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Abstract

In this article we propose a method for combining geometric and real-aperture
methods for monocular 3D reconstruction of static scenes at absolute scale. Our al-
gorithm relies on a sequence of images of the object acquired by a monocular camera
of fixed focal setting from different viewpoints. Object features are tracked over a
range of distances from the camera with a small depth of field, leading to a varying
degree of defocus for each feature. Information on absolute depth is obtained based
on a Depth-from-Defocus approach. The parameters of the point spread functions
estimated by Depth-from-Defocus are used as a regularisation term for Structure-
from-Motion. The reprojection error obtained from bundle adjustment and the ab-
solute depth error obtained from Depth-from-Defocus are simultaneously minimised
for all tracked object features. The proposed method yields absolutely scaled 3D
coordinates of the scene points without any prior knowledge about scene structure
and camera motion. We describe the implementation of the proposed method as an
offline and as an online algorithm. Evaluating the algorithm on real-world data, we
demonstrate that it yields typical relative scale errors of a few percent. We examine
the influence of random effects, i.e. the noise of the pixel greyvalues, and systematic
effects, caused by thermal expansion of the optical system or by inclusion of strongly
blurred images, on the accuracy of the 3D reconstruction result. Possible applica-
tions of our approach are in the field of industrial quality inspection; especially, it
is preferable to stereo cameras in industrial vision systems with space limitations
or where strong vibrations occur.
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1 Introduction

The knowledge of three-dimensional structure plays an important role in many
fields such as navigation, mapping, obstacle avoidance, and object detection.
Depth-from-Stereo (Scharstein et al., 2002) was one of the first methods for
recovering depth information as it is inspired by human vision. The known
geometry of the cameras is used to triangulate the spatial position of corre-
sponding points from two images that are acquired from different viewpoints.
The disadvantage of classical stereo vision systems is their need for a pair of
precisely calibrated cameras, making it complex and costly for many applica-
tions. Therefore spatial scene reconstruction using monocular camera systems
is often preferable. Structure-from-Motion (SfM) is such an alternative: From
corresponding points in at least two images acquired sequentially at different
camera positions the spatial positions of the points are recovered. The prob-
lem is that the scene can be reconstructed only up to a scaling factor as long
as the camera positions are unknown.

Methods to establish point correspondences from different images require the
detection and assignment of salient object features. Harris and Stephens (1988)
propose image features that serve well for tracking algorithms. Widely used
methods are SIFT features (Lowe, 2004), involving the extraction of scale
invariant features using a staged filtering approach, or the Kanade-Lucas-
Tomasi (KLT) feature detector (Shi and Tomasi, 1994) which is based on the
Harris corner detector and takes into account affine deformation.

A different approach to scene reconstruction utilises position variant appear-
ance, e.g. Depth-from-Defocus (Chaudhuri and Rajagopalan, 1999) and Depth-
from-Focus (Subbarao, 1989; Ens and Lawrence, 1993; Subbarao and Choi,
1995). Depth-from-Focus uses images taken by a single camera at different
focus settings to compute depth. The focus settings for the image depicting a
point with minimal blurring are used to compute the absolute depth (Gross-
mann, 1987), relying on an appropriate calibration procedure. Depth-from-
Defocus (DfD) methods rely on the fact that a real lens blurs the observed
scene before the imaging device records it. The amount of blurring depends
on the actual lens, but also on the distance of the observed object to the lens.
Pentland (1982) uses this property to estimate depth simultaneously for all
scene points from only one or two images. Depth information is extracted from
a single image showing sharp discontinuities of intensity by Pentland (1987).
A survey of existing methods is given by Chaudhuri and Rajagopalan (1999).
Watanabe et al. (1995) propose a method that computes DfD in real-time
using structured lighting.



So far, no attempt has been made to combine the precise relative scene recon-
struction of SfM with the absolute depth data of DfD. A work related to this
paper was published by Myles and da Vitoria Lobo (1998), where a method
to recover affine motion and defocus simultaneously is proposed. However,
the spatial extent of the scene is not reconstructed by their method, since it
requires planar objects.

The main contribution of this article consists of a novel combination of SfM (a
geometric method) with DfD (a real-aperture method). We will show that the
combination of these methods yields a 3D scene reconstruction of high abso-
lute metric accuracy based on an image sequence acquired with a monocular
camera.

2 SfM and DfD

STfM recovers the spatial scene structure using a monocular camera. An initial
step of SfM is the geometric calibration of the camera in terms of estimating
the internal parameters, i.e. principal point, principal distance, pixel size, pixel
skew, and lens distortion parameters (McGlone et al., 2004). An accurate
value of the principal distance is required in Section 3 for calibration of the
DfD method. Specifically, we use the semi-automatic approach for calibration
rig detection proposed by Kriiger et al. (2004). Subsequently, salient feature
points are extracted and tracked across the sequence. The motion of these
features relative to the camera is then used in a bundle adjustment (Triggs
et al., 2000; McGlone et al., 2004) minimising the error term
M
Esoa ({Tj},{X:}) = 223 [P(T3X0) — ) (1)
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with respect to the M camera transforms 7} and the N scene points X;. Here,
x;; denotes the 2D pixel coordinates of feature ¢ in image j. The function P
denotes the projection of 3D scene points to image coordinates and T} the
transform of the camera coordinate system of image j with respect to an
arbitrary world coordinate system.

