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We present a new control scheme for an industrial hard-coal combustion process in a
power plant based on reinforcement-learning in combination with neural networks. To
comply with the great requirements for environmental protection, the plant operator is
interested in a minimization of the nitrogen oxides emission and a maximization of the
efficiency factor, while other process parameters have to be kept within predefined limits.
To cope with both the tremendous action and state space of the power plant, we present
a multiagent-reinforcement-system consisting of 4 agents, which are realized by relatively
simple neural function approximators. We demonstrate, that our multiagent-system was
able to significantly reduce the overall air consumption of the real combustion process
of the power plant.
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1. Introduction

Since the immediate objective of a power plant is the production of energy, the
plant operator is trying to maximize the efficiency factor. Simultaneously, both
the system-constraints and great requirements for environmental protection limit
the workspace. Because of time varying plant properties caused by pollution, fair
wear and tear, changing coal qualities, etc., a control system is sought, which au-
tonomously tries to minimize a predefined cost function.

Reinforcement learning (RL) can be used to solve such problems. The main
idea of RL consists in using experiences obtained through interaction with the en-
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vironment (in this case the combustion process) to progressively learn an optimal
value function. This value function predicts the best long-term outcome an agent
can receive from a given state when it applies a specific action and follows the
optimal policy thereafter.! The agent can use a RL-algorithm such as SUTTON’s
TD()) algorithm,! or WATKINS’ Q-learning algorithm ? to improve the long-term
estimate of the value function associated with the current state and the selected
action. However, in systems with continuous state and action spaces, the value
function must operate with real-valued variables representing states and actions.
Therefore, the value functions are typically represented by function approximators,
which use finite resources to represent the value of continuous state-action pairs.
Neural Function approximators are useful because they can generalize the expected
return of state-action pairs the agent actually experiences to other regions of the
state-action-space. Thus, the agent can estimate the expected return of state-action
pairs that it has never experienced before. Many classes of function approximators
have been presented, each with advantages and disadvantages. The choice of a func-
tion approximator depends mainly on how accurate it is in generalizing the values
for unexplored state-action pairs, whether it is able to realize online learning and
how expensive it is to store in memory.

2. State of the Art

Large-scale combustion power plants are monitored by and operated via process
control systems, which solve problems of visualization, alarm indications and the
application of low-level control-components. It is commonly known, that the per-
formance of such complex processes can be significantly improved through a higher
control level realized by manual control actions of an experienced operator. Al-
though automated solutions for this high level control are very complicated, there
exist a lot of intelligent control solutions.®* Most of the existing intelligent control
schemes intensively use models of the process to be controlled®®7# or build knowl-
910,11 The decision to use these so
called expert systems for intelligent process control mainly depends on the avail-
ability and quality of the knowledge base. Likewise, the application of model based
control strategies crucially depends on the quality of the process model.

edge bases derived from experienced experts

Due to the absence of mathematical models and ingenious knowledge bases in
our special case of controlling a combustion process, these approaches for intelligent
process control did not seem practicable. For this reason, the authors investigated a
control scheme, that requires no a priori knowledge and no mathematical model of
the combustion process. The proposed Reinforcement-learning (RL)!? based control
scheme allows an autonomous exploration of the state-action space of the combus-
tion process, while predefined quality factors established by the plant operator have
to be optimized.

In summary, the approaches based on mathematical models, ingenious knowl-
edge bases or reinforcement learning probably would have a similar performance to
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solve the task given. The differences between these approaches can be characterized
as follows. The main disadvantage of the model or knowledge based systems is the
compliance with the requirements of the very expensive a priori knowledge. An-
other problem is the resulting limited portability to other plants, caused by slightly
different process parameters. Furthermore, also time variant processes would cru-
cially require an expensive redesign of the process model or knowledge base from
time to time. In contrast, the reinforcement-approach does not require any a priori
knowledge about the process, because it explores the process-features and proper-
ties through interaction with the process itself. Hence, RL is much more flexible,
portable and can also adapt to changing plant properties. This main advantage of
RL implies on the other hand a minor drawback, because during the necessary ex-
ploration phase the system has to perform many different control actions, of course
also suboptimal ones!

RL has been successfully applied to solve real world problems in many cases.
RL is applied to refine the performance of conventional controllers!® or to tune
fuzzy-controllers.'*15 Further real-world applications of RL concern dynamic chan-
nel allocation in telephone systems,'® optimization of an elevator system'7 or packet
routing.'® To the best of our knowledge, this paper presents for the first time a RL
based approach to control the combustion process of an industrial power plant.

3. The Plant

The electrical power plant we used for our experiments is owned by the ”Ham-
burgische Elektrizitaetswerke” (HEW) and is situated in the south of Hamburg
(Germany) and has a maximal output of 252 MW.

