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User-adaptive Interaction with Social
Service Robots

Andrea Scheidig, Steffen Miller, Horst-Michael Gross

This contribution describes the objectives, the application scenarios and first results of the long-term research project
Horos (HOme RObot System). In the focus of this research are perceptual, reasoning and learning techniques to realize
user-specific and user-adaptive interaction strategies on mobile service assistants. Expected results of this project are
basic methods, algorithms and architectures and their integration and long-term experimentation on social service

robots interacting with users in public and domestic environments.

1 Project Objectives

For robots to exist in everyday human environments, they
will have to be able to interact with humans in a natural-
istic manner via verbal and non-verbal communication and
to adapt their dialog strategy to the specifics of the inter-
action partner. Therefore, the overall objectives of the Horos
project are to study the perceptual, reasoning, learning and
motor capabilities required for social service robots acting in
human-centered environments.

In the focus of this research is the development of tech-
niques to realize user-specific and user-adaptive interaction
strategies taking into account the perceived states and in-
tentions of the current interaction partner. Against this back-
ground, there are two main challenges in learning - the off-
line learning of describing user features, like the user’s gen-
der, age or emotions, and, based on this, the learning of an
adequate dialog strategy. By adapting the dialog to the cur-
rent user two different strategies will be distinguished in the
project. There are short-term dialogs with changing users,
where only few data from a specific user are available, and
thus only a restricted dialog adaptation is possible and use-
ful. This is typical for HRI in public environments. Beside this,
a long-term interaction with the same user or a small group
of users, e.g. in a domestic environment, provides more in-
formation about the user: static information, like age or gen-
der, and dynamic information, like his or her current emo-
tions, preferences and intentions. Therefore, for short-term
dialogs typically fixed user models initialized by statistical
data are utilized while adaptive user-models are better suited
for long-term dialogs. However, most of the current applica-
tions use only short-term dialogs where the interaction with
all users is the same [1].

As soon as a robot becomes a long-term interaction part-
ner, the robot needs to be able to treat each person as a
distinct individual and to personalize the dialog. Therefore,
in the Horos-project we are focusing on two complemen-
tary scenarios to investigate both aspects of HRI, an inter-
active mobile information system interacting with different
people in a public environment, and a personal assistant for
a domestic application. In both scenarios, we use our mobile
robots Horos as platforms (see Fig. 1).
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2 Related Work

Mostly used approaches are rather simple, static and not
adaptive like the Stereotypes [2]. Beside these, there are only
a few adaptive approaches, like reinforcement learning based
systems realizing a simple user-adaptivity based on a per-
son’s feedback to the robot's actions. One of the first exam-
ples for such a user-adaptive dialog was the learning of user-
preferred robot movements based on feedback signals of the
interacting person [3]. However, the uncertainty in the com-
munication process between human and robot, especially in
naturally spoken dialogs, is an important problem of more
natural and complex scenarios [4]. One approach to over-
come this uncertainty is to model the cognitive states of the
users probabilistically by means of POMDP’s. Using this tech-
nique, the robot is able to learn an optimal dialog strategy
to maximize the dialog reward. An example for that is pre-
sented in [5], where a robotic nursing assistant for the elderly
plans its verbal dialog strategy by means of this technique.
However, approaches that allow a more detailed modeling of
the cognitive state and intention of the current user taking
into account visual and auditory observations of age, gender,
emotions, interest and instructions are not yet known.
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Figure 1: Sensory modalities (visual, auditory, touch, laser,
sonar, tactile) and motor components (drive, speech, face)
of our mobile interaction-oriented robots Horos I+l
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3 User-adaptive HRI in HOROS

In both scenarios of the Horos project different functional as-
pects of a user-adaptive HRI have to be investigated. Based
on a stable multi-modal person detection and tracking, these
include the recognition of specific user features and the es-
timation of the user’s goals (Fig. 2, left). Depending on the
concrete scenario, this concerns static features like the user’s
age or gender (for short-term dialogs with changing users)
or additional dynamic features, like the facial expression, ges-
tures or the voice prosody of the current user (for long-term
dialogs with the same user). For the association of the per-
ceived user features with specific robot behaviors (Fig. 2,
right), we are developing and investigating different adap-
tive user models described in Section 3.2 (see Fig. 2, middle).
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Figure 2: Main aspects to be realized for a user-adaptive
HRI in the Horos project: The recognition capabilities already
used (white background) or planned (gray background) are
shown on the left side. Possible techniques for a user-
adaptive dialog are depicted in the middle. The available
robot behaviors to be adapted to the current user are given
on the right side.

