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ABSTRACT

Robustly estimating the orientations of people is a crucial precondition for a wide range of applica-
tions. Especially for autonomous systems operating in populated environments, the orientation of a
person can give valuable information to increase their acceptance. Given people’s orientations, mobile
systems can apply navigation strategies which take people’s proxemics into account or approach them
in a human like manner to perform human robot interaction (HRI) tasks. In this paper, we present an
approach for person orientation estimation based on computationally efficient features extracted from
colored point clouds, formerly used for a two-class person attribute classification. The classification
approach has been extended to the continuous domain while treating the problem of orientation es-
timation in real time. Furthermore, we present an approach for tracking estimated orientations over
time using a Bayesian filter. We will show that tracking can increase the accuracy of orientations by
up to 3.69◦ on a dataset recorded with a mobile robot. Best results on this highly challenging dataset
are achieved with a regression approach for orientation estimation in combination with tracking. The
mean angular error of just 16.49◦ proofs the applicability in real-world scenarios.

1. INTRODUCTION
The current orientation of persons (see Fig. 1) in the

surroundings of a robot is a useful attribute for various
HRI tasks. In the field of socially aware robot navigation,
mainly two core functionalities require orientation informa-
tion. First, for approaching a person correctly, the orienta-
tion of the user provides useful information for positioning in
order to allow an unconstrained interaction (Fig. 2a). Sec-
ond, in proxemic theory, the orientation is used to model
a natural personal space around a person, which the robot
should not enter during the navigation process (Fig. 2b).
However, in such high-level applications, the orientation is
typically considered to be given, either through motion cap-
ture data [1] or other external sensor systems [2], which can-
not be used in real-world scenarios. In many application ar-
eas, the sensor setup is limited to the mobile robot platform.
Some approaches use closed source 3D skeleton estimators
like the OpenNI- or Kinect2-SDK in order to derive orienta-
tion information. These in turn have been used for approach-
ing [3, 4] or personal space [5] applications. This might
work in an experimental setup, but several limitations re-
strict the fields of application. For example, the constrained
detection space of usually 1.5m − 4.5m limits the naviga-
tion planning and interaction horizon. Other specifics, like a
prior on the orientation of users with respect to the sensor’s
coordinates as seen in the Kinect2-SDK, can lead to failures
when approaching a person from behind.
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Figure 1: Various samples from our train-set (top) and test-set
(bottom). The ground truths (red) and predictions (blue) are
indicated with arrows.

A reliable orientation estimation is also essential for the
prediction of human movement trajectories. In the domain
of person tracking, the orientation information is typically
extracted from the estimated velocity and, thus, from the
past motion trajectory [6]. Unfortunately, this approach fails
when rapid direction changes occur, which are likely to hap-
pen in narrow space environments like in our clinical [7] or
supermarket [8] scenarios (Fig. 2c). In these scenarios, the
environment mostly consists of long aisles. At aisle cross-
ings or corners, a person sometimes has no other option than
changing the heading direction which causes track failures in
most cases since such a motion model still assumes the di-
rection from the last few time steps.

Person orientation estimation itself was undergoing ex-
tensive studies. However, for the best of our knowledge,
all robotic applications using these information fall back to
more or less restricted methods not generally applicable in a
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(a) (b) (c)

Figure 2: (a) Robot approaching a person. (b) Modulated
personal space cost function with orientation information. (c)
Grid map and recorded trajectories of persons in an aisle of our
supermarket environment. Extracting orientations only from
past movement trajectories leads to misjudgements when peo-
ple perform lateral movements.

real-world scenario. Therefore, we consider the robust and
fast estimation of a person’s orientation still as a challenging
field for research.

This paper is an extended version of work published in
[9]. Additional contributions are:

1. To proof the applicability of the orientation estimation
approach in a real-world scenario, we perform addi-
tional experiments on a dataset recorded with amobile
robot.

2. We apply an additional tracking of orientations over
time using discrete probability distributions.

3. We show that tracking enables us to get estimations at
arbitrary time steps and also improves the accuracy by
fusing information in a temporal manner.

2. RELATEDWORKS
Person orientation estimation, as well as the similar

problem of estimating the head orientation of a person, is
usually treated by one of two estimation strategies. The
first strategy handles the estimation problem as a multi-class
classification by discretizing the continuous prediction space
into several orientation classes. In contrast to that, more
recent works perform a regression by predicting the con-
tinuous angle directly. Additionally, some approaches ap-
ply tracking mechanisms to integrate orientation estimations
over time.

2.1. Orientation estimation
In [10], a combined detection and orientation estima-

tion approach is presented using histogram of oriented gra-
dient (HOG) features and a decision tree of support vec-
tor machines to detect eight upper body orientation classes
and one background class. In [11], different combinations
of well known RGB feature descriptors like HOG, local bi-
nary pattern (LBP) and aggregated channel features (ACF)
are used for an eight-class orientation estimation. [12] ex-
tends the HOG feature space with the magnitude of gradi-
ents from depth images, which increases the feature weights

