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Abstract

We use shift-invariant Non-negative Matrix Factorization (NMF) for decom-
posing continuous-valued time series into a number of characteristic primi-
tives, i.e. the basis vectors, and their activations, which results in a model-
independent and fully data driven parts-based representation. We interpret
the basis vectors as short parts of motion that are shared between all trajec-
tories in the data set, and the activations as onset times of those parts. The
extension of the shift-invariant NMF by a new competition term between ad-
jacent activations allows to gain temporally isolated activation events, which
further supports this interpretation. We show that the resulting sparse and
compact representation can be used for the prediction of motion trajectories,
and that it can be beneficial for classification, because it allows the appli-
cation of simple standard classification models with few parameters. In this
paper we show that basis vectors can be extracted, which can be interpreted
as short motion segments. We present results on trajectory prediction, and
show that the sparse representation can be used for classification of trajec-
tories of a single joint, like the one of a hand, obtained by motion capturing.
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Figure 1: Example of the kind of trajectories analyzed in this paper. Shown is the trajec-
tory of the right foot of a human walking in a circle, recorded using a motion capturing
device with a sampling rate of 60Hz. Left: Trajectory in 3D space. Right: One-dimensional
projections over time. For our decomposition, we approximate the problem by regarding
all dimensions as independent. For the sake of clarity, in the following we concentrate on
a single dimension (of the spatial dimensions z,y and z shown in the right graph) (the
formal extension to multiple dimensions is straightforward and will be explored more in
depth elsewhere).

1. Introduction

The understanding and interpretation of movement trajectories is a cru-
cial step for the analysis of dynamic visual scenes with moving items. For
example, consider the simple task for a robot of grasping an object which
is handed over by the human interaction partner. Most approaches for de-
scribing motion patterns, like [1], rely on a kinematic model for the observed
human motion. Using a particular model makes it difficult to adapt the
approach to new tasks including other types of motion. Here, we aim at a
generic, model-independent framework for decomposition, classification, and
prediction. In this paper, we present an approach which finds prototypical
segments of point trajectories that, in sequential combination, model the
entire trajectory. We demonstrate our approach using one-dimensional com-
ponents of trajectories of a single joints of a human, like the hand or foot, as
shown in Fig. 1.

Non-negative Matrix Factorization (NMF) [2] is a blind source separation
approach in concept similar to PCA and ICA that provides an efficient parts-
based factorization for decomposing data under non-negativity constraints.
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We use an extension of NMF with additional sparsity constraints as presented
in [3] for decomposing a time series. The time series is decomposed into basis
vectors and activations where the basis vectors can be interpreted as parts
of motions that are shared amongst all trajectories in the data set, and thus,
constitute a set of primitive motions. This yields a kind of representation,
which is sometimes called piano model [4], where the sequence of activations
can be understood in analogy to the keys of a piano, pressed by a piano
player over time. Each pressed piano key then triggers a characteristic sound
wave, the analog to our primitive, and the superposition of the primitives
generates the melody, i.e. the analog to the time series.

A different interpretation, often used in the neural sparse coding liter-
ature, is to view the activations as spike-trains that mark the response of
some kind of receptor. Both interpretations emphasize the fact that given
the basis functions, we can transform the data into a more compact represen-
tation, where only the amplitudes and locations of the activations, or spikes,
have to be stored to characterize a trajectory. Further, this representation
is shift-invariant in the sense that the signal is characterized by the relative
positions of the events. This property has been studied in early work on
sparse coding of temporal signals. E.g. in [5], the authors aim at computing
a sparse representation of natural audio signals in form of spike trains, where
the spikes mark activations of a fixed and hand-crafted over-complete set of
basis functions. Given this set of basis functions, the amplitude and timing
of the activations of those basis primitives are learned. The authors argue
that such a representation provides a very efficient encoding and uncovers the
underlying event-like structure of the signal. This work has been extended
(e.g. in [6]) to also learn the basis functions to find an optimal dictionary or
code of the signal. The authors show that the emerging basis functions can
be compared to auditory receptors in animals and thus are naturally inter-
pretable. Such methods target to achieve local sparsity (the activation events
should be sparse and occur isolated in time); for this purpose, the authors
use sequential selection heuristics like Matching Pursuit, where the subset of
the activations is selected one after another by correlation and thresholding.
A similar kind of decomposition has also been done for music in [7] to find a
shift-invariant and sparse representation and to uncover latent structure in
the data. Here the authors also use a (slightly different) heuristic to select the
coefficients with the largest magnitude gradient, and get isolated and well-
localized activities. We show in this paper, however, that spatio-temporally
isolated activities can also be achieved without selection heuristics, but in-
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stead by directly formulating a penalty for adjacent activities and including
this penalty as an additional energy-term for the basis vector decomposition
model. During optimization, the penalty term leads naturally to a compe-
tition between rivaling activities, eliminating spurious activity traces which
are detrimental for further trajectory processing, as e.g. for classification.
Further work that uses similar kinds of shift-invariant decomposition models
include [8, 9, 10]. For recent publications, see [11, 12].