DfD directly recovers the spatial scene structure using a monocular camera.
The depth D of the tracked feature points is calculated by measuring the
amount of defocus, expressed e.g. by the standard deviation o of the Gaussian-
shaped point spread function (PSF) that blurs the image. An exact description
of the PSF due to diffraction of light at a circular aperture is given by the radi-
ally symmetric Airy pattern A(r) o [Jy(r)/r]*, where J;(r) is a Bessel function
of the first kind (Pedrotti, 1993). For practical purposes, however, particularly



when a variety of additional lens-specific influencing quantities (e.g. chromatic
aberration) is involved, the Gaussian function is a reasonable approximation
to the PSF (Chaudhuri and Rajagopalan, 1999). In the following, ¢ will be
referred to as the “radius” of the PSF.

Measuring o is the most important part of the depth estimation by DfD.
The classical DfD approach uses two images of the same object taken at two
different focal settings (Chaudhuri and Rajagopalan, 1999). Pentland (1987)
shows that a-priori information about the image intensity distribution, e.g.
the presence of sharp discontinuities (edges), allows the computation of the
PSF radius o based on a single image. This is achieved by estimating the value
of o that generates the observed intensity distribution from the known ideal
intensity distribution.

Since in our scenario such a-priori information is not available, we suggest the
empirical determination of a so-called Depth-Defocus Function. We assume
that local features in the scene are tracked across a sequence of images and
that for each feature the image is determined in which the feature appears best
focused. Based on a calibration procedure, the radius o of the Gaussian PSF
which transforms the best focused version of the feature into the currently
observed pattern is determined as a function of depth D.

3 Spatial scene reconstruction by combining SfM and DfD

3.1 The Depth—Defocus Function

The Depth—Defocus Function S(D) = o expresses the radius o of the Gaussian
PSF as a function of depth D, i.e. the distance between the object and the
lens plane. It is based upon the lens law (Pedrotti, 1993):

1
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An object at distance D is focused if the principal distance is v, with f denoting
the focal length of the lens. Varying the principal distance by a small amount
Av causes the object to be defocused as the light rays intersect before or
behind the image plane. In the geometric optics approximation, a point in the
scene is transformed into a so-called circle of confusion of radius ¢ = |Av|/(2k)
in the image plane, where k is the f-stop number expressing the focal length
in terms of the aperture diameter. Empirically, we found that for small |Av|
the resulting amount F' of defocus can be modelled by a zero-mean Gaussian,



which is symmetric in Awv:

F(Av) = gbieémﬂ

1

+ ¢3 . (3)

The parameters ¢; and ¢o are normalising constants and ¢3 denotes the defo-
cus level for very strongly blurred images. Setting F' = o leads to the so-called
Depth—Defocus Function as described below. To determine the best focused
version of a tracked feature, F' is represented by other measures such as the
grey value variance or the high-frequency integral of the amplitude spectrum
of the image or part of it (cf. Sections 3.2 and 3.3). The radius ¢ of the cir-
cle of confusion and the PSF radius o are related to each other in that o
is a monotonously increasing nonlinear function of c¢. Hence, the symmetric
behaviour of ¢(Awv) apparent from Fig. la implies a symmetric behaviour of
o(Av). Depending on the constructional properties of lenses different from
those we used in our experiments, analytic forms different from Eq. (3) but
also symmetric in Av may better match the observed behaviour of the PSF.

However, the Depth—Defocus Function expresses the relation between the
depth of an object and its defocus. I. e., the image plane is assumed to be
fixed while the distance D of the object varies by the amount AD, such that
AD = 0 refers to an object that is well focused. The dependence of ¢ on AD
is asymmetric, as shown in Fig. 1b. Since neither D nor AD are known, the
functional relation needs to be modelled with respect to Aw:

1 1
1 4
U+AU+D f (4)

A value of Av # 0 refers to a defocused object point. Solving Eq. (4) for Av
and inserting Av in Eq. (3) yields the Depth-Defocus Function
1 1 ( fD 2
S(D):—e d>12<Df—Df v) +¢3_ (5)
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Calibrating the Depth-Defocus Function S(D) for a given lens corresponds
to determining the parameters ¢y, ¢2, ¢3, and f in Eq. (5). This is achieved
by taking a large set of measured (o, D) data points and performing a least
squares fit to Eq. (5), where D is the distance from the camera and o the
radius of the Gaussian PSF G used to blur the well focused image with a PSF
of position-dependent radius o. Let I;;, represent a small region of interest
(ROI) around feature 7 in image f; in which this feature is best focused, and
I;; a ROI of equal size around feature ¢ in image j. The ROIs I, and I;; are
related by



Ideally, I;f,, I;;, and G(0;;) are defined on an infinite domain, but in practice
they are represented by image windows of finite size, e.g. 16 x 16 pixels. For
the actual calibration of the Depth—Defocus Function refer to Section 3.2.

At this point it is useful to examine which focal length and lens aperture
are required to obtain depth values of a given accuracy with the DfD method.
Assume that for a lens of focal length f;, an object is well focused at depth Dy,
and a certain amount of defocus is observed at depth hDg, where the factor h
is assumed to be close to 1 with |h—1| <« 1. The depth offset AD = (h—1)D,
implies a circle of confusion of radius ¢; with

1 1 1
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Now let the focal length be changed to a larger value f5, and the object depth
is set to a larger distance kD, with k£ > 1. The radius ¢y of the corresponding
circle of confusion is readily obtained by

1 1 1 .
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The f-stop number x and the pixel size remain unchanged. Since the radius of
the circle of confusion is a monotonously increasing function of the PSF radius
o, we assume that observing the same amount of defocus in both scenarios
implies an identical radius of the corresponding circle of confusion. With the
abbreviations
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setting ¢; = ¢y yields the focal length f, according to

—1
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Only the solution with the plus sign before the square root yields positive val-
ues for fy. According to Eq. (10), the value of f, is approximately proportional



to vk independent of the chosen value of h as long as |h — 1| < 1. Hence,
for constant f-stop number k, constant relative variation |h — 1| of the object
depth D, and constant pixel size, the required focal length and thus also the
aperture of the lens are largely proportional to v/Dy. Our experimental evalu-
ation outlined in Section 4 will show that the DfD approach is favourably used
in the close-range domain (D ~ 1-2 m) as long as standard video cameras and
lenses are used.

