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In this paper, we present an approach for directing a mobile robot under real-world conditions into a target
position by means of pointing poses only. Because one important objective of our work is the development
of a low-cost platform, only monocular vision at web-cam level should be employed. Our previous
approach presented in Gross et al. (2006) [1], Richarz et al. (2007) [2] has been improved by several
additional processing steps. Finally, a background subtraction technique and a histogram equalization
have been integrated in the preprocessing stage to be able to work in environments with structured
backgrounds and under variable lighting conditions. Furthermore, a discriminant analysis was used to
find the most relevant input features for the pointing pose estimator. The contribution of this paper is,
however, not only the presentation of an approach to estimating pointing poses in a demanding real-world
scenario on a mobile robot, but also the detailed and evaluative comparison between different image-
preprocessing techniques, alternative feature extraction methods, and several function approximators
with the same set of test- and training data. Reasonable combinations of the different methods are tested,
and for each component on the processing chain the effect on the accuracy of the target estimation is
quantized. The approach presented in this paper has been implemented on the mobile interaction robot
Horos to determine the performance and estimation accuracy under real-world conditions. Furthermore,
we compared the accuracy of our approach with that of humans performing the same estimation task, and
achieved very comparable results for the best estimator.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, a lot of research work has been done to de-
velop intelligent mobile robot systems, which can interact even
with non-instructed users, making the robots suitable for applica-
tions in everyday life. Today’s robot systems mainly provide a key-
board, a touch-screen or other input devices for getting input from
the user. More and more approaches try to integrate speech recog-
nition onto the robot, but a robust speaker-independent speech
recognition is still a hard problem. But besides this verbal com-
munication non-verbal communication also plays a very important
role in a dialog between humans. To the best knowledge of the au-
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thors, only in a few projects have non-verbal communication as-
pects in an interactive dialog been already successfully integrated
on mobile robots. In the work presented in this paper, we show
how a basic non-verbal communication can be realized on a mo-
bile robot. More precisely: We want to deal with the problem, of
instructing a mobile robot by the use of pointing gestures/poses.

In the field of service robotics, the possibility to command a
mobile robot to a certain target position in the environment, plays
an important part in interactions. Gestures or poses (sometimes
in combination with spoken commands) is a very intuitive way to
instruct the robot to do so without the use of certain input devices
(e.g. a keyboard or a joystick).

Because one key objective of our research is the development
of a low-cost prototype of a mobile and interactive robot
assistant, we are especially interested in vision technologies
with a very good price-performance ratio. Therefore, in this
work only a low-cost frontal camera of our mobile interaction
robot Horos (see Section 3.1) was utilized instead of a high-end
stereovision system. To compensate the available deficits of this
hardware, we were forced to develop more powerful and robust
appearance-based recognition algorithms as it was necessary if
stereo approaches were used. Against this background, we were
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particularly interested if it would be possible to robustly estimate
a target position at the floor from a pointing pose using only
inexpensive hardware and monocular images.

Furthermore, we assume, that the following requirements and
constraints in Human-Robot interaction are fulfilled:

- In principle during interaction with the robot the user is
signaling interest in interaction by orienting his upper body to
the robot as is usual in polite human-human communication.

- The user has to face the target point, when the pointing pose is
shown. This is also a very intuitive and natural behavior known
from interaction with humans, because a pointing pose appears
implausible when the head is oriented somewhere else.

- The user points to targets on his left side with his left arm and
vice versa for the right side.

- The user only points to targets on the floor, because the pointing
pose is to provide a target position for the mobile robot.

Scenarios, where these requirements and constraints are not
fulfilled, were considered as special cases and therefore not
considered in this work.

Additionally, we do not want to make any particular constraints
on the environment. That means, that we have to deal with
different lighting conditions and also with a structured and
possibly non-static background. Last but not least, the pointing
pose estimation should work in real-time.

In [1,2] we presented an approach, which allows one to direct
a mobile robot to a certain position by means of such pointing
poses. The system presented there was capable of estimating the
target point of the pointing pose on the floor with a low error, but
could only operate in environments with unstructured background
and ideal lighting conditions. Besides, a computation time of 3-4 s
was required for the estimation of a single target position. These
constraints seriously conflict with the requirements for the usage
of this approach in robotic real-world applications. Therefore,
in this paper we present several conceptual and methodical
improvements on this approach making it possible to estimate
the target point of a pointing pose also in highly structured
environments with variable lighting conditions in real-time. We
use the same set of training and test data for all compared methods
and give an overview of the usability of different methods for a
demanding real-world-application.

This paper is organized as follows: After the introduction,
Section 2 describes the State of the Art in the field of pointing
pose estimation. Afterwards, in Section 3 the overall architecture
of the system and our experimental platform, the mobile robot
platform Horos, is introduced. Section 4 explains, how the pointing
poses can be estimated and how our entire system is designed. In
Section 5 the experiments and results will be presented. The papers
ends with conclusions in Section 6.