A different formulation of such a model that, however, results in similar
representations and properties but at higher computational costs has been
proposed in [13]. In that work, the motion primitives are described by a strict
left-to-right Hidden Markov Model (HMM). The probability of triggering a
primitive at time t is described by an onset probability, very analog to the
activation times in our approach (see Sec. 4.6). The primitives are then
superimposed by means of a factorial Hidden Markov Model (fHMM), where
each factor is a primitive HMM as described above. In [13] it was observed
that the triggering probabilities are characteristic for a class in the data and
provide a compact representation as a 'timing code’. Although very similar
in concept, here we present a different method that allows the application of
the efficient multiplicative learning and decomposition algorithms as gained
from NMF. The resulting activations have very similar characteristics to the
HMM approaches and can thus also be interpreted as a timing code of the
trajectories.

The paper is organized as follows. In Sec. 2, we introduce the basics of
the shift-invariant NMF-based decomposition, outline the necessary exten-
sions of the NMF algorithm for the application on motion trajectories, and
describe a penalty term that allows to improve the representational prop-
erties of the decomposition by getting decomposition results which have a
smaller number of more isolated activity events than a straightforward NMF
decomposition. In Sec. 3 we describe in more detail the preprocessing as well
as the training and application phases for the decomposition of motion tra-
jectories. We also explain how to use the algorithm continuously for online
decomposition of a trajectory, and for trajectory prediction. In Sec. 4, we
show the effects of the additional penalty term, typical results of the gained
basis vectors, an evaluation of the predictive capabilities of our approach,
and how classification can be done based on the sparse sets of activations.
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2. Non-negative Matrix Factorization

Similar to other decomposition approaches like, e.g. PCA and ICA, Non-
negative Matrix Factorization (NMF) [2] can be used to solve the source
separation problem, where a set of training data V has to be decomposed
into basis vectors W > 0 and activations H > 0:

VW -H

Each training data sample is represented as a column vector V; of the matrix
V. Each column W, of the matrix W is a basis vector. In the activation
matrix H the element H? > 0 determines to which extent each basis vector
W, is activated to reconstruct a training sample V;.

Unlike PCA or ICA, however, NMF aims at a decomposition which only
consists of non-negative elements. Thus, superposition of basis vectors always
means accumulation of positive parts. There exists no primitive which is able
to erase a 'wrong‘ superposition of other primitives, and different primitives
cannot cancel out each other. This leads to basis vectors with different
properties: They are often spatially more localized (as e.g. for PCA) and it
has been argued that this supports parts-based representation schemes and
has advantages for certain applications, like reported e.g. for face recognition
[14].

For calculating the decomposition, optimization-based methods are used.
For this purpose, an energy function E is used, which targets a good re-
construction of the data. Within the energy function, additional desired
constraints can be formulated as it is shown for an activation sparsity con-
straint in [15] and for transformation invariance of the basis vectors in [16].
This leads to the following energy function:

E(W,H) = %Z Vo= S w2 Y g

J - (m) i,5,(m)
Vv 4 N TV -

Z:ER(W7H) ::E)\ (H)

Here T(™) is a general transformation operator with a transformation param-
eter vector m. The activations H; ™) jow indicate the contribution weight of
the j'th basis vector W subject to the transformation with parameters m to
the reconstruction of the 7’th input vector V;. The transformation operator
allows to extract a small set of basic primitives and to interpret a signal as
being composed of transformed instances of those primitives. In principle we
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can incorporate arbitrary transformations; in this paper we restrict ourselves
mainly to translations corresponding to temporal shifts, since one usually ex-
pects a primitive to occur in a similar form at different points in time in the
signal. E.g. for a grid-based representation, the set of all m could be identi-
fied with the set of discrete shifts of the temporal index, and thus m := m.
Then, T(m)Wj becomes a temporally shifted version of W, and H} ) i the
contribution of the shifted primitive W, to the reconstruction of the input
V. The set of all Hf A(m) comprise a higher-order tensor indexed by ¢, j, and
m. The restriction to discrete translational shifts allows the use convolutions
and correlations for the efficient calculation of the presented algorithm, see
Appendix A and Appendix B for the details of such formulations and the
relation to shift-invariant approaches in related publications.

In section 3, we introduce a preprocessing of the raw trajectory data that has
beneficial properties for the application of discrete sets of shifts as transfor-
mations. For the implementation, we use a grid-representation that results
in a two-dimensional rasterization of the trajectories in form of gray scale
images. The input vectors to the NMF are then two-dimensional images
with one axis representing the discrete time index and the other axis rep-
resenting a spatial extension of the trajectory, and we can take advantage
of shift invariance in these two dimensions. As a consequence, the transfor-
mation parameter vector m describes discrete index shifts in both, temporal
and spatial, dimensions m := {my, m, } with m;, m, € Z. In this case H] (m)
becomes a four-dimensional array indexed by 4, j, and the shift parameters
my, my. For a more elaborate explanation see Appendix A.

By minimizing the energy equation, it is now possible to model the input
data using the matrices W and H. The reconstruction is aimed to be as close
as possible to the input data V (reconstruction term FEg), while using only
a few activations Hf’(m), which is achieved by forcing the activations to be
non-negative and simultaneously penalizing them by the sparsity constraint
term F, controlled by the parameter \.