To facilitate the integration of defocus information into the SfM framework,
the image sequences are acquired such that the object is blurred to a variable
extent from image to image. The focal settings of the camera are adjusted
according to the maximal and minimal distance of the object. It may be
necessary to fully open the aperture in order to obtain a small depth of field.

3.2 Calibration of the DfD method

For calibration, an image sequence is acquired while the camera approaches at
uniform speed a calibration rig displaying a chequerboard. The sharp black-
and-white corners of the chequerboard are robustly and precisely detectable
(Kriiger et al., 2004) even in defocused images. Small ROIs of size 16 x 16
pixels around each corner allow the estimation of defocus using their grey-
value variance y. The better focused the corner, the higher is the variance y.
We found experimentally that the parameterised defocus model according to
Eq. (5) is also a reasonable description of the dependence of y on the depth
D. For our calibration sequence the camera motion is uniform and the image
index j is strongly correlated with the object distance D. Hence, Eq. (5) is
fitted to the measured (y,j) data points for each corner i. The location of
the maximum of S yields the index f; of the image in which the ROI around
corner ¢ is best focused. This ROI corresponds to ;. The fitting procedure is
applied to introduce robustness with respect to pixel noise. For non-uniform
camera motion the index f; can be obtained by a parabolic fit to the values of
x around the maximum or by directly selecting the ROI with maximal x. The
depth D of each corner is reconstructed by SfM from the pose of the complete
rig according to Bouguet (1997).

For each tracked corner 7, we compute for each ROI /;; the amount of defocus,
i.e. the o value relative to the previously determined best focused ROI Iy,
according to Eq. (6). By employing the bisection method, we determine from
a number of different values the value of o for which the root mean square
deviation between G(o) * I;y,, denoting the best-focused ROI convolved with a
Gaussian PSF of radius o, and I;;, the currently observed ROI, becomes min-
imal. The Depth—Defocus Function is then obtained by a least mean squares
fit to all determined (o, D) data points. Two examples are shown in Fig. 2 for



lenses with focal lengths of 12 mm and 20 mm and f-stop numbers of 1.4 and
2.4, respectively. Objects at a distance of about 0.8 m and 0.6 m, respectively,
are in focus, corresponding to the minimum of the curve.

3.3 Combining motion, structure, and defocus

The SfM analysis involves the extraction of salient features from the image
sequence which are tracked using the KLT technique (Shi and Tomasi, 1994).
For the integration of defocus information, a ROI of constant size is extracted
around each feature point at each time step. For each tracked feature, the best
focused image has to be identified in order to obtain the increase of defocus for
the other images. We found that greyvalue variance as a measure for defocus
does not perform well on features other than black-and-white corners. Instead
we make use of the amplitude spectrum |.%#; (w)| of the ROI extracted around
the feature position. High-frequency components of the amplitude spectrum
denote sharp details, whereas low-frequency components refer to large-scale
features. Hence, the integral over the high-frequency components serves as
a measure for the sharpness of a certain tracked feature. However, since the
highest-frequency components are considerably affected by pixel noise and
defocus has no perceivable effect on the low-frequency components, a frequency
band between two empirically determined frequencies wy and w; is taken into
account according to

H:/|ﬁ} () |dw (11)

with wg = iwmax and w; = %wmax, where wpay 18 the maximum frequency
for the ROI. The amount of defocus increases with decreasing value of H.
The defocus measure H is used to determine the index of the best focused
ROI for each tracked feature in the same manner as the greyvalue variance
X in Section 3.2. Fig. 3 illustrates that the value of H cannot be used for
comparing the amount of defocus among different feature points since the
maximum value of H depends on the image content. The same is true for the
greyvalue variance. Hence, both the integral H of the amplitude spectrum as
well as the greyvalue variance are merely used for determining the index of
the image in which a certain feature is best focused.

The defocus, i.e. the radius o of the Gaussian PSF, is then computed relative
to the best focused ROI according to Section 3.2. The depth D is obtained by
inverting the Depth-Defocus Function S(D) according to Eq. (5). The encoun-
tered two-fold ambiguity is resolved by using information about the direction
of camera motion, which is obtained either based on a-priori knowledge or by



performing a SfM analysis according to Eq. (1), yielding information about
the path of the camera. If the estimated value of ¢ is smaller than the min-
imum of S(D), the depth is set to the value at which S(D) is minimal. For
an example feature, the calculated defocus and the inferred depth values are
shown in Fig. 3.

