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Abstract: In the context of collaborative robotics, handing over hand-held objects to a robot is a
safety-critical task. Therefore, a robust distinction between human hands and presented objects
in image data is essential to avoid contact with robotic grippers. To be able to develop machine
learning methods for solving this problem, we created the OHO (Object Hand-Over) dataset of tools
and other everyday objects being held by human hands. Our dataset consists of color, depth, and
thermal images with the addition of pose and shape information about the objects in a real-world
scenario. Although the focus of this paper is on instance segmentation, our dataset also enables
training for different tasks such as 3D pose estimation or shape estimation of objects. For the instance
segmentation task, we present a pipeline for automated label generation in point clouds, as well as
image data. Through baseline experiments, we show that these labels are suitable for training an
instance segmentation to distinguish hands from objects on a per-pixel basis. Moreover, we present
qualitative results for applying our trained model in a real-world application.

Keywords: dataset; thermal image; semantic segmentation; hand-over; 6D pose estimation;
automated labeling

1. Introduction

In the course of Industry 4.0, collaborative robots (cobots) are gaining more and more
attention. For collaboration, successfully handing over objects between humans and cobots
plays a major role. As possible injury to the human needs to be strictly avoided, the robot’s
gripper should not touch the human hand. Therefore, the cobot needs to be aware of its
surroundings and recognize objects of interest, as well as the human hand. To enable
further processing steps, such as grasp planning and the execution of robotic motion
trajectories, robust pixel-wise instance segmentation is required. State-of-the-art methods
for instance segmentation such as Mask-RCNN [1] or PointRend [2] process RGB image data
to achieve this goal. Recently, Transformer-based methods have outperformed CNN-based
architectures. These models need a large amount of data or extensive pretraining to achieve
comparable or better results [3]. If the necessary amount of training data are available,
Transformers can be used as a replacement backbone for methods such as Mask-RCNN.

If additional depth data are available, the resulting pixel-wise segmentation mask
can be utilized to reconstruct a labeled 3D scene for further usage, as described in [4].
Alternatively, a point cloud could be created from the RGB-D raw data, which can then be
segmented using techniques such as PointNet [5], RandLA-Net [6], or SO-Net [7]. In [8],
these and other point cloud segmentation methods were evaluated on the presented dataset.

In other applications, multi-spectral imaging has proven to be helpful when it comes
to the segmentation of organic structures [9,10]. Therefore, we are interested in adapting
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the aforementioned methods designed for RGB images to incorporate multi-modal data,
including thermal images. To incorporate depth information, architectures have been
proposed that extract information from both depth and color images and fuse them at
different stages within their backbone [11,12].

In addition to a method for generating instance segmentation masks, a suitable dataset is
of major importance for both training and testing a model. There are several datasets with
segmentation labels for hands [13–19], but few of these contain objects as well as labels. An
overview of the datasets most similar to the dataset presented in this paper is presented in
Table 1, and the sizes, modalities, and available label types in these datasets are also listed.
HandNet [13] and the dataset presented in [14] contain depth and even thermal images
but lack labeled objects. In contrast, the WorkingHands dataset [17] contains segmentation
labels for objects but no thermal images. However, the available labels are merely semantic
segmentation labels. Overlapping instances of the same category can, therefore, not be
distinguished, which is a major requirement for grasping individual objects. Moreover, the
majority of pixels in WorkingHands are labeled as void, which is an ill-defined class. This
often leads to unnecessary object pixels predicted in the background (as seen in their results)
and might be a problem for applications where it is necessary to locate individual objects.

Table 1. Overview of existing datasets, including ours.

Dataset #Frames #Objects (#Categories) Depth Thermal

HandNet [13] 202.9 K 0 X -
Hand-CNN [16] 40.5 K 0 * - -
WorkingHands [17] 7.9 K 37 (13) X -
EgoHands [18] 4.8 K 0 - -
Kim et al. [14] 401 K 0 X X
ContactPose [19] 2.5 M 25 (25) ** X -

OHO (ours) 5.3 K 43 (32) X X
* contains samples from COCO, and it is not specified how many labels can be reused; ** objects are 3D-printed
in blue.

