
Department of Computer Science and Automation

Neuroinformatics and Cognitive Robotics Lab

Attribute-based Person Re-Identification

by Deep Learning

Master’s thesis to obtain the degree Master of Science
in Computer Science

Thomas Golda

Supervisor: Dipl.-Inf. Markus Eisenbach
Professor in charge: Univ.-Prof. Dr. Horst-Michael Groß

Neuroinformatics and Cognitive Robotics Lab

This master’s thesis was submitted on the 9th of December 2016
at the Department of Computer Science and Automation of the
Technische Universität Ilmenau.





Acknowledgment
I take this opportunity to express gratitude to all my friends who
supported me in any conceivable way. I would particularly like to
thank Josephine R., who counter-checked my master’s thesis and
gave me helpful tips for my English writing; Christoph B., who

gave me lots of feedback on the subject-specific topics; Patrick S.,
who supported me in spots with the mathematically correct

expressions; Last but not least, Markus E., who showed much
patience with me and provided helpful feedback.

Many thanks to all of you!



Statutory Declaration: ”I declare on oath that I completed this work on my
own and that information which has been directly or
indirectly taken from other sources has been noted
as such. Neither this, nor a similar work, has been
published or presented to an examination committee.“

Ilmenau, 9th of December 2016
Thomas Golda



CONTENTS

Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aim of the master’s thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5

2.1 Person Re-Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 What are Artificial Neural Networks? . . . . . . . . . . . . . . . 7

2.2.2 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . 9

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 State of the Art 15

3.1 General Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Feature-based methods . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Distance Metric Learning . . . . . . . . . . . . . . . . . . . . . 18

3.1.3 Attribute-based methods . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Deep Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Attribute-less . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Attribute-based . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

i



CONTENTS

4 Classification of Semantic Attributes 31

4.1 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.1 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Output Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.3 Inner changes on the Network . . . . . . . . . . . . . . . . . . . 34

4.2 Training for Attribute Recognition . . . . . . . . . . . . . . . . . . . . 37
4.2.1 Attribute Dataset PETA . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Preprocessing the Dataset . . . . . . . . . . . . . . . . . . . . . 38
4.2.3 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.4 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1 Validation Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.4 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Attribute-based Person Re-Identification 65

5.1 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.1 Distance Network . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.2 Classification Network . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Training of the Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.1 Triplet Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.2 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.3 Loss Function and Training . . . . . . . . . . . . . . . . . . . . 76
5.2.4 Ranking of Gallery Samples . . . . . . . . . . . . . . . . . . . . 80

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.1 Datasets for Validation . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.3 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

ii



CONTENTS

6 Conclusion 99

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A Tables and Implementation Details for the Algorithms 103

A.1 Classification of Semantic Attributes . . . . . . . . . . . . . . . . . . . 103
A.2 Attribute-based Person Re-Identification . . . . . . . . . . . . . . . . . 106

B Pedestrian Attribute Dataset (PETA) 111

B.1 List of available attributes . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.2 Composition of dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C References 119

Bibliography 126

iii





CHAPTER 1. INTRODUCTION

Introduction 1
Starting with the motivation in Section 1.1, this chapter will afterwards give a short
description of the aim of this thesis (Section 1.2). The last part (Section 1.3) addi-
tionally serves as a short overview of the structure and different topics presented in
this study.

1.1 Motivation

Figure 1.1: Common and challenging situation
in clinical environment
Narrow hallways with many people walking in
different speeds and directions make it diffi-
cult formobile robots to navigate towards a tar-
get or follow a person. (Taken from [Eisenbach
et al., 2015])

Person re-identification is an important
task especially in the field of surveillance,
but also in mobile robotics. It describes
the problem of identifying people across
images that have been taken using differ-
ent cameras, or across time using a single
or multiple cameras. In the past, a vari-
ety of approaches has been developed to
identify persons by use of different kinds
of features. An overview of features used
for person re-identification is illustrated
in Figure 1.2.
When working with images of faces, bio-
metric features show a good performance
for re-identification. The main drawback of this kind of visual features emerges when
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CHAPTER 1. INTRODUCTION

Figure 1.2: Different kinds of features for visual person re-identification
(Based on [Eisenbach et al., 2015])

choosing an application field like mobile robotics. Typically it cannot be assured that
a robot is able to observe a person from the front, especially in the socially assistive
robotics field, where a typical task can be to follow a certain person. In this case,
robots usually see target persons from different perspectives and hence do not always
have the possibility to take an image of their face. This kind of situation is illustrated
in Figure 1.1, where the robot has to follow the person with the black jacket without
being distracted by other people. For instance in the research project ROREAS at
Ilmenau University of Technology, robots were developed to serve as coaches for walk-
ing and orientation training of stroke patients in clinical environments. [Gross et al.,
2016] Therefore, the task was to select alternative features for re-identification, which
also allow to identify persons from varying perspectives with a certain uncertainty.
A specific example for view invariant features are attributes like clothing style or acces-
sories. Descriptions based on this kind of features apply in most cases independently
of the viewing perspective. As stated by [Cheng et al., 2011], when observing people,
humans pay attention to salient features, like special clothing, in order to identify
them. This was examined by using eye-trackers. Thus, it seems natural to choose
attributes as features for re-identification of persons when working with robots, even
if such a description can be ambiguous.