Figure 1 gives an overview of the plant. The coal mills produce coal dust, which
together with fresh air is fed into the combustion chamber via several valves. The
emerging warmth is used to heat steam, which propels a steam turbine to produce
electricity. The emerging exhaust gas is used to preheat the incoming cold fresh air
and is cleaned in subsequent parts of the plant.

The subsystem we have to control consists of 6 burners aligned in 2 columns at
3 levels (10, 20, 30) in one combustion chamber (Fig. 1).

As introduced earlier, the main objective of the plant operator are the increase
of the efficiency factor and a reduction of NO,-emissions. Both variables crucially
depend on several properties of the underlying combustion process. Unfortunately,
there is only unspecific and global information available, like total amounts of inlet
air and coal, NO, or O» emissions. But, more detailed information for instance
about the very important ratio of air and coal for each burner was not available.

This fact becomes more important, since the exact amount of inlet coal can not
be measured for each burner separately. That is because the burners at each level
are supplied with coal by one coal mill. Although the distribution of inlet coal
should be equal for each of the two supplied burners, due to varying flow dynamics
or pollution, this equilibrium may be shifted to benefit one burner.
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Fig. 1. Schematic view of the power plant. The combustion chamber features three burner-levels
with 2 burners each and is supplied with coal by three coal mills.

To get more burner specific information about the distribution of coal and air in-
side the combustion chamber or about the flames, we observe each of the 6 flames by
a special color camera system, provided by the ORFEUS Combustion Engineering
GmbH, and use these data to control the process. Figure 2 depicts the extraction
of visual features describing the combustion process. First, we filter the incom-
ing videostream from each camera in the time domain and afterwards we calculate
fitvalues describing intensity, form and position of the flames. In order to reduce
the large set of flame-describing features, we analyzed the correlation of the visual
features and several important process data, for instance the NO, and Os emissions
and the waste gas temperature. We found, that already the mean intensities in the
R-Band of the RGB-images of the flames (FEM B ... FRMB32) entail very detailed
information about the distribution of coal and temperature inside the combustion
chamber.

The plant operator defined the goal of the controller as follows. First, we have
to satisfy several limitations at all times to guarantee the safety precautions:

e steam temperature > 540° C

e waste gas temperature > 340° C

NO, concentration in waste gas < 1200mg/m?

unused carbon < 5%
e Oy > 3%

In addition, the control system has to minimize both the NO, emissions and the
air consumption in order to increase the efficiency factor.

To fulfil the defined goals the plant operator gave us direct access to the controls
depicted in table 1 (see also Fig. 3). Please bear in mind, that these 12 controls
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Fig. 2. Extraction of visual features describing the combustion process very closely.
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Table 1. Control variables.
control variable meaning
primary air trim at levels 10, 20, 30 air-distribution between the left and
right burner on the specified level
primary/secondary air trim for all | distribution between primary and sec-
burners ondary air at the specified burner
air amount at levels 10, 20, 30 overall air amount on the specified level

(see Fig. 3) only influence the air amount and the distribution of air between these
6 burners, but neither amount nor distribution of inlet hard-coal! To reduce this
immense action space, we use relative instead of absolute controls. That means,
we define only three actions for each control: increase by 1%, remain unchanged or
decrease by 1% (the use of absolute controls with only 10 quantization steps for each
control would lead to an overall action space of 10'? different actions!!) Despite the
usage of relative controls, our system would have to cope with an enormous action
space of 312 = 531441 actions.

4. Architecture

As motivated in sections 1 and 2, we investigated the application of an RL
based control scheme to control the combustion process. The main feature of RL is
its self exploration of the outcomes of control actions with respect to a predefined
goal. Based on a sensory description of the current process situation, the RL-
system selects an appropriate control action, performs it, observes its consequences
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Fig. 3. Schematic view of the combustion chamber with coal and air supply for one of three
burner-levels.

and acquires a reward (see Fig. 4). The task of the architecture is to obtain a
utility-value for all experienced state-action-pairs, which is defined by the reward
and the discounted value of the new state. We decided to use the so called classical

Situation

Environment

Fig. 4. Closed interaction cycle between RL-system and the environment (combustion process).

Q-learning because of very promising experiences on robot-navigation tasks.!%20

The applied neural function approximator, which approximates the utilities of all
actions for a given process situation, utilizes a Neural-Gas-Clusterer,?! providing a
topologically organized and continuous process situation code in combination with a
subsequent output layer providing the utility-values (Q-values) of the state-action-
pairs (see Fig. 7 right).