at the boundary of the human body silhouette. In this way,
they achieve better performance on data with complex back-
ground. All these traditional machine learning approaches
have in common, that they divide the prediction space into
relatively coarse classes. This comes with the drawback
that in addition to misclassifications (reported accuracies
range between 40% to 80%), a discretization error is intro-
duced, which is about 11.25◦ considering a balanced test-
set and eight orientation classes. Similar to other domains,
recent advances in deep learning have improved the accu-
racy of orientation estimation approaches significantly. One
of the first deep learning approaches for orientation estima-
tion [13] uses a deep convolutional neural network (CNN)
with cropped and resized person appearances from RGB-
images as input and a softmax layer with eight neurons as
output, which gives the confidence for each of the eight
trained classes. They report an mean angular error (MAE) of
10.6◦. However, their evaluation method neglects the men-
tioned discretization error, so the MAE must be higher in
reality. In [14], a regression approach is presented estimat-
ing the head orientation in RGB-images with a deep CNN
using two output neurons trained on the sine and cosine part
of the prediction angle. They reported a MAE of 20.8◦ on
a real-world dataset recorded in a town center. A similar
approach presented in [15] predicts the full body orienta-
tion using cropped and resized greyscale images of people
as input and two neurons as output. The CNN was trained
with a large synthetic training set, and the evaluation was
done on a spinning wheel measuring the ground truth with
a non changing simple background. Astonishingly good re-
sults of 6.9◦ MAE are reported on this relatively simple test-
set. However, lack of publicly available code and just a qual-
itative evaluation in a lab environment raises doubts about its
applicability in the real world. Another way to estimate a
person’s orientation is to retrieve this information from esti-
mated skeletons. In the past few years, this field of research
has produced outstanding results. [16] as probably the most
famous representative, commonly known as OpenPose, pre-
dicts 2D skeletons in RGB-images. However, from these 2D
information the person’s 3D orientation cannot be retrieved
directly. Other recent approaches are able to estimate 3D
skeletons from RGB [17] and RGB-D [18] images. We com-
pare our approach to them in the experimental section. How-
ever, when it comes to the application, not every problem
can be treated with deep learning due to the need of graph-
ics cards that conflict with the restricted resources on mo-
bile platforms. Even though there are power-saving graph-
ics cards available, like the NVIDIA Jetson series, complex
robotic systems, such as [19–21], which also need person
re-identification or scene understanding, benefit from com-
putationally less expensive alternatives for specific tasks.

2.2. Orientation tracking
Tracking a person’s position, movement and estimated

orientation was already applied in video surveillance. [22]
proposed a coupled orientation tracking from an eight-class
classifier, using HOG features in combination with motion
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Figure 3: Sytem overview of the proposed approach in a supermarket scenery. Color and depth images are processed into a
colored point cloud. A segmentation [26] and a subsequent point-cloud-based person detector [27] deliver person point clusters,
that are transformed into a reference coordinate system afterwards. For the orientation estimation features are calculated for each
cluster separately which are then fed either to a multi-class or to a regression approach to estimate the orientation of the person.
Finally, the estimated orientations are tracked over several frames to compensate outliers and, thus, to stabilize the estimate.

information. The persons’ positions and orientations are
tracked with a particle filter (PF), but only qualitative results
were presented for the tracking task. [23] use an unscented
Kalman filter (UKF) and orientation estimations from an
eight-class random forest (RF) classifier using HOG and
LBP features. They achieve an eight-class accuracy of 0.70
on a dataset recorded with a mobile platform. However, they
have not compared tracking to pure detection results. [24]
propose a system for lower body orientation tracking in a
top-down camera setup. The orientation information is re-
trieved frommotion information and group dynamics of per-
sons. For the tracking task, they use a mixture of Gaussian
model. They achieve a MAE of approximately 22◦ for the
lower body orientation. For robotic applications, [25] pro-
pose a 7D Kalman filter to track the position and orienta-
tion of persons in a multi-sensor setup but never evaluated
the orientation tracking. All these papers have in common
that evaluation of the orientation tracking task is strongly
underrepresented in comparison to other contributions. In
the experimental section, we show how the temporal track-
ing of orientations can improve performance compared to
the to the framewise estimation of orientations on a dataset
recorded on a mobile platform.

3. ROBOTIC APPLICATION
The proposed approach for orientation estimation is

based on the binary person attribute estimation (e.g. gen-
der) presented in [28], which uses clusters of colored 3D
points as input. There, person point clusters are generated
within a static sensor setup using a background model. In
order to use this approach on a mobile platform, where back-
ground models are not feasible, we integrated it in a pro-
cessing pipeline using the robotic middleware framework
MIRA [29] (see Fig. 3). Synchronized color and depth im-
ages from a Kinect2 sensor are transformed into a colored
point cloud. Afterwards, the segmentationmethod from [26]
is applied to generate candidate point clusters which possibly
represent persons. For cluster validation, we use the person
detector presented in [27], which currently delivers the best
detection results for this data representation. The advantage
of this and other point-cloud based person detectors [26, 30]
is that they share the required segmentation step with our
approach and, therefore, no computational overhead is gen-

erated when used in combination. However, arbitrary person
detectors combined with a projection into the point cloud co-
ordinate system could be used to validate that a point cluster
originates from a person as well. Another advantage of using
clusters from point clouds as data representation is the inde-
pendence from different backgrounds. Hence, the trained
classifier can be applied in each environment where a seg-
mentation yields valid samples. For detection accuracies in
a supermarket scenario, we refer to [27]. After the detec-
tion step, the person point clusters are transformed into a lo-
cal coordinate system aligned at the cluster’s center of grav-
ity while the orientation with respect to the camera remains
unchanged. This normalized point cloud representation of
each detected person is passed to the orientation estimation
module, described in Sec. 4. Finally, the estimated orienta-
tion is assigned to a person hypothesis of our person tracker
presented in [31]. The tracker fuses the orientation estima-
tion of the current timestep with information from the past.
The whole tracking procedure for orientations is described
in Sec. 5. The corresponding experiments can be found in
Sec. 6.5.