For the optimization we use an iterative method, which updates W and
H in alternating fashion using multiplicative update rules similar to those
introduced by [2]. For a background on this choice of update rules and details
about the derivation and convergence properties, see Appendix B and [2],
[15] and [16] (in this order).
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2.1. Extending NMF by spatiotemporally local activity competition

Starting from sparse and translationally invariant NMF, in the following
section, we extend the approach by an additional energy term to obtain iso-
lated activations, as motivated by the analogy to the key pressing times of
a piano player. It has been observed before that optimization through gra-
dient descent for shift-invariant models leads to adjacent non-zero activities
[7, 8, 17], or even spatially smeared activity traces (see Fig. 2). This prob-
lem has been dealt with previously by sequential selection and thresholding
heuristics, like in Matching-Pursuit-type algorithms. To enforce locally iso-
lated peak-like activities directly from within our optimization, we add an

energy term E,(H) to the energy function that introduces local competition

between neighboring activations by placing a kernel function Kz.j’r’(mfm/) on

(m)

each activation H f ™ to suppress all its neighboring activations H, A(m")

E,H)=p- Z Zng’,(m) Z Z Kg,r,(mfm’) . HZ’(m/)~
4,j m r  m'

The parameter p controls the penalty term. This penalty can be described

as a competition, for a single data vector V;, of the activation Hf’(m) with

)

all surrounding H, o(m’ weighted by a kernel, centered on the former one.

For j =r, KZ’T’(mfm,) describes the competition between all potential spatial
and temporal translations of the primitive W, and for j # r, Kij’r’(m_m,)
describes the competition between activations for different primitives W;
and W,, i.e., the different primitives compete for a place in space and time.

The competition weights are defined in the following way

)

Fedn(mem') _ {0 forj=randm-m’'=0
' k(]lm —m'||, /h)  otherwise
where k(z) = (1 — 2?)I(Jz| < 1) is the kernel function and h is the kernel
width. We found the non-normalized Epanechnikov kernel to be suited for
our purpose, but other kernels that are monotonically decreasing could also
be used. This way, activities directly adjacent to the one in the kernel center
are penalized most and the penalty decreases with increasing distance to the
kernel center. Note that we do not normalize the kernel, because that would
result in weaker competition, the wider the kernel is, which is undesirable for
our purpose. Note further that for j = r and m = m’, we set the kernel value
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to zero, because a non-zero value would lead to an activation competing with
itself.
Adding E,(H) to the energy function, we get

E(W,H) = Eg(W, H) + E\(H) + E,(H). (1)

Differentiating w.r.t. the activations and separating into positive and nega-
tive terms for the stationarity conditions yields the following multiplicative
update equation for the activities (with Wj indicating Euclidean-normalized
basis vectors)

(TW,)"V,

szv(m) — Hg’(m) ® — j,r,(m—m’) r,(m’)*
(TEW) TR + A 032, 3 K-

(Here the operation ® denotes a component-wise multiplication and the di-
vision also has to be calculated component-wise). We call the competition
term in the denominator 3, K7"™ ™). H"™) the competition map. Note
that this is simply a convolution of the competition kernel with the activation
(with both the kernel and the activation matrices interpreted as 2D arrays
indexed by the transformation vector m), and in addition for 2D transla-
tional transformations T™) the complete update equation can be computed
very efficiently using correlations (see Appendix B for details) and FFT
(Fast Fourier Transformations).Using this update scheme we obtain very iso-
lated activations, which are sharply localized and segregated from each other
(see Fig. 2 for a comparison of the decomposition without and with local
competition term for the activations).

The following steps summarize the complete NMF update algorithm as
used throughout this paper, and which minimizes the total energy function
1. During training, both the basis vectors and the activities are randomly
initialized with Gaussian noise.

1. Normalize the basis vectors according to

- W,

2. Calculate the reconstruction

R, = Z Z Hlﬂv(m)T(m)W]
7 m
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Figure 2: Activity vectors calculated without and with local competition, represented as
2-dimensional images with the x and y-coordinates representing the temporal and spatial
dimensions of the trajectory. Fig. 2(a) shows an activity vector obtained without the local
competition. The activities are spread over a local region, resulting in pronounced activity
traces. Fig. 2(b) shows the activity vector for the same input obtained incorporating
spatial and temporal local competition. The resulting activities now become sharply
localized peaks, isolated in space and time.

3. Update the activities
(T™W,)TV]
(LW, R At 152, S KL 7

4. Calculate the reconstruction with the new activities
=Y,
7 m

5. Update the basis vectors

»(m W. WL m ,(m
3 N (T V™ WW, 30,5 (1) TR ™
5 S (T RA™ 4 WW 5, 52, () TV

Wj (—W]®

All vector divisions and the vector multiplications denoted by ® have to be
applied componentwise. Steps 1 to 5 are iterated until a defined convergence
criterion is reached, e.g. a threshold for the energy or the minimum decrease
of energy. After training and during application, the basis vectors are held
fixed, so that only steps 2 and 3 are iterated.

The Euclidean normalization of step 1 is usually not energy-preserving
(i.e., it can lead to an energy increase), and would therefore counteract the
energy minimization. As a consequence, we have formulated the energy func-
tion 1 in terms of the normalized basis vectors, which leads to the additional

9
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Figure 3: Preprocessing: The recorded motion trajectories are transferred into a grid
representation. A grid cell is set to 1 if it is in the path of the trajectory and set to zero
otherwise (each dimension is regarded separately). During the prediction phase multiple
hypotheses can be gained by superimposing several basis primitives. This is indicated
with the gray trajectories on the right side of the grid.

terms (WJW]T) in the update equations of step 5. For the details of nor-
malization correction of the NMF algorithm see [15].