2. Related work

In the literature there exists a huge number of publications on
video-based human-machine interaction approaches using poses
or gestures for instructing a technical system. Against this back-
ground, Fig. 1 tries to give a systematical, but non-exhaustive
overview of criteria that can be used to describe and classify the
known vision-based gesture recognition and pointing pose esti-
mation approaches. They can be distinguished by the camera con-
figuration used and the image quality, the kind of preprocessing
(like, e.g., user-background segmentation), the way how features
are extracted, encoded and represented, the applied recognition
algorithm, the mechanism that triggers the recognition process,
and - of course - the application fields in which they are suitable
and intended for. Fig. 1 also shows that each approach uses an-
other combination of image-preprocessing, feature-selection and

classification/target-approximation. To select the best approach
for our envisaged application, we compared different methods of
feature extraction and classification. The main contribution of this
paper is not only the presentation of a real-time and real-world
suitable approach to recognize the target of a pointing pose but
also the comparison of different methods and the quantization of
the effects of each method.

Up to now, a lot of work has been done focusing on integrating
gesture recognition into Man-Machine-Interfaces. However, most
of this work concentrates on distinguishing different gestures or
creating a command alphabet for robot control.

Rogalla et al. [3], for example, presented a system that classifies
hand postures for robot control. They use monocular high-
resolution color images and extract a hand contour by means of
skin color segmentation. This contour is sampled with a fixed
number of sampling points, normalized and Fourier-transformed.
The Fourier descriptors represent the feature vector that is
classified using a model database and a distance measurement.

Paquin and Cohen [4] also use a skin color segmentation to
track the hands and the head of a user. They utilize a neural
network based approach to classify the trajectories recorded
during the progress of the gesture and are able to recognize
nine different robot instruction gestures like “stop” or “forward”.
Triesch and v.d. Malsburg [5] detect and classify hand postures in
monocular images by using Compound Bunch Graphs. No explicit
segmentation is needed, since their system can cope with highly
complex backgrounds. The features used are the responses of
Gabor wavelets and color information at the graph nodes. Hand
poses are classified using a distance measure to a model graph,
taking into account deformation and scaling.

A major problem of all these approaches is however, that the
specific commands of the command alphabet have to be known
by the user. Another key problem is, that the direct commanding
of a mobile robot to a target position is not possible because
the commands can only be used as a kind of remote control and
typically only one of these commands can be executed at a time, for
example “drive forward”, then “drive to the left” and again “drive
forward” to direct a robot to a position 30° in front of the starting
position.

A much more intuitive and smoother way to direct the robot
is through pointing directly at the target position on the ground.
There are only a few approaches known that actually try to
estimate a pointing direction out of a deictic gesture. All examined
approaches use three processing steps: first image preprocessing,
second feature extraction and third approximation of the target.

For preprocessing many approaches (Hofemann and Haasch [6],
Bennewitz et al. [7], Li et al. [8], Nickel and Stiefelhagen [9], Wilson
and Bobick [10] and Hosoya et al. [11]) use skin color detection
to determine the position of the pointing hand. In our application
with a mobile robot, skin color detection is not suitable as the robot
is facing many different backgrounds and lighting conditions. Fig. 2
shows three examples where skin color detection is very difficult
or completely fails. Furthermore detecting the position of the hand
and the head of the user is not sufficient to estimate the target
of the pointing pose with the quality needed for the envisaged
application. The reason is that for most users the imaginary line
between the fingertip of the pointing hand and the eye of the
user does not extend to the target of the pointing pose. Nickel and
Stiefelhagen already described this fact in [9] which was confirmed
in our tests. To take this fact into consideration, the orientations
of the head and the shoulder have to be regarded, which is not
possible with skin color detection as the skin of the shoulder is
often hidden by clothing. Moreover, skin color detection does only
give information about the position but not the orientation of the
head.

Hofemann and Haasch [6], Bennewitz et al. [7], Li et al. [8]
and Hosoya et al. [11] determine the quality of the pointing
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Fig. 1. Systematic overview of significant criteria and aspects to describe and distinguish vision-based gesture recognition and pointing pose estimation approaches. The
numbers assigned to each aspect refer to the references and indicate which aspect is employed by which approach. The highlighted boxes describe the aspects we used and

compared in our approach presented here.

Fig. 2. Example images from the test dataset captured by a monocular low-cost camera mounted on the interactive mobile robot assistant Horos (see Section 3.1). Skin
color detection is very challenging in these images and often fails because of the lighting conditions and the background colors.

pose estimator by pointing at a small number of different target
objects (in these cases between 5 and 8). These objects are
placed in the space around the pointing person so that for
each object the pointing hand has another clearly distinguishable
position. In our application the users are pointing at positions
lying in the half-space before the pointing user. Only for training
and testing 36 different target positions are used, while in the
final application of the pointing pose estimator the users can
point to any numeric position within the half-space without the
need to restrict themselves to discrete objects or positions. As
a consequence of this requirement, the position and appearance
of the pointing hand for two neighbored targets is only slightly
different.

Therefore, most approaches which estimate the numeric target
position for purpose of robot instruction or virtual pointing often
use stereo cameras and a 3D modeling of the scene as shown in
Jojic et al. [12], Nickel and Stiefelhagen [9] or Hung et al. [13].
For our application we could not use stereo vision because of
the preconditions specified in the introduction and, therefore,
needed a feature extraction which is able to extract detailed
features from the head, shoulder and arm of the user allowing
an implicit description of the pointing pose without using skin
color or stereo vision. In [1,2] we used Gabor filters to extract
suited features. A similar approach was used by Nolker and Ritter
in [14] to classify pointing poses. The disadvantage of this method
is, however, that it could not cope with structured backgrounds or
other persons beside the user in the image. In Section 4 we describe
the improvements we made to be able to get useful features even
with structured backgrounds and additional persons in the image.

