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Visuomotor Anticipation — a Powerful
Approach to Behavior-Driven

Perception

Volker Stephan, Horst-Michael Gross

In this paper we present a biologically inspired neural architecture for visual perception based on anticipation. Our
approach is able to explain several perceptional abilities of biological systems, for instance, expectation driven perception
or the internal simulation of hypothetical action sequences in order to find an optimal action to be performed in reality.
We demonstrate the functioning of our anticipatory approach for the visual perception of space of a mobile robot, that has
to realize a local navigation behavior in an unknown environment.We claim that perception is not an end in itself, instead
itis a sensorimotor process integrating the generation of behavior.

1 Introduction

In the classic understanding, visual perception is a purely
data-driven process of sequential image processing stages that
are transforming the retinal image into an internal, purely sen-
sory representation of the external world. Afterwards, based on
that representation an appropriate behavior is generated. This
strict separation between perception and generation of behav-
ior turned out to suffer from a number of conceptual problems.
The main problems concern the generation of an internal rep-
resentation that entails those sensory features that are relevant
for the problem to be solved. This is critical, because the inten-
tions, the basic motor abilities,and the typical properties of the
whole system are without any influence on these representa-
tions [7]. Furthermore, the selection of appropriate behaviors
from these representations has to be designed externally.

A number of alternative theories of perception have been
developed recently that try to overcome these problems by re-
placing sensory with sensorimotor representations and by con-
sidering perception as an active and generative process rather
than a pure projection [1], [6].

Based on that background, in section 2 we present selected
neuroanatomical properties of the cerebral cortex explaining
the mechanisms of perception and behavior generation in bio-
logical systems. Afterwards, section 3 describes the mobile ro-
bot we used for the experiments described in this article. Sec-
tion 4 describes a biologically inspired neural architecture,
which demonstrates, that perception driven by expectation is
more powerful than a purely data-driven perception-approach.
Section 5 extends that architecture by the ability for internal
simulation in order to find appropriate motor actions. Finally,
section 6 gives a short summary.

2 Biological Background

Today it is well known, that visual information about a cur-
rent situation is carried from the retina to several cortical areas,
for instance, to the areas V1-V5(MT) (Mediotemporal Cortex).
The posterior parietal cortex (PPC) effects the integration of dif-
ferent sensory inputs, for instance from visual and primary som-
atosensory cortex (figure 1).Both the premotor cortex (PMC) and
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the supplementary motor area (SMA) receive projections from
PPC and are strongly involved in generating hypothetical
movements from memory [6], [10]. The structure of the /ateral
cerebellum, the strong connections from the cerebral cortex
(MT, PPC, and PMC), and the connections back to premotor and
motor cortices make the cerebellum a very suitable brain area
to construct sensory predictions [2], [6]. The basal ganglia (BG)
receive inputs from all parts of the cerebral cortex, including
PMC,and have outputs directed strongly towards the premotor
and prefrontal cortex via which they might influence move-
ment selection and initiation [4], [11]. A more detailed discus-
sion can be found in [3].

Figure 1: Model-relevant structures of the human brain with their
interconnections and interrelations.

Derived Model: The retina converts the incoming optical
data stream into a neural representation which is processed
along the visual pathways via lateral geniculate nucleus to are-
as V1,V2,V3,V4 and into V5/MT. Area V5/MT contains an optic
flow map [5], which is distributed to several cortical and subcor-
tical areas, for instance, to the basal ganglia, to the lateral cere-
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bellum, and to the PPC, The massive afferent sensory informa-
tion in PPC from area V5/MT, from somatosensory cortex and
from thalamus allow this structure to generate a description of
the system's current status. The output of PPC is transferred to
the motor areas of the cerebral cortex, especially to PMC and
SMA [11], which uses the current system status to generate sev-
eral action strategies. Thus, in SMA/PMC, afferent sensary infar-
mation is transformed into a set of possible motor commands
describing the current sensory situation.

Cortico - basal ganglionic loop: The motar alternatives
generated in SMA/PMC are projected to the basal ganglia,
which associate evaluation signals, learned from dopamine
neurons in the midbrain, to these actions [4],[11]. Based on this
information, the local connectivity of BG selects a subset of
SMA/PMC suggested actions, that had positive outcomes in the
past. This set of appropriate motor commands is fed back via
thalamus to SMA/PMC closing the loop between cortex and
basal ganglia [B], [41. Thus, in our model, the cortico - basal gan-
glionic loop evaluates and selects actions.

Cortico - cerebellar loop: From SMA/PMC, the information
about appropriate movements is projected to the lateral cere-
bellum [4], which uses the sensory context coming from area
V5/MT to predict the sensory consequences of the proposed
motor commands, This sensory prediction is projected back to
the motor cortices and to PPC via thalamus closing the cortico-
cerebellar loop. Thus, the cortico - cerebellar loop seems to an-
ticipate the sensory outcomes of hypothetical movements sug-
gested by SMA/PMC and evaluated by basal ganglia.