4. ORIENTATION ESTIMATION
As mentioned before, the proposed method for orien-

tation estimation is a modification of the human attribute
classification approach from [28] which classifies binary at-
tributes like gender or long/short trousers. In this former
work, a typical Adaboost approach has been used where a
small amount of simple, yet fast to calculate features are ex-
tracted from a large amount of different regions of a colored
person point cloud in order to train the classifier. More pre-
cisely, they computed statistic, geometric and color features,
like the number of points, linearity and mean color, from
overlapping subregions of the person point cluster. This re-
sults in a very large feature vector. However, using the Ad-
aboost training algorithm, it is possible to retain real-time
capability in the application phase, since just the most dis-
tinctive features have to be calculated. The main idea of Ad-
aboost is, that the designer of the algorithm does not have to
put much effort into data preprocessing, feature design, fea-
ture weighting, and feature selection, since Adaboost aims
to find the most distinctive features by itself during training.
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4.1. Adaboost fundamentals
Given a feature vector v, an Adaboost classifier FT (v)

[32], also called strong learner, can be seen as a linear com-
bination of T weak learners ft(v) while t ∈ T . It can be
described in the notation of Eq. 1:

FT (v) =
T
∑

t=1
�tft(v) (1)

Each weak learner ft(v) outputs a class vote ∈ (−1, 1), that
is multiplied by a weighting factor �t which was determined
during training. In the application phase, the sign of the pre-
diction of FT (v) determines the predicted class label and the
absolute value the confidence. Training an Adaboost clas-
sifier is an iterative process by consecutively adding weak
learners to the strong learner. During training, each sample
vi ∈ V of the training set V with sizeN and i ∈ N is asso-
ciated with a label ki and a sample weight factorwi. Initially
everywi is set to 1∕N . The first step of every training round
is to train a new weak learner ft(v) on a sub training set de-
termined by wi, to fit the class labels ki. Then, the summed
weighted error �t for misclassified samples is calculated:

�t =

∑

ft(vi)≠ki wi
∑N
i=1wi

(2)

From �t, the weak learners weighting factor �t can be calcu-
lated:

�t =
1
2
ln

(

1 − �t
�t

)

(3)

Finally, the new weak learner is added to the ensemble:

Ft(v) = Ft−1(v) + �tft(v) (4)

For the next round of training, the sample weights are
adapted to focus the next training rounds on currently mis-
classified samples:

wi = wie−ki�tft(vi) (5)

This process is repeated until a certain amount of weak learn-
ers is reached. In general, any kind of classifier can be used
as weak learner for the Adaboost algorithm. However, in
most practical applications binary decision trees are used.
Advantages of decision trees are their fast training and their
low execution times in the application phase. A binary deci-
sion tree consists of nodes and leafs. Each node has two con-
nected children, which are either other nodes or leafs. The
idea is, that each node takes a single feature from the feature
vector v and decides if the sample is passed to one of the two
children using a threshold. If the child is another node, this
procedure is repeated. If the child is a leaf, then the value
that is associated to that leaf is returned. Decision trees are
trained iteratively. Starting at the root node, the training al-
gorithm aims to find an element in the feature vectors of all
training samples and a threshold that splits the dataset best

regarding the homogeneity of the class labels. This proce-
dure is repeated until a maximum depth is reached or further
splits do not improve the homogeneity any more. If no fur-
ther splits are made, the leafs return value corresponds to the
mean label value of all training samples, that fall into it. As
measure for the class homogeneity we use the Gini impu-
rity. However, the original Adaboost algorithm is just able
to solve binary classification problems. In the following, we
will show how it can be applied to the problem of orientation
estimation.

4.2. Orientation estimation by Multi-class
classification

A typical approach to overcome this issue is to train sev-
eral binary classifiers, i.e. one for each orientation class, and
make a one-vs.-all decision based on the maximum classifi-
cation confidence of each classifier. Each sample vi in the
training set is associated with a continuous orientation la-
bel yi ∈ [−180,+180). To train several binary classifiers,
these labels have to be discretized and converted to a binary
classification problem. Therefore, we define a set of inter-
vals, that are subdivisions of the original label space. For
an eight-class subdivision {I0◦ , I45◦ , ..., I−45◦} for example.
The interval I� is used to generate the training label vector
k� for one specific classifier F�T (x) that is trained on exactly
one prediction space subdivision. For a classifier F 45◦T (v),
that shall be trained to the discretized angle of 45◦, the corre-
sponding interval is I45 = [22.5, 67, 5). The corresponding
label vector k� is calculated as:

k�i =

{

+1 if yi ∈ I�

−1 otℎerwise
(6)

In the application phase, the sample v is classified by each
trained classifier {F 0◦T , F

45◦
T , ..., F−45◦T }. The final prediction

is determined as themean of the interval of the classifier with
the highest confidence.

4.3. Orientation estimation by Regression
Another strategy is to treat the orientation estimation as

a regression problem. The Adaboost algorithm was general-
ized to regression problems in [33] calling it gradient boost-
ing. The concept is pretty similar to the original Adaboost
by consecutively training weak classifiers, also typically de-
cision trees, which solve the problem by finding the optimal
features. However, instead of training new weak learners
that predict the correct class label, weak learners in gradient
boosting are trained to predict the so-called pseudo-residuals
r, i.e. the negative gradient of a loss function L with respect
to the current model. First, the model is initialized with a
constant values, e.g. the mean of y for an absolute error loss
function:

F0(v) = arg min



N
∑

i=1
L(yi, 
) (7)

Then, the pseudo residuals ri are calculated:

ri =
)L(yi, Ft−1(v))
)Ft−1(v)

(8)
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(a) (b) (c) (d) (e) (f)

Figure 4: Voxel subregions that were selected by the Adaboost training algorithm for a classification model trained on a 0◦ upper
body orientation. The four most descriptive features are the sphericity feature from region (a), the flatness feature from region
(b), number of points from region (c) and the sphericity feature from region (d). An overlay of the subregions for the 50 and
100 most descriptive features are depicted in (e) and (f). It can be seen that the classifier has specialized on the upper body and
leg region when predicting orientations.
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Figure 5: Example of a confusion matrix with 64 bins on our
orientation test-set with a single regression model. Colors in-
dicate the prediction accuracy per bin. It can be seen, that
the model fails to deliver correct predictions at the transition
point of the prediction space.