Another basic approach to extract features for pointing poses is
to separate the user from the background in some way and to use

the features of the silhouette to identify the pose. Such a silhouette-
based approach is employed by Rogalla et al. [3], Urano et al. [15]
and Takahashi and Tanigawa [16]. In Section 5 we give an overview
of the results we achieved with this relatively simple method of
feature extraction and compare it with the results of the Gabor
filter-based one.

After the features are extracted the target of the pointing pose
has to be estimated. In most cases, a line is drawn between the
head or the eye of the user and the fingertip of the pointing hand.
The endpoint of the line on a wall or on a predefined object then
is taken as the target of the pointing pose (Hosoya et al. [11], Hung
etal.[13],Jojic et al.[12], Nickel and Stiefelhagen [9]), or the object
next to a defined region around the pointing hand is referred as the
target (Hofemann ans Haasch [6]). We did not investigate these
methods in our approach because of the existing diversity of our
application, to visually command a robot to any target position
in a restricted operation area by pointing, and the significant
effects on the target position caused by already slightly different
hand positions. Instead in [1,2] we used a cascade of several
neural function approximators to estimate the target position. A
similar system with one function approximator (a Multi-Layer
Perceptron—MLP) is used by Stiefelhagen [17] to estimate the
line of sight of a user. Certainly other authors use other neural
networks as approximators: Krueger and Sommer [18] employ
a Local Linear Map (LLM) to estimate the head-position of a
person, Takahashi and Tanigawa [ 16] a Self-Organizing Map (SOM)
to classify different poses, and Paquin and Cohen [4] compare
the extracted features with labeled data with a method very
similar to a k-Nearest Neighborhood method. We implemented
those classifiers, that have been successfully used in the different
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Fig. 3. Mobile service robot Horos used for experimental investigation of the
pointing pose estimation. The images for the estimation of the pointing target were
taken with the webcam located in the left eye.

aforementioned approaches and compared the results with our
function approximator presented in [1,2] to determine the best
method for this target position estimation task.

The contribution of this paper is, however, not only the
presentation of an approach to estimate pointing poses in a
demanding real-world scenario on a mobile robot, but also the
detailed and evaluative comparison between different image-
preprocessing techniques, alternative feature extraction methods,
and several function approximators with the same set of test- and
training data. Reasonable combinations of the different methods
are tested, and for each component on the processing chain the
effect on the accuracy of the target estimation is quantized.

3. Robot platform and system architecture

In the following section our experimental robot platform Horos
and the overall architecture of the developed pose estimation
system are described.

3.1. Experimental robot platform

The approach described in this paper was developed and
tested on our mobile robot Horos (HOme RObot System). HOros’
hardware platform is an extended Pioneer II based robot from
ActivMedia. It integrates an on-board PC (Pentium M, 1.6 GHz) and
is equipped with a SICK LMS200 laser range-finder and a ring of
sonar sensors (see Fig. 3).

For the purpose of HRI, the robot was equipped with different
interaction oriented modalities. This includes a tablet PC for touch-
based interaction, speech recognition and speech generation.
Horos was further extended by a simple robot face which
integrates an omnidirectional fisheye camera situated in the center
of the head, a camera with a telephoto lens mounted on a tilting
socket on the forehead, and a wide-angle camera in one of the eyes.

Horos is controlled by a highly flexible and extensible control
architecture described in [19]. The approach described in this
paper was implemented in this control architecture framework,
which allows one to use other existing modules for our application,
e.g. the speech recognition system can be used as a trigger signal
(“Horos, go there!”) for the start of the estimation for the target
point.

3.2. Overall architecture

Fig. 4 shows the overall architecture of our system. A
multimodal person tracker [1,2] is utilized to determine the
direction ¢y and the distance dys., of the user to the robot. When
the user wants to use a pointing pose to direct the robot, he can
trigger the estimation by means of a voice command.

The feature extraction estimates the radius rpes and the angle
@pose Of the pointing pose in a user-centered polar coordinate
system (see Section 4.1). With the tracking result from the person
tracker and the estimated radius and angle from the pointing pose
estimator, the referred goal point (Xgeal, Ygoat) 0N the ground can
be computed in a local, robot-centered coordinate system. Given
the current pose of the robot (X;opot, Yrobot> Probot), the local goal
point can be translated in the world coordinate system of the
environment model. This enables the robot to move to the referred
target point avoiding obstacles during the movement by means of
the navigation module.

To embed the estimation process in an interactive dialog, a
speech recognition module can be used as a trigger signal. A first
speech command (e.g. “Horos”) is used to start the estimation
process, while a second command (e.g. “Go there!”) is utilized
to finish the process and start the autonomous movement of the
robot. Additionally, an interrupt command (e.g. “Stop!”) enables
the user to interrupt and stop the movement of the robot.

4. Estimation of pointing poses

In the following section the estimation of the pointing pose
based on monocular images is explained in detail.