Most similar to our dataset is the ContactPose [19] dataset. Even though the intention
behind ContactPose is contact modeling between human hands and objects, it also includes
instance segmentation labels for hands and objects. However, all objects are 3D-printed in
blue, which limits its applicability to real-world instance segmentation. The only dataset
that contains thermal images is the one of Kim et al. [14].

When collecting a dataset with the intended properties, one of the most time-consuming
tasks is labeling. Ideally, either the recorded data or the setup allows for automated label
generation. However, for good generalization, the collected data should still resemble real-
world data. For example, the recording of thermal data in [14] allowed for the automated
generation of instance segmentation labels for hands. However, the segmentation of the
objects is just as important when objects are handed over to the cobot. Therefore, we
additionally designed a recording setup so that the automated segmentation of hands and
objects is easily possible while keeping the input data close to a real-world setting.

We want to emphasize that our automated labeling allows us to easily expand our
dataset with new objects. This distinguishes our approach from those of other fixed datasets,
which require manual labeling, as in WorkingHands [17]. In contrast to Kim et al. [14], we
found that thermal images were not a useful basis for automated label generation. On the
one hand, there are many warm background objects, and objects become warm in the hand
during manipulation. On the other hand, thermal images have a much lower resolution
than color images, which limits the label quality.

For good generalization of trained models, the diversity of training data is essential,
which is realized through diverse augmentation techniques. We addressed this problem
by recording the background and the hands with objects separately, which were then
combined pairwise.
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Due to the presented shortcomings of existing datasets in the context of our intended
application, we collected a new multi-modal, multi-purpose dataset—named OHO—for
human–robot Object Hand-Over. In this paper, we present the setup and collection process
of the OHO dataset, as well as the automatic pipeline for generating instance segmentation
labels. Then, we use the data to train state-of-the-art models in instance segmentation.
Additionally, we implement the trained models in a real-world application to prove that
the collected dataset is suitable for solving the instance segmentation task required for
handing over objects. We created our dataset with other tasks in mind, such as 6D pose
estimation and object shape reconstruction, which will be addressed in future work.

In summary, our main contributions are:

• A multi-modal dataset, including RGB, depth, and thermal data.
• A multi-purpose dataset for instance segmentation, point cloud segmentation, object

shape, and pose estimation.
• A recording procedure and pipeline for automated instance segmentation labeling for

hands and hand-held objects in 2D images, as well as 3D point clouds.
• Quantitative and qualitative baseline results for instance segmentation in 2D images.

2. Multi-Modal Object Hand-Over Dataset (OHO)

One goal of our ongoing research is the development of multi-modal sensors for
safe human–robot interactions. Therefore, we want to compare different cameras and
modalities, such as RGB, depth, and thermal data, in an application-relevant scenario.

This means that we did not want to restrict our recordings to one type of RGB-D
camera. Hence, we equipped our mobile robot, TIAGo, with an Azure Kinect and an
i3-System TE-Q1 thermal camera (see Figure 1). Together with its internal Orbbec Astra
S camera, we had a spectrum of cameras using different methods for depth perception
(time of flight in Azure Kinect, and active stereo in Astra Orbbec). This resulted in three
modalities in our dataset: color, depth, and thermal (and, indirectly, stereo images). Each
sample in our dataset consisted of the following images, as shown in Figure 2: RGB images
from two RGB-D cameras—Azure Kinect, with a resolution of 4096 × 3072, and Orbbec
Astra S, with a resolution of 640 × 480—as well as the registered depth images from both
cameras. Additionally, each sample contained a thermal image from an i3-System TE-Q1,
with a resolution of 384 × 288.

Figure 1. Cameras mounted on top of the TIAGo robot’s head.
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Orbbec Astra S Azure Kinect i3-System TE-Q1

PointClouds Object Shape/Pose

Color Segmentation Thermo

Figure 2. Examples of all modalities for one sample in our dataset, including color and depth images
from two RGB-D cameras, a segmented point cloud (hand, object, and background), and object shape
and pose, in addition to thermal data.

For the selection of objects used in our dataset, we focused on handy items that a robot
is able to grasp. Additionally, we captured shape data in the form of a triangle mesh for
every recorded object by scanning them with a 3D scanner or modeling them in a CAD
program. Moreover, for each sample, the relative poses of the cameras and the object
(see Section 2.1), as well as the metadata for the scene, were generated. These included
which hand (left or right) was holding the object and whether the object had been masked
using masking tape to make it visible to the depth cameras. This was necessary for very
dark or glossy metal objects (e.g., a black rubber hammer or the blade of a screwdriver),
since both cameras had difficulties capturing depth data for some objects.

