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Abstract

This paper describes a user detection system which employs a saliency system work-
ing on an omnidirectional camera delivering a rough and fast estimate of the position
of a potential user. It consists of a vision (skin color) and a sonar based compo-
nent, which are combined to make the estimate more reliable. To make the skin
color detection robust under varying illumination conditions, it is supplied with an
automatic white balance algorithm. The active vision head looks continously in the
direction of the salient region. Thus, a high resolution image can be grabbed and
analyzed with a face detector.
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1 Introduction

Localizing and tracking users is a basic working task for every service robot
which is supposed to serve people in special domains of everyday life. We
develop our service robot Perses, see Fig. 1, for deployment in a home store
[5]. The task is to actively contact potential users and to guide them as needed
through the market area. Therefore, the robot needs to detect users in a wide
operation area while at the same time it is desirable to get information like
the identity, gender and age of the user to adapt the dialog management
accordingly. These two tasks are more or less oppositional: the first one should
analyze the complete surroundings of the robot, which can be achieved by
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Fig. 1. The mobile robot Perses (B21 from RWI IS Robotics) is equipped with an
omnidirectional camera, two layers of sonar sensors, a touch display and a robotic
face mounted on a pan-tilt unit. The face can be used to express feelings like hap-
piness, sadness, and anger.

using a panoramic image with a 360◦ field of view and low resolution, while
for the second one a high resolution image of the user’s face is needed.

Thus we decided to deploy a two step solution. First, a saliency system gives
a rough estimate of the user’s position. This system consists of a sonar and
a vision based tracking component. The panoramic image used by the vision
based tracking is automatically white balanced to cope with varying illumi-
nation conditions. Second, the robot’s active vision head is turned to look
towards this estimate of the position of the user’s face. This is done for two
reasons: to verify the presence of a person with the face detection system in-
troduced by Viola and Jones [13] and to give the user a continuous feedback,
which expresses the robot’s attention during the communication process.

There are other known person detection systems which rely solely on a single
sensor system such as laser scanner in [12]. Such systems might be sufficient
for detecting the presence of a person in the robot’s surroundings, but they
cannot make any statement as to whether this person is facing the robot as
an expression of his will for interaction. In our opinion, visual cues are in-
dispensable when an intuitive human-machine interaction is to be achieved.
On the other hand, in [10] only visual cues are used, which together with the
lack of a white balance algorithm makes the system fragile for changing illu-
mination conditions. Moreover, the saliency system uses only frontally aligned
cameras and thus only has a very limited field of view. Other multi-modal
user detection systems have proven to be reliable and suitable for real-world
applications. However, often expensive hardware, e.g. laser scanners are used
[11], which seems to be a real handicap when it comes to serial production
of robots for everyday use. Our research focuses on developing methods that
work reliably with cheap and less accurate sensors, e.g. sonar sensors and
cameras [5].

2



2 Saliency System

The saliency system estimates the likelihood of the presence of a person in the
robot’s surroundings and tracks this hypothesis over time. It is composed of
two components, a vision and a sonar based saliency system.

2.1 Vision Based Saliency

2.1.1 Skin Color

A widely used method for finding faces in images is skin color classification.
It lends itself for the use on mobile systems, since it is independent from ego-
motion of the camera system. To represent skin color, we use the dichromatic
r-g-color space (r = R/(R +G+B), g = G/(R +G+B), which is normalized
in brightness and thus is widely independent from variations in luminance.
This color space is well suited for representing skin color for a wide spectrum
of different illumination conditions [15]. In principle, it is possible to use any
color space which decorrelates brightness and color information.

The skin color model consists of a look up table with manually classified skin
color pixels in the r-g-color space [10]. To avoid an unnecessary reduction of
accuracy and an increase of processing time, the color model was not approxi-
mated by a Gaussian distribution as in [6]. Thus, it is necessary to ensure that
the training data is sufficient, so the skin color model does not become holey.
The resulting color model is depicted in Fig. 2(a). The skin color detector
gives a value wskin(x) for the pixel at position x in the image.

2.1.2 Automatic Color Calibration

Despite the advantages of the skin color detection, it works only satisfactory as
long as the illumination conditions are sufficiently similar when recording the
training data and when using the model, which cannot be guaranteed when
operating in an environment as diverse as a home store.

One solution to this problem is the continuous adaptation of the color model
to the current illumination conditions [6][15]. To our experience, this approach
is problematic, since the tracked target must be detected in every time step
with a very high precision. When only slight positional errors occur, such
adaptive models tend to drift away from the appropriate description of the
target region. Some approaches try to prevent strong drifts by narrowing down
the freedom of movement of the adaptive model by use of a general skin color
model, recorded under a variety of different illumination conditions [2][8].
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(a) (b) (c)

Fig. 2. (a) Skin color lookup table in the dichromatic r-g-color space. (b) White
reference in-between camera and objective. (c) Image taken with this camera, where
the white reference appears near the center region of the image (marked with a
checkered pattern). Since the occluded region corresponds to the floor just around
the robot, it is not of interest in the context of user tracking.