4.1. Training-data and ground-truth

To develop the Pointing Pose Estimator, a labeled set of images
of subjects pointing to target points on the floor was required to
train the system. We encoded the target points on the floor as (r, ¢)
coordinates in a subject-centered polar coordinate system (see
Fig.5) and placed the robot with the camera in front of the subjects.
Moreover, we limited the valid area for targets to the half space in
front of the robot with a value range for r from 1 to 3 m and a value
range for ¢ from —120° to +120°. The 0° direction is defined as
the user-robot-axis, negative angles are on the user’s left side. With
respect to a predefined maximum user distance of 2 m, this spans a
valid pointing area of approximately 6 by 3 m on the floor in front
of the robot in which the indicated target points may lie.

Fig. 5 shows the configuration we chose for recording the
training data. The subjects stood at distances of 1, 1.5 and 2 m
from the robot. Three concentric circles with radii of 1, 2 and 3 m
are drawn around the subject, being marked every 15°. Positions
outside the specified pointing area are not considered. The subjects
were asked to point to the markers on the circles in a defined
order and a monocular image was recorded by the frontal camera
of the robot each time. Pointing was performed as a defined pose,
with outstretched arm and the user fixating the target point (see
Fig. 5, right). All captured images are labeled with distance, radius
and angle, thus representing the ground truth used for training
and for the comparing experiments with human viewers (see
Section 5). This way, we collected a total of 2340 images of 26
different interaction partners (90 different poses for each subject).
This database was divided into a training subset and a validation
subset containing two complete pointing series (i.e. two sample
sets each containing all possible coordinates (r, ¢) present in the
training set). The latter was composed from 7 different persons
and includes a total of 630 images. This leaves a training set of 19
persons including 1710 samples.

4.2. Architecture of the pointing pose estimator

Based on the overall architecture (see Section 3.2 and Fig. 4) the
pointing pose estimator uses the image of the frontal camera of our
robot Horos.

For the pointing pose estimation process (see Fig. 6) a face
detection system [20] is used to find the position of the head
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Fig. 5. The left image shows the configuration used for recording the ground truth training and test data: The subjects stood in front of the robot and pointed at one of the
marked targets on the ground. The distance of the robot to the subject varied between 1 m and 2 m. The images on the right show typical examples of images of subjects
taken by the monocular frontal camera of the robot in several demanding real-world environments with background clutter and different lighting conditions (in contrast to

earlier approaches of us presented in [1,2]).

(Xhead, Yhead) Of the user in the image. The output of the multimodal
person tracker (see Fig. 4) is utilized to determine the direction
duser and the distance dyg; of the user to the robot. These data
are processed to extract the primary region of interest (ROI) in the
input image for the subsequent feature extraction.

The estimation of the radius rpese and the angle ¢poe of the
pointing pose is done in the user-centered polar coordinate system
shown in Section 4.1.

The Gabor-filtered primary ROl is first fed into the “Left/Right-
classifier”. The result of this classifier enables one to extract the
finer image ROIs of the head and the arm of the user. In the
following stage the final pointing radius rpese is estimated by the
“Radius estimator”. The estimation of the pointing angle ¢,ose can
be realized in two different versions: In one version, first a coarse
angle is estimated by means of the Gabor-filtered ROIs and the
output of the “Radius estimator”. The result of the “Coarse angle
classifier” is fed into a “Fine angle classifier”, which estimates the
final pointing angle @pose. In a simpler version (not shown in Fig. 6),
the pointing pose angle ¢,se is estimated in one step by a single
“Angle estimator”.

4.3. Image preprocessing and feature extraction

Since the interaction partners standing in front of the camera
can have different body height and distance, an algorithm had to

be developed that can calculate a normalized region of interest,
resulting in similar subimages for subsequent processing. We use
an approach suggested in [1,2] to determine the region of interest
(ROI) by using a combination of face-detection (based on the Viola
& Jones Detector cascade [20]) and some empirical factors. With
the help of a multimodal tracker [1,2] implemented on our robot,
the direction and the distance of the robot to the interacting
person can be estimated. The cropped ROI is scaled to 160 x
100 pixels for the body and the arm and 160 x 120 pixels for
the head of the user. Additionally, a histogram equalization is
applied to improve the feature detection under different lighting
conditions. The preprocessing steps used to capture and normalize
the image are illustrated in Fig. 7. To reduce the effects of different
backgrounds, in the improved version of our system, we used a
simple background subtraction algorithm. For that, the difference
image between the start command (“Horos”) and the second
command (“Go there!”) is computed and post-processed with
a closing algorithm and a search for connected regions [21]
(see Fig. 8). The influence of the background subtraction on
the pose estimation result was tested in comparison with our
approach in [1,2] where no background subtraction was used
(see Section 5). On the normalized image regions, features were
extracted to approximate the pointing pose of the user. In our
work, Gabor filters of different orientations and frequencies,
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Fig. 7. Steps of preprocessing and feature extraction: the raw distorted image of the low cost camera in the robot’s eye (a) is transformed into an undistorted image, and
the face of the user is detected by means of [20] (b). Based on the height of the face in the picture and the distance of the user given by the person tracker, two sections of
the image are captured and transformed into grayscale images (c). On these images a histogram equalization is applied (d). Subsequently, distributed features are extracted
by Gabor filters placed at pre-defined points of the image (marked as red dots in (e)). A background subtraction (see Fig. 8) was optionally used between steps (d) and (e).

bundled in Gaborjets that are located on several fixed points in
the selected ROIs, are used. The several steps of preprocessing and
feature extraction applied in our comparison are summarized in
Fig. 7.