After that, the a weak learner ft(v) is trained to predict r and
added to the current model:

Ft(v) = Ft−1(v) + 
ft(v) (9)


 is a regularization parameter reducing the risk of over fit-
ting. For the the decision tree weak learners, the predic-
tion procedure remains the same. However, in contrast to
classification, leafs now return arbitrary real-valued predic-
tions. In the application phase, these weak classifiers can

be evaluated independently giving this machine learning ap-
proach the same fast prediction capabilities. However, treat-
ing the orientation estimation as a regression problem comes
along with the problem of periodicity of angles. This leads
to the effect, that two samples close to each other in reality
would have a high distance for our model if they are on dif-
ferent sides of the transition point of our prediction space,
e.g. −179◦ and +179◦. Thus, orientations around the tran-
sition point cannot be estimated by the model (see Fig. 5).
In general, such issues can be handled by transforming the
prediction label to a higher dimensional space. However,
gradient boosting classifiers are natively not capable to pro-
vide multi-dimensional outputs. In [14] the periodicity of
the orientation angle is treated by a CNN with a two dimen-
sional output for the sine and cosine part of the prediction
angle. In our approach, we have adapted this method and
trained individual regression models for the sine and cosine
component of the angle.

4.4. Training details
Features: Since the main focus of this work is the es-

timation of orientations, we base the feature calculation for
colored point clouds on the extensive evaluation from [28].
Therefore, we use exactly the same set of features that per-
formed best in their evaluation. To be specific, we calcu-
late 19 features in 14,023 voxel subregions following [28].
For each subregion, we calculated the following geometric
features: number of points inside the voxel, point density,
sphericity, flatness, linearity, standard deviation, kurtosis,
average deviation from median, normalized planarity resid-
ual, height, depth, width, and the width-height aspect ratio.
From the points’ colors inside a subregion, the component
wise mean and standard deviation of the RGB color chan-
nels are calculated. This geometric and color features to-
gether result in a vector with 266.437 elements, that is used
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𝐵𝑒𝑙(𝑥𝑡−1)
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apply
observation
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prior for next
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Figure 6: Tracking cycle for an orientation probability distribution discretized into eight bins. The belief from the last timestep
(Bel(xt−1)) is predicted to the current time using a motion model. This belief Bel∼(xt) is then updated with a new observation
from the current timestep in order to get the posterior distribution (Bel(xt)).

to train our approach. During inference, just the most de-
scriptive features have to be calculated as shown in Fig. 4.
Multi-class classification: One issue that arises, when the
former continuous prediction space is divided into discrete
bins, is that samples which are close to each other in the fea-
ture space may fall into different classes. Furthermore, if
we take noise in our ground truth labels into consideration,
which is very likely when training on data that is not arti-
ficially generated, one classifier may be trained with sim-
ilar samples that have different (positive/ negative) labels.
This is an issue often ignored in most state-of-the-art publi-
cations. To the best of our knowledge, the only approach that
treats this issue was presented in [34]. There, the SVM train-
ing algorithm was extended with a cost relaxation parameter
that weights the errors of adjacent classes lower than fatal
misclassifications. Using this extension, they achieve an ac-
curacy improvement for the eight class classification of up to
3.23%. However, the fundamental idea of the Adaboost al-
gorithm is to find importance weights for specific samples by
itself during training. Hence, this method cannot be adapted
without changing the principle of Adaboost. Therefore, we
simply tackled this issue by just ignoring samples adjacent
to the positive class in the training step of a classifier for a
specific direction. In the experimental section, we will show
that we can achieve a notable precision boost with this simple
yet efficient training strategy. Furthermore, this allows us to
choose more fine granulated subdivisions of our prediction
space than the de facto standard of eight classes to reduce
the MAE, while a normal one-vs.-all training just increases

the MAE for a finer granulated prediction space division.

5. ORIENTATION TRACKING
A robot that considers the orientation of people for its so-

cial navigation behavior has advantages when there are esti-
mations at any point in time. Waiting for the next prediction
might slow down the interaction process and can lead to un-
intended behavior. To overcome such issues, orientations
can be tracked over time. In our previous work [31], we pre-
sented a modular tracking approach using different kinds of
sensor data and detection cues. Wemade use of the key com-
ponents of a Bayes filter, the prediction and the update step of
a probability distribution called belief. This concept is able
to track different attributes of persons, like their 3D position
or posture. In the work presented here, we extend our track-
ing framework in order to enable a tracking of the estimated
orientation state xt of a person. In particular, we use a L1
normalized discrete probability distribution in order to allow
a multi-modal belief representation. Fig. 6 shows the track-
ing cycle for orientations. The belief from the last time step
is predicted to the current time by applying a motion model.
Since persons in our scenario can quickly change their orien-
tation, the motion model causes the orientation distribution
to converge towards an uniform distribution. From the the-
ory of continuous-time Markov chains, this can be done by a
transition rate matrixM , where the transition rates from one
state to all other states are given and equally distributed in
our case. For a certain time interval Δt, the predicted belief
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Figure 7: Left: confusion matrix from a eight class classifier in the middle and retrieved probability distributions for all classes.
Right: normalized histogram over prediction errors from a regression approach from which the probability distribution of the
estimate is retrieved.

Bel∼(xt) results from eq. 10 by using the matrix exponential
of the transition matrixM :

Bel∼(xt) = Bel(xt−1)eΔtM (10)

For the update step, we use the element wise (Hadamard)
product of Bel∼(xt) and the new observation obst followed
by a L1 normalization:

Bel(xt|obst) ∝ Bel∼(xt)P (obst|xt) (11)

For a multi-class orientation classifier, the probability
distribution for an observation can be retrieved from a test-
set by calculating the confusion matrix followed by an row-
wise normalization (see Fig. 7 left). The columns of the ma-
trix correspond to the probability of how likely each ground
truth class is estimated by the predictor. For a regression ap-
proach, the probability distribution for an observation can be
retrieved by calculating a normalized error histogram over a
test-set (see Fig. 7 right). In the application phase, the his-
togram is shifted to the current estimate of the predictor to
get a probability distribution for the estimated angle. The
initial orientation belief of a hypothesis is a uniform distri-
bution over all bins. When a new estimation from the pro-
posed orientation estimation pipeline (see Sec. 3) arrives
at the tracker, it is associated to a person hypothesis, using
the spatial distance. The orientation for each person is then
tracked in a separate tracking module, as described above.
To retrieve the orientation angle � from the tracked distribu-
tions, we calculate the weighted sum of the sine and cosine
parts of the distribution (see eq. 12). There, �i is the corre-
sponding angle of the i-th bin of the probability distribution
and Bel(xt)i value of it.

