
Article

Point Cloud Hand/Object Segmentation using Multi-Modal
Imaging with Thermal and Color Data for Safe Robotic Object
Handover

Yan Zhang 1, Steffen Müller2, Benedict Stephan2, Horst-Michael Gross2 and Gunther Notni 1,3

Citation: Zhang Y.; Müller, St.;

Stephan, B.; Gross, H.-M.; Notni, G.

Point Cloud Hand/Object

Segmentation using Multi-Modal

Imaging with Thermal and Color

Data for Safe Robotic Object

Handover. Sensors 2021, 1, 0.

https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and insti-

tutional affiliations.

Copyright: © 2021 by the authors.

Submitted to Sensors for possible

open access publication under the

terms and conditions of the Cre-

ative Commons Attribution (CC

BY) license (https://creativecom-

mons.org/licenses/by/ 4.0/).

1 Group for Quality Assurance and Industrial Image Processing Technische Universität Ilmenau, Germany
2 Neuroinformatics and Cognitive Robotics Lab Technische Universität Ilmenau, Germany
3 Fraunhofer Institute for Applied Optics and Precision Engineering IOF Jena, Germany
* Correspondence: yan.zhang@tu-ilmenau.de

Abstract: This paper presents an application of neural networks operating on multi-modal 3D1

data (3D point cloud, RGB, thermal) to effectively and precisely segment human hands and objects2

held in hand to realize a safe human-robot object hand over. We discuss the problems encountered3

for building a multi-modal sensor system, while the focus is on the calibration and alignment of a4

set of cameras including RGB, thermal, and NIR cameras. We propose the use of a copper-plastic5

chessboard calibration target with an internal active light source (near-infrared and visible light).6

By brief heating, the calibration target could be simultaneously and legibly captured by all cameras.7

Based on our multi-modal dataset captured by our sensor system, PointNet [1], PointNet++ [2] and8

RandLA-Net [3] are utilized to verify the effectiveness of applying multi-modal point cloud data9

for hand/object segmentation. These networks were trained on various data modes (XYZ, XYZ-T,10

XYZ-RGB and XYZ-RGB-T). The experimental results show a significant improvement in the11

segmentation performance of XYZ-RGB-T (mean Intersection over Union: 82.8% by RandLA-Net)12

compared to the other three modes (77.3% by XYZ-RGB, 35.7% by XYZ-T, 35.7% by XYZ), in which,13

it is worth mentioning that the Intersection over Union for the single class of hand achieves 92.6%.14

15

Keywords: multi-modal imaging, thermal, deep neural network, hand segmentation, point cloud16

segmentation17

1. Introduction18

Nowadays, robot vision plays an important role in the robotics industry. To enable19

a robot to navigate or grasp objects as intelligently and safely as a human, a correct20

understanding of its working environment is a necessary prerequisite. For this task,21

currently there are many state-of-the-art solutions based on object detection, such as22

YOLO [4]. However, our work focuses on the vision system of an assistant robot which23

is used to transport objects between humans. In order to pick up the object from a24

human hand without injuring the person, the challenge is exact and efficient pixel-level25

segmentation and 3D representation of the object and obstacles in the interaction area.26

In this regard, it is not sufficient to separate hand and object with only a bounding box.27

Therefore, the discussion in this article will focus on hand/object segmentation.28

To solve the segmentation problem, the current mainstream approaches can be29

classified into two categories.30

The first one is color image segmentation based on texture information on the31

surface of objects. Extensive research has been done on this subject and some of the32

achievements are impressive, such as the MASK R-CNN network [5] or the PointRend33

network [6]. However, there are a number of difficulties in hand segmentation, such as34

the effect of lighting conditions, confusion with objects whose color resembles human35

skin, and the variety of skin tones.36
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The second category is 3D point cloud segmentation based on geometric features37

of objects. In this respect, some challenges such as the articulated nature of the human38

body, changes in appearance and partial occlusions [7] make hand segmentation in point39

clouds more difficult than in RGB images.40

Although, the deep learning technology has repeatedly surprised in the field of41

image processing, the above mentioned particular difficulties for hand segmentation can42

never be solved completely. For example, in [8], the authors explicitly mention that their43

VGG-16 [9] based hand segmentation network (2D RGB segmentation) can achieve a44

91.0% mean IoU (Intersection over Union) on their dataset. If the hand has a complex45

interaction with other objects, such as holding a complex-shaped object in the hand,46

it is hard using their approach to detect the hand in the contact areas. Nevertheless,47

the segmentation of real-world data seen in interactions with humans is just the core48

challenge for an assistant robot aiming to grasp objects from a human hand.49

Since humans are warm-blooded, our body temperature stays almost constant while50

skin color, light conditions, and hand posture are varied. Therefore, body temperature51

is a more stable and robust feature for hand recognition or segmentation compared to52