A second feature extraction we used is the histogram of the
user-silhouette as proposed by Takahashi and Tanigawa in [16].
This method also uses a background subtraction to separate the
user from the background. Afterwards the algorithm counts the
pixels, which belong to the silhouette of the user, for each line
and column of the image. The number of pixels in each line and
column is used as feature for the approximation of the target. Fig. 9
shows a sample histogram for a pointing pose from our dataset. We
compare the results we achieved with this feature extraction to the
results achieved with the Gabor filters in Section 5.

4.4. Feature selection by discriminant analysis

The discriminant analysis [22,23] is a well-known technique to
figure out the most relevant features in a feature space for the
separation of two or more classes. In our approach, we used the
discriminant analysis for two purposes: First, to achieve a higher
robustness against cluttered backgrounds and, second to reduce

the required computation time due to the reduced effort for feature
extraction.

To determine the importance and the contribution of a single
feature k on the estimation of a target position, the following
simple feature selection was applied: First, the Gabor filter answers
for the selected feature were computed at all samples of the
training data set mentioned in Section 4.1. Every value was
assigned to a certain class r which was defined through the target
point the subject pointed to in the current sample. Then, for feature
k the discriminant value ar(sk) between two arbitrary classes r and s
was computed as follows:

— ——\ 2 — 2
L (P ) (6P o)
0. =

" k % k O\
Z(b§’—b£>) +Z(b}’—b§‘))

ier jes

(1)

b}k) is the Gabor filter answer for the sample i belonging to the

classr. bﬁk) is the mean filter answer of all samples for the feature
5@ is the mean filter answer of all samples assigned

kin classr. b
to a certain class r or s. The discriminant value ar(sk) gets a high
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Fig. 8. The background subtraction employed in this approach. (a): by the use of
a command word (for example the name of the robot Horos) the user triggers the
capturing of a new background image. When the user is pointing at the target, the
current image (b) is subtracted from the background image resulting in a difference
image (c). With the help of a closing algorithm and the search for connected
regions [21] the image is post-processed resulting in an image with the segmented
user (d).

Fig. 9. Feature extraction as proposed by Takahashi and Tanigawa in [16]. The
number of human-pixels in each line and column is used as feature for the
approximation of the target.

value if the samples of each class have a little intra-class variance
(the denominator) and if the different classes do not overlap (the
inter-class variance given in the numerator). The results of Eq. (1),
applied for all combinations of two classes r and s, were summed
up resulting in a single discriminant value for the feature k. Fig. 10
shows the discriminant values for selected features. Gabor filters
with high discriminant values directly correspond to the possible
alignments of the pointing arm, while features with low values
correspond to Gabor filter positions and/or orientations which are
not associated with the appearance of a pointing arm but with
objects or structures in the background of the picture (clutter). By
extracting only those features showing high discriminant values
and ignoring features with low discriminant values, we achieved
higher robustness against cluttered background and a considerable
faster computation since fewer Gabor filter features had to be
determined.

4.5. Approximation of the target point

In[1,2] a cascade of several Multi-Layer Perceptrons (MLP) was
used to estimate the target point from the extracted features as
a regression task. Other techniques are also often used for the
estimation of certain human poses, however, till now not on mobile
robots but under predefined observation conditions in stationary
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Fig. 10. Determination of important features with the help of a discriminant
analysis: the bar chart shows the discriminant values of the Gabor filter features
(A to D, shown top left) for each of the fixed filter points in one vertical line
in the image. Top right for the respective position, the filter with the highest
discriminant value is displayed. Obviously, filters with high discriminant values
directly correspond to the possible orientations of the pointing arm of the subjects.

scenarios. Nolker et al. [14] used a Local Linear Map (LLM) and a
Parameterized Self-Organizing Map (PSOM) to estimate the target
of a pointing pose on a screen the user is pointing to. In [18]
Gabor filters and a LLM are utilized to estimate the head pose,
while Stiefelhagen [17] presented a stationary system that works
on edge-filtered images and uses a MLP for head pose estimation.
To give an overview of the suitability of different approaches for
the task of estimating a pointing pose from a monocular image, we
implemented and compared several relevant approaches, which all
were trained and tested with the same sets of training and test
data (see Section 4.1). Therefore, for evaluation of the different
approaches, all obtained results can be directly compared with
each other. In the following paragraphs the different approaches
used for comparison are presented briefly:

k-Nearest-Neighbor classification: The k-Nearest-Neighbor method
(k-NN) is based on the comparison of features of a new input with
features of a set of known examples from the training data. A
distance measure is used to find the k nearest neighbors to the
input in the feature space. The label that appears most often at
the k neighbors is mapped on the new input. This method only
allows classification but not a regression, e.g. by approximation
between the labels of two or more neighbors. Therefore, we slightly
modified the method in our approach. Now the label for the input
fr(X) is determined as follows:

. N 1/d;
fix) = Zl 14 | )
j

This way the labels I; of the k nearest neighbors contribute to
the output and are weighted with their Euclidian distance d; to
the input x. For example: if an input has the same distance to a
sample with the label 45° and a sample with the label 60° the
output will be 52.5°. This way the k-NN method can be used for
the approximation of targets and not only for classification.