2



CHAPTER 1. INTRODUCTION

1.2 Aim of the master’s thesis

In recent years neural networks again began to enjoy great popularity, especially in
the field of computer vision. Many different developments in the past led to better
performance, particularly when working with neural networks with many hidden layers,
making them attractive for different purposes. Therefore more and more researchers
consider neural networks for their projects. This "reincarnation" of neural networks
is often referred to as Deep Learning, on which further information will be given in
Section 2.2.
Inspired by the great success of different Deep Learning techniques, this thesis aims to
develop and evaluate a method to perform person re-identification based on attributes
and Deep Learning, and to study whether it achieves the performance of state-of-
the-art algorithms. Therefore, the thesis focuses on existing approaches for person
re-identification based on Deep Learning and tries to combine promising concepts
with an already existing Convolutional Neural Network architecture [Eisenbach et al.,
2016] for person detection. The just mentioned model was developed by researchers
of the Neuroinformatics and Cognitive Robotics Lab at the Ilmenau University of
Technology. As previously stated, its purpose is to detect people in images, taken by a
mobile robot in a clinical environment, hence it has already obtained some knowledge
about the appearance of people. Since detecting and identifying persons are related
problems to some degree, one can suppose that the person re-identification network
will benefit of the already acquired knowledge of the person detector.

1.3 Structure of the Thesis

The thesis consists of six chapters, whereas the first chapter gave an introductory view
on the topic. In the following paragraphs, the remaining five chapters are presented
by giving short overviews of their contents.

Chapter 2. This chapter discusses the basic topics needed to understand this thesis.
Section 2.1 describes the person re-identification task in a short manner and shows the

3



CHAPTER 1. INTRODUCTION

difficulties and problems occurring when trying to identify a single person seen in a
certain image in another one. Finally the fundamentals of artificial neural networks
and a detailed look on Convolutional Neural Networks, which play an important role
within the scope of this study, are given in Section 2.2.

Chapter 3. In this part of the thesis an overview of different state-of-the-art meth-
ods for person re-identification will be presented. The first Section 3.1 gives basic
information about general existing algorithms mostly used when trying to describe
and identify persons. Section 3.2 takes a deeper look on Deep Learning algorithms for
person re-identification. In concrete terms, Section 3.2.1 and Section 3.2.2 focus on
attribute-less respectively attribute-based techniques by delineating substantial con-
cepts and ideas of different related papers.

Chapter 4. The main part of this master’s thesis is divided into to parts. The first
part of the proposed algorithm, which focuses on the prediction of semantic attributes,
will be presented in this chapter. Therefore, it gives an overview of the used methods
in order to build a system, which is capable of predicting attributes for given images
of people. Section 4.1 shows details about the network architecture, followed by infor-
mation about the generation of the attribute dataset and further algorithmic details
in 4.2. Finally, different performed experiments are discussed in 4.3.

Chapter 5. The second part of the algorithm focuses on performing the actual re-
identification. It builds upon the results of the method presented in Chapter 4. For
the purpose of the re-identification of people, two different network architectures are
examined. In Section 5.1 the architectures of both networks are presented, followed by
details about the performed training in Section 5.2. Finally, Section 5.3 both attempts
are evaluated, discussed, and compared to another selected re-identification algorithm
that uses semantic attributes in.

Chapter 6. The final chapter summarizes the results of the developed and presented
method for person re-identification in Section 6.1. Last but not least, Section 6.2 shows
possible ways for future work.

4



CHAPTER 2. BACKGROUND

Background 2
This chapter gives an overview of different aspects concerning this thesis. First, a short
presentation and explanation of the person re-identification task and it’s difficulties
will be given in Section 2.1. Second, a brief look at Deep Learning will present some
general information, to give the reader a basic understanding of this advanced and
on-trend machine learning technique (Section 2.2). More details on the used Deep
Learning method will be given in Chapter 4 and 5.

2.1 Person Re-Identification

As mentioned in the introduction of this master’s thesis, person re-identification is an
important task especially in field like surveillance, or mobile robotics. Furthermore,
in environments where a robot faces many people, detecting and identifying the right
persons is very important. Depending on the purpose of such a robot, it should be able
to distinguish between different persons. Particularly when following a target person,
the robot should be able to find his target person all the time. Therefore, it is necessary
to extract features in order to build a system that can perform the re-identification.
The typical steps performed in re-identification of persons are presented in the following
shortly. First features of the target person are extracted at the beginning of the
task. In the next step, for all detected persons feature representation have to be
generated as well. Based on these features, the different persons have to be compared
and afterwards ranked by their similarity. In order to achieve this, some kind of
features have to be used, which are view-invariant, in order to find persons independent