3. Decomposing Motion Trajectories

Lets assume, we are given a motion trajectory a time series of N sam-
ples T = (sg,s1,...,Sny_1) with values s; = (x4, s, 2¢)" for time steps t =
0,1,..., N—1. It is now possible to present T directly to the NMF approach.
But this could result in an unwanted behavior, while trying to reconstruct
the motion by use of the basis vectors. Imagine two basis vectors, one rep-
resenting a left turn and another representing a right turn. A superposition
of those basis primitives would result in a straight movement, since the two
primitives would add up and cancel each other out.

The goal is to have a set of basis primitives, which can be concatenated
one after the other. Furthermore, it is beneficial for a prediction task to be
able to formulate multiple hypotheses. For achieving these goals, the x-t-
trajectory is transferred into a grid representation, as shown in Fig. 3. Then,
each grid cell (x;,t;) represents a certain state (spatial coordinate) x; at a
certain time ;.

The grid size is chosen such that the number of columns, i.e. the temporal
resolution, equal the number of samples. The number of rows, i.e. the spatial
quantization, must be chosen to fit the desired degree of accuracy and is, thus,
heavily dependent on the application domain. Clearly, the number of rows
strongly affects the computational demands of our approach, and thus, a
trade-off is necessary. For our experiments (see Sec. 4) we chose a number
of rows of 50.

The 2D-grid is now presented as image-like input to the NMF algorithm
as introduced in Sec. 2. Using the grid representation of the trajectory also

10
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supports the non-negative character of the basis components and their activi-
ties. It has to be mentioned that the transformation to the grid representation
is done for each of the dimensions individually. Hence, the spatio-temporal
NMF has to be processed on each of these grids. Regarding each of the dimen-
sions separately is often used as an approximation to reduce the complexity
of the analysis of trajectories (compare [18]). Theoretically, the algorithm
could also handle multidimensional grid representations. This is subject of
ongoing research.

The sparse coding constraint helps to avoid trivial solutions. Since the
input can be compared with a binary image, one possible solution would be
a basis component with only a single grid cell filled. Using shift invariance,
multiple differently located instances of such a basis vector could then be
concatenated directly one after another. So, the trajectory would simply be
‘copied’ into the activities. Using the sparsity constraint helps avoiding this
effect. However, the sparsity constraints alone leads to activations that are
still not segregated, but ’smeared’ in traces over a short period of time. The
local competition removes those traces and segregates them such that there
are only a few activations in the time interval of the length of a basis vector.

For real world tasks, the described approach can be divided into two
phases, a training phase and an application phase. The goal of the training
phase is to learn a set of basis primitives which allows the decomposition of
an observed but unknown trajectory (see Fig. 4). As discussed in Sec. 3, the
training samples are first transferred into a grid representation in a prepro-
cessing step. These grid representations are then taken as input for the NMF
approach and are therefore represented in the matrix V. On this matrix V
the NMF approach, extended by the sparsity constraint and by translation
invariance as described in Sec. 2.1, is applied.

In the application phase, we keep the motion primitives, learned in the
training phase, fixed, as indicated in Fig. 5. During the application phase,
we assume that the motion of a dynamic object (e.g. a person) is tracked
continuously. For getting the input for the NMF algorithm, a sliding window
approach is taken. A certain frame in time is transferred into the already
discussed grid like representation. For this grid the activation of the basis
primitives is determined by trying to reconstruct the input. For the activity
computation, the algorithm is identical to the steps 2 and 3 from Sec. 2.

In standard, offline approaches to NMF', each new observation demands
a new random activity initialization for the optimization problem. During
the application phase, the sliding window approach implies that a new time

11



Neurocomputing 124 (2014), 22-32

N N
W H

Figure 4: Training with Spatio-Temporal NMF. Given is a set of training samples stored in
the columns of matrix V. The described algorithm computes the basis vectors W (motion
segments/ motion primitives) and the corresponding activities H. The learned motion
primitives are then used for processing arbitrary trajectories.

step reflects in a shift (e.g. to the left as time proceeds) of V. For identi-
cal activity initialization, the calculated next time step activities then also
resemble the old, but shifted activities. To reduce the number of iterations
until convergence, we therefore use the shifted activities from the previous
time step as initialization for the current one.

An interesting question is whether our approach can be used to extrap-
olate trajectory information into the future, i.e., to use the learned basis
vectors and the currently calculated activities during an online trajectory
reconstruction to predict the input data for the next time steps. For this
purpose the proposed algorithm had to be extended. Since the algorithm
contains the transformation invariance constraint, the computed basis prim-
itives can be translated to an arbitrary position on the grid. This means
that they can also be moved in a way that they exceed the borders of the
current input grid. Up to now, the size of reconstruction was chosen to be
the same size as the sliding window on the input grid, and reconstruction
results beyond the sliding window borders were clipped. To be able to solve
the prediction task, we simply extend the reconstruction grid to the right —
or into the future (see Fig. 5). So, the previously clipped information is now
available for prediction. In this setting, the algorithm tries to use the most
recent past observable input together with the learned basis vector structure

12
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Figure 5: The application phase of the spatio-temporal NMF. The basis primitives W,
which were computed during the training, are used to reconstruct (matrix R) the observed
trajectory V. This results in a set of sparse activities — one for each basis primitive —
which describe on which position in space and time a certain primitive is used. Besides
the reconstruction of the observed trajectory (shown in the lower right part, R), it is
furthermore possible to predict a number of time steps into the future. Hence, the matrix
R is extended by the prediction grid P.

to find those basis vectors (and shifts) which partially match best, and uses
the unmatched part of the basis vectors for a trajectory prediction (the por-
tion of basis vectors used for past matching vs. prediction can be controlled
via translational offsets in the basis vectors). The predictive capabilities of
our approach are examined in Sec. 4.