� = atan2

(

n
∑

i
Bel(xt)i sin(�i),

n
∑

i
Bel(xt)i cos(�i)

)

(12)

In the experimental section 6.5 we will show, that the track-
ing of orientations gives a significant boost of precision on
a real-world dataset with difficult person appearances.

6. EXPERIMENTS
Over the years, several evaluation metrics have been de-

veloped. Most classification approaches use the accuracy
evaluation metric. However, since we are just interested in a
precise estimation of the real valued orientation in the appli-
cation, we will use the mean angular error (MAE) evaluation
metric independently from class division for classification
or regression. The MAE represents the mean absolute dif-
ference between ground truths and predicted angles while
taking the circularity of the prediction space into account.
Computation times are averaged results per sample over our
balanced test-set on an Intel Core i7-4790K using 4 cores.

6.1. Datasets
In the literature, a considerable amount of datasets for

training and benchmarking orientation estimation of persons
are publicly available with RGB [35] and RGB-D [36] data.
However, to the best of our knowledge, none of them ful-
fills our requirements of synchronized depth and RGB data
streams to generate point clouds in combination with highly
precise ground truth labels suitable for both classification
and regression. Therefore, we decided to record our own
datasets.

6.1.1. NICR RGB-D Orientation Dataset
In order to train our approach, we used the dataset from

[37]. There, we generated ground truth data using a highly
precise external ARTTRACK tracking system [38], which
tracks markers using four infrared (IR) cameras with a posi-
tional precision of 0.4mm±0.06mm [39]. In order to reduce
the influence of the markers in the actual point cloud data,
the IR markers were placed on a thin pole about 0.5m above
the heads (see Fig. 8). The pole itself was fixated under
the clothes at the back of the subject to keep the orientation
label unaffected from the head/view direction. By means
of that, the label represents the orientation of the person’s
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Figure 8: Environment in which the NICR RGB-D orientation
dataset was recorded.
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Figure 9: Left: histogram of the orientation angles in our
recorded training set. The blue line indicates the number of
samples drawn for balancing. Right: statistics of the datasets.

thorax. To generate point cloud samples of person appear-
ances, we recorded data using five Microsoft Kinect2 sen-
sors placed in a half circle around the recording area such
that the sensors’ active boosters did not interfere with each
other. Different activities of daily life, like walking around,
using cellphones, or conversations were captured. To gener-
ate samples for training and for evaluation, we used a back-
ground model. Afterwards, we applied the person detection
pipeline described in Sec. 3 to filter noise and to use the same
preprocessing as in the application phase. During the ses-
sions, 37 persons were recorded in a range of 1.5m to 5m that
we divided into groups of 21 persons for training and 16 for
the test-set. To give a valid evaluation of the system’s gen-
eralization capabilities, no person is included in both sets.
We also tried to keep the variance of persons’ attributes in
the test-set high with respect to gender, height, and clothing
(see Fig. 1). In total 57,717 samples for the training set and
50,788 samples for test-set were recorded. Unfortunately,
since we placed the sensors in a half circle, some of the
recorded ground truth angles are overrepresented. There-
fore, we balanced the datasets by sampling from 360 angle
bins randomly without using a sample twice. The result-
ing datasets contain 27,720 training samples and 21,600 test
samples (see Fig. 9). In the section 6.2 and 6.3, we discuss
the results on the balanced test-set only. Results for the full
test-set are given in the Tab. 1 and 2 for the sake of com-
pleteness as well but are not discussed.

6.1.2. NIKR Tracking Dataset
To show how the proposed system performs in a real-

world application, we evaluated our approach on the pub-

Figure 10: Scene from the NIKR tracking dataset. Classified
clusters are marked with a red bounding box. The orientation
ground truths (red) and predictions (blue) are indicated with
arrows.

licly available dataset from [31] (see Fig. 10). There, 3D
poses, person IDs and orientations were labeled manually at
specific key frames and interpolated in between. This dataset
includes five sceneswith an overall time of 11min 35s, where
the robot guides one person through our university building.
Synchronized data from the RGB- and depth camera of the
Kinect2 sensor were captured at a frame rate of 5Hz. Up to
five additional persons appear in the surroundings and cross
the path between the robot and the guided person. Note that
no person in this dataset is present in the set we used for
training. One person is included in the set we used for test-
ing and the remaining individuals are generally not included
in the NICR RGB-D orientation dataset. In Sec. 6.5, we dis-
cuss how our approach for orientation estimation performs
on this real-world dataset and show how the performance can
be improved by a temporal tracking of the orientations.