For recording, we used a green screen, which enabled automated label generation
and foreground–background composition, as discussed in detail in Section 2.3. To replace
the green screen background in every modality, we also recorded a set of backgrounds of
234 office scenes with the same camera configuration on the mobile robot. Afterward, the
data were split into 171 backgrounds for training, 33 for validation, and 30 for testing.

2.1. Setup for Dataset Recording

The cameras had to be calibrated internally and externally to allow for the registration
of thermal, depth, and RGB data. This was performed using a special checkerboard, which
is visible in the binarized thermal image, as well as in the visual and near-IR images from
the Azure Kinect and Astra Orbbec cameras. For details on the external calibration of the
thermal and near-IR cameras, we refer the reader to [8], where along with the mathematics,
the active calibration target is described precisely. Note that the Orbbec Astra S camera
suffers from a thermal problem that affects the depth data over time. To compensate for
this, a parametric transformation of the depth data was performed, which scaled the depth
values by a factor that was linearly interpolated between two manually set parameters
along the x-axis of the depth image. These scaling factors were manually set by visually
aligning the resulting point clouds from both depth cameras.

As a prerequisite for potentially training pose estimation models and for our automatic
labeling process, we needed the exact 6D pose of the object in the scene. Therefore, each
object was fixed statically on a tripod in front of the green screen, and the point cloud
was cropped so that only object points remained in the region of interest. The region of
interest was defined relative to the pose of the tripod and was captured through the use
of ArUco [20] markers on the tripod (see Figure 3 left). These markers were removed or
covered by a green screen before recording the actual data. Note that the green screen was
intentionally small to limit the reflections of green ambient light on the object. Afterward,
we computed the object’s pose using an ICP (Iterative Closest Point) method [21], registering
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the given 3D model of the object to the point cloud of the Orbbec Astra S camera. The
ArUco marker-based tracking of the tripod pose helped initialize the object pose after the
pose had been changed. To minimize the required effort for recording, we used one object
pose for multiple samples of a human hand holding the object. For each of the object poses,
we recorded a reference image that only showed the object without a hand holding it. This
has several advantages, such as providing useful information for automatic label generation
(described later), having images of the single object for training a model that needs to be
able to recognize the objects regardless of whether they are being held, and recomputing
the object pose after the recording has taken place. After the reference image was taken,
different people placed one of their hands on the fixed object and pretended to hold it.
The hands in the images belong to seven different males and females. During recording,
the point clouds were labeled automatically in real time, as described in Section 2.2. This
allowed the operator to use the result as feedback to assess whether the setup and the
current sample were correct. We made sure to manually check the results during recording
and adjusted the ground-truth object poses when necessary.

  

place object on 
tripod in front of 

green screen

register 3D model 
to roi point cloud

using ICP

live visualization 
of point cloud 
segmentation

take reference 
images without 

hand

define a new 
object pose

take images with 
hands touching 

the object

automatic label 
generation for 2D 

images 

about 10 repetitions with 
different people left and
right hand

about 10 repetitions with different orientations

manual correction of 
object pose if necessary

reference tripod 
pose by means of 

ArUco marker 
board

ArUco marker 
based pose 

initialization for 
tripod and object

Figure 3. Sequence of recording one object for the OHO dataset.

Following this procedure, which is summarized in Figure 3, we recorded about
10 poses for each of the 43 objects in the 32 categories, where each object pose comprised
about 10 different hand positions. This yielded a dataset of 5300 samples. We carefully split
all the samples according to the object poses into training, validation, and test (one of the
object poses for validation and one for test). Therefore, similar samples were not included
in different splits.