RGB data alone. We propose to apply an additional LWIR camera (thermal camera)53

(LWIR: longwave infrared) to mitigate the problems for hand segmentation mentioned54

above. However, there are also some difficulties with thermal image segmentation. As55

mentioned in [10], for an outdoor intelligent surveillance system with a thermal camera,56

in summer or on a hot day, the contrast of human and background becomes very low and57

makes it difficult to distinguish human areas from the background in the thermal image.58

This low contrast problem holds also for a couple of indoor scenarios e.g. in industrial59

facilities where there are differently tempered objects in the background. In addition,60

an object that is held in hand for a longer time will become similar in temperature to61

the hand, lowering the contrast to the fingers as well. In this case, hand and object62

segmentation will also become tough and additional features are needed. In the research63

of Kim et al. [11], 2D multi-modal imaging with fusing LWIR and RGB-D images was64

used for first-person view hand segmentation, and their results of using a DeepLabV3+65

[12] network showed that using LWIR there were 5% better hand IoU performance than66

using just RGB-D frames.67

Therefore, in this work, we will explain a multi-modal 3D sensor system composed68

of a 3D sensor, an RGB camera, and a thermal camera, which is able to capture point69

cloud data with 7 channels (XYZ-RGB-T). None of these channels are all-purpose, but in70

combination the information of each channel compensate for their respective weaknesses.71

It is reasonable to expect that the multi-modal 3D data carries more potential features72

compared to 3D data alone, and that these complex features can be learned by a neural73

network as well. Besides that, the calibration and registration approach for the sensors74

will be described. By using this sensor system, a multi-modal dataset was captured in75

order to evaluate the performance of applying the multi-modal 3D data for hand and76

object segmentation. The state-of-the-art methods PointNet, PointNet++, and RandLA-77

Net were trained and compared on that dataset.78

2. Releated Work79

In this section previous studies on the application of thermal imaging in the field of80

human recognition will be reviewed. Wang et al. [13] presented a thermal pedestrian81

detector, in which an edge feature (Shape Context Descriptor) and an Adaboost cascade82

classifier were adopted. Jeon et al. [10] showed for an outdoor surveillance thermal83

camera, that it is hard to segment the human body from the background, if the ambient84

temperature is similar to or higher than the human body temperature (e.g. in summer).85

To solve this problem, they attempt to do background subtraction using the sequence86

of thermal images and a pre-recorded background thermal image. However, both of87

the two studies require a fixed background as a prerequisite, which is not possible for a88

mobile robot application.89
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In the research of Setjo et al. [14], Haar cascade classifiers have been applied to90

detect human faces in thermal images, and a comprehensive evaluation was conducted91

with a thermal image dataset that was acquired with variation of human poses and92

environmental conditions. They showed, that precision and recall of human detection93

decreases with greater distance to the camera. In addition, the detection results were94

also affected by the orientation of the face. For such problems in [15] an integrated95

analysis for RGB-T (thermal) fusion was proposed to detect human skin using a skin96

segmentation algorithm (Skindiff) [16]. Their results indicated that the use of the fusion97

sensor system allows to work in environments with many warm objects. An RGB-T98

dataset and a discussion of the advantages of RGB-T fusion over single RGB or T, such99

as when objects of interest may not have easily discernible thermal signatures but have100

strong cues from RGB, can be found in [17]. In addition, there are a number of articles on101

this topic, such as [18] [19] [20]. However, all these articles are based on traditional image102

processing methods. That means that a few parameters or thresholds in the system103

need to be adjusted manually, and they are usually dependent on the varying camera104

environment or the state of the camera. For example, in [15] it is mentioned, that the105

response of a thermal camera depends on the up-time of their specific device, which has106

an effect on the human recognition rate as images become more saturated.107

Palermo et al. [7] introduced a RGB-D-T dataset and used HOG (Histogram of ori-108

ented gradient) and random forests for human segmentation in an indoor environment.109

In [21], transfer learning of YOLO [4], a deep learning model, was performed on thermal110

images for human detection in a night environment. In [22], YOLO was applied on111

6-channel 2D images containing RGB color and various geometric features (point density,112

difference of normal, and curvature). A further CNN (convolutional neural network)113

model named MCNet for 2D thermal image semantic segmentation of nighttime driving114

scenes has been published in [23]. For point cloud data, in [24] a PointNet [1] based115

hand segmentation network is explained but they are not using multi-modal data at all.116