4. Results

In this section, we show experimental results of the various aspects of
NMF for motion trajectory analysis and application scenarios that our ap-
proach can be used for. After describing the datasets we used for our evalua-
tion, we show some typical basis vectors that emerge for the respective data
set. We analyze the benefits of the local activity competition and discuss the
predictive properties of our approach. We then briefly show that the gained
encoding can help in building efficient motion trajectory classifiers.

4.1. Used Data Sets

For the evaluation of our methods two data sets were used, one artificial
and one real. The artificial data set consists of 500 Sinus curves, plotted
on grids of size 100 x 50 (width x height), with a period length randomly
varying in the range [80, 100] (i.e. there is a full sinus period or a little bit

13
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more in the grid) and an amplitude varying in the range [10, 25]. If not stated
differently in the results below, we used basis vectors of size 30 x 50.

The real data set consists of movement data from the Perception Action
Cognition (PACO) Lab at the University of Glasgow [19]. We will refer to this
data set as the PACO data set. The data contains trajectories of 30 persons
performing four different actions, 'knock’, ’lift’, throw’, and 'walk’. In each
recording session 15 markers were recorded. For the prediction experiments
we use only the trajectories from the 'walk’ class and only the marker of the
right foot. From those three-dimensional trajectories again, we use only the
x component. Those are down-sampled to a frequency of 30Hz plotted on
grids that have a number of columns equal to the number of samples. As
mentioned in section 3, a trade-off between accuracy and computational cost
has to be made, when choosing the number of rows, i.e. the quantization of
the signal value. We found that a number of 50 steps is reasonable for the
application presented here. For the classification experiments we used the
data of all four classes and only the marker of the right hand, which seemed
most discriminative. We use the z component of the three-dimensional tra-
jectories, since this is the one most characteristic for the different motions.
During one recording, the respective action, e.g. 'knock’, is repeated several
times. For the classification experiments we segmented the data and used
the single segments. For further processing we normalized the amplitudes of
all segments to [0, 1] and the length to 50 by resampling. The segments are
then plotted on grids of size 50 x 50. If not stated differently in the results
below, we used ten basis vectors of size 20 x 50.

4.2. Emergence of parts of motions

Using the PACO data set, we extracted 12 basis vectors from 10% of
the exemplars, randomly chosen from all classes. Fig. 6(b) shows the ob-
tained basis vectors. Every basis vector represents a common part that is
shared between some or all trajectories in the data set. For the sinus data
set NMF extracts the respective alternations of the sinus (Fig. 6(a)). Note
the light-gray parts, where the variance in the data is represented. For the
PACO dataset, some basis vectors represent straight movements, some show
upswings and some downswings (Fig. 6(b)). As can be seen, the variance in
the data is also captured by the basis vectors. They usually have some very
well defined part (high values) and another part that shows some alternative
movements that were present in the data. To obtain such nicely defined ba-
sis vectors the sparsity parameter A must be tuned, dependent on the actual

14
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(a) Basis vectors from the Sinus dataset.
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(b) Basis vectors from the PACO dataset.

Figure 6: Basis primitives gained by Spatio-Temporal NMF. The value for each grid cell
is coded in gray scale from white (low) to black (high). A certain value stands for the
influence of this grid cell, in the sense that light gray parts can be superimposed well, while
dark gray to black parts indicate unambiguous trajectory segments. The appearance of
the Sinus basis vectors in (a) supports the idea that the proposed algorithm indeed yields
a parts-based decomposition (in this case, different half-periods of the sinus wave) that
can be used for a reconstruction of Sinus-like trajectories by appropriate concatenation.
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Figure 7: Distribution of magnitudes of non-zero activities for 4 = 0 and g = 100 on
a logarithmic scale. Fig. (a) shows the distribution for the Sinus dataset, Fig. (b) the
distribution for the PACO dataset. Activities with a magnitude below 1073 are regarded
as zero activities. For greater p there are significantly less non-zero activities, and higher
activity magnitudes (values of 0.1 and above) are favored against lower-valued ones.

data (in our setting we used parameters that varied between 0.1 and 1.0).

4.3. Effects of local activity competition

In the following, we show the results of two experiments to demonstrate
the benefits of the local activity competition with respect to the overall
sparseness as well as the reconstruction abilities of the resulting decomposi-
tion.

The first experiment was conducted to show that local sparsity forces
the activities towards a more binary encoding scheme and reduces the many
activities with low values in favor of only a few activities with higher values.
Fig. 7 shows histograms of activities after the decomposition for two data sets,
the Sinus data set and the PACO data set. As can be seen, by using local
activity competition the activities below a threshold of 10~! are considerably
reduced in favor of fewer activities with higher values above the threshold.
Thus, the relaxation process of the NMF algorithm ’has to decide’ for a fewer
outstanding activities and the less prominent ones are suppressed.