5



CHAPTER 2. BACKGROUND

from the view perspective. For this purpose, this master’s thesis focuses on semantic
attributes, which describe a person by their appearance. Examples are clothing style
or accessories. However, large variations in viewpoint and lighting across different
views can cause two images of the same person to look quite unalike whereas images
of different people might look very similar. Figure 2.1 gives an example of two people
looking fairly similar on the first look. [Ahmed et al., 2015] Moreover, different poses,
blurring effects, image resolutions, camera settings and occlusions add to the difficulty
of matching different images taken of the same person. [Li et al., 2014]

Figure 2.1: Different people looking similar
Two different persons viewed from different perspectives in a similar environment.
Both look very similar due to their chosen clothing style, which shows how difficult
the person re-identification task can get in certain situations. (Pictures taken from
PETA dataset. [Deng et al., 2014])

Even for humans it can get difficult to tell whether images of two people represent the
same or different persons. An overview of certain re-identification systems is given in
Chapter 3, where some approaches for this task are presented.

2.2 Deep Learning

In the past few years, Deep Learning has generated much fascination in Machine
Learning. Particularly, many breakthrough results in different fields of research like

6
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pattern recognition and computer vision led to this development. The main idea of
Deep Learning is to take artificial neural networks as a basis for the model architecture.
Even though neural networks look back at a decades-long history, they encountered a
raising interest in recent years. This is mainly caused by the availability of inexpensive,
parallel hardware, namely GPUs and computer clusters, and massive amounts of data
as well as methodical improvements (e.g. Dropout, ReLUs and Convolutional Neural
Networks).
In the following section a short introduction into the basics of artificial neural networks
will be given, followed by some information about Convolutional Neural Networks,
which play an important role in this thesis.

2.2.1 What are Artificial Neural Networks?

In the 1950s and 1960s the so called perceptron was introduced in [Rosenblatt, 1958],
which can be seen as one of the first artificial neural networks. An example of a
perceptron is given in Figure 2.2, which shows a single neuron taking three inputs and
computing a single output.
The task of a perceptron is to take a binary decision by computing an output value
depending on several binary inputs xi and some corresponding weights wi as shown in
Equation 2.1.

output =


0 if ∑iwixi ≤ threshold

1 if ∑iwixi > threshold
(2.1)

Due to the simplicity of the activation function chosen for such a kind of neuron,
the perceptron itself is not capable of representing complex behaviors. Therefore,
alternatives have been developed which are more suitable for purposes of learning
more complex functions. Especially so called sigmoid neurons can frequently be found
in artificial neural networks.
A more sophisticated and powerful model are multilayer perceptrons. The main idea
behind multilayer perceptrons is to combine multiple neurons into groups or layers

7
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output

𝑥1

𝑥2

𝑥3

𝑤1

𝑤2

𝑤3

Figure 2.2: Simple perceptron
The perceptron gets three inputs x1, x2 and x3 and in combination with the weights
w1,w2 andw3 computes a decision function to generate a binary output value. (Based
on [Nielsen, 2015])

x0

x1

x2

y0

y1

Figure 2.3: Example of a multilayer perceptron
This example of amultilayer perceptron takes three inputs x0, x1 and x2 which are fed
forward. It is a combination of three hidden layers with five, three and four neurons
and an output layer with two neurons y0 and y1. This structure results in 3 · 5 + 5 · 3 +
3 · 4 + 4 · 2 = 50 weights. This allows to compute more complex functions compared
to a simple approach as shown in Figure 2.2.
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which are connected to the subsequent layer. Figure 2.3 outlines such a multilayer
perceptron where each neuron is connected to all neurons in the subsequent layer.
[Nielsen, 2015] Multilayer perceptrons had to deal with many critical problems, which
made it difficult to train these networks. They were limited in size concerning width
(number of neurons per layer) as well as depth (number of layers) and thus affected
efficiency and performance of the model. In recent years, different discoveries and de-
velopments in the field of neural networks made it possible to use those models much
more efficiently than before and led to the breakthrough of neural networks under the
new term Deep Learning. [Lecun et al., 2015]
Apart from multilayer perceptrons there are even more architectural models for artifi-
cial neural networks which are used for different tasks, but a presentation of all these
would go beyond the scope of this master’s thesis. Therefore, only one specific type of
neural network will be presented in the next section.

2.2.2 Convolutional Neural Network

layer 𝑙 − 1

layer 𝑙

Figure 2.4: Concept of Convolutional Neural
Network
Neurons have connection to a subset of neu-
rons in the subsequent layer. The number of
connected neurons can differ between the lay-
ers.