In summary, the above mentioned studies can be roughly categorized into three117

groups:118

1. Using traditional methods to analyze multi-modal data for human recognition,119

such as [13] [10] [17].120

2. Using a neural network approach to detect humans but not on multi-modal data,121

such as [24] [8].122

3. Using a neural network approach to process multi-modal data for human detection,123

however almost all of them are regarding the task of autonomous driving in urban124

scenarios, such as [23] [21].125

To our knowledge, there has not been a comprehensive study using deep learning126

technology and multi-modal 3D data to specifically address the problem of indoor127

human hand segmentation in point clouds for an assistant robot. Therefore, in this work128

we will provide a detailed discussion on this issue.129

3. Method Overview130

As shown in Figure 1, the entire pipeline for hand and object segmentation based on131

multi-modal 3D data is divided into 3 steps: Calibration, Registration and Segmentation.132

• Calibration: For a multi-modal sensor system containing a 3D sensor, a color133

camera and a thermal camera, the intrinsic parameters of each sensor and the134

extrinsic parameters of color and thermal camera in respect to the 3D sensor should135

be calibrated. It will be explained in section 4.2.136

• Registration: By using the intrinsic and extrinsic parameters, the color and thermal137

pixel values in 2D images should be mapped onto the 3D point cloud, in order to138

build a multi-modal 3D point cloud, in which each point integrates multi-modal139

information of color (RGB), temperature (T) and coordinates in 3D space (XYZ). It140

will be described in section 4.3.141
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Figure 1. Workflow for a hand/object segmentation approach using a multi-modal 3D sensor system containing a 3D sensor, a RGB
camera and a thermal camera.

• Segmentation: With the help of neural networks, potential multi-modal features142

hidden in the point cloud can be learned for secure and robust hand/object seg-143

mentation. In this work, PointNet [1], PointNet++ [2], and RandLA-Net [3] have144

been used as segmentation approaches. These approaches will be briefly discussed145

in section 5. In section 7, comparative experiments (training on various data modes146

of XYZ, XYZ-T, XYZ-RGB and XYZ-RGB-T) will be provided to evaluate the appli-147

cation of multi-modal 3D data for hand/object segmentation.148

4. Sensor System149

4.1. Multi-modal Sensors150

The Figure 2 shows our multi-modal 3D imaging system, which consists of an active151

stereo-vision 3D sensor based on GOBO (Goes Before Optics) projection [25], a color152

camera (FLIR Grasshopper3 [26]) and a thermal camera (FLIR A35 [27]). It has been used153

to record a multi-modal dataset (XYZ-RGB-T) of humans holding objects as described in154

Sec. 6.155

The 3D sensor utilizes two NIR (near-infrared) (850 nm) cameras and a NIR (850 nm)156

GOBO projector [28] for projecting a temporally varying aperiodic sinusoidal pattern157

into the scene. By means of that pattern, corresponding 3D points can be identified in158

an image sequence, enabling a robust reconstruction of pixel disparities and therefore159

depth of point cloud points. The GOBO system yields point clouds with 0.32-1.18 mm160

resolution and roughly 0.15 mm measurement error in a relatively small field of view of161

48° x 44° in a limited range of 0.4-1.5 m at 36Hz. The FLIR Grasshopper3 provides color162

images with a resolution of 2048x2048 pixels in the field of view of 50° x 50° at 90Hz,163

and the FLIR A35 captures thermal images of 320x256 pixels in a range of -25°C to 135°C164

at 60Hz. It has a field of view of 63° x 50° and therefore covers the whole point cloud165

area as does the rgb camera. Table 1 shows the technical data of the GOBO 3D sensor166

and the additional cameras.167

4.2. Calibration Target168

In order to fuse the image data of each camera, precise mapping of pixel coordinates169

in each image to the 3D point cloud is required and the camera system needs to be170

calibrated. Normally, a printed checkerboard pattern can be used as a calibration target.171

It works fine for RGB and NIR cameras, but for thermal camera it is challenging. Because172

black and white grids of the printed pattern have almost the same emittance in LWIR,173
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Figure 2. A multi-modal 3D sensor system consisting of an active stereo-vision 3D sensor based
on GOBO projection, a RGB camera (FLIR Grasshopper3), and a thermal camera (FLIR A35).