Neural Gas: A Neural Gas network (NG, [24]) approximates the
distribution of the input data in the feature space by a set of
adapting reference vectors (neurons). The reference vectors w;
of the neurons are adapted independently of any topological
arrangement of the neurons within the neural net. Instead, the
adaptation steps are affected by the topological arrangement of the
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receptive fields within the input space, which is implicitly given by
the set of distortions Dy = {||x — w;||,i = 1, ..., N} associated
with an input signal x. Each time an input signal x is presented, the
ordering of the elements of the set D, determines the adjustment
of the synaptic weights w;. In our approach, each neuron also has
a label [; which is adapted to the label of the input signal, like the
k-NN approach described above. After the training of the Neural
Gas, the output (the estimated target point (r, ¢)) is computed by
weighting the labels I; of the best-matching and the k subsequent
neurons with the Euclidian distance d; to the input x (see Eq. (2)).

Self-Organizing Map: An approach very similar to the NG is the well
known Self-Organizing Map (SOM, [25]). The SOM differs from the
NG in the fact that the neurons of the SOM are connected in a fixed
topological structure. The neighbors of the best-matching neuron
are determined by their relation in this structure and not by their
order in the set D,. We modified the SOM so that every neuron
also has a learned label (similar to LVQ). The estimated target point
(r, @) is computed in the same way as in the Neural Gas approach,
with the exception, that in the case of the SOM the best-matching
neuron and the local neighbors in the topological structure are
used.

Local Linear Map: The Local Linear Map (LLM, [26]) is an extension
of the Self-Organizing Map. The LLM overcomes the discrete nature
of the SOM by providing a way to approximate values for positions
between the nodes. A LLM consists of n nodes representing a pair
of reference vectors (w", w?™) in the in- and output-space and
an associated linear mapping A; which is only locally valid. The
answer y,, of the best-matching neuron of the LLM to an input
x is calculated as follows:

Vom = WES -+ A (X — ). ®

The weights and the mapping matrix are also learned during the
training process. For the estimation of the target (r, ¢), we used
two separate LLMs:

Tom = Wpo't + AT (x - Wrb}i?) (4)
0om = Wi+ AT, (x — i) (5)

Multi-Layer Perceptron: For our experimental comparison, we also
used a cascade of several MLPs as described in [1,2]. The different
MLPs are trained with a standard backpropagation algorithm. The
(r, ¢) coordinates of the target point are estimated by separate
MLPs. The radius r is estimated by a single MLP while ¢ is
determined by a cascade of MLPs which first estimate a coarse
angle ¢’ and second the final angle ¢ depending on r and ¢'.

5. Experiments and results

We divided the experiments into two groups. At first, we
tested the different function approximators with the test data,
which were recorded with the subjects described in Section 4.1.
These tests were used to indicate which function approximator
is best suited for the problem of estimating the target point of a
pointing pose given the same feature extraction and preprocessing
techniques. Second, we tested the capability of the estimation
system on the robot with the best function approximator. This
way, we can measure, how much the estimation error of the pose
estimator on the test data is increased by real-world influences,
like the odometry error of the robot or the detection error of the
face detector.

To have the best possible reference for the quality of the
estimation, 10 human subjects were asked to estimate the target
point of a pointing pose on the floor. At first, the subjects had to
estimate the target on a computer screen where the images of the

training data set were displayed. The subjects had to click on the
screen at the point where they assumed the target to be. Thus,
the subjects were estimating the target in the images having the
same conditions as the different technical approaches. Second, we
determined the estimation result the subjects achieved under real-
world circumstances. Here, each subject had to point at a target on
the ground, and a second one had to estimate the target. At first the
recognizing person used both of their eyes to estimate the target,
later we blindfolded one of the eyes, and the person estimated the
target again under monocular conditions. The results of the human
based reference experiments are illustrated in Table 1 (right). The
label Human (screen) refers to the experiments on the computer
screen and the labels Human (2 eyes) and Human (1 eye) refer to
the results under real-world conditions.

The results of the several technical approaches for estimating
the target position are also shown in Table 1. As described in
Section 4.1, for each pointing pose of the ground truth data set,
the target radius r and angle ¢ of the pointing pose was recorded.
The separate results for the estimation of r and ¢ are shown
in Table 1(a) and 1(b). For the correct estimation of the target
point, r as well as ¢ had to be estimated correctly. We defined the
estimation result to be correct if r differed less than 50 cm from the
ground truth radius and ¢ differed less than 10° from the ground
truth angle. Table 1(c) shows the results for a correct estimation of
both values.