During the exploration phase the RL-system has to perform all control actions in
all process situations. However, due to the tremendous action space (12 independent
control variables) in combination with the very large situation space of the process a
full exploration of all state-action-pairs would last a very long time and is therefore
not applicable to solve our control task.
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4.1. Problem decomposition

Consequently, we designed several agents, each observing only a relevant subset
of the situation space and using only a subset of the available controls. Figure 5 (left)
depicts the decomposition into 4 agents with their inputs and their corresponding
controls.

Feature Vector
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Fig. 5. Decomposition of the control task into 4 agents with their inputs and their corresponding
controls. Each agent observes the relevant part of the situation space and has access to an assigned
subset of controls.

Thus, according to table 2, AGENTL10, AGENTL20, and AGENTL30, observe
only the intensity-ratios of the left and right flame on all levels and control the air
distribution at their corresponding burner level (3 control variables each). AGENTO2
observes the intensities of all flames and the global ratio of inlet air and coal (A).
This Agent controls the total amount of air consumption for each burner level (3
control variables). The introduction of a scheduling of the 4 agents at this point is

Table 2. Inputs, states (NGU) and outputs of all agents.

Agent | input | NGU | output
AgentL10 3 20 1 3-3-3=27
Agent.20 3 20 1 3-3-3=27
AgentLL30 3 201 3-3-3=27
AgentO2 7 50 | 3-3-3=27

very important, since the reinforcement-approach assumes, that each agent is able
to observe directly the consequences of its own actions. If two agents would perform
their actions together, the consequences of their actions (e.g. NO, concentration)
would interfere and the resulting cross-talk between the agents would prevent a
correct acquisition of the real outcomes of the respective actions. Hence, in this
first approach, we defined, that all 4 agents operate sequentially in time intervals
of 10 minutes (see Fig. 6).
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Fig. 6. Applied time scheduling of our 4 agents. First, AgentE10 observes the process for about
10 minutes, generates its action a!(t) and performs it at time 10min. Now, AgentE20 observes
the process for about 10 minutes, generates its action a2 (t) and performs it at time 20msén and so
on. The difference between the observations z!(t) and z2(t + 1) yields to the reinforcement r1(t),
which is used to adapt the policy of AgentE10.

4.2. Neural function approximator

As described earlier, each of these 4 agents is realized by a neural function ap-
proximator. In this paper, we present a very first and simple approach to this state-
action function approximator that combines a neural vector quantization technique
(Neural Gas?!) for optimal clustering of the high-dimensional, continuous input
space?? (Eq. 4.1) with a subsequent associative memory, to estimate the values of
the assigned actions (see Fig. 7).
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Fig. 7. Neural control architecture for reinforcement-learning of a single agent. The input-vector
consists of visual flame-describing features obtained from the camera systems observing the 6
flames of the combustion process. Agent O2 additionally receives the ratio of inlet air and coal
(A). The neural clusterer maps the continuous and high dimensional input-space onto a discrete
state-space, whereupon the Q-values of all assigned actions are estimated.

Equation 4.1 shows the neural-gas weight w,(¢) update rule for the neuron k,
where n™V¥(t) is a learning rate, (k) is the index of neuron k in the list sorted by
distance to the input z(t) and h(t) is the learning radius. Thus, the real-valued
process describing input data are mapped onto a low dimensional representation s¢.
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Awi(t) = V) - e O - [z(t) —wy(1)] (4.1)

For action-value approximation @ for state st and control action af, we utilize the

Q-learning 2 variant of reinforcement-learning (Eq. 4.2). The usage of expected
future returns discounted by -« in addition to the current reward ensures a policy
maximizing not only the immediate, but also of long term rewards. Thus, this
algorithm is searching a global maximum of the defined reinforcement function.

AQ(st,at) = n{rt+'yV(st+1)—Q(st,at)} with (4.2)
V(sttl) = maaxQ(sH'l,aH'l) (4.3)

For our experiments, we use a discount factor for the value of the subsequent state
of v = 0.5, and a Q-learning-rate of n = 0.2. The reinforcement r is the result of
an agent-specific reinforcement function, which strongly corresponds to the plant
operator objectives described in section 3. Agents AGENTL10, AGENTL20 and
AGENTL30 are rewarded, if the NO, or the Oy concentrations decrease and pun-
ished, if these concentrations increase (Eq. 4.4). The reinforcement depends on the
O, concentration, since these agents can only change the distribution of the air,
and a reduction of unused oxygen implies, that this redistribution caused a more
complete combustion of the coal. Agent AGENTO?2 is also rewarded, if the NO,
concentration or the total amount of used air decreases (Eq. 4.5). Any violation
of thresholds for process data, that are defined by safety precautions of the plant,
results in a very strong punishment (Eq. 4.4 and 4.5). The terms Kno,_, Ko, and
K, allow to balance the importance of the NO, concentration and the efficiency
value. We used for our experiments Kno, = Ko, = K, = 10.0.