Table 1. Technical data of the used camera systems

GOBO 3D Sensor FLIR A35 FLIR Grasshopper3
thermal camera color camera

Resolution 1024 x 1024 320 x 256 2048 x 2048
Image frequency 36 Hz 60 Hz 90 Hz

Field of view 48° x 44° 63° x 50° 50° x 50°
Mean depth error 0.15-0.5 mm [29] - -

Range 0.4-2 m - -
Wavelength band 850nm 8 − 14µm R: 640 G: 525 B: 470 (nm)

Thermal sensitivity - < 0.05°C -
Temperature range - -25 to 135°C -

the chessboard pattern cannot be captured by thermal cameras. Hence, as shown in174

Figure 3a, inspired by [30], a copper-plastic chessboard calibration target has been175

manufactured to solve this problem. Before the actual calibration the target needs to176

be heated for example by means of a hair dryer. After a few seconds of cooling down,177

the copper grids and plastic grids will have different temperatures and different grey178

values (copper dark and plastic bright) in the thermal image, because they have different179

emissivity coefficients, as shown in Figure 3b.180

This copper-plastic chessboard works fine for thermal camera calibration, but it181

brings another problem for RGB and NIR camera. The surface of copper plating is182

always smooth, resulting in an overexposure problem because of specular reflections183

with external and passive light sources. Furthermore, the low contrast of texture on the184

chessboard surface in wavelength of visible light and NIR leads to the fact that the grid185

in the calibration images is not sharp enough for the corners to be detected. Therefore, as186

shown in Figure 3a, a calibration target with an internal active light source is proposed.187

A colorless and transparent plate is mounted behind the chessboard and visible light188

and NIR LEDs are mounted at the edges of the plate as active light sources. A white189

opaque board is set behind the plate as a diffusor. Figure 3b shows the comparison of190

calibration images with passive lighting and active lighting. With the help of the active191

light source, images with sufficient contrast can be captured to calibrate the intrinsic and192

extrinsic parameters for our multi-modal cameras.193
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(a) (b)
Figure 3. (a) A copper-plastic chessboard calibration target (upper) and its principle (bottom); (b)
Comparison of calibration images with and without active lighting for color image, NIR image
and thermal image.

4.3. Calibration and Registration194

The intrinsic parameters K of each camera can be simply calculated by using the195

Zhang’s calibration algorithm [31]. The 3D sensor is used as a reference camera for196

calibration of extrinsic parameters. That means that rotation R and translation T of197

each camera (except 3D sensor) with respect to the coordinate system of the 3D sensor198

are calculated from a series of image tuples showing the calibration target. By using199

the parameters, alignment of the multi-modal point cloud can be performed with the200

following method:201

For generating the multi-modal point cloud, each point of the original point cloud
from the 3D sensor, is projected onto the image plane of the color and thermal camera.
To that end, the point cloud can be transformed from the coordinate system of the
3D sensor to the coordinate system of the target camera with the extrinsic parameters
(Rt, Tt). For each 3D point of the transformed point cloud, a 2D projection pixel (ut, vt)
on the target sensor plane can be calculated with intrinsic parameter Kt of the thermal
camera and RGB camera respectively. If the projection pixel is located on the sensor, i.e.
0 ≤ ut < width, 0 ≤ vt < height, it will be determined as a corresponding pixel of this
3D point, as shown in equation 1. Once 2D corresponding pixels of all 3D points are
determined, thermal and RGB values can be mapped onto the 3D point cloud.

s ·

ut
vt
1

 = Kt ·

r11 r12 r13
r21 r22 r23
r31 r32 r33

 ·

x
y
z

+

tx
ty
tz

, Kt =

 fx 0 cx
0 fy cy
0 0 1

 (1)

where Kt is the matrix of intrinsic parameters of target camera, cx and cy are the principal202

point coordinates, fx and fy are the focal lengths of thermal or RGB camera’s lens, rij203

represent the rotation matrix, and
[
tx, ty, tz

]
is the translation vector defining the extrinsic204
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Figure 4. The principle of PointNet. Point positions get transformed into spatial features by two
stages of MLPs, before they are pooled into a global feature vector describing the whole object.
Afterwards, a combination of local and global features can be used for segmentation purposes.[1]

calibration parameters. x , y and z are the point coordinates in the coordinate system of205

the 3D sensor.206

5. Point Cloud Segmentation Networks207

5.1. PointNet208

In the field of 3D point cloud segmentation, PointNet [1] is a milestone study.209

The article proposed the idea of using shared multi-layer perceptrons (MLP) to extract210

global features from a point cloud. By using a novel T-Net (transformation-network),211

a reference frame for the point cloud can be learned and utilized to keep features212

rotationally invariant. Usually in traditional methods, principal component analysis213