We found experimentally that the random scatter of the feature positions
extracted by the KLT tracker is largely independent of the image blur for
PSF radii smaller than 5 pixels and is always of the order 0.1 pixels. However,
more features are detected and less features are lost by the tracker when the
tracking procedure is started on a well-focused image. Hence, the tracking
procedure is repeated, starting from the “sharpest” image located near the
middle of the sequence which displays the largest value of H averaged over all
previously detected features, proceeding towards either end of the sequence
and using the ROIs extracted from this image as reference patterns. The 3D
coordinates X; of the scene points are then computed by determination of the
minimum of the combined error term

B {T1AX:) = o0 [(P(00) = ) + (8 (I5X0,) = )

i=1j=1

(12)

with respect to the M camera transforms 7 and the N scene points X;. The
value of 0;; corresponds to the estimated PSF radius for feature ¢ in image j,
a is a weighting factor, S the Depth-Defocus Function that calculates the ex-
pected defocus of feature ¢ in image 7, and [-], the z coordinate, i.e. the depth
D, of a scene point. The correspondingly estimated radii o;; of the Gaussian
PSF's define a regularisation term in Eq. (12), such that absolutely scaled 3D
coordinates X; of the scene points are obtained. The value of o denotes the
relative weight of the two error terms in Eq. (12) and depends on the vari-
ances of the measurements x;; and o;;. In the examples regarded in Section 4,
a favourable choice is a = 0.5, indicating that the variances of x;; and o;;
are similar. The values of X; are initialised according to the depth values es-
timated based on the DfD approach. To minimise the error term FE.yn, we
employ the Levenberg-Marquardt algorithm (Madsen et al., 1999). To reduce
the effect of outliers, we use the M-estimator technique with the “fair” weight-
ing function w(z) = 1/(1 + |z|/c) with x as the error value, where ¢ = 1.3998
is a favourable choice (Rey, 1983). A possible extension of our optimisation
technique not regarded in the experiments described in Section 4 is to first
weight down errors with a robust estimator, and if after some iteration steps
some points are regarded as outliers, to repeat the weighting on the reduced
set of observations. Furthermore, it might be favourable to compare the resid-
uals with their individual covariance information, which provides information
about how much larger a residual is than it is thought to be determined from



the given data. Such techniques are known to improve the convergence be-
haviour in many applications, but in the experiments regarded in Section 4
our simple robust estimator was always sufficient to obtain a solution after a
few tens of iterations of the Levenberg-Marquardt scheme.

3.4 Online version of the algorithm

The 3D reconstruction method outlined so far is an offline (or “batch”) algo-
rithm since the error term Eq. (12) is minimised once for the complete image
sequence. In this section we present an online version of the proposed combi-
nation of StM and DfD which processes the acquired images instantaneously,
thus generating a new 3D reconstruction result after acquisition of each image
of the sequence. This is a desired property e.g. in the context of mobile robot
navigation, SLAM, or in-situ exploration.

The online version starts by acquiring the current image. The feature tracker
attempts to track the features present in the previous image and may add new
features. Again, the KLT feature tracker (Shi and Tomasi, 1994) is used. The
sharpness of each feature within the current frame is obtained based on the
integral H over the amplitude spectrum of the ROI around the feature position
(cf. Eq. (11)). The next step is the determination of the best focused frame
for each feature. Since fitting the Depth-Defocus Function Eq. (5) imposes
a considerable computational burden, a second-degree polynomial is fitted to
the values of H instead. A threshold rating this fit selects possible candidates
that may already have passed their point of maximum sharpness. The Depth—
Defocus Function according to Eq. (5) is then fitted to the H values of the pre-
selected feature candidates only. After determination of the sharpest frame,
the initial depth values for the respective feature are computed by estimating
the PSF radius o as outlined in Section 3.2.

The depth values obtained by the DfD method are used to initialise the
Levenberg-Marquardt scheme which determines the camera transforms and
3D feature points that minimise the error function given by Eq. (12) using
an M-estimator as in the offline version. The current optimisation result is
used as an initialisation to the subsequent iteration step involving the next
acquired image.
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4 Experimental evaluation

4.1 Offtine algorithm

In all described experiments we used a Baumer 1032 x 776 pixels industrial
CCD camera with Cosmicar-Pentax video lenses of focal length 12 mm (table-
top scenes, Sections 4.1.1-4.1.3) and 20 mm (industrial quality inspection sce-
nario, Section 4.1.4). In order to validate our approach we first reconstructed
a planar object with reference points of precisely known mutual distance. A
chequerboard as shown in Fig. 4 with 10 x 8 squares of size 15 x 15 mm?,
respectively, was used. The 99 corners serve as features and are extracted in
every image using the method described by Kriiger et al. (2004) to assure sub-
pixel accuracy. The reference pose of the chequerboard is obtained according
to Bouguet (1997) based on the given size of the squares. Note that Bouguet
(1997) determines the reference pose of the chequerboard by applying a least
mean squares fit on a single image, whereas the proposed algorithm estimates
the 3D structure of a scene by means of a least mean squares fit applied to the
whole image sequence. Comparing the obtained results with the determined
reference pose of the object is therefore a comparison between two methods
conducting different least mean squares fits.

The deviation E,econstr Of the reconstructed 3D scene point coordinates X;
from the reference values X' is given by

2

E 1 al ref
reconstr — N ; HXZ - Xz (1?))

To determine an appropriate weight parameter « in Eq. (12) we computed
Elreconste for different o values in the range between 0 and 1. For a = 0 the
global minimisation is equivalent to SfM initialised with the calculated DfD
values. One must keep in mind, however, that the absolute scaling factor
is then part of the gauge freedom of the bundle adjustment, resulting in a
corresponding “flatness” of the error function. Small o values therefore lead
to an instable convergence. The value of Fyeconstr levels off to 16 mm for o &~ 0.3
and obtains its minimum value of 7 mm for a = 0.42. The root mean square
deviation of the reconstructed size of the squares from the true value of 15 mm
then amounts to 0.2 mm or 1.3%. The most accurate scene reconstruction
results are obtained with o between 0.3 and 0.5. The reconstructed 3D scene
points X; for a = 0.42 are illustrated in Fig. 4, the dependence of Eeconstr ON
a in Fig. 5 (top).