There are also efforts that try to stabilize the localization of skin color by
applying additional features. In [2] a face detector is used and the adaptation
is only carried out, when a positive face detection result within the skin colored
region is given. Such approaches reduce the mentioned problem but do not
solve it in general, e.g. every face detector has a false-positive-rate above zero.
Moreover, the use of additional features increases the complexity, which has a
negative impact on the continuous tracking.

Another way of reducing the influence of illumination is to preprocess the
image with color constancy algorithms. The task is to construct an image,
such as it would look under a standard illumination from the given image
grabbed under an unknown illumination only. In [4], different color constancy
algorithms were tested on their suitability for color based object recognition.
Despite the fact that the recognition rates could be improved significantly, a
robust recognition under changing illumination was not possible. The problem
here is that without knowledge of the current illumination any adaptation is
bound to fail as long as no presumptions can be made on the observed scene.

Thus, to deal with the problem of varying illumination conditions, we devel-
oped an automatic white balance algorithm operating on the images from the
omnidirectional camera. For this purpose, the camera was equipped with a
coated aluminum ring to serve as white reference. Figure 2(b) shows the cam-
era with omnidirectional mirror and white reference, and Fig. 2(c) shows an
image grabbed with this camera containing the white reference on an inner
radius. The surface of the white reference ring is not horizontal and flat, but
has a slight convex curvature so that light coming from the side is also taken
into account.
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Fig. 3. The color calibration algorithm consists of a closed control loop with three
discrete PID-controllers for Y , U and V of the camera-specific Y UV -color space.

Fig. 4. Automatic white balance on images from the omnidirectional camera. A
number of images from the beginning of a sequence is shown together with the
corresponding results from the skin color classification. The intensity of the output
from the skin color detector rises from the first to the last image in the sequence
because of the effects of the automatic white balance. It takes about 3 seconds to
control the values for U and V to zero.

The automatic white balance uses the facility of the digital camera (SONY
DFW VL500) to set white balance parameters for U and V (YUV color space).
We calculate the mean values for R, G and B from all pixels within the white
reference and transform these mean values to the YUV color space. From the
difference of U and V from the target values U = 0 and V = 0, two separate
discrete PID-controllers calculate the gain factors for the U and V channels of
the white balance of the camera [14]. Besides that, the mean Y value is used to
control the iris of the digital camera, such that a constant brightness (about
80% of maximum) is achieved, see Fig. 3. The effect of the color calibration
on the skin color classification is shown in Fig. 4.
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2.2 Sonar Based Saliency

The task of the sonar based saliency system is to measure the distance in
every direction around the robot. Our experiments were carried out on a B21
mobile robot (RWI IS Robotics) equipped with two layers of sonar sensors
with 24 sonars respectively. The raw sensor data is noisy and depends on the
orientation and the material of the objects around the robot. Therefore, the
raw data is preprocessed as follows:

Invalid measurements, i.e. distances larger than 22.5m, are replaced by the
previous measurements. A spatial low pass filtering of adjacent measurements
and a temporal low pass filtering of successive measurements is applied to
reduce the influence of noise.

We calculate a weighting factor for each direction c which is inversely propor-
tional to the measured distance: wsonar(c) = 1−dsonar(c)/dmax, where dsonar(c)
is the preprocessed sonar measurement at position c in the scan and dmax is
the maximum distance (2.0m). For distances larger than dmax the weight is
set to zero. The position of the maximum in the resulting weighting vector
corresponds to the nearest object.

2.3 Sensor Fusion

2.3.1 Condensation Tracking

The basis of the saliency system is the condensation algorithm [7]. The task of
calculating the probability of the presence of a face for every pixel and tracking
the resulting density function over time is solved by an approximation of the
density function p(xt) by a relatively small number of samples s

(i)
t :

p(xt) ∝
{
s
(i)
t =

〈
x

(i)
t , w

(i)
t

〉
|i = 1, .., N

}
(1)

where each sample s
(i)
t has a position x

(i)
t and a weight w

(i)
t .

According to [7] the update formula of the recursive filter is as follows:

We begin with a sample set s representing the posterior density p(xt−1|Yt−1)
from the previous time step, were Yt−1 is the history of measurements {y1, ..., yt}.
We propagate s according to a stochastic motion model, i.e. a gaussian dis-
tribution, accounting for unforeseen movements of the person and obtain the
new sample set s′ representing the prior density p(xt|Yt−1). Then we apply

factored sampling, i.e. we assign the new sample weights w
(i)
t according to
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Fig. 5. Sensor fusion. (a) Panoramic image with condensation samples. (b) Color
classification modulated by sonar weights. (c) Weighting factors calculated from
sonar data. x = (x, y) is a position in the panoramic image, and c is a position in
the vector of sonar weights.

the measurements from the saliency system in the current time step (see next

section) and draw samples from s′ with probability w
(i)
t . Sample set s′′ then

represents the posterior density p(xt|Yt).