(PCA) was used to solve this problem instead. In addition to that, max-pooling was214

recommended as a symmetric aggregation function to solve the problem that usually a215

point cloud is an unordered set. As shown in Figure 4, global features of a point cloud216

can be efficiently extracted using PointNet. Finally, the global features and the output217

features of the last feature transformation unit will be concatenated to be used as input218

for another network to achieve pixel level segmentation.219

5.2. PointNet++220

Obviously, with only global features, PointNet has insufficient ability to represent221

the semantic information for a local region. PointNet++ [2] describes a multi-level222

architecture, as shown in Figure 5. By using a farthest point sampling (FPS) algorithm,223

in each level the input point cloud is progressively downsampled and the point density224

decreases. Each point in the sampled sparse point cloud is used as a centroid for a225

neighborhood search in the dense point cloud. Then a mini-PointNet is utilized to extract226

the global features of this neighborhood that will be used as the local feature of this227

centroid point. A hierarchical propagation strategy with distance based interpolation228

and across level skip links is adopted to upsample the enriched point clouds to the229

original size.230

5.3. RandLA-Net231

RandLA-Net [3] is a state-of-the-art neural network designed for large-scale 3D232

point cloud semantic segmentation. Similar to PointNet++, RandLA-Net is also a multi-233

level architecture, which in contrast uses random downsampling instead of FPS in order234

to reduce memory requirements and speed up computation. However, random sampling235

has a drawback of missing some useful point features occasionally. To overcome that236

issue, a powerful local feature aggregation module was designed in that approach, as237

shown in Figure 6. By using a local spatial encoding module (LocSE) in each neighbor-238

hood various spatial information are explicitly concatenated and encoded. Therefore,239

XYZ-coordinates of all points as well as euclidean distances and XYZ-differences be-240
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Figure 5. The multi-level architecture of PointNet++. Explicit neighborhood search in the point
clouds is used to extract local features by means of a locally applied PointNet in multiple stages.
These strong local feature can be used for object classification (lower branch) or for segmentation
(upper branch) [2]

Figure 6. The architecture of the local feature aggregation module of RandLA-Net, which consists
of multiple Local Spatial Encoding layers (LocSE) and Attentive Pooling layers (AP). In LocSE, the
geometric information of a local area in the point cloud is encoded and then concatenated with
the point features for local features extraction. The local features are further aggregated by an AP
layer. [3]

tween the centroid point and all neighboring points are calculated. Then the spatial241

information and point features are concatenated and local features can be extracted242

using a shared MLP. Additionally, in between two adjacent levels, an attentive pooling243

is utilized to aggregate the features. Then, multiple LocSE and attentive pooling units244

with a skip connection are stacked as a dilated residual block, which is repeatedly used245

in the RandLA-Net. Overall, RandLA-Net is built by stacking multiple dilated residual246

blocks to aggregate local features and an upsampling method identical to PointNet++ is247

used to interpolate the downsampled point clouds.248

6. Datasets for Hand/Object Segmentation249

In this paper, a dataset captured by our sensor system and named GOBO-Dataset is250

used to evaluate the performance of the multi-modal 3D data hand/object segmentation,251

as shown in Figure 7. The hand with one of the objects was placed roughly one meter252

in front of the sensors. In half of the data the human hand is recorded with opaque253

rubber gloves, in the other half without. In some samples of the dataset, the objects254

have taken the temperature of the holding hand caused by the long time holding them255

(see the right thermal point cloud). We used our own semi-autonomous annotation tool256

for labeling these multi-modal point clouds. The tool takes advantage of the simple257

separation of the background in the point cloud and uses region growing on the thermal258
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(a)

(b)
Figure 7. Overview of the GOBO-Dataset with 12 classes (10 objects, background, and hand): (a)
all objects; (b) examples of multi-modal 3D data (Box, Human figure doctor and Kitchen board)

or color channel for an initial separation of hand and held object, which afterwards can259

be refined manually.260

The GOBO-Dataset provides 600 multi-modal point clouds labeled with 12 classes261

(10 objects, background, and human hand). The samples have been split into a training262

set with 420 point clouds, a validation set with 60 point clouds and a test set with another263

120 point clouds. In the dataset we have multi-modal point clouds with 7-channels264

containing spatial data (XYZ), color data (RGB) and thermal data (T). In comparative265

experiments, the networks mentioned in section 5 were trained on different modalities of266

the dataset in order to understand the influence of the individual parts (XYZ, XYZ-RGB,267

XYZ-T and XYZ-RGB-T).268

7. Segmentation Experiment269

As mentioned in section 5, PointNet has the simplest architecture with only plain270

global feature extraction. Local features can be extracted by PointNet++ and RandLA-271