Since the breakthrough of Deep Learning,
so called Convolutional Neural Networks,
which are biologically-inspired variants of
multilayer perceptrons, enjoy great pop-
ularity. Concerning their structure, Con-
volutional Neural Networks differ signifi-
cantly from multilayer perceptrons. The
main difference hereby is, that neurons do
not have to be connected to all neurons
in the subsequent layer. It is more com-
mon to connect neighborhoods of neurons
with single neurons in the following layer, which leads to a reduction of the number
of weights which have to be adapted by the network. Hence, it is possible to say in
regard of layers, that Convolutional Neural Networks try to exploit local patterns in
the input, whereas multilayer perceptrons considers the whole input in some kind of

9
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(a) Convolution

1 8

5 3

5 2

2 7

5 2

5 6

9 1

4 1

8 7

6 9

2x2 max pooling

input image

resulting
feature map

(b) Max pooling

Figure 2.5: Concept of two-dimensional convolution and max pooling
Figure 2.5(a) shows a two-dimensional convolution on a 4x4 image with filter size
3x3 and a stride of 1. The blue box moves over the underlaying matrix with a step-
size of 1. In total, four different positions are possible. The resulting feature map is
of size 4x4. At each position the filter (orange) is multiplied componentwise with the
content of the blue box and summed up. The result is written to the corresponding
position in the new feature map. Similar to the convolution, max pooling uses such a
window to reduce the image size as shown in Figure 2.5(b). This time, the step-size
is 2 and at each position themaximum value of the blue box is computed and written
to the resulting feature map.

global manner. [Krizhevsky et al., 2012] To reduce the amount of parameters even
more, Convolutional Neural Networks use shared weights. For a better understanding
of this difference, the basic concept presented above is illustrated in Figure 2.4. As
an example, two layers from a one-dimensional Convolutional Neural Network were
chosen to explain the concept. Even if there are six edges between layer l− 1 and l as
displayed, the network only has to learn three of them, because edges with the same
color share the same weights. Such groups of independent weights are called filters.
Despite the reduced amount of weights, Convolutional Neural Networks introduce

new hyper parameters. When designing a network structure, one has to consider how
many filters of which size and stride (i.e. step-size) are aspired to use.
Another kind of layers, so called pooling layers, use the same hyper parameters as con-
volutional layers but do not have weights which have to be learned. The aim of these

10
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layers is to reduce input complexity, but also to preserve local information. Typical
pooling layer types are max pooling and average pooling, which compute the maximal
and average activation respectively of a neighborhood of neurons. Figure 2.5 illustrates
how two-dimensional convolution and max pooling work.

These differences in the construction of multilayer perceptrons and Convolutional
Neural Networks lead to different behaviors of both types of networks. In general,
multilayer perceptrons can be seen as complex function approximators which try to
compute a mapping between inputs and outputs. Often it is necessary to extract
features before training a multilayer perceptron. Convolutional Neural Networks on
the other hand do not need a manual feature extraction, since the filters learn useful
features on their own. In many cases, after a sequence of convolutional and pooling
layers, a multilayer perceptron follows. Its purpose is to perform a classification
based on the output of the convolutional layers. [Lecun et al., 2015] Therefore,
Convolutional Neural Networks can be seen as end-to-end systems, which extend
multilayer perceptrons by the ability to work on raw data without the need of
manually obtained features.
In Addition to the information about multilayer perceptrons and Convolutional Neural
Networks, Table 2.1 gives an overview over some of the most famous Convolutional
Neural Network variants, which in the past showed how powerful this kind of model
can be. Especially for the task of visual person re-identification the deep architecture
presented in [Krizhevsky et al., 2012] is often considered as a starting point for further
developments.

11
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Name Comment

LeNet First successful application of Convolutional Neural Networks
developed by Yan LeCun in the late 1990’s. [Lecun et al.,
1998]

AlexNet Submitted to the ImageNet ILSVRC challenge in 2012. Sig-
nificantly outperformed previous methods. Similar to LeNet
in architecture, but deeper and with more convolutional lay-
ers. [Krizhevsky et al., 2012]

GoogLeNet Winner of ILSVRC 2014 developed by researchers from
Google. Introduced an Inception Module that reduced num-
ber of parameters in the network dramatically. [Szegedy et al.,
2014]

VGGNet Runner-up of ILSVRC 2014, which showed that the depth
of a network is a critical component for good performance.
[Simonyan and Zisserman, 2014]

ResNet Winner of ILSVRC 2015. The architecture is missing fully-
connected layers and uses special skip connections that feed
the output of the two preceding layers into the actual layer.

Table 2.1: Overview of famous Convolutional Neural Networks
This table shows a list of commonConvolutional Neural Network architectureswhich
got famous for their achievements. [Karpathy, 2015]

12
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2.3 Summary

This chapter gave a short overview over the basics of person re-identification and neural
networks. First, person re-identification is an important task in many different fields
and gets much attention by researchers. Some existing techniques that try to solve this
problem will be shown in Chapter 3. Second, Deep Learning is not a completely new
topic but benefits of advances in research and hardware development in recent years
and therefore enjoys great popularity in almost all of the computer vision community
and beyond. Much more could be told, especially about the topic Deep Learning, but
this would go beyond the scope of this study. For a good overview of Deep Learning
see [Lecun et al., 2015].