In addition to the reconstruction error Fieconstr, @ further important error
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measure is the reprojection error

- - 1 N.M A , ”
reprojection — m A Z( ( J Z) - xij) ( )

i=1j=1

denoting the root-mean-square deviation between the measured 2D feature
positions x;; and the reconstructed 3D scene points X; reprojected into the
images using the reconstructed camera transforms 7}.

The defocus error denotes the root-mean-square deviation between measured
and expected radii o;; of the Gaussian PSFs according to

Factocus = ﬁ Z Z (S<[CFJXZ]Z) o O-ij)Q' (15>

i=1j=1

Fig. 5 (bottom) shows the relation between the weight parameter «, the re-
projection error Fieprojection, and the defocus error Fgegocus- For a > 0.3 the
defocus error stabilises to 0.58 pixels per feature. Larger a values lead to a
stronger influence of the DfD values on the optimisation result, resulting in an
increasing reprojection error Eieprojection due to the inaccuracy of the estimated
o;; values.

Although the depth values derived by DfD are noisy, they are sufficient to
establish a reasonably accurate absolute scale. Hence, this first evaluation
shows that the combined approach is able to reconstruct scenes at absolute
scale without prior knowledge. Our approach is favourably applied in the close-
range domain (D ~ 1 m) using standard video cameras and lenses (f below
~ 20 mm, pixel size ~ 10um, image size ~ 10° pixels). For larger distances
around 10 m, the focal length required to obtain a comparable relative ac-
curacy of absolute depth is proportional to v/D, implying a narrow field of
view of less than 7 degrees and thus rendering the application of our approach
unfeasible from a practical point of view as SfM becomes unstable for small
intersection angles.

Further experiments performed on real-world objects are described in the fol-
lowing paragraphs. Images from the beginning, the middle, and the end of the
corresponding sequences, respectively, are shown in Fig. 6. In order to sepa-
rate random fluctuations from systematic deviations, we computed the error
measures for 100 runs for each example, respectively. For the utilised camera,
the noise of the pixel grey values is proportional to the square root of the grey
values themselves. Empirically, we determined for the standard deviation of
a pixel with 8-bit grey value I € [0...255] the value o; = 0.22y/I. For each
of the 100 runs, we added a corresponding amount of Gaussian noise to the
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images of the sequence. The noise leads to a standard deviation of the feature
positions x;; obtained by the KLT tracker of 0.1 pixels.

4.1.1  Cuboid sequence

To demonstrate the performance of our approach on a non-planar test object of
known dimensions we applied it to the cuboid-shaped object shown in Fig. 6a.
This object displays a sufficient amount of texture to generate “good features
to track” (Shi and Tomasi, 1994). In addition, black markers on white back-
ground with known mutual distances are placed near the edges of the cuboid.
The 3D coordinates of the scene points are obtained by minimising the error
term Feomp, according to Eq. (12) with a = 0.5 as the weight parameter. This
value of «v is used in all subsequent experiments. Tracking outliers are removed
by determining the features with reprojection errors of more than 3 E,cprojection
and neglecting them in a subsequent second bundle adjustment.

The 3D reconstruction result for the cuboid sequence is shown in Fig. 7. We
obtain for the average reprojection error Fieprojection = 0.642 pixels and for
the defocus error Egepocus = 0.64 pixels. In order to verify the absolute scale,
we compared the reconstructed pairwise distances between the black mark-
ers on the object (as seen e.g. in the top right corner of the front side) to
the corresponding true distances. For this comparison we utilised a set of six
pairs of markers with an average true distance of 32.0 mm. The corresponding
reconstructed average distance amounts to 34.1 mm (cf. Table 1).

4.1.2  Bottle sequence

In order to demonstrate the performance of our approach on a real-world ob-
ject, we applied it to a bottle as shown in Fig. 6b. No background features are
selected since none of these feature obtains its maximum sharpness in the ac-
quired sequence. The 3D reconstruction result is shown in Fig. 8. We obtained
for the reprojection error Freprojection = 0.75 pixels and Egefocus = 0.39 pixels.
To quantify the accuracy of the determined absolute scale, we compared the
diameter of the reconstructed object with that of the real bottle. We projected
the reconstructed points into the xz plane of the camera coordinate system,
in which the z axis is parallel to the image rows, the y axis is parallel to
the image columns (and thus to the central axis of the cylinder), and the z
axis is parallel to the optical axis. The circle fit to the projected 3D points
as shown in Fig. 8 yields an average diameter of 82.8 mm, which is in good
correspondence with the known parameter of 80.0 mm (cf. Table 1).
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4.1.3  Lava stone sequence

As a further real-world object, we examined the lava stone shown in Fig. 6c.
The 3D reconstruction result is shown in Fig. 9. The shaded view of the object
is based on the triangulation of the reconstructed set of 3D points. The cusp
visible in the left part of the reconstructed surface is due to three outlier 3D
points generated by inaccurately determined feature positions. For this scene
we have Eieprojection = 0.357 pixels and Egefocus = 0.174 pixels. Two points on
the object with a true mutual distance of 60.0 mm were chosen as reference
locations for estimation of the accuracy of the determined absolute scale. The
reconstructed distance of the reference points amounts to 58.3 mm, which is
consistent with the known distance of 60.0 mm (cf. Table 1).