Net, and especially RandLA-Net has a more powerful and complex local feature aggre-272

gation with respect to PointNet++. Therefore, in this experiment we have chosen these273

three networks with different performance for training on the GOBO-Dataset to evaluate274

the influence of multi-modal 3D data on hand/object segmentation in general. Thus, the275

findings should generalize to future architectures.276

7.1. Evaluation Approach277

A measuring method is required for performance evaluation of the point cloud278

segmentation. The Intersection over Union (IoU) was applied to intuitively reflect279

segmentation performance. For each class, the IoU could be calculated by using equation280

2. Moreover, the mean IoU of all the classes (hand and objects) was calculated to present281

the overall performance, and the mean IoU of all the objects is also provided in the282

experiment section. In the scene of grabbing an object from a human hand by an283

assistant robot, we did not measure the IoU for background, because the segmentation of284

hand and held object is much more important than background, while the background285

class otherwise dominates the results.286

IoU =
TP

TP + FP + FN
(2)

where TP is the number of true positive predicted point classes, FP is the number of287

false positive predictions and FN is the number of false negative predictions.288
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Figure 8. The convergence curves in training phase of RandLA-Net, in which RandLA-Net was
trained for 400 epochs on data XYZ, XYZ-T, XYZ-RGB and XYZ-RGB-T. Upper: the training curve,
bottom: the validation curve.

7.2. Training Details289

PointNet, PointNet++ and RandLA-Net were trained on XYZ, XYZ-RGB, XYZ-T290

and XYZ-RGB-T for 400 epochs without any pre-training. The learning rate setting is291

as shown in table 2. We used a framework of PointNet and PointNet++ available from292

[32]. For PointNet++, for sake of efficiency, we replaced the farthest point sampling by293

a uniform random sampling similar to RandLA-Net, and multi-scale grouping (MSG)294

was also adopted. The used implementation of RandLA-Net was available on [33]. For295

PointNet++ and RandLA-Net, a 4-level architecture was used, and in each level the point296

cloud was progressively downsampled with a factor of 1/3.297

Table 2. Learning rate schedule for the experiments

Epochs 0-100 100-200 200-400

learning rate 0.01 0.001 0.0001

Due to removal of invalid points, 3D sensors will inevitably produce point clouds of298

different sizes and depending on the scene, the number of valid points varies. However,299

neural networks require batches of data with the same size for training. Hence, before300

training, the multi-modal point clouds in the training dataset have been uniformly301

downsampled to standardized size (10,000 points in our case).302

The training of the networks used the cross-entropy loss function and the Adam op-303

timizer [34]. The point clouds in our dataset are imbalanced in the number of points per304

class (the ratio of background, hand, and object is approximately 3309:267:1). Therefore,305

different weights for each class were used for weighting the loss function, as shown in306
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Table 3. The quantitative segmentation results on test split of the GOBO-Dataset (IoU %)

mIoU IoU mIoU Box Nurse Doctor Wedge Hedge- Kitchen Spatula Human Ice Tea
overall Hand Object Figure Figure hog Board Figure Scraper Box

RandLA-Net

XYZ-RGB-T 82.8 92.6 81.9 91.7 77.5 65.9 80.3 71.6 85.2 70.7 95.3 88.8 91.5
XYZ-RGB 77.3 88.9 76.2 77.0 59.9 33.0 80.0 96.2 83.8 68.8 88.1 91.5 83.4
XYZ-T 35.7 84.1 30.9 44.2 15.0 5.0 28.4 57.7 47.9 27.0 25.3 26.5 32.1
XYZ 35.7 76.7 31.6 34.3 2.5 36.1 29.4 49.6 65.4 17.8 28.2 22.5 30.6

PointNet++

XYZ-RGB-T 55.0 79.8 52.5 58.0 40.2 33.7 65.9 87.1 71.7 25.5 43.1 24.1 75.2
XYZ-RGB 45.5 66.6 43.4 66.2 30.2 23.0 58.0 69.7 57.0 23.6 41.1 19.3 46.1
XYZ-T 25.9 52.0 23.2 45.2 13.3 1.8 20.5 37.6 38.3 15.1 5.5 12.0 43.1
XYZ 25.8 60.6 22.4 55.1 15.6 12.7 7.8 27.8 43.3 24.3 6.4 15.8 14.7

PointNet

XYZ-RGB-T 45.9 79.9 42.5 62.2 23.5 26.7 62.6 36.2 52.7 28.8 39.3 42.2 50.9
XYZ-RGB 43.5 78.4 40.1 60.1 20.5 22.6 63.5 34.9 51.8 27.0 38.6 42.9 39.2
XYZ-T 24.8 72.1 20.1 18.1 31.4 13.9 16.1 25.3 23.6 9.1 26.3 18.9 18.2
XYZ 22.0 52.9 18.9 36.4 15.8 13.9 10.4 24.0 31.0 12.9 18.1 11.6 15.2

equation 3. The normalized weight wi depends on the probability pi of a point to belong307

to the the ith of K classes in the entire dataset.308

wi =
log(pi)