13
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CHAPTER 3. STATE OF THE ART

State of the Art 3
The main objective of this chapter is to give an overview of existing techniques for
solving the person re-identification problem as presented in Section 2.1. Furthermore,
in the scope of this thesis the chapter will show potentially useful existing concepts and
explain why other methods cannot be applied. Starting with some general approaches,

Distance Metric
Learning

attribute-based
methods

AIR

LORAE

OAR
ITML

KISSME

FPNN

SDALF

IDLA

eSDC
Deep-RDC

SSDAL

DLSAR

XQDA

LMNN

feature-based methods

(C)PS

SCR

Deep Learning
methods

DML

DF

MLCNN

LOMO

Figure 3.1: Overview of state-of-the-art methods for person re-identification
The existing methods for person re-identification can be organized into different cat-
egories as outlined by this figure.
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like (Distance) Metric Learning, and some feature-based and non-deep-learning-related
attribute-based methods in Section 3.1, the chapter continues with a deeper look at
already existing Deep Learning algorithms for person re-identification. Therefore,
the first part presents attribute-less (Section 3.2.1) while the second part deals with
attribute-based Deep Learning methods (see Section 3.2.2).

3.1 General Approaches

Existing methods for person re-identification that try to solve the problem without
using Deep Learning, are divided in this master’s thesis into three major groups:
Feature-based, Metric Learning, and attribute-based methods. Some examples for
each group are presented in the following.

3.1.1 Feature-based methods

A first group are feature-based methods, whose aim it is to perform person re-
identification on specific handcrafted features extracted from images showing pedes-
trians. Different kinds of feature-based methods developed for person re-identification
have already been presented in literature. Some of the selected and often mentioned
representatives are eSDC [Zhao et al., 2013], SDALF [Farenzena et al., 2010], (C)PS
[Cheng et al., 2011], SCR [Bak et al., 2010], and LOMO [Liao et al., 2015]. In [Zhao
et al., 2013] (eSDC) the authors try to extract salient image regions in an unsu-
pervised manner. By their definition, a salient region is discriminative in making a
person stand out from companions, and reliable in finding the same person across di-
igurefferent views. To obtain a description of an image, they divide it into a grid and
compute dense color histograms and SIFT features for every single patch. They only
consider adjacent patches within a neighborhood of rows in the grid for comparison.
Afterwards, they compute salience scores on a reference dataset, which has to be fairly
large to obtain good results. Last but not least, they proposed two ways to compute
a similarity score between two images for re-identification. The score is based on the
salient scores and similarities of single patches in both images.
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feature
extraction

Distance
Metric

Learning

verification & 
ranking

distancesimilar dissimilar

Probe Gallery

imposter class
genuine class

𝑓(𝑥1) 𝑓(𝑥2)

…

Figure 3.2: State-of-the-art procedure for person re-identification
Many of the presented methods for person re-identification follow these steps. In
the first stage features are extracted on which a distance metric learning algorithm
performs subspace learning afterwards. Then, a query is performed to obtain a list
of matches, depending on the given metric.

The SDALF algorithm chooses a different approach. In a first step it subtracts
the background to obtain the person. Afterwards, the person is first divided by an
asymmetrical axis and the resulting two parts are again divided by a symmetrical axis.
These steps allow to extract different body parts of a person. Furthermore, it computes
three different kind of features to obtain the signature of an image: A weighted HSV
histogram, Maximally Stable Color Regions and Recurrent Highly Structure Patches.
To compare different images, a convex combination of differences between correspond-
ing features is computed and evaluated [Farenzena et al., 2010]. For further information
see [Sorge, 2013].
The (C)PS algorithm works similar to SDALF. In a first step the body model is de-
composed into a set of six different parts like torso or arms using Pictorial Structures.
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The features chosen are the same as in [Farenzena et al., 2010] except the Recurrent
Highly Structure Patches. Furthermore, the distances between two images are realized
and combined in a similar way. [Cheng et al., 2011]
Similarly to the just presented method, SCR extracts body parts in a first step. There-
fore, it trains a HOG-based body part detector to obtain a set of different regions like
head, torso, legs and arms. After normalizing colors in the particular regions, a feature
vector for each pixel in such a region is constructed. The resulting feature vectors are
composed out of pixel position, the particular values, and the gradients of each color
channel at that position. Additionally, a covariance matrix between these features is
computed for each region. In order to compare two images a pyramid matching was
chosen which consists of multiple levels. Based on the computed covariance matrices
on these levels, comparisons are conducted for each of the regions of interest. The size
of those regions decreases with every subsequent level. To achieve robustness towards
outliers, the proposed method considers only the k biggest covariance matrix distances
on certain levels for the final dissimilarity metric. [Bak et al., 2010]
Finally, the LOMO features remain. In order to obtain them, the algorithm first
preprocesses images with the Retinex algorithm [Jobson et al., 1997] to achieve im-
proved consistency of lighting and color in different views. Afterwards, the image is
divided into small overlapping patches. Each of these patches is described by a HSV
color histogram and a SILTP descriptor [Liao et al., 2010]. The feature vectors in
each horizontal group are reduced to a single remaining feature vector by taking the
maximum value of corresponding bins. This is done for three different image scales.
Methods like those presented above are well-suited to be used in combination with
algorithms from the group to be presented next (Metric Learning), as outlined in
Figure 3.2. Since this thesis addresses Deep Learning and uses neural networks for
automatic feature extraction hand-crafted features are dispensable.