4.1.4  Flange sequence: Raw cast iron surface

Another experimental evaluation of the offline algorithm addresses an indus-
trial quality inspection scenario. We regard the 3D reconstruction of the raw
cast iron surface of a flange. In our setting, the metal part is attached to a go-
niometer and can thus be rotated around two axes, while the camera is fixed.
In an industrial inspection system, it would probably be more favourable to
mount the camera on an industrial robot such that it can be moved with re-
spect to a fixed part to be inspected. Three images of the acquired sequence
are shown in Fig. 6d. Although the surface is rough, the extracted set of 3D
points is rather sparse, which is due to specular reflections changing across
time, leading to premature termination of tracks by the KLT tracker. The
extracted set of points shows that the reconstructed surface region is essen-
tially flat and inclined with respect to the image plane (Fig. 10a). We fitted
a plane to the set of 3D points and determined a RMS distance of the 3D
points from this reference plane of 1.46 mm. To examine the absolute scale of
the reconstructed scene, we used two feature points situated at well-defined
locations on the edge of small deformations of the surface (marked as 1 and 2
in Fig. 10b). According to our 3D reconstruction result, the mutual distance
of the corresponding two 3D points amounts to 15.45 mm. The true distance,
determined by tactile measurement, is 15.2 mm. Being too large by the small
amount of 1.6%, the estimated absolute scale is in good agreement with the
true value, again in very good correspondence with known distance.

In contrast to the previous examples, the ROIs around the extracted fea-
ture positions show strong small-scale intensity variations, such that the noise
added to the ROIs has a negligible effect on the DfD result. On the other hand,
the orientation of the surface with respect to the light source changes across
the sequence, leading to an appearance of the ROIs that changes systemat-
ically over time. These variations are not of geometrical nature but are due
to the strongly non-Lambertian reflectance behaviour of the surface. This is
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not taken into account by the KLT tracker, which therefore tends to produce
a slight drift of the feature positions relative to the object across the image
sequence. At the same time the variations have a systematic influence on the
amount H of defocus determined according to Eq. (11) and are presumably the
main reason for the observed small discrepancy of 1.6% between the estimated
and the true absolute scale of the scene. The very small standard deviation
of the measured distance between the two reference points (cf. Table 1) is
presumably due to the strong small-scale contrasts in the images, with many
bright pixels being over-saturated. Hence, the results of the KLT tracker are
barely affected by the Gaussian noise added to the pixel intensities.

The extracted set of 3D points is too sparse to reveal the small-scale defor-
mations visible in the images. Hence, we used our sparse set of depth points
shown in Fig. 10a as an input to an image-based framework for dense 3D sur-
face reconstruction recently proposed by d’Angelo and Wéhler (2008). This
technique is based on the combined analysis of reflectance, polarisation, and
sparse depth data. An error functional consisting of several error terms related
to the measured reflectance and polarisation properties and the depth data is
minimised in order to compute a dense surface gradient field and in a subse-
quent step a dense depth map. The 3D profile obtained with this approach for
the raw cast iron surface is shown in Fig. 10c. This 3D surface profile shows
both the large-scale structure of the surface and the small surface deformations
also visible in Fig. 6d.

4.2 Online algorithm

A systematic evaluation of the online algorithm was performed for the cuboid,
bottle, and lava stone sequence. In the surface inspection scenario (flange se-
quence) we only employed the offline algorithm since here no knowledge about
the object structure is necessary before the final dense reconstruction step per-
formed after termination of image acquisition. The online algorithm generally
starts with a very noisy set of 3D points, due to the small number of features
already having reached their maximum sharpness at the beginning of the im-
age sequence. After processing more and more images, the 3D reconstruction
result starts to resemble the result of the offline algorithm. The results are not
identical because generally a similar but not identical index f; (cf. Eq. (6)) is
determined for the sharpest ROI of each track by the offline and the online
algorithm, respectively. The DfD results then differ correspondingly.

In the cuboid example shown in Fig. 11, the first 3D reconstruction result
can be obtained after processing 21 images. After 5 iterations, still only 40
features are available, having passed their point of maximum sharpness. In
this example, the same six pairs of reference points as in Section 4.1 were used
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for evaluating the accuracy of the determined absolute scale. Fig. 12 shows
the behaviour of the reconstruction accuracy in relation to the increasing
number of iterations, averaged over 100 online runs carried out after adding
Gaussian noise to the images as described in Section 4.1. In Figs. 12-14, the
standard deviations across the 100 online runs are indicated by error bars.
After 43 processed images, the measured average mutual distance of the six
pairs of reference points differs by less than 1.8% from the true value, and this
difference is smaller than 1.2 standard deviations. For less than 38 processed
images, not all reference points have passed their point of maximum sharpness,
and their 3D positions have therefore not yet been computed. The average
relative scale error shown in Fig. 12 is derived from those pairs of reference
points that already have passed their point of maximum sharpness.

Fig. 11 suggests that with increasing number of available features the recon-
structed size and shape of the cuboid become more accurate. However, Fig. 12
shows that the maximum accuracy of the inferred absolute scale is obtained
after 44 or 45 processed images. The reason is that the very last images of the
sequence are strongly blurred. This leads to large inaccuracies of the depth val-
ues derived from the estimated PSF radii 0,5, since far away from its minimum,
the Depth-Defocus Function S(D) according to Eq. (5) is nearly horizontal.
Furthermore, systematic deviations tend to arise since the observed behaviour
o(D) of the PSF radius is best represented for small and intermediate values
of o by the analytic form chosen in Eq. (5) for the Depth-Defocus Function
S(D) (cf. Section 4.3).