K
∑

j=0
log(pj)

(3)

7.3. Segmentation Results309

Figure 8 shows convergence curves of RandLA-Net in the training phase on training310

dataset and validation dataset. At epoch 400, although the training curve still shows an311

improving trend, the validation curve indicates that the results are no longer improving.312

So we interrupted the training at 400th epoch. Obviously, with the help of the strong fea-313

ture of color, the RandLA-Net has a significant superiority by XYZ-RGB-T and XYZ-RGB314

over by XYZ and XYZ-T. With the use of thermal, XYZ-RGB-T has further improved over315

XYZ-RGB. This is in line with our expectation. Meanwhile, trends of the convergence316

curves show that the convergence rate of the four modes were almost the same. This317

indicates that the multi-modal point cloud does not lead to a longer training time due318

to more channels. The training phases of PointNet and PointNet++ feature almost the319

same tendency.320

Table 3 shows the detailed quantitative segmentation results based on the test321

dataset. For all the three networks, the overall mIoU shows similar relations for the322

individual input channels used, while the absolute performance of the three networks323

differs reflecting their individual abilities. However, XYZ-T has almost no improvement324

over XYZ in the test dataset independent on the used architecture. For this, the second325

and third columns of the table provide the explanation. For example, for RandLA-Net,326

the mIoU of objects by XYZ-T actually decreased by 0.7% compared to XYZ. It is possible327

that this is because in some samples of our dataset, the object took on hand temperature328

at some parts of the surface. The points in these areas could be confused for hand without329

any additional color information. Compared to XYZ-RGB, although XYZ-RGB-T should330

not have a dominant advantage for predicting the object points, it has a significantly331

better object mIoU. This indirect improvement is due to reduction of false positive points332

in the interaction area of hand and object, which can be better predicted as hand, as333

shown in Figure 9. In comparison, the object mIoU, as well as the mIoU of the hand class334

has an obvious improvement from XYZ to XYZ-RGB-T, proving that multi-modal data335

significantly supports a more robust segmentation independent of the actual method336

used.337
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Figure 9. Visualization of experimental results for RandLA-Net on individual samples of the test dataset; The first row shows the
ground truth and segmentation by XYZ, XYZ-T, XYZ-RGB and XYZ-RGB-T, while the hand class is labeled in red. The second row
shows the color point cloud, thermal point cloud, and the feature point cloud generated by XYZ, XYZ-T, XYZ-RGB and XYZ-RGB-T.
In the feature point cloud, the Euclidean distances between a reference point (red point) and all the other points are calculated and
normalized in features space. The distances are color coded (light yellow: similar points, dark blue: dissimilar points).
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7.4. Visualization of Segmentation Results338

Figure 9 shows a visualization of the segmentation results. For each object, the first339

row shows the ground truth and RandLA-Net predictions by XYZ, XYZ-T, XYZ-RGB340

and XYZ-RGB-T. The second row shows the color point cloud, thermal point cloud and341

feature point clouds. The features extracted by the last feature layer of RandLA-Net342

were used to generate these feature point clouds. Inspired by [35], we used the following343

method to generate the feature point cloud:344

First, we choose a reference point (red point) that is located on the hand. In the345

corresponding feature space, the euclidean distances between this reference point and346

all the other points of this point cloud were calculated. The 3D sensor inevitably will347

generate some outlier points (incorrectly reconstructed points). In feature space, the348

distances between these points and other points may be exceptionally large. Therefore,349

the distances for visualization was normalized to the 97% quantile and were presented350

with gradient colors (light yellow to dark blue). Hence, in the feature point cloud, the351

greater color contrast between two points indicates that they have greater dissimilarity.352

It is clearly visible, that for all the objects, the feature point cloud of XYZ-RGB-T353

has higher contrast than any other, i.e. the points of the hand have greater distances354

in the feature space to the object and background. Although the final segmentation355

result is still dependent on the classifier, these distances make it easier to cluster points356

in the feature space, and implies that the segmentation will be better. Figure 9 shows357

XYZ-RGB-T has the best segmentation results in the interaction area of hand and object.358