FAgentLXX _ —10.0 : any threshold violated (4.4)
KNOE -ANO, + _K'O2 -AOy : else )
FAgentO2 _ —10.0 : any threshold violated (4.5)
Kno, -ANOy + Ky - AAir @ else

5. Results

To reduce the exploration time for the plant, we pre-trained our multiagent-
approach on past process data. This is a kind of supervised reinforcement learning.
Figure 8 shows the development of the cluster-errors (left) and of the Q-prediction-
error (right). The decreasing cluster error documents the adaptation of the neural
gas towards the distribution of process situations in the input space. The Q-error
shows the convergence of our function approximator minimizing the Q-prediction
error.

After pre-training, we installed the neural multiagent-reinforcement-system on
the plant. The exploration behavior of our system was not frozen at this time,
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Fig. 8. Development of the cluster errors (left) and the Q—prediction-errors (right) over 10 training
cycles on passed process data of the 4 agents. For details see text.

instead we introduced a noise term on all estimated Q-values, which decreases over
time to a fixed minimum greater than zero. Thus, we guarantee a fading explo-
ration behavior in favor of the exploitational behavior, whereby always a certain
exploration performance remains. Figure 9 depicts the evolving cumulative rein-
forcements of the 4 agents after the pre-training of the networks.
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Fig. 9. Development of the cumulative online-reinforcements of the 4 agents during 2 days af-
ter pre-training with a relatively high exploration performance. As can be seen, despite the still
present exploration performance, especially AgentL30 and AgentO2 mostly receive positive rein-
forcements. This is plausible, since the upper burner level has the strongest influence on the waste
gas concentrations, as a consequence of the flow characteristics inside the combustion chamber.
AgentL10 and AgentL20 performed not so well, probably due to the still ongoing exploration
behavior.

In Figure 10 a comparison of the conventional control scheme with fixed air dis-
tributions used up to now and our multiagent-reinforcement-system is given. As can
be seen, the amount of used air could be reduced significantly by the reinforcement-
system (top left). In contrast, both the NO, and O, waste-gas concentrations
remained at the same level in these first investigations, whereby we have to remark,
that the potential for NO, and Oy reduction vanishes with increasing load factors
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Fig. 10. Comparison of the conventional and our reinforcement-based control schemes by means
of consumed air (top left), NO; (top right) and O2 concentrations (bottom left) in the waste
gas for a time period of about 6 days. Both, the mean NO,; and Oy waste-gas concentrations
remained at the same level, whereas the amount of used air could be reduced significantly by
the reinforcement-system. Thus, the efficiency factor could be increased. Also, over the time of
its operation, the reinforcement-system was able to decrease the NO; level (bottom right). The
dotted curves represent the original data, whereas the solid line shows the low-pass filtered signal
to clarify the claimed changes. During this investigation period, the power plant worked with a
load of about 90%.

700 800

of the power plant. Figure 10 (bottom right) shows the relevant emission data for
the time, during which our reinforcement system was operating. As can be seen,
the mean NO, concentration decreased over time, where both the O concentration
and the total air consumption remained almost unchanged.

Of course, this comparison has to be statistically analyzed over many trials, but
for industrial processes it is very hard to benchmark different control approaches,
where all other process parameters have to be kept constant.

6. Conclusions and Outlook

In this paper we presented a reinforcement-based multiagent approach based on
neural networks to control a complex industrial combustion process. To cope with
both the tremendous action and situation space of the power plant, we decomposed
the complex system into several agents. The proposed multiagent-reinforcement-
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system consists of 4 agents, which are realized by relatively simple neural function
approximators. Neural function approximators are very useful, because they can
generalize the expected return of state-action pairs the agent actually experiences to
other regions of the state-action-space. Thus, the agent can estimate the expected
return of state-action pairs that it has never experienced before.

Future work should address the development of more powerful function approx-
imators than our very simple approach utilizes, because this kind of network tries
to approximate the probability density distribution of the input data in the feature
space. This data driven statistical learning seems to be insufficient under certain
circumstances. For this reason, incremental neural networks are very promising
alternatives, for example, the Growing Neural Gas Approach of Fritzke?? or the
life-long learning approach of Hamker.2? For a faster learning, we also plan to in-
vestigate function approximators on the basis of the Adaptive Resonance Theory,
e.g., the Fuzzy-Art approach.2425 In this context, the stability-plasticity-dilemma
has to be addressed, since changing coal qualities, wear and tear, etc. result in time
varying process properties and a powerful system has to consider and solve these
problems for the use in an industrial process.

Nevertheless, the first results are very promising, but the application of RL-
methods to this pretentious control problem is a great challenge.
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