6.2. Classification results
One of the first issues we faced during the performance

evaluation of our approach was the computational effort
of the Adaboost algorithm during training. Given a large
dataset with several parameter configurations and an increas-
ing amount of prediction classes, the training can easily ex-
ceed several weeks using the OpenCV [40]machine learning
back end. Therefore, the training was not possible on the full
balanced training set and, thus, it had to be reduced to 8,000
samples for parameter evaluation, which also needs ourmax-
imum amount of 32GB RAM. In order to find the best train-
ing parameters, we conducted two series of experiments.
The first one is intended to prove the advantage of our train-
ing strategy and to find the best number of subdivision for
the continuous prediction space, i.e. the number of classes.
In the second series, the accuracy of the best performing
method should be increased by variating the training param-
eters, i.e. number and tree depth of the weak learners. For
the complete parameter configuration, we refer to the imple-
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Figure 11: Results for proposed orientation classifiers on the balanced test-set: (a) eight-class CV-SAC-WL100-D1-CC8 (MAE:
17.84◦) classifier and (b) 16-class CV-SAC-WL500-D2-CC16 (MAE: 12.21◦) classifier. The confusion matrices are shown on the
left. They indicate how likely each binned ground truth label is predicted to each orientation class. These results are further
transformed into a radial coordinate system shown on the right to get a more intuitive representation. In this plot, the radial
dimension encodes the prediction probability while the circular dimension encodes the ground truth label.

mentation1. The results are shown in Tab. 1. As expected,
the SAC (skip adjacent classes) training strategy performs
better than the standard approach using all samples. There-
fore, we used this strategy in the following experiments. The
first classifier trained with eight classes performed surpris-
ingly well with an MAE of 17.84◦2 with an average execu-
tion time of only 6.39ms per sample. The results of selected
classifiers are further visualized in Fig. 11. There, it be-
comes obvious (especially in the polar plots) that frontal or

1https://github.com/TimWengefeld/pointcloud_person_orientation_
estimation

2The best achievable accuracy for an eight-class classifier due to dis-
cretization is an MAE of 11.25◦ given a well balanced test-set.

backward appearances can be estimated more precisely than
sideviews. This can be explained with a larger surface of
the persons in such appearances and more descriptive fea-
tures resulting from them. However, none of the ground
truth classes is estimated extremely worse than others and
mispredictions are mostly adjacent to the real ground truth
rather than pointing into complete different directions. By
increasing the number of prediction classes to 16 the MAE
drops to 15.40◦ with an increased execution time of 14.39ms
per cluster. However, setting the number of classes to 32
performs worse than 16 but better than eight classes. There-
fore, we assume 16 classes to be the optimal subdivision of
our prediction space. In our second experimental series, we
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exp.
series identifier

test
MAE
bal.

test
MAE
full

avg.
time
feat.

avg.
time
class.

#train
samples

1

CVAB-UAC-WL100-D1-CC8 20.92◦ 20.57◦ 7.89ms 0.03ms 8,000
CVAB-SAC-WL100-D1-CC8 17.84◦ 17.51◦ 6.36ms 0.03ms 8,000
CVAB-UAC-WL100-D1-CC16 22.45◦ 21.93◦ 13.78ms 0.09ms 8,000
CVAB-SAC-WL100-D1-CC16 15.40◦ 14.78◦ 14.30ms 0.09ms 8,000
CVAB-UAC-WL100-D1-CC32 24.66◦ 23.49◦ 29.39ms 0.22ms 8,000
CVAB-SAC-WL100-D1-CC32 21.18◦ 19.68◦ 29.12ms 0.23ms 8,000

2
CVAB-SAC-WL100-D2-CC16 14.31◦ 13.76◦ 28.73ms 0.24ms 8,000
CVAB-SAC-WL100-D3-CC16 26.38◦ 25.86◦ 24.06ms 0.15ms 8,000
CVAB-SAC-WL500-D2-CC16 12.21◦ 11.80◦ 78.96ms 0.96ms 8,000

Table 1
Results of our classification approach with different training parameters in context of mean
angular error (MAE) and computation time for feature calculation and classification. The
identifier encodes the parameters the multi-class classifier was trained with in the form
(machine learning back end [OpenCV AdaBoost] - training strategy (Use/Skip Adjacent
Classes) - # weak learners per classifier - tree depth - # prediction classes). Best results
regarding accuracy and computation time are highlighted in bold.

exp.
series identifier

test
MAE

balanced

test
MAE
full

time
feat

time
class

#train
samples

1 CVGBT-WL800-D1 17.68◦ 17.27◦ 5.36ms 0.15ms 8,000
CVGBT-WL800-D2 15.17◦ 14.76◦ 7.80ms 0.13ms 8,000

2 XGB-WL800-D2 12.55◦ 12.24◦ * 0.60ms 27,720
XGB-WL3200-D3 11.52◦ 11.21◦ * 0.70ms 27,720

Table 2
Results of our regression approach with different training parameters in context of mean
angular error (MAE) and computation time for feature calculation and regression. The
identifier encodes the training parameters of the classifier in the form (machine learning
back end [OpenCV Gradient Boosted Trees / XGBoost] - # weak learners per classifier
- # tree depth). (*) Results for XGBoost are currently just retrieved from the python
interface with pre-calculated features. Best results regarding accuracy and computation
time are highlighted in bold.

performed a parameter grid search over the number of weak
learners (ranging from 100 to 500) and their maximum tree
depth (ranging from 1 to 3). Exemplary results can also be
found in Tab. 1 (for all results we refer to our github repos-
itory). The best combination achieves 12.21◦ MAE for our
classification approach using 16 classes, 500 weak learners,
and a weak learner’s maximum tree depth of two. However,
increasing the number of classes or model complexity comes
with the drawback of a higher computation time of up to
79.92ms per sample. Thus, the optimal model has to be cho-
sen for each application separately. It depends on whether
accuracy or low latency is more important. As we are more
interested in real-time predictions, about 15ms is the maxi-
mum execution time to be tolerable for our application, since
typically more than one person appears in a scene. In the fol-
lowing, we will refer to the CVAB-SAC-WL100-D1-CC16
classifier with 15.40◦ MAE and 14.39ms execution time
as ours-classification-fast and the CVAB-SAC-WL500-D2-
CC16 classifier with 12.21◦ MAE and 79.92ms execution
time as ours-classification-precise.