3.1.2 Distance Metric Learning

As already mentioned in the introduction of this chapter, a second group of methods, so
called Distance Metric Learning (or: Metric Learning) algorithms, which follow a quite
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different approach, exist. These methods try to learn the Matrix M ∈ Sn+ := {A ∈
Rn×n | xTAx ≥ 0, A = AT} of a Mahalanobis distance in order to get small values
for corresponding class members and bigger distances for imposter class members.
Equation 3.1 shows the formula for the Mahalanobis distance between two points x
and y.

dM(x, y) =
√

(x− y)TM(x− y) (3.1)

A selection of methods from Figure 3.1 is presented shortly in the following paragraph.
First, LMNN [Weinberger et al., 2006] learns a Mahanalobis distance metric in the
k-nearest neighbor classification setting using semidefinite programming. The learned
metric attempts to keep k-nearest neighbors in the same class, while keeping examples
from different classes separated by a large margin.
ITML [Davis et al., 2007] follows an information-theoretic approach to Metric Learn-
ing, where it tries to minimize the Kullback-Leibler divergence between two multivari-
ate Gaussians. In other words, the algorithm tries to learn the Mahalanobis distance
metric, which satisfies the constraints concerning distances between genuine and im-
poster class members, and to keep the corresponding matrixM as close to the original
one as possible. In addition, ITML is much faster than LMNN.
KISSME [Köstinger et al., 2012] considers a log likelihood ratio test of two Gaussian
distributions, namely the probabilities for two points xi ∈ Rn and xj ∈ Rn being sim-
ilar or dissimilar. The final Mahalanobis matrix for the learned metric results from
projecting the difference of the inverted covariance matrices of both distributions onto
the cone of positive semidefinite matrices. Since KISSME is a non-iterative algorithm,
it can be computed extremely fast and hence outperforms LMNN and ITML concern-
ing computation speed. For further information about KISSME see [Vorndran, 2015].
Finally, in addition to the already presented LOMO features [Liao et al., 2015] provides
an own Metric Learning algorithm (XQDA). Similarly to KISSME, XQDA takes the
covariance matrices of two Gaussian distributions in order to obtain the Mahalanobis
matrix M . The combination of LOMO and XQDA outperforms all other presented
feature-based and Metric Learning methods in respect to re-identification performance.
[Kulis, 2013] Similar to XQDA, many more, especially non-linear, Metric Learning al-
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gorithms exist, but presenting them all would go beyond the scope of this master’s
thesis. A detailed overview and comparison of these is given in [Xiong et al., 2014].

3.1.3 Attribute-based methods

Last but not least, a short look on existing attribute-based techniques will lead this
part of the chapter to an end. Some state of the art methods for person re-identification
based on attributes present different ontologies and describe how to construct suitable
sets of attributes. In studies they also explore how different kinds of attributes perform
for the purpose of re-identifying persons. As shown in Figure 3.1 three main methods
exist and will be presented in the following paragraphs. Two algorithms, AIR and
OAR, were introduced in [Layne et al., 2012] and [Layne et al., 2014] respectively in
order to perform person re-identification based on attributes. However, as already
mentioned, the main contribution of these papers are studies on the effect of using
attributes for person re-identification and which kind of attributes preferably to be
chosen to offer an optimal set for this purpose. AIR builds up upon the SDALF algo-
rithm, which is extended by an additional objective, namely a weighted L2 distance
between attribute vectors. It relays on a simple training of support vector machines
in order to learn to predict attributes for a given image of a person. From the set of
all attributes the algorithm step by step takes single attributes and computes corre-
sponding weights. This is done as long as including further attributes improves the
re-identification performance. The procedure of the second algorithm, OAR, differs
slightly from AIR. Instead of an iterative expansion of the used attribute set, from
beginning OAR takes all attributes into account, balances the dataset, and trains
an SVM. This leads to a slight improvement in re-identification performance and an
overall similar performance compared to AIR. However, the last algorithm, LORAE
[Su et al., 2015], follows a different idea and tries to exploit dependencies between
attributes. For example, assuming a specific gender, a certain clothing style may be
more likely to appear than others. Therefore, LORAE converts binary attributes into
continuous ones in order to learn attribute correlation. These new attributes allow
to infer possibly hidden semantic information. For example, a skirt and a handbag
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(a) Two input branches (b) Three input branches

Figure 3.3: Examples of a Siamese Convolutional Neural Networks
This figure shows two examples of siamese networks, which have a branch for each
input. After three layers the branches are merged and continue as a single branch for
two layers. Typically, networks with two branches are used to determine a distance
between inputs. Those with three branches perform a decision which gallery image
is closer to the probe image.

can indicate a female gender. With this approach, LORAE outperforms all algorithms
presented in this section and achieves even comparable performance to Deep Learning
based methods that are examined in the following section.