3.1 Recognition Capabilities

3.1.1 Robust Multimodal Multi-Person Tracking

Efficient and robust techniques for people detection and
tracking are basic prerequisites when dealing with HRI in
real-world scenarios. Therefore, we use a multimodal ap-
proach, which can be characterized by the fact, that all
utilized sensory cues are concurrently processed and inte-
grated into a robot-centered map using a probabilistic ag-
gregation scheme [6]. The overall computational complexity
of our approach scales very well with the number of sen-
sors and modalities. As sensory cues we use the laser-range-
finder (to detect typical leg-profiles), the sonar system (to
detect any object under a minimum distance), the fisheye-
based omni-directional vision system (to detect skin color),
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and the frontal vision system (to detect faces or body silhou-
ettes) (see Fig. 1). For each of these sensory systems, specific
Gaussian distributed object hypotheses are generated. Each
Gaussian distribution models the belief to observe a person.
These probability distributions are further merged into one
map by means of a flexible probabilistic aggregation scheme
based on Covariance Intersection (Cl). The main advantages
of this approach are the simple extensibility by integration
of further sensory channels, even with different update fre-
quencies, and the usability in on-line recognition tasks [7]. In
our ongoing work, we are extending the system with addi-
tional cues to further increase the robustness and reliability
for demanding real-world environments (especially in oper-
ation areas, where the current sensory cues are insufficient).
Currently, we are working on the integration of a voice-based
speaker localization and tracking [8] and on the integration
of a head-shoulder-based visual tracker.

3.1.2 Estimation of User Intentions

To estimate possible goals of the current interaction partner,
we utilize a touch-based tactile dialog, speech commands
and non-verbal instructions by means of pointing poses or
head poses (see Fig. 2, left).

Movement trajectories: A prerequisite for estimating the
user intentions is the capability of a socially interactive robot
to estimate the user’s interest to interact with it. Based on
this estimation, the robot can adapt its dialog strategy to
the different behaviors of the respective person. Against this
background, we currently use a multi-modal approach to es-
timate the interest of people to interact with the robot by
analyzing the movement paths people typically take in the
surroundings of a robot [12]. Relevant known approaches es-
timate the movement direction of a person only by means of
distance sensors [13] or determine the movement goals in
a local operation area using several fixed laser sensors [14],
techniques which are not suitable for a mobile robot that has
to react autonomously in a large-scale and highly populated
operation area. In our approach, different movement behav-
iors, e.g. "slow or fast passing by” or "going ahead to the
robot” need to be distinguished to allow an adequate and
pro-active reaction of the robot. Therefore, in the project we
try to learn a direct mapping from an observed movement
trajectory as expression of a current user goal to a specific
robot articulation generated by the user-adaptive dialog con-
trol (see Section 3.2), e.g. a specific voice response or facial
expression or an attracting robot movement. As a prelimi-
nary approach, we classify the perceived movement trajecto-
ries of tracked people in several categories that could express
underlying interest of people [12]. Based on this, an appro-
priate robot reaction for each classified movement trajectory
can be generated.

Pointing poses: Based on this person tracker, we developed
a hierarchical neural architecture that is capable of estimat-
ing a target point at the floor given a pointing pose, thus
enabling a user to command his mobile robot to a specific
target position in his local surroundings by means of point-
ing [11]. The achieved recognition results demonstrate that
it is possible to realize a user-independent pointing pose es-
timation using only monocular images given of the low-cost
frontal camera (see Fig. 1), but further efforts are necessary
to improve the robustness of this approach for everyday ap-
plication. Planned improvements concern the application of
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a foreground extraction routine based on active shape mod-
els [17] or the analysis of the movement of the pointing arm
to the final pose, which contains additional information that
could be exploited to enhance the precision of the estima-
tion.

Gaze direction and body orientation: To enhance the esti-
mation of the interest of a person to interact with the robot,
we are currently integrating further features like the head
pose [15, 7] together with the body orientation.

3.1.3 Estimation of the User State

For the estimation of the user state, we mainly use multi-
modal cues to estimate age, gender, facial expression, iden-
tity, prosody and body language (see Fig. 2 left) in the Horos
project.

Age, gender, identity, emotion: For the observation of
these features we mainly utilize vision-based cues (see [10]).
In this work, alternative approaches for extracting features
from face images and several classifiers are compared with
respect to their applicability to allow an on-line classification
of gender, age, facial expression, and identity of the tracked
user. The used models are i) a description of the face images
by their projection onto an ICA-based subspace and ii) an Ac-
tive Appearance Model (AAM) which describes the shape and
gray value variations of the face images. Best results for the
estimation of gender and facial expressions were obtained
by using AAMs and MLP classifiers or ICA-subspace projec-
tions in combination with Nearest Neighbor classifiers. In our
future work, we will enhance these estimation results by inte-
grating further modalities, like audio-based speaker features
analyzing the voice of the user. For example, the prosody
can provide very useful information about the current state
of the interaction partner (e.g. [18]).