Compared to a panoramic image with 76320 pixels the condensation algo-
rithm calculates the feature extraction for only 500 samples and thus yields
a reduction of computational cost to merely 0.655% while being able to track
arbitrary multi-modal distributions. The center of the resulting distribution
of samples is taken as hypothesis for the position of a user’s face.

2.3.2 Sample Weights

Since the sonar scan as well as the image constitute a 360◦ description of the
robot’s surroundings, it is possible to assign a sonar weight wsonar,t(c) at po-
sition c in the scan to each position x in the image, see Fig. 5. This way, the
sonar weights can be used to modulate the weights of the skin color detector
w

(i)
t (x) = w

(i)
skin,t(x)wsonar,t(c). Thus, only those samples get a high weight,

that are supported by a skin colored image pixel and, at the same time, lie in
a direction with a short distance measured from the sonar sensors. Samples
that are only supported either by the vision or the sonar based saliency system
eventually die out. As long as there is no region tracked, the sample distribu-
tion is initialized to places with high sonar weights at regular intervals. That
means, the samples are placed on nearby objects, to check whether they are
skin colored or not. If so, the distribution concentrates on this position, if not,
it diverges due to the stochastic movement of the samples, see Fig. 6. The
person coming closest to the robot will initially attract its attention. How-
ever, once a person is tracked, the samples of the condensation algorithm are
concentrated on his face, so they cannot be distracted from him by another
person, except they are standing very close to each other.
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(a)

(b)

Fig. 6. Result of the fusion of sonar data with vision based tracking. (a) Pure vision
based (skin color) saliency. Besides the face of the user, the skin color detector
assigns high values also to the door and some other objects. The sample distribution
is initially placed at an arbitrary position. The variance of the distribution would
increase due to the stochastic movement of the samples until some skin colored
region is detected. This might be the face, but it could be the door as well. (b) As
soon as the sonar based saliency system comes into play, most of the objects besides
the face disappear from the color detection output and the sample distribution
immediately concentrates on the face of the person.

There are other heuristics that try to eliminate skin colored image segments
not stemming from faces (false positives), which evaluate the size and shape
of these regions [10][6]. In such approaches only those segments are allowed,
that have roughly the shape and size of a human face. The problem with these
approaches is that when a face appears in front of a larger skin colored region
in the background, the whole area is wiped out and the tracker loses the face.
Due to the multi-modal nature of our approach, the color of the background
does not matter as long as the user stays close to the robot.

3 Head Movement

In combination with the automatic white balance, our saliency system is al-
ready highly specific for skin colored image regions stemming from objects
close to the robot. Still, it can not be guaranteed that it does not respond to
other skin colored image regions that do not belong to users. In our home store
scenario, these can be tins with dye standing in a shelf just where the robot
passes by. Thus, before contacting a potential user (e.g. by speech output),
the robot takes a close look in the direction of its hypothesis with its frontally
aligned cameras.

Therefore, the rotation angles of the pan-tilt unit, which serves as a neck for
the head, need to be calculated. The horizontal angle can be taken from the
output of the condensation algorithm directly, see Fig. 7(a), while the vertical
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(a) (b)

Fig. 7. (a) Upper part of our mobile service robot Perses with omnidirectional
camera and face with two cameras mounted on a pan-tilt-unit. The robot grabs high
resolution images of the user, which are used to verify the hypothesis of the saliency
system. The angle φpan corresponds to the position of the face in the omnidirectional
image. (b) Geometrical illustration of the angles φomni and φtilt.

angle φtilt depends both on the vertical position of the target in the image
and the distance d to the corresponding object, which can be determined by
the sonar measurements, see equation 2 and Fig. 7(b). The angle φomni is a
function of the vertical position of the target in the image and depends on the
shape of the used mirror in the omnidirectional objective. This function was
determined experimentally and is shown in Fig. 8(a).

φtilt = arctan
l − d · tan φomni

d
(2)

The angles φpan and φtilt are used to orient the face towards the estimated
position of the user’s face giving him a direct feedback of the robot’s atten-
tion during communication. If the tracking system loses the person, Perses
looks straight ahead and with a ”sad” expression on its robotic face. On the
other hand, if a person is found (i.e. the samples have high weights), Perses
generates a ”happy” facial expression and looks at the user continuously. This
head movement gives the user an impression of an attentive communication
partner and can be accompanied by a rotation of the robots body in case the
angle φpan gets too big.