3.2 Deep Learning Algorithms

As already mentioned in the introduction to this chapter, different kinds of Deep
Learning algorithms for person re-identification exist, of which the majority does not
use semantic attributes for finding matching persons. Therefore, the second part
of the chapter is divided into two sections: The first one presents algorithms not
using semantic attributes (Section 3.2.1), whereas the second one focuses on existing
attribute-based methods (Section 3.2.2).
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Figure 3.4: Steps for person re-identification with Deep Learning
Deep Learning basedmethodsmake use of its capability to extract features automat-
ically. Therefore unified systems are often used to combine single steps, as shown
in Figure 3.2, in an end-to-end system.

3.2.1 Attribute-less

In the literature, a variety of different algorithms can be found, which compare differ-
ent inputs in order to decide if two images show the same or different persons in most
cases. All presented techniques have in common that they train Convolutional Neural
Networks for person re-identification being a part of an end-to-end system. This is
shown schematically in Figure 3.4, which illustrates the procedure compared to the
feature-based way shown in Figure 3.2. Except of [Wang et al., 2015] all methods use
the so called Siamese Convolutional Neural Networks or Triplet Networks, where the
first one is a modified version of conventional Convolutional Neural Networks, which
often have multiple inputs with different inner branches. An exemplary visualization
of such can be found in Figure 3.3, showing how typical Siamese Convolutional Neural
Networks look like. The latter can be seen as a special form of siamese network with
three branches. There are many ways how such a network could look like. They
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differ in the number of inputs and outputs, and the depth of the merging layer. The
following paragraphs introduce and describe some of the existing methods.

Filter Pairing Neural Network (FPNN). In [Li et al., 2014], the authors
proposed a novel Filter Pairing Neural Network (FPNN) which is a first example for
a Siamese Convolutional Neural Network. It takes two images from two different but
fixed viewpoints as its input and tries to jointly handle the problems of misalignment,
photometric, and geometric transforms by using so called patch matching layers to
match the filter responses of local patches across views, and other convolutional
and maxpooling layers to model body parts displacements. Instead of working
on the original feature maps, after the first layer of the network (convolution and
maxpooling) the resulting feature maps are sliced into horizontal stripes. Afterwards,
these are divided into patches of the same size, which again result – due to the two
input images – in filter pairs. Patches are compared only in corresponding stripes and
result in displacement matrices, which encode the spatial patterns of patch matching
under the different features. In the next step, a maxout grouping layer reduces groups
of displacement matrices similar to maxpooling. The resulting filters capture local
patterns of part displacements. At the end, the network decides whether two images
show the same person or not. For performance evaluation the authors used the
CUHK03 dataset [Li et al., 2014] where the algorithm outperformed different existing
feature-based algorithms. This paper is one of the first attempts to apply Deep
Learning to person re-identification.

Deep Features (DF). As indicated previously, [Wang et al., 2015] do not use
Siamese Convolutional Neural Networks but adopt the architecture for a single
Convolutional Neural Network as proposed by [Krizhevsky et al., 2012] which is
pre-trained on a subset of the ImageNet dataset [Deng et al., 2009]. Afterwards, a
fine-tuning is performed using the CUHK03 dataset. For this purpose they keep the
weights of all convolution layers and reinitialize the fully-connected layers randomly.
Additionally the authors replace the original 1000-way classification layer and feed
the output of the second fully-connected layer to an N -softmax, which produces a
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prediction distribution over N person labels. For fine-tuning, they set the learning
rate for the retained weights and layers to a much smaller value than for the
reinitialized fully-connected layers in order not to change those pre-trained weights
too fast. After training, the output of the last fully-connected layer is taken as the
feature representation of the input image. On the basis of those 4096-dimensional
vectors, they measure similarities between different observations of pedestrians and
obtain similarity rankings to predict the correct match.
Similar to the FPNN, the authors compare their algorithm with different feature-based
and Metric Learning methods, as well as with the FPNN itself. DF outperforms all
of them and achieves about 50% better performance on rank-1 matching rates than
FPNN. [Wang et al., 2015]

Deep Features with Relative Distance Comparison (Deep-RDC). In [Ding

Figure 3.5: Simplified illustration of a special triplet network
Three identical branches share weights for each corresponding layer and can alter-
natively be seen as three copies of one network.