Each of the five selected approaches described in Section 4.5
was trained on the same training data set and tested on the
same test data set. For each system, we used five different
feature extraction strategies: first only Gabor filters were utilized,
second we combined Gabor filters with an additional background
subtraction to reduce the effects of the different cluttered
backgrounds in the images. Third, we used only those Gabor
filters that had a high discriminant value extracted by means
of the discriminant analysis executed over all predefined Gabor
filter positions (see Section 4.4). Fourth, we combined Gabor
filter, background subtraction and utilized only the relevant
features extracted by the discriminant analysis. Fifth we used
the histogram features generated by the silhouette of the person
as described in Section 4.3. The obtained results show, that
the background subtraction and also the discriminant analysis
significantly improve the classification results under real-world
conditions. The histogram features of the silhouette of the person
in most cases produce better results then Gabor filter-features
without background subtraction. But, if a background subtraction
is applied, then the Gabor filters produce better results. The
best results are achieved with a combination of Gabor filters,
background subtraction and discriminant analysis.

The results also demonstrate, that a cascade of several MLPs
as proposed in [1,2] is best suited to estimate the target position
of a user’s pointing pose on monocular images. A background
subtraction and the information delivered by a discriminant
analysis can be used to significantly improve the results for all
different classifier systems. The usage of these two algorithms,
combined with the histogram equalization in the preprocessing
step, now also allows one to handle background clutter and
different lighting conditions, which was not possible in our
previous work. The best system is capable of estimating the radius
r as good as humans with their binocular vision system in a
real-world environment and even better than humans estimating
the target on a 2D computer screen. The estimation of ¢ does
not reach comparably good values. The system is able to reach
a result equal to that of humans on 2D screens or humans with
one eye blindfolded, but it is not able to estimate the angle as
well as humans in a real-world setting using both eyes. This can
be explained, because the estimation of the depth of a target
in a monocular image is difficult for both, human and function
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The results for the estimation of the target point of the pointing pose. The target point is determined by the radius r and the angle ¢. Table (a) and (b) show the separate
results for the estimation of r and ¢. For each method the percentage of the targets estimated correctly and the mean error is determined. Table (c) shows the results for
the correct estimation of both values r and ¢. The results of the human viewers (on computer screen, and in reality (with both eyes “Human (2 eyes)” and with one eye
blindfolded “Human (1 eye)”)) are given for comparison. Methods that achieve a result comparable to that of the human viewers are marked with a shaded background with
different colors. GF = “Gabor filters”, BGS = “Background Subtraction”, DA = “Discriminant Analysis”, HoS = “Histogram of Silhouette”.

k-NN NG SOM LLM MLP
(a) Correct estimation of radius; Correct samples in %; Mean error in (m)
GF 48.2% 33.9% 42.9% 54.4% 70.5%
0.31m 0.46 m 0.44 m
GF + BGS 64.8% 65.1% 65.3%
0.25 m 0.29 m 0.24 m
GF + DA 60.2% 48.5% 56.3% 64.9%
0.29 m 0.32m 0.33 m 0.34m
GF. BGS + DA Human (screen)
0.21m 75.0%
HoS + BGS 64.6% 51.1% 0.35m
0.31m 0.40 m 0.49 m 0.36 m 0.20m
(b) Correct estimation of angle; Correct samples in %; Mean error in °
GF 23.1% 13.9% 15.6% 21.6% 41.39%
23.0° 23.2° 23.6° 21.8° 18.5°
GF + BGS 34.4% 27.7% 23.5% 30.3% 50.9%
20.3° 21.4° 20.91° 18.8° 17.2°
GF + DA 29.4% 19.4% 20.7% 24.7% 37.8%
23.1° 22.2° 23.4° 23.8° 21.0°
GF, BGS + DA 41.9% 30.6% 29.9% 37.7% Human (screen)
17.5° 20.5° 21.0° 19.6° 15.6° 50.0%
HoS + BGS 35.5% 28.6% 23.9% 40.7% 51.0% 13.7
18.3° 17.4° 19.4° 15.5° 13.8°
(c) Combined estimation; Correct samples in %
GF 11.1% 47% 6.7% 11.8%
GF + BGS 22.3% 17.7% 15.3% 23.5%
GF + DA 17.7% 9.4% 11.6% 16.0%
GF, BGS + DA 34.7% 22.7% 23.7% 31.7%
HoS + BGS 22.9% 14.6% 11.0% 28.6%
N 100.0% N 100.0%
= . T~ =& .
= 80.0% = 80.0%
k) ]
‘g 60.0% \/ ‘g 60.0%
B 40.0% 2 400%
8 200% 8 200% == correctr
5 S == correct ¢
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Fig. 11. Relation between the correct estimation of r and ¢ with the best approximator and the r and ¢ shown by the subject.

approximators. Fig. 11 shows the correlation between the correct
estimation of r and ¢ the subject was pointing to and vice versa for
the best system. The best results for the estimation of the radius
are obtained if the subject is pointing to a target within an angle
of 30° to 90°. The best results for the estimation of the angle are
obtained within an angle of 0° to 30° and within 105° to 120°.
This distribution of the estimation error is very similar to the error-
distribution human subjects achieve if they estimate the target on
a 2D screen or with one eye blindfolded.

The implemented Pointing Pose Estimator is able to run in real-
time. The total computation time (on an Athlon XP 2800 CPU) with

background subtraction and discriminant analysis was 38 ms for
the NG, 42 ms for the SOM, 35 ms of the LLM and 31 ms of the MLP
cascade. The k-NN classifier requires 129 ms.