Fig. 8 shows a plot of the reconstruction cost Egr versus the sparsity
cost [° for e = 1073. The sparsity measure (© = |{(,j,t,z), H'"™ > €}|
counts all activities that have a value of above €, as proposed by [20]. For
sparsity cost values of below 0.0125 (which means that less than 1.25% of
the activities are above €) the gain of the local activity competition becomes
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Figure 8: Plot of NMF reconstruction cost Er versus the sparsity cost measure [9. The
triangle markers show the change in the cost tradeoff of a number of different values of
A and a fixed value of u = 0, i.e. without local activity competition. This serves as a
baseline for the values shown with the circle markers, where the value of A = 0.1 was held
fixed and the value of p was varied between 1072 and 102. Encoded in the face color of
the circles is the value of p as shown in the color bar on the right side. The scale on the
color bar shows the decimal power of the value of p.

visible. For example for a reconstruction cost of 70 only about 0.3% of all
possible activations need to be active using the local activity competition,
whereas without, about 0.7% are active. Also notice that the weight © must
be larger than p = 0.1 for the local activity competition to show a measurable
effect.

4.4. Computational Cost

To evaluate the average computational cost we used the Sinus dataset
with input images of size 100 x 50 and basis vectors of size 50 x 50. We
make a distinction between the computational cost in the training phase and
in the application phase. In the training phase both the basis vectors and
the activities must be updated and thus the complexity is O(JN) for J basis
vectors and N inputs. Learning 10 basis vectors from 100 input images in the
training phase on a Intel Core2 Quad 2.6GHz machine using only one core
(no parallelization), one NMF update step takes 2775 ms. Since the NMF
update can be parallelized, we can make full use of all four available cores,
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which reduces the update time to 898 ms. The cost in both cases consists
of about 25% — 30% for the update of the basis vectors, 40% — 50% for the
update of the activities, and 20% for the update of the competition maps.
It takes around 60 update steps for the energy value to converge to a local
minimum.

In the application phase, the basis vectors are held fixed. Only the current
input image is processed, which consists of the grid transformation of the
currently observed trajectory. Since we do not need to update the basis
vectors, the time complexity reduces to O(J) and the time for one update
step takes 19 ms. Parallelization does only have marginal effects in that case.
Also the number of update steps necessary for convergence reduces to 10 to
20, dependent on the quality of the basis vectors.

4.5. Prediction

For the example scenario from the introductory section (see Sec. 1), a
robust identification and tracking of the single body parts is needed. To
be comparable and to avoid errors from the tracking system influencing the
test results, the PACO data set is used. The movement data has been sub-
sampled to a resolution of 30 samples per second. Figure 9 shows prediction
over a 10-step horizon into the future. A prediction of 10 steps means a
prediction of 0.33 seconds into the future. Since most trackers work with a
lower resolution, a larger prediction horizon is also possible.

For the experiments, the size of the basis primitives was chosen to be
50 x 100 grid cells. The input grid size was set to 500 x 100 during the
training phase. During application phase, a window of 100 steps into the
past was observed and the prediction is done over 10 steps into the future.

In figure 9, one can see that the non-determinism inherent in prediction of
movement data is captured by our approach. For example, in the prediction
window between steps 180 to 189, all possible variations that have been ’seen’
during training in the data are present (light grey trajectory traces). This
way, our approach can not only provide the most likely prediction, but a num-
ber of alternative predictions, each with a certain likelihood. The likelihood
can be computed by normalizing over a column in the prediction window.
This ability may become useful for further trajectory processing steps, as it
is known to enhance the performance of, e.g., probabilistic trackers.

For evaluating the quality of the prediction, two measures have been
chosen. Firstly, the prediction is compared with the grid representation of
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Figure 9: Prediction capabilities over a horizon of 10 steps into the future. A window of
the 100 past values has been taken, transformed into the grid representation, and predicted
10 steps into the future. Then the window has been shifted 10 steps into the future (to
the right) and the extrapolated trajectory for the next 10 steps has been generated (light
grey traces). The dotted lines mark the start of each 10-step prediction. The ground truth
(red line) has been projected onto the grid for comparison.

the true, actual trajectory G. For each occupied grid cell the value of the
column-wise normalized prediction is added:

P/
=—* .G
S P

The normalization of the prediction is done separately for each time slice
(i.e., for each column in the grid) P; within the prediction horizon.

Secondly, Dy, (t) measures the distance of the most likely path of our
prediction to the ground truth.

Ser(t) (2)

Dmaw<t> = dt(l\/[)z1 : Gt <3>

For this purpose, the maximum prediction M is extracted, such that M} =
where P; has its maximum value and M, = 0 otherwise, for each time slice
t. Then a distance transform is applied that assigns each pixel of the output
image the distance to the nearest non-zero pixel of the input image. The basis
primitives can at most be shifted by their width out of the reconstruction grid
R. Thus, the maximum size of the prediction horizon equals the width of the
basis primitives. In practice, this maximum can not be reached, because the
basis primitives need a reliable basis in the trajectory part where the input
is observable. Nevertheless, we have chosen to use the theoretical maximum
as a reference for the evaluation.
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Figure 10: Measures for the prediction quality for different prediction horizon length (in
sampling time steps). Fig. (a) shows Sgr(t) (see Eqn. 2), which measures the correlation
of the prediction with the ground truth. A fit value of 1.0 indicates perfect prediction
at that time step. As it is expected the accuracy of the prediction decreases for a longer
prediction period. Fig. (a) shows the distance D, 4. (t) between the most likely hypothesis
of the prediction and the ground truth trajectory (see eq. 2). Low values indicate that the
prediction has a low distance to the ground truth trajectory.