Integration of both loops: Mow, the cycle of information
processing described above can be reentered time and again
in order to simulate and evaluate entire sequences of hypo-
thetical sensorimotor states, while the best evaluated motor se-
quence may be buffered in SMA/PMC_ The hypothetical senso-
ry situation, predicted by the cerebellurn, can be used as a start-
ing point for the next anticipation cycle. Then, SMA/PMC can
suggest a new set of possible actions for the hypothetical sen-
sory situation, the basal ganglia evaluate and select appropri-
ate movements, the cerebellum predicts their sensory conse-
quences, and so on, Finally, the initial motor command of the
sequence best evaluated out of all simulated ones is fed to pri-
mary motor cartex, which is responsible to execute the select-
ed motor commands in reality. The real consequences of this
action are observed by the sensory system (visual, tactile) and
can be used to adapt the sensory prediction by learning. Subse-
quently, the whole process of internal simulation starts again.

In our approach, perception of space and shape is regarded
to be an active pracess which anticipates the sensory conse-
guences of alternative hypothetical interactions with the envi-
ranment, that could be performed by the sensorimotor system.
This point of view emphasizes the generative and anticipative
character of perception considering both sensory and motar
aspects of the action-perception-cycle. Our model does not at-
tempt to account for a detailed description of specific cortical
or subcortical structures, but we try to capture some general
properties of architecture and processing that we found in
neuroanatomical literature To the best of our knowledge, other
cancrete computational neural models allowing to handle the
problem of anticipatory search and internal simulation in order
to explain perception and generation of behavior at the level of
sensorimotor intelligence are not yet known.
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3 Experimental Framework

Because perception and behavior generation are just two
aspects of one consistent neural process of internal simulation,
it appears useful to investigate the developed architecture by
means of an autonomous sensorimotor system. For this, we
used a mobile robot Kuerera, which features an omnidirection-
al camera for visual data acquisition and two motors for the ex-
ecution of actions. The rabots task is a collision-free local navi-
gation behavior based only on visual data within an environ-
ment depicted in figure 2.

Figure 2: Used environment with the visuomator system, a robol Kkeeera,
equipped with an omni-directional camera,

Thereto, we perform a polar transformation of the omnidi-
rectional camera-image and estimate the optic flow, which may
serve as a representative for the whole spectrumn of visual infor-
mation.

4 Expectation Driven Perception

In this section, we describe an interesting subprocess of the
biolagical madel developed in section 2. The projection from
the lateral cerebellum back to PPC, carrying the predicted sen-
sory consequences of a simulated action, can be used to match
the experienced sensory observation with the predicted out-
comes of the currently executed motor command. Thus, the
sensory prediction may serve as an internal expectation about
what should be observed (see figure 3).
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Figure 3: Hybrid architecture to fuse the sensory bottom-up data and the top-
down expectation.
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Normally, these two hypotheses should fit well, but in case
of sensory disturbances, the resulting erroneous measure-
ments can be replaced by the corresponding expectation.

The expectation generation requires the ability to learn a
mapping from the current flow field OF (t) and the executed ac-
tion a(t) to the resulting situation OF (t+1).Therefore, we investi-
gated a large set of different artificial neural networks. A de-
tailed discussion of all tested networks with their performances
is given in [9]. The best performing predictor turned out to be
the recurrent Jordan-network.

To reliably fuse the top-down expectation with the sensory
bottom-up observation, each vector of the flow field is repre-
sented by an activity distribution within a 2-dimensional neural
field (blob), where the position of this blob within this 2D-space
codes the x- and y-components of the flow-vector, and the
height of the blobs is a measure for the corresponding confi-
dence of this flow vector.The sensory bottom-up confidence is
provided by the optic flow estimator and the confidence of the
top-down expectation is computed from the approximation-
quality of the neural-network learning the sensory prediction.
Due to the 2-dimensional representation, it is possible to hold
many alternative hypotheses (blobs) for each flow vector.Con-
sequently, both the sensory bottom-up and the top-down ex-
pectation can add their hypotheses into the corresponding
representation, whereby similar hypotheses result in a super-
position of the blobs at the same position. The output results
from the hypothesis with the highest confidence.Hence, this al-
gorithm selects those of all hypotheses, which support each
other. This is reasonable, since similar information in both
streams implies, that this information is reliable and trustworthy.

In order to test this architecture, we put the robot with a
pretrained sensory predictor in the situation depicted in fig-
ure 4. The robot moved along the arrow straight ahead with
fixed velocity towards the upper wall. At the positions marked
by the white arcs, the camera was occluded partially in order to
emulate a sensory distortion.In consequence, the sensory data
entail almost no information about the oncoming obstacle (up-
per wall in figure 4) on the robots left.