Analogous experimental evaluations were conducted for the bottle and the
lava stone sequence. The results are shown in Fig. 13. For the bottle sequence,
the average accuracy of the determined absolute scale (represented by the
inferred diameter of the bottle as outlined in Section 4.1) is better than 3.0%
already after 12 processed images. However, at the beginning of the sequence
the random scatter across the 100 runs is about two times larger than near
the end (after 23 processed images). The final difference between measured
and true absolute scale corresponds to 1.9 standard deviations. For the lava
stone sequence, the determined absolute scale is about 1.2% (corresponding
to one standard deviation) too small after 12 processed images. The deviation
becomes larger and appears to be of systematic nature when 13 and more
images are processed. The last three images of the lava stone sequence are
strongly blurred, which we assume to be the main reason for this behaviour (cf.
Section 4.3). For this sequence it is favourable to adopt the 3D reconstruction
result obtained after processing 12 images and to avoid utilising the last three,
strongly blurred, images.
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4.8  Analysis of random errors and systematic deviations

The main source of random errors is the pixel noise of the CCD sensor, which
influences the estimation of the PSF radius according to the Depth—Defocus
Function given by Eq. (5) and furthermore leads to a random scatter of the
extracted feature positions of about 0.1 pixels. According to Table 1, the re-
projection error is always significantly larger than the random scatter of the
KLT tracker and amounts to several tenths of a pixel. Presumably, system-
atic deviations are introduced by the changing appearance of tracked features
across the sequence which cannot be fully described by affine deformation and
thus cannot be fully compensated by the KLT tracker. The 3D reconstruction
results obtained with the offline algorithm for 100 runs over the cuboid, bot-
tle, and lava stone sequences, respectively, show that the relative differences
between the ground truth and the reconstructed absolute scale of the scene
amount to a few percent and always correspond to between 1 and 2 standard
deviations (cf. Table 1). Hence, the observed deviations are presumably due
to a combination of random fluctuations and systematic errors.

Systematic errors may be introduced at the end of the sequence, where the
images tend to be strongly blurred. For PSF radii smaller than 5 pixels we
found that the random scatter of the feature positions extracted by the KLT
tracker are of the order 0.1 pixels and independent of the PSF radius, such
that the extracted feature positions do not introduce systematic errors. How-
ever, the observed relation o(D) between PSF radius and depth is accurately
represented only for small and intermediate values of o by the Depth—Defocus
Function §(D) according to Eq. (5). Fig. 2a illustrates that the utilised 12 mm
lens shows this effect for values of o between 2 and 3 pixels on both sides of
the minimum of S(D). Systematic errors might also be introduced by the
nonlinearity of the Depth-Defocus Function S(D). Effectively, the estimation
of the depth D is based on an inversion of Eq. (5). Even if we assume that
the measurement errors of o(D) for a certain depth D can be described by
a Gaussian distribution of zero mean (which is a good approximation to the
observed behaviour), the statistical properties of the inverse relation D(o) gen-
erally cannot be described in terms of a zero-mean Gaussian distribution. Due
to the nonlinear nature of S(D), the average deviation between the measured
depth value D and its value predicted by the Depth—Defocus Function deviates
from zero. For small PSF radii, i.e. close to the inflexion points of the Depth—
Defocus Function S(D), where its curvature is close to zero and its shape is
largely linear, this effect is only minor, but its importance increases for large
PSF radii, where S(D) displays a strong curvature as apparent in Fig. 2b.
For the lava stone sequence processed with the online algorithm, Fig. 14 il-
lustrates the correlation between scale error and average PSF radius of the
last processed image. The systematic effect is especially pronounced for this
sequence since it comprises only 15 images (cf. Table 1). Measurement errors
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obtained while processing the last three images, which are strongly blurred
with o > 2 pixels, thus have a substantial effect on the 3D reconstruction
result. These findings suggest that features with large associated PSF radii
should be excluded from the three-dimensional reconstruction process, where
the range of favourable PSF radii depends on the Depth-Defocus Function
S(D).

A further important source of systematic errors is the thermal expansion of the
optical system. The body of the lens used for our experiments consists of Alu-
minium, having a relative thermal expansion coefficient of v = 2.3 x 1075 K1,
We assume that with a lens of focal length f at calibration temperature Tj
an image of maximum sharpness is observed at depth Dy and that the focal
length f is constant. The corresponding image distance vy is obtained ac-
cording to the lens law given by Eq. (2). Assuming that the measurement is
performed at temperature 7', the thermal expansion of the lens body yields an
image distance v(T') = [1 4+ v(T — Tp)]vg, and the corresponding depth D(T)
for which an image of maximum sharpness is observed at temperature T is
computed according to the lens law Eq. (2). As a result, the Depth—Defocus
Function Eq. (5) is shifted by the amount D(T") — D, along the D axis (cf.
Fig. 2), which introduces a corresponding systematic error. We find that for a
given temperature difference |T'— Ty| < Tp, the relative systematic deviation
[D(T')— Dy]/Dg of the DfD measurement is largely proportional to Dy, and for
a given value of Dy > f, it is largely proportional to |T'— Ty|. As an example,
for a focal length f = 20 mm, a depth Dy = 1000 mm, and a temperature
difference |T"— Ty| = 10 K, we obtain a relative systematic deviation of the
DfD measurements of 1.1%, which is of the same order of magnitude as the
relative reconstruction errors observed in our experiments.