Body language and dynamic gestures: Since both features
do also describe the current state of a user and his satis-
faction with the interaction process, in the near future new
techniques [19, 20, 21] will be investigated with respect to
their suitability for classifying dialog-relevant gestures or for
finding elementary parts of specific body gestures.

3.2 User-Adaptive Dialog Control

The aspect of a multi-modal user-modeling addresses the
transformation of observed user states and intentions into
suitable multi-modal robot behaviors, like speech outputs,
adequate movements, simple robot gestures or mimics, etc.
(see Fig. 2, right). For instance, perceiving an older person
which wants to be guided to a specific location, requires a
guided tour probably using a lower movement velocity than
the same tour for a younger person. Depending on the used
scenario, different adaptation methods for the user-model
will be required. Thus, scenarios with many different users
and short-term dialogs do not require a specific adaptivity
for each individual user rather than for typical user groups,
like young or old, male or female persons. Unlike, scenarios
with long-term dialogs with the same user (e.g. in a domestic
application) require a very specific and on-line adaptation to
the preferences and intentions of that specific user. A main
problem of the short-term dialog is that in the context of a
particular real-world application, numerous different dialog
strategies have to be tried out by the robot - a process which
would be very time-consuming. More difficult is the acquisi-
tion of appropriate feedback from the different users about
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the dialog took place and its success. However, such an im-
mediate feedback is necessary to evaluate the dialog strategy
currently executed. Unlike, in long-term dialogs more dialog
strategies can be tried out during interaction with the same
user, and also alternative feedback signals can be extracted
to get an evaluation of the ongoing dialog, like e.g. facial
expressions, variations in voice melody, interaction distance
between robot and user, or others. In our project, we are
currently investigating the following approaches to realize a
user-adaptive dialog control:

Neural Function Approximators: This approach is very sim-
ilar to the RL-based Backgammon playing approach devel-
oped by Thesauro [22], where the values of the experienced
game states are learned with respect to a particular policy. In
our approach, also a neural function approximator is to learn
the value of a typical sensorimotor dialog situation for a user-
specific successful dialog. The dialog situation can be de-
scribed by the audio-visual observations of the current user
state and extracted user goals and by a set of possible and
favorable robot actions. One disadvantage of such a direct
mapping is the enormous complexity of the domain, which
necessarily limits the approach to a scenario where only a
few actions and behavior parameters have to be learned.
Multi-Agent Systems: A first approach to break down the
complexity of the problem is the application of Multi-Agent-
Systems (MAS). Here, the individual learning instances, the
agents, can specialize on different subtasks of the decision
problem. So a variety of questions arise. On the one hand, if
the structure of the MAS is manually designed, we have to
investigate methods for coordination of competing agents
or for assignment of rewards. On the other hand, if the MAS
structure is not predefined, the field of self-organizing prob-
lem decomposition opens for further investigation. One in-
teresting aspect, already mentioned is the fact that one can
not be sure about the current cognitive state of the user. This
deficit can also be handled using MAS, by means of deploy-
ing special agents. These only try to maximize the certainty
of the user information and have to compete with the others
to apply their actions.

Graphical Models: A more elegant way for integrating the
consideration of uncertainty and the aspect of fast learning
of strategies is given by probabilistic reasoning. The keyword
of Graphical Models subsumes a variety of methods appli-
cable for dialog management, too. On the one side, these
approaches are very flexible. For example, multi-modal and
diffuse or contradictory inputs can be used for realizing a
more intuitive and predictable dialog control. On the other
side, enormous effort is still necessary for reasoning in more
complex and realistic dialog models. Basic steps for handling
the complexity utilizing approximation methods or by factor-
izing the process have been done by Thrun and colleagues
[5]. In our project, we want to take these methods up for
integration of extracted multi-modal user features, suitable
behavior patterns of the robot, and self-evaluation based on
internal drives and external feedback from the user.

4 Summary and Conclusions

In this paper, we presented the general idea and the main
objectives of the Horos project, together with first, already
published results. For the Horos project and its two applica-

33




Kl i Projekte

tion scenarios in public and domestic environments, several
main challenges were defined and shortly described. These
include the estimation of the user’s state and the recog-
nition of his intentions and instructions together with the
on-line adaptation of the dialog strategy according to these
observations. Our future research will therefore be focused
on techniques and methods allowing a user-specific on-line
adaptation of the dialog strategy by means of an evaluating
direct or indirect feedback from the interaction partner. How-
ever, a prerequisite for this are robust and fast techniques to
recognize the changing user states and their audio-visual ex-
pressions.
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