2.2. Automated Labeling in Point Clouds

The first step in the automated labeling of the dataset was the annotation of point
cloud points belonging to either the object or the human hand. Background points were
segmented using a 3D region-of-interest box in relation to the fixed tripod position. Since we
knew the 3D shape of the object and its pose, we computed the distances of all remaining
point cloud points to the surface of the object model. By thresholding these distances
(t = 6 mm), a coarse segmentation of the object and hand points could be performed.
Unfortunately, this resulted in some points on the hand that were close to the object being
counted as object points. To compensate for this, the hand segments were dilated by
3–6 mm, depending on the current pose and object properties. This means that object
points with a distance to a hand point smaller than the dilation radius were switched to
hand points. In the end, we obtained a labeled point cloud, as shown in Figure 2, which
can be used for either training point cloud segmentation methods or as a starting point
for labeling color images, as described below. Note that the point cloud annotation only
worked with the Orbbec Astra S point clouds, which used an active stereo approach. In
contrast, the Azure Kinect point cloud did not produce usable segmentation results due to
artifacts caused by abrupt changes in depth values. The time-of-flight depth image from the
Azure Kinect contained interpolated points at object borders, which resulted in phantom
3D points in free space, making them difficult to filter out automatically. Thus, we used
automated labeling of point clouds only for the images from the Orbbec Astra S data.
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2.3. Automated Instance Segmentation Label Generation

To train a model to segment hands and objects, instance segmentation labels are re-
quired. Since it is time-consuming and, therefore, costly to label the samples by hand, an
automated approach was used, leveraging the green screen and the recording of the refer-
ence samples of objects without hands. Our approach can be divided into two steps. First,
a segmentation of the images into the foreground (hand and object) and the background is
performed by removing the green screen. In the next step, the results of this foreground–
background segmentation and the labeled point clouds (Section 2.2) projected onto the
color image are used to compute the final instance segmentation labels with GrabCut [22].
These two steps are discussed in detail below.

To remove the green screen, we used the images from the Kinect Azure camera due
to their better image quality, which made color keying easier. However, the generation
pipeline described below can also be adjusted for use with color images recorded by the
Orbbec Astra camera.

2.3.1. Green Screen Removal

The first step in generating instance segmentation labels is to remove the green
screen from the images to obtain a rough segmentation of the foreground—containing
the hand and object—and the background. The free graphics software Blender (v2.82.7,
https://www.blender.org/, accessed on 1 January 2020) comes with an implementation
of green screen removal and the option to use it via a Python interface. For these reasons,
the keying node in Blender was used to segment the foreground from the background. An
example of the green screen removal results can be seen in Figure 4. Besides removing the
green screen, this node is also capable of removing the green spill (green light reflected from
the green screen and visible on the objects and hands). This is important for the images to
be more realistic when replacing the background later, as described in Section 3. Because in
our setup the green color of the fabric used in the background was slightly different than
the green used to hide the mounting stand, we used two keying nodes in succession.

Figure 4. Example result of using the keying node in Blender on a reference recording (left) and the
corresponding sample with a hand (right).

2.3.2. GrabCut

Based on the green screen foreground segmentation and a projection of the segmented
point cloud, we used GrabCut [22] to compute a detailed segmentation mask for the hand.
In some cases, the skin color segmentation performed in Blender might be sufficient, but
for most cases, this refinement is necessary to differentiate the fingers from the object
because of shadows. With this hand mask, we subtracted the hand pixels from the fore-
ground segmentation of the reference image to generate the final mask for the object in the
sample image.

GrabCut performs the segmentation of an image into the foreground (in our case, the
hand) and the background by formulating the segmentation as a graph cut problem, which
aims to maximize the difference in the color histograms of foreground and background
pixels. Therefore, we needed to first define prior label regions that specify the initial
color histograms of the foreground and background. GrabCut differentiates four labels:
foreground (FGD), probably foreground (PR_FGD), background (BGD), and probably
background (PR_BGD). Figure 5 shows an overview of how the Blender results were used
to assign parts of the image to these classes.
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Figure 5. Pipeline for generation of segmentation labels. Color codes for GrabCut labels are as
follows: BGD = blue, PR_BGD = red, PR_FGD = yellow, and FGD = green.

First, we preprocessed the foreground segmentations and the projected point cloud
by applying opening and closing operations to remove segmentation artifacts. Then, the
images were cropped around the center of the object to reduce computational complexity.