Figure 4:Test-scenario for expectation driven perception.

Figure 5 depicts the observed camera images and flow
fields during that locomotion. As can be seen in the non-dis-
turbed sequence, the oncoming obstacle on the left causes
growing flow vectors especially in the left-middle (sensory
non-disturbed OF). In contrast, the applied disturbance pre-
vents a correct estimation of optical flow vectors in the corre-
sponding part of the camera image. Nevertheless, through ac-
tive generation of an expectation about the external world and
the fusion with the noisy sensory information, our anticipative
system is able to maintain a valid representation of the oncom-
ing obstacle (anticipatory fused OF).
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To demonstrate the facilities of the presented anticipatory
preprocessing at the behavioral level, we placed the robot in an
unknown environment to navigate through a narrow passage
without collision. For this benchmark, we used the balancing ap-
proach, which tries to equalize the optical flow in both hemi-
spheres of the robot, which results in a collision-free locomotion
in the middle of hallways.Figure 6 (left column) shows a top view
of this scenario with the collision-free traces of our robot.

with perturbations

normal

Figure 6: Navigation based on the estimated optical flow starting at the upper
right corner and moving to the opposite one. As can be seen, both the
navigation on the pure estimated optical flow (top left) and on the
expectation driven preprocessed optical flow (bottom left) allow a collision-
free locomotion of the robot Kxepera through the environment. In contrast, a
significant disturbance of the optical flow estimated by fluctuating ambient
light in the areas marked by the hatched areas causes a collision at the end of
the plotted trace, if no anticipative preprocessing is applied (top right). The
anticipative preprocessing overcomes the problems and allows a collision-free
locomotion (bottom right).

If a perturbation is applied in this experimental situation,
the navigation based only on estimated optical flow fields must
fail, because the very noisy sensory input entails almost no in-
formation about close obstacles (top right).In contrast, our an-
ticipatory preprocessing allows the system to bridge the time
gap of sensory dropouts with the generated expectation and is
therefore able to extract relevant information in order to avoid
the oncoming obstacles (bottom right).

5 Internal Simulation

The central idea of the biological model described in sec-
tion 2 are the two reentrant loops, the cortico-basal ganglionic-
loop and the cortico-cerebellar-loop, which are passed through
repeatedly in order to simulate internally alternative sensorim-
otor sequences. Since the internal simulation process in our bi-
ological model is executed in parallel by reentrant information
flow in the two loops, not only a single, but a whole set of alter-
native movements, evaluations and predictions has to be rep-
resented in the same neural architecture at the same time. In
this case, not only an extremely large sensorimotor manifold
would have to be represented, but also a correct causal and
temporal binding of the related sensory and motor compo-
nents would be required in order to evaluate and compare
whole sequences and to select the best one.
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Figure 5: Expectation-driven perception during locomotion of the mobile robot depicted in figure 4.row 1 camera images with disturbance observed by the robot.
row 2: Optic flow (OF) sequence without disturbance. row 3: OF sequence with disturbance.row 4: anticipatory fused OF.

In consideration of these, at least at present, unsolvable
problems arising from the massively parallel computing and
coding in the biological model, we have investigated concep-
tionally equivalent but better realizable anticipation strategies
for our computational model. It is based on a cascaded neural
architecture which, instead of searching for appropriate actions
in parallel, uses an efficient sequential search.
This sequential search is realized by a concatenation of rep-
licative, so called Prediction Modules (PM) (see Figure 7) operat-
ing at staggered time-scales of a time hierarchy.The first Predic-
tion Module (PM1) operates on the real sensory input, generates
a sequence of alternative, evaluated action hypotheses, and
predicts their sensory consequences. The second module
(PM2) just operates on the predicted sensory consequences of
the simulated PM1-actions, generates itself a set of alternative
actions, and anticipates their sensory consequences.This inter-
nal simulation and prediction process on hypothetical data can
be continued in subsequent modules. In this way, a whole
search tree of possible sensorimotor sequences is developed,
which has to be evaluated to find the best sequence.
Of course,a complete search in this tree would be very time
expensive. Moreover, numerous branches include sequences
with already experienced, low evaluations that do not have to
be simulated time and again. To reduce the complexity of
search in the sensorimotor space, we use an active dynamic ap-
proach for a combined search in width and depth, which only
simulates the most promising sensorimotor transitions at each
prediction level of the cascaded architecture. That way, the
search space for the motor commands is restricted and the ef-
fort in time is reduced.
Figure 8 depicts the internal architecture of a single Predic-
tion Module (PM) as the basic building block of the cascaded ar-
chitecture. Each sensory input is processed in two pathways
that correspond to the cortico-basal ganglionic and the corti-
co-cerebellar loop of the biological model:
 Sensorimotor Mapping with the subsystems Action Sugges-
tion, Action Selection, and Hypotheses Evaluation (cortico-ba-
sal ganglionic loop) and

* Motorsensory Prediction with the Sensory Prediction subsys-
tem (cortico-cerebellar loop).In these pathways, hypothetical

actions and their expected sensory consequences can be
simulated.