For example, in the pictures of the first object, the segmentation of the fingers and the359

object is refined when using XYZ-RGB-T. For the second object, some areas of the surface360

possess a similarity to the hand in the feature point cloud by XYZ-RGB because of the361

color texture. The segmentation results by XYZ-RGB show that some points on these362

areas are indeed predicted as hand. In comparison, the segmentation of XYZ-RGB-T363

is much more precise. For the third object, as shown in the thermal point cloud, the364

boundary area of the kitchen board has a similar temperature as the hand, causing365

the points in this area to be predicted as hand when using XYZ-T. In contrast, this366

similar temperature does not affect the prediction when using XYZ-RGB-T. However,367

the pictures of the third object show, the middle finger of the hand with a ring has points368

that were mistakenly predicted as object by XYZ-RGB and XYZ-RGB-T classifiers.369

7.5. Time Consumption Analysis370

The experiment was conducted on the computing platform of Intel Core i9-9960x371

(CPU) and GeForce RTX 2080 Ti (GPU). We recorded the time consumption for processing372

a multi-modal point cloud with 10k points. By using a parallel computing by OpenMP373

[36], multi-modal data fusion consumes 14 milliseconds (ms) approximately, and the374

inference time consumption by the three networks PointNet, PoineNet++ and RandLA-375

Net are approximately 7 ms, 124 ms and 102 ms. As we can see, with respect to the376

inference by PointNet++ and RandLA-Net, data fusion occupies only a fraction of the377

time consumption for the entire process. PointNet++ and RandLA-Net have the multi-378

level architecture, leading that multiple k-nearest-neighbors (KNN) based neighborhood379

searches are required for each of two adjacent levels. As a result, these two approaches380

are not as efficient as PointNet. The neighborhood searches for the 4-level architecture381

has a time consumption of 81 ms and hence is the major part. The additional effort382

to achieve an improvement through sensor fusion seems to be justified in view of the383

runtimes of increasingly complex networks necessary to improve the results otherwise.384

8. Discussion385

To enable a precise segmentation of hand and object for an assistant robot to grasp386

objects from a human hand safely, in this work, we presented a multi-modal 3D sensor387

system. We also focused on the challenges for calibration and alignment of a multi-modal388

sensor system with a thermal camera. The successful experiments showed, that applying389
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a copper-plastic chessboard calibration target with internal and active light source (NIR390

and visible light) effectively solves the calibration problem. As it can be captured by each391

camera with sufficient contrast simultaneously, the use of such a calibration target makes392

the calibration and alignment of the multi-modal camera systems no longer tedious.393

The segmentation experiments using PointNet, PointNet++ and RandLA-Net on our394

dataset could confirm our hypothesis, that multi-modal data significantly supports point395

wise segmentation. RandLA-Net as the strongest state-of-the-art network has achieved396

the remarkable results on XYZ-RGB-T (overall mIoU: 82.8%). In contrast, the mIoU for397

XYZ, XYZ-T and XYZ-RGB were 35.7%, 35.7%, and 77.3% respectively. Surprisingly,398

XYZ-T has almost no improvement over XYZ, this is partly because some objects have399

the similar temperature as human hands, which confuses the prediction on XYZ-T400

without any additional cues. In addition, a visualization of feature point cloud extracted401

by RandLA-Net intuitively demonstrates the feasibility of using a neural network to402

extract the potential features of multi-modal data. As mentioned in the section 1, in403

the multi-modal data, none of the channels are all-purpose, but the information of all404

channels can be integrated to make up for their respective weaknesses.405

In recent years, the computing performance of computers has improved tremen-406

dously. Therefore, deep learning technology has started to be widely studied and applied.407

Under this condition, the computing performance required for efficient multi-modal408

sensor fusion is also achievable. On our computing platform of Intel Core i9-9960x409

(CPU) and GeForce RTX 2080 Ti (GPU), data fusion consumes approximately 14 ms for410

a point cloud with 10k points. Therefore, we propose the application of multi-modal411

data to reduce the complexity of image processing tasks. It is a matter of data and412

improvements in the segmentation methods which in future will allow to raise the413

limits of the hand/object segmentation results further. Nevertheless, for safety critical414

applications, the IoU results alone will not be a sufficient criterion. In order to rely on415

machine learning based safety critical features, other questions like explainability and416

robustness in case of adversarial or out of distribution data have to be considered. We417

are sure, that multi-modal data helps to reach an acceptable level of robustness more418

easily either way.419

In the future, in order to make the multi-modal sensor system usable in a real-world420

environment, we would like to expand our dataset and further evaluate it in practical421

scenarios. Currently, with training of RandLA-Net on our dataset, we can precisely422

segment hand and objects in real-time point clouds from the sensor. Nevertheless, some423

points on the background will be identified as hand or object occasionally, which may424

be caused by the different point density compared to the training data. Therefore, we425

address the portability of our models to other sensor setups and unseen objects in future426

work.427
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