Further possible sources of systematic deviations are vibrations and shocks
occurring after calibration (which we avoided during our experiments) and
systematic variations of the appearance of the extracted ROIs across the im-
age sequence especially for specular surfaces (cf. Section 4.1.4) or when the
assumption of affine deformation does not hold. In general, such influences
are difficult to quantify, but they may lead to systematic errors of at least the
same order of magnitude as those inferred for thermal expansion.

5 Summary and conclusion

We have described a method for combining geometric and real-aperture meth-
ods for monocular 3D reconstruction of static scenes at absolute scale. The
proposed algorithm is based on a sequence of images of the object acquired by
a monocular camera of fixed focal setting from different viewpoints. Feature
points are tracked over a range of distances from the camera, resulting in a
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varying degree of defocus for each tracked feature point. After determining
the best focused image of the sequence, we obtain information about abso-
lute depth by a DfD approach. The inferred PSF radii for the corresponding
scene points are utilised to compute a regularisation term for an extended
bundle adjustment algorithm that simultaneously optimises the reprojection
error and the absolute depth error for all feature points tracked across the im-
age sequence. The proposed method yields absolutely scaled 3D coordinates of
the object feature points without any prior knowledge about scene structure
and camera motion. We have described the implementation of the proposed
method as an offline and as an online algorithm.

Based on experiments with real-world objects, we have demonstrated that the
offline version of the proposed algorithm yields absolutely scaled 3D coordi-
nates of the feature points with typical relative errors of a few percent. For the
online algorithm, the accuracy of 3D reconstruction increases with increasing
number of processed images as long as the images do not become strongly
blurred. At the end of the sequence, the reconstruction results of the online
and the offline versions of the proposed algorithm are of comparable accuracy.

We have shown that the 3D reconstruction inaccuracies observed in our ex-
periments can be explained by a combination of the random scatter of the
extracted feature positions and the estimated PSF radii, which are both due
to the noise of the pixel greyvalues, and systematic deviations of the order 1%
due to thermal expansion of the optical system. Further systematic errors may
be introduced if the image sequence contains strongly blurred images with an
average PSF radius larger than about 2 pixels, due to deviations of the ob-
served depth dependence of the PSF radius from the analytic model used for
the Depth—Defocus Function. Since the PSF radius is continuously computed
in the course of the 3D reconstruction process, it is possible and favourable to
reject such strongly blurred images accordingly. Especially for specular sur-
faces, the changing appearance of the ROIs tracked across the sequence may
introduce further systematic effects.

Possible application scenarios of our 3D reconstruction approach are in the
domain of 3D reconstruction of objects and surfaces for industrial quality
inspection. It might also be useful for simultaneous localisation and mapping
(SLAM) in mobile robotic systems. Applications in which our approach is
preferable to stereo camera systems are industrial machine vision systems
with space limitations or where strong vibrations occur (the latter leading to
the rapid deadjustment of the relative orientation of a pair of stereo cameras),
e.g. a monocular camera on a moving machine.

Extensions of the presented approach might involve embedding the stable

block of StM equations into a frame given by DfD, similar to using low-quality
control points (obtained by DfD) for a highly precise network (obtained by
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SfM) — the internal relative accuracy of SfM is higher than that of DfD, since
otherwise the reprojection error would not strongly increase for high values
of the weight parameter «. In such a framework, the accuracy of the deter-
mination of each individual observation for SfM as well as for DfD (ideally
the inverse covariance matrices of the observations) should be used for robust
re-weighting.
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Table 1

Summary of the evaluation results for the offline algorithm.

Sequence Length | Eieprojection [Pixels/point]  Egefocus [Pixels/point] Reference length [mm)]
Ground truth 3D reconstruction
Cuboid 46 0.642 0.636 32.0 34.1+1.6
Bottle 26 0.747 0.387 80.0 82.8+1.4
Lava stone 15 0.357 0.174 60.0 58.3+0.8
Flange 36 1.06 1.96 15.2 15.45 + 0.01




(b) Asymmetric dependence of ¢ on AD.

Fig. 1. Dependence of the diameter ¢ of the circle of confusion (a) on the offset Av
in image space and (b) on the offset AD in object space. The offsets Av and AD are
measured with respect to the principal distance v and the distance D between lens
and object for the perfectly focused scenario described by the lens law Eq. (2). The
value of ¢ increases more strongly for motion towards the camera than for motion
away from the camera.
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Fig. 2. Depth-Defocus Functions of two lenses with f = 12 mm (left) and f = 20 mm
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(d)

Fig. 6. Images from the beginning, the middle, and the end of (a) the cuboid se-
quence, (b) the bottle sequence, (c) the lava stone sequence, and (d) the flange
sequence.
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Fig. 8. 3D reconstruction of the cylindrical surface of the bottle.

Fig. 9. 3D reconstruction of the lava stone. The cusp visible in the left part of the

reconstructed surface is produced by three outlier points.
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Fig. 10. 3D reconstruction of the raw cast iron surface of a flange. (a) Reconstructed
3D points. (b) Location of the reference points used to determine the accuracy of the
estimated absolute scale. (c) 3D surface profile obtained by using the reconstructed
3D points as an input to the combined geometric and photometric approach by
d’Angelo and Wohler (2008). For further details, cf. Section 4.1.4.
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