Since we are only searching for human faces and we are able to determine
the distance to the object of interest from the sonar measurements, we can
set the zoom of the frontally aligned camera, such that an average face would
fill the entire image. Figure 8(b) shows the dependence of the camera zoom
from the distance between camera and object. In the same way as the zoom,
the focus can be set according to the distance (the cameras do not have auto-
focus). Thus, we can assure to get a high resolution image of the user’s face
independent of his distance to the robot up to about 2 meters.
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(a) (b)

Fig. 8. (a) Relationship between the vertical position of the face in the panoramic
image and the angle φomni. (b) Dependance of zoom value from the distance between
camera and object. The objective of this active zoom is to map a human face
approximately with the same size for all distances as prerequisite for subsequent
processing steps.

Face detector Detection rate False positive rate

Cascade Correlation 18.26 % 0.00001379 %

Rowley 37.39 % 0.00472281 %

Edge Orientation 46.96 % 0.00091035 %

Viola and Jones 56.52 % 0.00024552 %
Table 1
Results of various face detectors on our test set. Each detector used a multi resolu-
tion image pyramid with 11 layers and a scaling factor of 0.707. (In the approach
from Viola and Jones the filters are resized instead of the image.) The false posi-
tive rate is the number of false positives divided by the number of all hypothetical
positions in the test set.

4 Face Detection

The image obtained from the frontal camera is used to verify the hypothesis
with the face detection system from Viola and Jones [13]. Among multiple
implementations of face detectors, the one proposed by Viola and Jones ap-
peared to be the fastest one, while at the same time it has high detection
rates and very low false positive rates. First results of a comparative study
of these face detectors are shown in table 1. We tested the face detector pre-
sented by Rowley [9], a Cascade-Correlation-Network [1], a system based on
edge orientation matching presented by Fröba and Küblbeck [3] and the sys-
tem from Viola and Jones [13] on image data from our home store. It should
be mentioned that the used implementations might differ from the original
face detectors and that the parameters of the single detectors were not tested
systematically.
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5 Multi Target Tracking

Theoretically, a condensation tracker is able to track multi-variate density
distributions. However, as soon as the size of the skin color regions is not bal-
anced, the sample distribution tends to collapse and track the largest region
only. Thus, to be able to track more than one face, we use multiple condensa-
tion trackers that track a skin colored image region each. One of those regions
is used as the current user hypothesis which is followed by the frontal cam-
era as described above. If the underlying skin color probability drops below a
threshold or there is no face detected for a certain amount of time, the cur-
rent user hypothesis is switched to another condensation tracker. A tracker is
erased when the underlying skin color probability is too low or when it gets
too close to another tracker. A new tracker is created when there are skin
color regions not currently tracked. This approach results in a behavior where
the robot scans all the salient skin color regions sequentially until one of them
contains the face of a potential user and then follows with the frontal camera
as long as a face is found.

6 Experimental Results

Figure 9 shows a sequence with panoramic images and corresponding images
from the face detector recorded in the home store. Although the person moves
in front of the robot and changes his distance to the robot and there are
other persons appearing in the robot’s surroundings, the robot keeps tracking
its current user. Due to the adaptation of the camera zoom, the face in the
image from the frontal camera is mapped with approximately the same size
and resolution over the sequence.

7 Summary and Outlook

We presented a person detection system consisting of two components: a fast
saliency component and a more accurate face detection system. The saliency
system uses skin color and sonar data to track the most likely position of
a potential user. By means of an automatic color calibration, the skin color
detector works relatively independent from changes in illumination. In the
second step, a high resolution image is checked for the presence of a face.

Besides using the face detector for verification, we want to extract further
information from the high resolution image of the user. This includes identity,
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Fig. 9. Sequence of panoramic images and corresponding images from the face de-
tector. Every 10th image from the sequence is shown. The centers of gravity of
the sample distributions are marked with a white cross in the panoramic image. In
frame 1, there are two targets, where the one on the right side is on a wooden shelf.
However, because it is to far from the robot, it disappears in the second frame after
the sonar based tracking was switched on. Even though the person moves away from
the robot in frames number 2, 3, and 10, the face in the image from the frontally
aligned camera appears with approximately the same size over the whole sequence.
The face detector had false positive detections in frames 2 and 9. In frame 5 and
8, other people enter the robot’s surroundings and get immediately targeted by the
tracker. However, the robot maintains its focus on the current user although the
other persons stand closer to the robot, see frame 9,10 and 11.
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age, and gender, and hopefully could be used to adapt the man-machine in-
terface to the needs of the current user. In our current work, we implement
and analyze methods to localize facial feature points like eyes and the nose
and a PCA/ICA based analysis of facial expressions and gender of users.
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