For removing static parts like the wall, which was not covered by the green screen, we
computed a difference image between the reference recording and the recording containing
the hand. After applying opening and closing operations on the difference image, we used a
connected component analysis (CCA) to filter out the remaining small components, leaving
only the hand and object areas. For the reference image, the walls were eliminated by
removing components touching the border of the image, as the object was always located
in the middle.

The resulting coarse hand segmentation served as the foreground for GrabCut, whereas
the preprocessed projected point cloud of the object served as the background.

As we observed erroneous results when applying GrabCut with only a few object parts
visible, the unoccluded reference object was inserted into the image by copying it to a space
that was not occupied by the original object or the hand. Defining these pixels as background
helped GrabCut segment parts of the object that were similar to the hand in color.

Finally, we ran the GrabCut optimization and obtained a refined segmentation of the
hand. By subtracting this hand segmentation from the segmentation of the reference object,
the final object segmentation mask was obtained. Figure 6 shows examples of the final
instance segmentation labels overlaid on the color image.

Figure 6. Examples of automatically generated masks for objects (blue) and hands (red) on top of
raw RGB images from the dataset.

3. Dataset Generation for Instance Segmentation

Before any of the generated labels could be used for training, the green screen on the
input images needed to be replaced. Otherwise, segmentation could become trivial for a
model specializing in the green screen. By using the captured background recordings and
the foreground segmentation computed by Blender, the background of the images could
easily be replaced.
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3.1. Augmentation

For each sample of foreground, we randomly choose 20 background images of the same
split. To further augment the appearance, we randomly cropped both the foreground and
the background and applied random rotation and color jitter to the foreground. Afterward,
the foreground and the background images were combined.

3.2. Combination of Foreground and Background

When combining the foreground and background images, special care needed to be
taken at the edges where the object and hand ended and the background began. Simply
stitching both color images together may result in artifacts, which could be learned by the
model for easier recognition and bypassing the actual task. Therefore, specific methods,
such as Gaussian blur, as employed by Dwibedi et al. [23], could be employed to blend both
images. Figure 7 shows a comparison of simple overlaying and blending using Gaussian
blur at the edge of the mask. Finally, the shorter edge of the combined image was resized
to 448 pixels to further reduce any remaining artifacts.
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Figure 7. Result of using Gaussian blur on edges vs. simple overlaying of the foreground and background.

3.3. Incorporating Thermal Data

For training on combined RGB and thermal images, the raw thermal images were reg-
istered to the RGB camera’s point of view using the depth data. To this end, reconstructed
3D points from the registered depth image were projected onto the thermal image plane
using the respective intrinsic camera parameters. Thus, the thermal layer had the same
size as the RGB image, but it inherited missing pixels from the incomplete depth images,
which were set to zero. The registered thermal images of the foreground and background
underwent the same augmentation and combination procedures as the RGB images, except
for the color jittering.

3.4. Dataset Statistics

After generation, our dataset included 33 categories—32 object categories and the
hand category. The training split contained 75,480 images with 146,912 annotations, the
validation split contained 10,860 images with 21,052 annotations, and the test split contained
11,800 images with 23,067 annotations.

4. Experiments and Results

To demonstrate the effectiveness of our labeling and generation pipeline and establish
baselines for our dataset, we trained state-of-the-art instance segmentation methods, such
as Mask R-CNN [1] and PointRend [2], as well as the recently proposed, efficient Yolact-
Edge [24]. YolactEdge achieved 61 FPS compared to 14 FPS for Mask-RCNN on an RTX
2080 Ti [24], making it a suitable choice for deployment in robotic applications. Due to their
required amount of training data, we did not train Transformer-based models. PointRend
is built upon Mask R-CNN and iteratively refines segmentation masks with higher res-
olutions, similar to rendering in computer graphics. Thus, the resulting segmentation
masks were much more fine-grained than those from Mask R-CNN. In contrast, YolactEdge



Sensors 2023, 23, 7807 9 of 13

computed category-agnostic segmentation prototypes in parallel with bounding boxes
and coefficients for combining the segmentation prototypes for each instance. Due to this
parallel computation, YolactEdge was much more efficient and achieved up to 30.7 FPS
with a ResNet-50 backbone on an NVIDIA Jetson AGX Xavier, which is common hardware
for deployment on a mobile robot platform. We used Detectron2 [25] to train Mask R-CNN
and PointRend. Unlike the default configuration, we did not freeze any part of the network.
YolactEdge was trained using its officially provided code. For a fair comparison, we used
a ResNet-50 [26] backbone for all three architectures. Moreover, we compared the results
when transfer learning from an instance segmentation model pretrained on COCO [27] to
simply using an ImageNet-pretrained [28] backbone.