/ action generation PM
. | § evaluation
ic Acti signal .
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predicted
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Figure 8: Architecture of a single Prediction Module.

Like the basal ganglia, the evaluation of actions (Action Sug-
gestion) utilizes the learned associations between really execut-
ed actions, sensory context and experienced rewards (see [3]
for more details on the applied neural network realizing a sim-
ple reinforcement-learning).The local competitive connectivity
of striatal neurons realizes the selection only of appropriate ac-
tion hypotheses (Action Selection).The second, predictive path-
way (Sensory Prediction) is supposed to have a biological coun-
terpart in the cortical loop through lateral cerebellum. The
process of storage and evaluation of whole action sequences
(Hypothesis Evaluation) is assumed to be performed in the
SMA/PMC. It should be stressed, that the Hypothesis Evaluation
has no direct biological counterpart, since it is a direct result of
the sequential search strategy. We assume, that the final selec-
tion of the best action sequence is done by the motor cortices.

The application of this technical realization of the biological
model within the experimental framework introduced in sec-
tion 3 documents its principal functioning. Thereto, both the
neural networks predicting sensory consequences and the net-
work learning evaluations were trained based on experienced
interactions of the robot with its environment. Figure 9 depicts
the internal simulation process realized by three subsequent
prediction modules.

The really observed optic flow field (left) features large vec-
tors in the middle caused by an oncoming frontal obstacle.
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Figure 7:Chaining of Prediction Modules (PMs) for internal simulation of sequences of hypothetical actions and expected sensory consequences. This cascaded
architecture realizes a sequential search strategy instead of a parallel one ta find the best evaluated sensorimator sequence out of all simulated sequences.

Through internal simulation of two subsequent straight-ahead-
movements the anticipatory system is able to predict a difficult
situation (OF(r+2) top), where the obstacle is very close and
even movements to the left or right cannot prevent a collision.
For that reason, this trajectory is evaluated pretty poor
(R = 2.746).In contrast, the simulation of a turning action to the
left followed by two drive-forward-commands (row 2) passes
by the collision, is evaluated much better (R =2918) and
would be preferred. This tree-step internal simulation proce-
dure including at each stage three different actions to be inves-
tigated takes on a standard state of the art PC much less than a
second!

sim. depth=0

sim. depth=1 sirm. depth=2

Figure 1 Local navigation performance of the mobile robat for different
depths of internal simulation (sim. depth). Each simulation stage is realized by
one prediction module. The robat is always starting in the upper left corner
and should move without collisions through the U-shaped environment, The
black triangles mark the trrace with the corresponding orientation of the robat,
The trace ends in case the robot reaches the upper right carner or an any
cailision.

Figure 10 shows the functioning of our architecture at a be-
havioral level. As can be seen, the more steps can be simulated
internally, the better the local navigation performance be-
COmes.

6 Summary and Conclusions

The basic idea of our anticipatory approach to perception is
to avoid the common separation between perception and
generation of behavior. Our approach is strongly inspired by
neurcanatomical knowledge and tries to explain the phenom-
enon of perception at the level of sensorimotor intelligence
from a behavior-oriented point of view.

In section 4, we used the anticipated sensory consequences
to improve the really experienced optic flow field by an expec-
tation driven fusion process. Through merging these two data-
streams, it is possible to eliminate noisy or invalid observations
in order to make the collision-free navigation behavior more
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robust.We can demonstrate, that even in the presence of mas-
sive artificial disturbances the robot is able to maintain a valid
sensory representation and, thus, is able to navigate properly.

In section 5, we used the internal simulation process of our
architecture to find appropriate action sequences that fulfill the
system goal:a collision-free local navigation. It could be shown,
that through our sensorimotar perception-appraach, the robot
became able to perceive its environment and to realize the de-
sired navigation behavior.

This biologically inspired anticipatory approach for sensori-
maotor perception, overcomes the conceptual problems of the
classical information processing paradigm by integrating both
perception and behavior generation into one process. Its func-
tioning could be demonstrated for a real sensorimotaor system,
a mobile robot, which learned to perceive and to behave prop-
erly within its environment,
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Figure 9: Process of internal simulation of the anticipatory system. Starting fram the really ebsenved one (Teft), for each optic flow field OF an action evaluation
mdp is generated (nof shown herel and different actions (Act) are selected sequentiolly, evaluated, and their sensory consequences OF ., predicted, The planning
harizon runs from left (o right, the simulation progress from top to botfom.
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