6.3. Regression results
By using the same OpenCV machine learning back end

for gradient boosting for regression, the same limitations
considering the training set size hold true. In the first exper-
imental series (see Tab. 2), we also performed a parameter
grid search over the number of weak learners (ranging from
100 to 800) and their maximum tree depth (ranging from 1 to
3). The best OpenCV regressors (CVGBT-WL800-D2 in the
following referred as ours-regression-cv) achieved a MAE
of 15.17◦ with a computation time of 7.80ms, while a clas-
sification approach with similar time consumption performs
2.67◦ worse. However, we did not achieve the accuracy of
the best multi-class classifier. However, since the regression
approach is faster in general, the training of more complex
models seems to be a valid option for future work exper-
iments. Our second experimental series shows the reach-
able performance of the regression approach when using the
complete training data available. Therefore, we changed
to the more recent machine learning back end for gradi-
ent boosting XGBoost [41], which provides better paral-
lelization support and amore efficient memorymanagement.
With the same training parameters, like the best OpenCV re-
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Figure 12: MAE values achieved by various XGBoost parame-
ter configurations on the balanced test-set. The x-axis encodes
the number of samples used for training. The best MAE for
each parameter configuration is given in the legend.

gressor, the MAE decreased from 15.17◦ to 12.64◦. We are
currently not able to give a run time comparison for XG-
Boost since we need to re-implement the optimized feature
calculation for this back end. However, since feature calcu-
lation is the computational bottleneck, the run time should
be similar to the OpenCV results with equal model complex-
ities. With XGBoost as back end and a parameter grid search
(see Fig. 12) over the number of weak learners (ranging from
200 to 3200) and their maximum tree depth (ranging from 1
to 3), our best regression approach (see Fig. 13) achieved a
MAE of 11.52◦ (XGB-WL3200-D3 in the following referred
as ours-regression-xgb). This is 0.69◦ better than our precise
classification approach. Moreover, we analyzed the model
complexity and the dependency of the model performance
to the amount of samples used during training (see Fig. 12).
There, it can bee seen that more complex models perform
better in general. The enlargement of training set size from
14,400 to 27,700 samples gives a performance boost of about
1◦ MAE. However, increasing the model complexity above
a tree depth of two and 1,600 weak learners just give a mi-
nor performance boost. Therefore, we conclude that our ap-
proach is near the maximum of its achievable accuracy. En-
hancing the training set with further samples could give a
slight performance boost, but for more precise estimations
more complex features are required.

6.4. Comparison to 3D Skeleton Estimation
In order to give an insight on how other approaches per-

form on our data, we applied two recent state-of-the-art deep
learning-based 3D skeleton estimation approaches from [17]
and [18] on our test-set. Even though we are not able to re-
train these approaches on our training set, we assume that
the amount of data they were trained on provides good gen-
eralization capabilities. To calculate the person’s orientation
from the estimated 3D skeleton, we used the cross product
from the left to right shoulder vector and the vector from the
left shoulder to the spine base. Note: For the COCO model
in [18] the spine base is interpolated from both hip joints.
The resulting vector is then projected onto the ground plane
and the acrtan function is used to calculate the orientation
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Figure 13: Confusion matrix of our best XGBoost regression
model discretized to 128 bins.

Approach
test
MAE
bal.

comp. time
(detection)

comp. time
(orient. est.)

[17] Tome et al. 22.60◦ 1127.48ms*
[18] Zimmermann et al. 14.66◦ 606.33ms*
ours-classification-fast 15.40◦

72ms∙
13.7ms∙

ours-classification-precise 12.21◦ 105.9ms∙

ours-regression-cv 15.17◦ 20.8ms∙

ours-regression-xgb 11.52◦ -

Table 3
Comparison of our approaches to two recent deep learning-
based 3D skeleton estimation approaches on the orientation
test-set. For runtime comparison, we applied the deep learn-
ing approaches on the Jetson Xavier(*), NVIDIAs most recent
graphics card designed for mobile autonomous systems. For
our approach, we measured the average runtime on our robot’s
i7-7700T(∙) CPU, using four threads. Best results regarding
accuracy and computation time are highlighted in bold.

angle. Results are depicted in Tab. 3. It can be seen that our
estimations are much more accurate than the ones extracted
from [17]. This is reasonable since we use depth as an ad-
ditional source of information. Orientation estimations re-
sults from [18], are slightly better than our fast approach but
worse than our precise one. However, when it comes to com-
putation times, the presented pipeline clearly outperforms
the deep learning competitors without the need of special-
ized hardware. In combination with the preferred detector
from [27], our fast approach achieves a frame rate of ∼12fps
while our precise one runs at ∼6fps, when one person is in
the scene.

6.5. Application and Tracking Results
First, we want to give a general statement on how

well our orientation estimation approaches generalize on the
tracking dataset without limitations on calculation times.
Therefore, we performed an offline experiment. We gener-
ated point clusters for every point cloud in this dataset using
the processing pipeline described in Sec. 3. Results can be
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Figure 14: Typical failure cases for hard examples from our
tracking dataset including a high level of occlusions and per-
sons close to the background. Segmented clusters are sur-
rounded with a red bounding box. The orientation ground
truths (red) and predictions (blue) are indicated with arrows.

Approach MAE
(all)

samples
(all)

MAE
(user)

samples
(user)

ours-class-fast 25.70◦
3019

21.54◦
1983ours-class-precise 21.66◦ 18.66◦

ours-reg-cv 20.99◦ 18.39◦

Table 4
Offline results for our tracking dataset. MAE and amount of
samples generated without consideration of calculation times.
Best results are highlighted in bold.