The results of the prediction of a sample trajectory are depicted in Fig. 10.
The predictions were performed at each tenth time step of the chosen tra-
jectory. Fig. 10(a) shows the expected decrease of the average prediction
quality Sgr(t) with increasing prediction horizon. Nevertheless, the decrease
is smooth and no sudden collapses can be observed. Fig. 10(b) shows the
distance D4, (t) between the most likely hypothesis of the prediction and
the ground truth trajectory. In the first few steps, the prediction lies within a
distance of only a few grid cells. With longer prediction horizon, the distance
increases. The decrease in prediction quality with longer prediction horizon
is partly due to the decreasing support for basis vectors from the input and
partly due to the increasing presence of multiple hypotheses with roughly
equal likelihood.

As mentioned earlier, the discretization into the grid introduces a loss
of accuracy. For the presented application, however, we found that this
discretization still gives good results. To make the output more smooth one
could use interpolation techniques, e.g. via splines. This would however
demand certain smoothness assumptions about the data. In our application
on human motions, those assumptions hold. In general, however, this narrows

20



Neurocomputing 124 (2014), 22-32

the applicability of our approach.

4.6. Classification

The activation patterns for a single trajectory can be seen as an alter-
native encoding of that trajectory in terms of events, where an event is
marked by the time-point of an activation. In the following, we show that
the transformation of a trajectory into that representation preserves all im-
portant discriminative characteristics of the original data necessary to per-
form classification. For this purpose, we built a very simple classifier that
takes only the activation times (event times) as input, and applied it on the
PACO data set. This data set consisted of trajectories from four classes
(’knock’,’lift’,"throw’,’'walk’), with a certain number of repetitions of the re-
spective movement in each recording. In addition, a temporal partitioning
is available, so that we can also access the single repetitions, and we used
these as input for the classification. In short, we take a single repetition of
a movement, transform it into an event-like encoding using the basis vector
decomposition, and feed the activation times (event times) as input to the
classifier. .

More specifically, let Tj = {m|3>_, HYmt S 9} be the set of time
indexes when the activation of a basis vector j was above a threshold O, and
thus considered active. An observation is then defined as a set of activations
for all primitives {T;}7_,. Fig. 11 shows activation times of the first three
basis components for a number of exemplars from the classes 'knock’ and
lift’.

For classification, we use a very simple model. As an approximation,
we regard the primitives as independent. For each class, we have a set of J
Gaussian mixture models (GMM). The j-th GMM models the distribution of
activation times of primitive j for the given class. During application phase,
GMM j gives the likelihood of the observed observation times of primitive
J. The likelihood of primitive j is weighted by the relative frequency of
activation times in the training data of that primitive for the given class,
such that primitives that are rarely activated have a smaller influence on the
classification result. Formally, this results in the following model

R
PUTYle) o [ Juws T] D mi? - Nt 7 07,
J

tETj r=1

where wf is the relative frequency of the event that primitive j has been
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Figure 11: Activation times of the first three basis vectors for the two classes ’knock’
and ’lift" (circles) and the corresponding learned basis-wise Gaussian Mixture Models
(solid lines). The relative heights of the components of the GMM’s have been scaled by
their respective weights. This GMM model yields a classification rate of 0.944, which
is considerably good, regarding the simple nature of the classifier and the very reduced
representation of the data.
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active for class ¢ and {(m%7, us’, g% )}iz1,..r are the mixture parameters of
the GMM for class ¢ and primitive j with R components.

Fig. 11 shows the learned GMMs for the classes knock’ and ’lift” for
the first three basis vectors. We used the GMMs as a maximum likelihood
classifier and validated the ability to classify the data correctly by stratified
ten-fold cross-validation. The overall data set consisted of about 250 exem-
plars per class. Our experiments resulted in a mean classification rate of
0.944.

To get a base line for comparison, we also classified the data in the original
representation (the raw trajectory segments). We resampled the segments
with 50 steps and interpreted them as vectors. For each class, we trained
a GMM on the vectors of that class. The classification rate was 0.940, and
thus, comparable to the one in the transformed representation.

The comparable performance of the classifiers suggests that the charac-
teristics of the data are still present when only regarding the activation times
of the primitives. This implies that we can use the NMF decomposition to
detect events and to build a classifier that only relies upon these events. How-
ever since the event-like encoding of the data results in a highly compressed
representation of the data, we expect that alternative classification models
can take full advantage from such properties and achieve similar classification
performance at highly reduced computational costs.

5. Conclusion

In this paper, we summarized our research efforts on motion trajectory
analysis using a new variant of Spatio-Temporal NMF. Furthermore, we in-
troduced a new extension of the Non-Negative Matrix Factorization for ob-
taining sparse and isolated activations.

We are using our approach to decompose human motion trajectories into
basis primitives and their activations over time. Our approach is able to gain
the basis primitives from the training set in an unsupervised manner. Hence,
no further model knowledge is needed. This new way of representing motion
trajectories allows us to describe our motion in a sparse, event-like way.

This activation-based representation gives us an alternative input coding
that can be used efficiently for classification. The sparse, event-based encod-
ing enables the use of compact classifiers with a reduced set of parameters.

Furthermore, since the basis primitives adhere to the temporal charac-
teristics of the trajectories used for training, it is possible to use our method
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for a long-term prediction of an observed movement.