Additionally, we present baseline results for incorporating thermal data. To keep
it simple, we used only a four-channel input. As the pretrained weights of the first
convolution only accounted for three input channels, we added a randomly initialized
fourth channel for the new modality. Note that more advanced architectures and fusing
methods of different modalities, such as in ESANet [11], will probably perform better.

We evaluated the performance of our trained models using the typical COCO metrics,
including average precision (AP) with different intersection-over-union thresholds. The
primary challenge metric, AP50:95, is the mean of 10 average precision values with IoU
thresholds in the range of [0.5, 0.95]. Since we are especially interested in the segmentation
of the hands, we also report the AP50:95 for the hand category. Our results are presented
in Table 2. As expected, the models pretrained on COCO outperformed those with pure
ImageNet pretraining. The segmentation AP of PointRend was better, especially for higher
IoU thresholds, which can be attributed to its iterative mask refinement.

Table 2. Evaluation of instance segmentation on the validation set of our OHO dataset. All models
used a ResNet-50 backbone. The models trained on 33 categories were supposed to distinguish
different objects, whereas the models trained on 2 categories were simply trained on hand vs. object.
Best results by input modality are highlighted.

#Cats Modality Pretraining Bounding Box Segmentation
AP50:95 AP50 AP75 AP50:95 AP50 AP75 APHand

33

RGB

ImageNet Mask R-CNN [1] 67.12 87.39 77.71 58.11 88.71 62.92 78.45
YolactEdge [24] 62.93 88.42 73.69 61.69 91.15 67.19 77.78

COCO
Mask R-CNN [1] 73.15 91.60 82.53 64.00 93.89 70.88 78.40
PointRend [2] 72.46 90.18 82.56 66.31 92.96 75.15 82.57
YolactEdge [24] 66.33 89.09 76.67 63.50 91.58 69.93 80.20

RGB +
Thermal COCO

Mask R-CNN [1] 73.35 90.52 82.84 63.51 92.70 70.71 78.92
PointRend [2] 72.75 90.65 82.59 67.08 92.18 77.60 82.73
YolactEdge [24] 66.68 88.28 76.42 65.41 91.41 73.64 80.51

2

RGB +
Thermal

COCO

Mask R-CNN [1] 79.33 96.57 87.59 70.09 97.10 79.43 78.42
PointRend [2] 79.21 96.69 87.50 74.15 97.53 83.03 82.34
YolactEdge [24] 69.31 94.21 80.08 70.59 95.94 76.52 80.13

RGB +
Thermal

Mask R-CNN [1] 79.60 96.64 88.21 70.38 96.87 79.53 78.67
PointRend [2] 79.34 96.92 87.55 75.10 97.53 85.55 82.87

Remarkably, the performance of the much more efficient YolactEdge was on a par
with that of Mask R-CNN. Training with additional thermal data further improved the
segmentation AP slightly for higher IoU thresholds. Unintuitively, thermal data did
not improve the APHand. A possible explanation could be that due to cold hands or
warm electronic devices in the background—as shown in the second column in Figure 8—
distinguishing the hand from the object and background was not trivial. Therefore, we
assume that using a simple four-channel input is not sufficient for effectively incorporating
thermal data, and more sophisticated multi-modal architectures should be explored.

In addition to the quantitative evaluation and to demonstrate the generalization
capabilities, we also present qualitative comparisons in a real-world setting in Figure 9.
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Figure 8. Examples of generated images for instance segmentation.

Input Image Mask R-CNN PointRend YolactEdge

Figure 9. Qualitative comparison of the segmentation performance of different models (all with
COCO pretraining) in a real-world setting (no stitched images).

Note that our models had never seen full-sized people, and the ground-truth segmen-
tation ended at various positions on the arm. Therefore, the segmentation performance in
terms of the right side of the arm should be ignored. It can be seen that the fingers were
segmented in much more detail through the iterative refinement in PointRend. As already
observed in the quantitative metrics, the far more efficient YolactEdge output segmentation
masks that were on a par with those of Mask R-CNN.