Approach MAE
(all)

estimates
(all)

MAE
(user)

estimates
(user)

ours-class-fast 25.64◦ 93% 21.48◦ 94%
ours-class-precise 23.12◦ 54% 20.21◦ 57%
ours-reg-cv 21.09◦ 91% 18.21◦ 92%
tracking-class-fast 21.95◦ 99% 19.58◦ 99%
tracking-class-precise 19.94◦ 90% 18.45◦ 93%
tracking-regression-cv 16.49◦ 99% 14.85◦ 99%

Table 5
Results for the MAE and amount of estimates which are
available for a ground truth at a given time. Evaluated on
our tracking dataset with consideration of calculation times.
Middle row: results for our classification and regression ap-
proaches. Bottom row: results for our classification and re-
gression approaches extended with the proposed orientation
tracking. Best results are highlighted in bold.

found in Tab. 4. There, it can be seen that the estimations
are generally more imprecise than the ones on our orienta-
tion dataset. Our fast classification approach just achieves
an MAE of 25.70◦ for all persons. For the user samples,
which are more likely in a good perception range of the
Kinect2, the MAE drops to 18.66◦ for our precise classifi-
cation approach. However, this is about 5.5◦ MAE worse
than the result we achieved on our orientation test-set. Sur-
prisingly, our OpenCV regression approach performs best on
this dataset with aMAE of 18.39◦. Nonetheless, this result is
also less precise than the one this approach achieves on the
orientation dataset. Reasons for this are various. First the
tracking dataset was recorded in summer with people wear-
ing shirts and shorts while the training dataset was recorded
in winter with a lot of appearances of people wearing jackets
and long trousers. Second, the ground truth data of the track-
ing dataset was labeled manually. This might adds larger er-
rors to the ground truth than the precise automatic labeling of
our orientation dataset. Third, the tracking dataset includes
more difficult person appearances, like samples with a high

level of occlusion and people standing close to walls, where
the segmentation step fails (see Fig. 14). However, even
though we do not achieve the same precision on this dataset,
we have shown that our estimation approaches produce us-
able results under different conditions in a real-world sce-
nario on a moving robot. Next, we want to give a statement
about the performance of our approaches in the application
phase and compare the results of the estimation approaches
to the extended tracking. Therefore, we applied the whole
processing pipeline (Sec. 3) and re-played the data in real-
time. We evaluated how much estimates are dropped when
new data arrives and the processing pipeline is still operat-
ing on data from previous timesteps. Additionally, we re-
port the changes of the MAE that are generated by the de-
lay of the processing pipeline. Averaged results over three
runs can be found in Tab. 5 (middle row). There, it can be
seen that the MAE for our fast classification and regression
approach are nearly equal to the offline experiment. This in-
dicates that the delay is small enough and rapid orientation
changes of persons can be handled adequately. In contrast
to that, the mean average error for the precise classification
approach decreases by 1.46◦ for all persons and by 1.55◦ for
the current user compared to the offline experiment. This
shows, that the precise classification approach is too slow to
be used in scenarios with rapid orientation changes. Look-
ing at the amount of estimates, which are available on aver-
age, our fast approach is able to give prediction for 93% of
the ground truths for all persons compared to the offline ex-
periment. The precise classification approach, is just able to
deliver estimates for 54% of the ground truths. This confirms
the assumption that the precise classification approach is not
suitable for highly dynamic scenarios, even though other
applications could benefit from it. At last, we give results
when an additional tracking of the orientations is performed.
Therefore, we added the tracking step, as described in Sec.
5, to the processing pipeline. The data was re-played in real-
time, like in the previous experiment. Averaged results over
three runs can be found in Tab. 5 (bottom row). It can bee
seen, that a tracking of orientations with our fast classifica-
tion approach decreases the MAE by 3.69◦ for all persons
and by 1.90◦ for the user. Also with the other approaches
the angular error decreases by 3.5◦ in average. Best results
for the tracking dataset are achieved by our orientation track-
ing using estimations from the OpenCV regression approach
with an MAE of 14.85◦. Additionally, using the tracking
approaches, we are now able to retrieve estimations of the
orientation at nearly ever timestep like in our offline experi-
ments. Therewith, we have shown that a combination of fast
orientation estimation and tracking can handle the problem
of person orientation estimation adequately. This holds true
even in a highly dynamic real-world application with diffi-
cult person appearances and rapid direction changes of the
persons.
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7. CONCLUSIONS
We presented a fast and accurate approach for person

orientation estimation based on colored point clouds. Our
approach achieves real-time estimation rates with low com-
putational costs on a consumer CPU and is, therefore, par-
ticularly suitable for mobile robotic applications. We com-
pared the common orientation estimation methods of multi-
class classification and regression on a dataset recorded with
highly precise labels for orientation estimation. Moreover,
we have shown that the former approach for attribute esti-
mation [28] is also able to work in the continuous domain.
Hence, we expect it will also work for other real-valued per-
son attributes, like age or weight. Since we aim to track per-
sons up to a range of 10mwe currently experiment with sup-
sampling using a voxel grid filter to get a uniform data rep-
resentation. Qualitative results look promising, but a quan-
titative evaluation will be part of future work. We also plan
to train the former work for attribute estimation with multi-
ple models based on their estimated orientation and hope to
achieve better results than the previous work [28] We have
extended the system for orientation estimation with an ap-
proach to track orientations over time using a Bayes filter
with a discrete probability distribution. The performance
was evaluated on a real-world dataset recorded on a mobile
robot. This dataset contains hard samples with heavy occlu-
sion and therefore gives a good assessment about the appli-
cability of the proposed approach. The results have shown
that the temporal integration of orientation estimates leads to
more accurate predictions of up to 4, 9◦ less MAE in com-
parison to a framewise evaluation. In addition, when track-
ing is applied, we are able to provide real-time orientation
estimates on this dataset recorded at a frame rate of 10Hz.
Even with our precise but relatively slow classification ap-
proach we achieve an estimation rate of about 9Hz. This is
particularly important in highly dynamic environments such
as our target scenarios. In Future work, we plan to combine
the tracked orientations with a personal space cost-map for
our navigation strategies to achieve a more polite navigation
behavior.
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