For every approximator we tested different configurations with
different numbers of neurons and hidden-layers. In Table 2 the
configurations that produced the best results are listed for each
approximator.

After selecting the MLP as the best function approximator for
our task and testing it under real world conditions, we made
additional inquiries about the influence of certain factors on the
task of pointing pose recognition. At first, we tested the influence
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Fig. 12. (a) A person pointing at a specific location in a static background situation. (b) The same image with background subtraction applied. (c) The same person pointing
at the ground with a second person in the background waving with the hand and walking around. (d) The same image with background subtraction applied.

Table 2

Architecture used by the different approximators. 69-20-10-2 means a MLP wih 69
input neurons, two layers of hidden neurons with 20 and 10 neurons and one output
layer with 2 neurons.

Approximator Target Architecture
MLP Left-right 69-20-10-2
MLP Radius 204-50-20-1
MLP Coarse angle 204-60-30-3
MLP Fine angle 204-40-20-1
Neural-Gas Left-right 100
Neural-Gas Radius, angle 2000

SOM Left-right 400 x 1
SOM Radius, angle 25 x 25
LLM Left-right 400 x 1
LLM Radius, angle 15 x 15

of movements in the background of the pointing person. Therefore,
we executed two experiments: in the first experiment, a subject
pointed at 90 targets on the ground without any movements in
the background of the subject. In the second experiment, the
same subject pointed at the same targets, but a second person
was moving and waving in the background of the subject (see
Fig. 12).

In the first experiment our system estimated the correct radius
with arate of 86.4% and the angle with a rate of 54.6%. In the second
experiment with a second person moving in the background the
system reached a rate of 86.0% for the radius and a even slightly
better rate of 57.3% for the angle. So, a second person moving
and waving in the background of the subject does not reduce the
estimation rates of the system. Next we conducted experiments
about the information the system is getting from the texture of
the body and face of the pointing person. We removed the texture
of the subjects from the training and test data set leaving only
a black and white silhouette of the subject after the background
estimation (see Fig. 13) and trained and tested the system with
the same algorithm as explained in Section 4. The system reached

a b

Fig. 13. Left: Input for the pointing pose estimation system with texture. Right:
Input for the pointing pose estimation system without texture information.

an estimation rate of only 43.6% for the radius of the target and
17.5% for the angle of the target, if only the silhouette of the
subject was used. This is much worse than the results of the system
when the texture of the subject was visible and shows that the
system requires the texture information to estimate the correct
target.

We also investigated, how much influence the position of the
arm and the orientation of the head of the subject has on the
estimation result. Therefore, we generated two additional training
and test data sets. In the first set, we placed the Gaborjets only
on several fixed points in the region of the pointing arm of the
subjects. In the second set, we placed the Gaborjets only in the
region of the head of the subjects (see Fig. 14). We trained and
tested our system as described in Section 4 and compared the
achieved results with those we got if using information from
both regions (head and arm of the subjects). In case using only
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a C

Fig. 14. Three different ways for the placement of the Gaborjets: (a) Gaborjets are
placed in the region, of the head and the arm (b) Gaborjets only placed in the arm
region, and. (c) Gaborjets only placed in the head region.

Gaborjets from the arm, the estimation rate for the radius was
reduced to 87.9% (—0.5) and the estimation rate of the angle was
reduced to 46.3% (—11.0). If using only Gaborjets from the head,
the estimation rate fell to 34.1% (—54.3) for the radius and 10.0%
(—47.3) for the angle of the target. As expected, this illustrates,
that the estimation of the target point is not possible only with
information from the head of the subject, but the information of
the head helps to improve the estimation of the angle of the target
point by nearly 10% compared to results were only information
from the pointing arm is considered.

After selecting the MLP cascade (with background subtraction
and discriminant analysis) as the best function approximator
(based on our experiments described above), we tested the whole
system under real-world conditions with our mobile robot Horos.
Under such conditions, small errors of the face-tracking system, the
speech recognition module, the person tracker, the navigator and
the odometry of the robot are integrated and reinforce the error
of the Pointing Pose Estimator. Under real-world conditions, the
robot reached the selected target in 45.1% of the tests, which is an
additional error of 5.5% compared to the results achieved in the
offline experiments. The correct radius of the target was estimated
in 86.3%, and the correct angle of the target in 47.1% of the tests.
The results of these real-world experiments confirm the results of
our experiments on the test data (see Table 1) with an additional
error of 4%-6%.

6. Conclusion

In this paper, we presented an extension and additional
experimental studies to our earlier approach in pointing pose
estimation introduced in [1,2]. We compared different function
approximators and architectures based on the same data set under
the same conditions. Extensive experiments have shown, that
the MLP-based approximator leads to the best estimation result.
The major problems of the preceding approach—bad results in
environments with structured background and a computation
time which exceeds real-time requirements, could be solved. The
realized approach is able to estimate a pointing position on the
ground given only by monocular images with an accuracy equal
to human observers. Moreover, it now works in real-time. This
enables the user to command a mobile robot into a target position
only by means of pointing poses. We also have shown, that our
approach easily can be integrated in a complex robot control
architecture, such as that presented in [19].
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