, H.-M. Gross, A multi-modal system for
tracking and analyzing faces on a mobile robot, Robotics and Autonomous
Systems 48 (2004) 31–40.

[7] M. Isard, A. Blake, Condensation — conditional density propagation for
visual tracking, International Journal on Computer Vision 29 (1998) 5–28.

[8] K. Nakadai, H. Okuno, H. Kitano, Auditory fovea based speech separation
and its application to dialog system, in: Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, vol. 2, 2002, pp. 1320–1325.

[9] R. Siegwart, K.O. Arras, S. Bouabdallah, D. Burnier, G. Froidevaux,
X. Greppin, B. Jensen, A. Lorotte, L. Mayor, M. Meisser, R. Philippsen,
R. Piguet, G. Ramel, G. Terrien, N. Tomatis, Robox at expo.02: A large
scale installation of personal robots, Robotics and Autonomous Systems
42 (3–4) (2003) 203–222.

[10] J. Fritsch, M. Kleinehagenbrock, S. Lang, G. Fink, G. Sagerer,
Audiovisual person tracking with a mobile robot, in: Proc. Int. Conf. on
Intelligent Autonomous Systems, IAS Press, 2004, pp. 898–906.

[11] J. Fritsch, M. Kleinehagenbrock, S. Lang, T. Ploetz, G. Fink, G. Sagerer,
Multi-modal anchoring for human–robot-interaction, in: Anchoring
Symbols to Sensor Data in Single and Multiple Robot Systems, Robotics
and Autonomous Systems 43 (2–3) (2003) 133–147 (special issue).

[12] S. Julier, J. Uhlmann, A nondivergent estimation algorithm in the presence
of unknown correlations, in: Proc. American Control Conference, vol. 4,
IEEE, 1997, pp. 2369–2373.

[13] R. Brueckmann, A. Scheidig, C. Martin, H.-M. Gross, Integration of a
sound source detection into a probabilistic-based multimodal approach
for person detection and tracking, in: Proc. Autonome Mobile Systeme,
AMS 2005, Springer, 2005, pp. 131–137.



728 C. Martin et al. / Robotics and Autonomous Systems 54 (2006) 721–728
Christian Martin has been a Ph.D. student at
the Department of Neuroinformatics and Cognitive
Robotics at Ilmenau Technical University since 2004.
He received his Diploma degree in Computer Science
from the Ilmenau Technical University in 2003.
His Ph.D. research is concerned with multi-modal
human–robot interaction, especially the development
of modeling concepts for human–robot interaction and
autonomous mobile robot control architectures.

Erik Schaffernicht has worked at the company
MetraLabs GmbH Germany since 2006. He received
his Diploma degree in Computer Science from
Ilmenau Technical University in 2006. He works in the
field of mobile robotics. He is especially interrested in
human–robot interaction and methods for autonomous
outdoor navigation.
Dr. Andrea Scheidig is a Postdoc at Ilmenau
Technical University, Faculty of Computer Science
and Automation, Department of Neuroinformatics.
She received her Diploma degree in Computer Science
in 1996 and her Doctorate degree in Neuroinformatics
in 2003. Her main research interests are user-adaptive
human–robot interaction, behavior-based systems and
reinforcement learning.

Dr. Horst-Michael Gross has been a full professor of
Neuroinformatics at the Ilmenau Technical University,
Faculty of Computer Science and Automation, and
has headed the Department of Neuroinformatics since
1993. He received his Diploma degree in Technical
and Biomedical Cybernetics in 1985 and his Doctorate
degree in Neuroinformatics in 1989. Among his main
research interests are neural computing, autonomous
robots, reinforcement learning, and vision-based

human–robot interaction. He is a member of INNS and ENNS.


	Multi-modal sensor fusion using a probabilistic aggregation scheme for people detection and tracking
	Introduction
	The interaction-oriented robot system Horos
	Laser-based information
	Sonar-based information
	Fisheye camera

	Generation and tracking of object hypotheses
	Generation of sensor-specific position hypotheses
	Laser-based information
	Sonar information
	Fisheye camera

	Multi-hypotheses aggregation and tracking

	Experiment, investigation and discussion
	Summary and outlook
	References