When grasping objects, one might only be interested in distinguishing the hand
from the held object, but not the exact category of the object. Therefore, we combined all
object categories and trained the instance segmentation models on only the two categories:
hand and object. Such a category-agnostic instance segmentation of held objects offers
the potential to operate the robot with unknown objects. This approach demonstrated
improved AP compared to the multi-class problem (shown at the bottom in Table 2). In
future research, we will also evaluate the performance on unseen objects.

In the last experiment, we demonstrated that the models trained on our OHO dataset
did not simply focus on stitching edges by applying them to cross-domain datasets. In
Figure 10, we present the qualitative results for the application of the YolactEdge model
working on RGB inputs on WorkingHands [17] and ContactPose [19]. The segmentation
results on both the synthetic and real-world images are impressive. The objects of known
categories (wrench and scissors) were successfully detected, whereas the unknown object
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under the left hand in the first image was considered to belong to the background. The
object in the ContactPose example was recognized, although it did not belong to the known
object categories. As we only trained on samples where a hand was grasping the object, the
pliers in the WorkingHands example were not detected, as they were not being grasped by
a hand. If an application necessitates the detection of these objects, the reference samples
in our dataset could be included in the training data to remove the bias toward grasped
objects. These results show that although we recorded our dataset using a green screen, the
blending of the images and the bleeding of the green screen onto the objects still resulted in
trained models that could be applied to different scenarios.

WorkingHands (real) WorkingHands (synthetic) ContactPose

Figure 10. Qualitative results of cross-domain datasets generated by YolactEdge [24] trained on
our OHO dataset (hand vs. object). left: applied on WorkingHands [17] (real), middle: applied on
WorkingHands [17] (synthetic), right: applied on ContactPose [19].

5. Discussion

The first experiments using CNN models trained on our dataset revealed some lim-
itations of the methods. In particular, the segmentation masks from the Mask R-CNN
and YolactEdge models were of lower resolution, sometimes partially missing fingertips
(see Figure 9), which was related to the network architecture. Nevertheless, there were situ-
ations in which parts of hands and objects were misclassified. This might be related to the
limited diversity of the training samples in the OHO dataset. To combat this, more diverse
data could be captured and automatically labeled using our label-generation pipeline. For
example, by incorporating different skin colors, gloves on the hands, or more diverse back-
grounds, including people, the training data could be diversified, leading to better-trained
models. The data recording setup, unfortunately, requires a uniform, colored background
(green screen), which is associated with many restrictions. The experiments nevertheless
showed that with a good stitching method, the artifacts introduced are of minor relevance
for a generalization to real-world applications. On the contrary, the background replace-
ment improves the generalization capabilities of the networks due to the increased diversity
of the samples.

On the one hand, the manual intervention during data recording is a limiting fac-
tor for scaling up the number of objects, but on the other hand, it ensures high-quality
segmentation masks in 3D, as well as 2D.

6. Conclusions

In summary, we described how we recorded a comprehensive dataset of hand-held
objects. We were able to automatically generate instance segmentation labels for our newly
recorded multi-modal dataset of hand-held objects by utilizing green screen background
substitution and 3D registration of previously known object models to the captured 3D
point cloud data. By training the shelf segmentation networks, we achieved basic real-
time capable segmentation results, which can be used in a robotic grasping pipeline.
Despite achieving satisfactory segmentation results with the recorded data, for safety-
critical applications involving industrial robots with the potential to harm people, the
predicted segmentation mask still needs improvement. Moreover, the potential of thermal
and depth data, which are already included in the dataset, needs to be further evaluated by



Sensors 2023, 23, 7807 12 of 13

utilizing more advanced architectures and fusing mechanisms. We hope that with these
additional modalities, the robustness of segmentation methods can be improved to a level
that is acceptable for real-world robotic applications.

Besides instance segmentation, the OHO dataset offers the opportunity to investigate
further tasks for robotic grasping, such as object pose estimation or object shape recon-
struction which, in combination with multiple modalities, make our dataset unique. The
presented OHO dataset is publicly available for scientific purposes at https://www.tu-
ilmenau.de/neurob/data-sets-code/oho-dataset.
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