We have shown that applying our approach to human motion trajectories
leads to the extraction of basis vectors interpretable as primitive motions,
and to a compact and sparse representation of the trajectories. We have
also shown, that the basis vectors can be used for model-independent multi-
hypotheses prediction with good prediction accuracy, dependent on the dis-
cretization and on the quality of the basis vectors obtained. In addition we
showed how a classifier can be built based exclusively on the timing code of
the representation, and that such a classifier performs comparably to other
simple classifiers on the raw trajectory data, which suggest, that all discrim-
inative properties are maintained during the transformation into the sparse
encoding.

In this paper, as an approximation, we have analyzed the dimensions of
our Cartesian input domain independently, processing each of them as an
individual trajectory. As a next step we want to test our method with the
trajectories in the fully coupled input space.

In our current approach, the number of basis primitives has to be fixed
in advance. While this was not a severe issue for the presented data as
long as this number was large enough, it would be desirable to test methods
to determine an appropriate basis vector size automatically. For example,
iterative formulations for incremental basis vector learning (being different
from incremental decomposition techniques like Matching Pursuit) could be
investigated. Furthermore, relevance learning can be used to estimate which
basis primitives bear the most important information for a post-processing
classification task.

Appendix A. Shift invariance

For the formulation of the energy function 2, we adhere to a generalized
notation that is close to that commonly used in when dealing with sparse,
shift-invariant representations. The background is that the data is recon-
structed by a set of only a few contributions from arbitrarily transformed
basis functions (e.g. kernel functions in [5]). Introducing

corry g(m) := Z ymenpn

convy g(m) := Z ymtn pon (A1)
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as standard correlations and convolutions on vectors V and filters F with
discrete entries V™, F™ indexed by m (which is written as a vector because

it may be more than 1-dimensional) and translational transformations (with
(7)== (T0)T)

(T(m)Wj)k = kam

J

(T)TWy)e = W™ (A.2)

we have that the ¢-th data vector is modeled by a reconstruction composed
of shifted basis vectors weighted by their (shift-dependent) activities,

R = QoD HITEIOW =3 S HIWE =S convig w, (K)
j m j m

J
(A.3)
so that we the following reconstruction energy

Er(W,H) = % SIVi=> ) conve wlI* - (A.4)
( Jj o J

If we assume only temporal shift invariance, eq. A.3 is a mixture of convlu-
tions which has the same form as the approaches used e.q. in [5, 7, 8] and
others.

In our model we used a discretized, grid-based representation with the
x and y coordinates denoting temporal and spatial translations, so that Hg,
W;, V; and R, can all be understood as 2-dimensional #mages with temporal
and spatial extension along the axes. The convolution is then calculated over
both the temporal and the spatial translations, and H™ is the activity of
the j’th basis vector shifted my m := {m;,m,}, i.e., m; pixels along the
temporal extension and m, pixels along the spatial extension.

Appendix B. Update equations

In [21], the authors showed that for non-negative basic-vector decomposi-
tion, the multiplicative NMF equations (written here in extended per-image
form for better comparison with the translationally invariant version later
on)

T
H « H © (W) Vs

R (B.1)
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and

Wj — Wj ©O) L (B2>

for the activities and the basis vectors can be understood as derived from a
diagonally rescaled gradient descent method and its convergence properties
were ahown using auxiliary functions similar to those used for Expectation-
Maximization convergence proofs. The same type of proof can be conducted
for the transformation invariant energy Eg. This leads to update equations

. . (M)W TV,
gy iy o (LW5) Vi
Hi — Hi ®© (T(m)Wj)TRi (B.3)
and (m)
S (TN, 7
> o (T T RGH

which are very similar in form to the original NMF equations above, the
only differences being the additional transformation indices m. These are
the first factors in the quotients of the update equations from section 2.1.
(See however [22] for a more precise discussion of convergence properties and
23] for a theorem that proves that every limit point of the alternated NMF
algorithm is a stationary point of the basis vector optimization problem Frg.)

For the special case of translational invariance only (see Appendix Ap-
pendix A), we can directly write the update equations with the help of

correlations,
Him g ) SOTVew, (m) (B.5)
‘ ! corTR, w, (m)
and
W, oW, o (B.6)

> COITR, 19

For the final update equations from section 2.1, we have additionally con-
sidered sparsity terms and a normalization constraint of the basis vectors.
Ways to introduce sparsity terms into multiplicative, NMF-type algorithms
are explained e.g. in [24]. The normalization becomes necessary because the
solutions are only unique up to a scaling factor: the linearity in the recon-
struction allows the system to freely scale either the activities or the basis
vectors since R = (aW)H = W (aH). Together with sparsity terms which
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penalize large activities, such a system tends to scale up the basis vectors
while at the same time driving the overall sparsity towards 0. The introduced
basis vector normalization prevents this effect.

The concrete form of our update equations from section 2.1 has been
gained by calculating the stationary point conditions for the activities and the
basis vectors through derivations by H and W while holding W and H fixed,
respectively, and then sorting positive and negative factors and formulating
them as a quotient for the multiplicative update. Near-zero components of
the update equations have been thresholded to a small ¢ (see again [23] for
a justification of this). Using 2D Fast-Fourier transforms and performing
appropriate sums in Fourier space allows to implement the update rules very
efficiently. For this purpose, the vectors V;, R;, Hf and W; are all treated
as 2D images over the temporal and the spatial dimension and padded to be
of the same size.
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