et al., 2015], the authors attempt to combine Distance Metric Learning with Deep
Learning in the context of person re-identification. Instead of minimizing the classifi-
cation error, the objective of their work is to maximize the relative distance between
images. For that reason they use a so called Triplet Network, which can be seen as a
special kind of siamese network with three inputs, where the main difference is that
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this kind of network does not have dedicated branches for each input. As outlined in
Figure 3.5, the network can be seen as three parallel branches with shared weights,
where each branch produces its own output. However, sharing weights between
branches actually leads to a single branch. For an easier understanding, this thesis
will stay with the idea of three branches instead of a single one. By using a special loss
function, the training process tries to achieve a more similar representation for the
top and middle branch and a more dissimilar representation for the top and bottom
branch. Typically, the input of the upper branch is referred to as anchor or query
image, whereas the input of the middle and bottom branch is referred to as positive
sample image and negative sample image respectively. Together, these three images
are combined to a so called Triplet. The underlying Convolutional Neural Network is
composed of two convolutional, two maxpooling and a single fully-connected output
layer. In order to compare two images, the L2-distance between the outputs of the
network for the corresponding images is computed on the basis of which it is possible
to rank images.
The performance of this algorithm was tested on the i-LIDS and VIPeR dataset. It
outperforms all other algorithms on i-LIDS on all ranks and on VIPeR on rank-1 and
rank-5 matching rates, with comparable performance metrics on the remaining ranks.
Comparing overall performance with FPNN and DF is difficult to achieve, because
both were trained and evaluated only on the CUHK03 dataset.

Improved Deep Learning Architecture (IDLA). Similar to [Li et al., 2014], the
authors of [Ahmed et al., 2015] take advantage of Siamese Convolutional Neural Net-
works and introduce supplementary new layers. Starting with a simple convolutional
and maxpooling layer with shared weights between branches, so called cross-input
neighborhood differences are computed. The concept is illustrated in Figure 3.6 for
a k × k neighborhood with k = 3. Afterwards a k × k maxpooling with a stride
of k is performed to reduce the size of these maps and return to the original size.
With this procedure, the authors try to add robustness to positional differences in
corresponding features of two input images. In a subsequent step, another round
of convolution and maxpooling follow without shared weights. The output for both
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Figure 3.6: Cross-neighborhood difference example for two 2x2 feature maps
In this example, the four from the right 2x2 feature map is subtracted from all cells
in the neighborhood around the five in the left 2x2 feature map, which leads to the
green block in the resulting matrix. This procedure is repeated for two (see orange
box in target matrix) and also for all remaining elements in the right feature map.

processed neighborhood difference maps is passed into an fully-connected layer
of size 500. After this, a second fully-connected layer with a two-way softmax
activation follows, which indicates that both images show the same or different person
respectively. For evaluation, the authors trained and evaluated on the same dataset.
Therefore, they used the already mentioned CUHK03, the CUHK01, and the VIPeR
dataset. On CUHK03, the algorithm outperforms all other evaluated algorithms and
achieves about 1.3-times the rank-1 matching rate of DF, whereas on VIPeR IDLA
outperforms most tested feature-based algorithms, but stays inferior to Deep-RDC.
[Ahmed et al., 2015]

Deep Metric Learning (DML). As the name of the algorithm already reveals,
in [Yi et al., 2014] the authors chose the way of Metric Learning in combination
with Deep Learning. In contrast to [Ding et al., 2015] they do not work with triplet
networks, but attempt to learn to decide if two images show the same person by using
only two instead of three input images. For this, they use two identical Convolutional
Neural Networks which do not share weights. This is followed by the Cosine similarity
as the connection function for evaluating the relationship between the outputs of
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both Convolutional Neural Networks, because its output is bounded to [−1, 1] and it
is invariant to the magnitude of samples. Furthermore, the underlying Convolutional
Neural Network is composed of three identical branches with two convolutional
layers, each followed by a maxpooling layer, all together finally leading to one
fully-connected layer. The first convolutional layers have shared weights over all three
branches, whereas the second convolutional layers are independent of each other. The
input to this three-branched network are images of pedestrians, vertically divided
into three overlapping parts. In cross dataset experiments (training on i-LIDS and
CUHK, evaluation on VIPeR) the DML achieved comparable results to feature-based
methods, which were trained and evaluated both on VIPeR. DML achieves nearly
twice the performance of its cross dataset experiments, when training is performed on
VIPeR as well. This is, approximately, the performance of IDLA, which is why DML
stays inferior to Deep-RDC [Yi et al., 2014].
Although the presented algorithms show promising performance for the task of
re-identifying humans, they will not be considered further since this master’s thesis
focuses on using semantic attributes as feature representation.

Although all these algorithms show promising results for the re-identification of per-
sons, they are not considered further, since the focus of this master’s thesis lays on
using semantic attributes as features for the re-identification.

3.2.2 Attribute-based

After taking a look on the first part of Deep Learning based algorithms that are not
related to semantic attributes, the chapter continues with those that are. Some of
the concepts presented in 3.2.1, for example Siamese Convolutional Neural Networks,
can be found in this part of the chapter as well. Using Deep Learning methods for
attribute prediction is a very challenging task as Deep Learning algorithms typically
require large amounts of labeled data. However, labeling datasets with attributes is a
very sophisticated task, which is why existing datasets are relatively small compared
to typical Deep Learning datasets.
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Deep Learning for Semantic Attribute Retrieval (DLSAR). In his dissertation,
[Pala, 2016] tries to predict semantic attributes by using Deep Learning techniques.
For this, three Convolutional Neural Networks are used, one for each body part:
Head, torso and legs. Each of these tries to predict attributes of a given person by
analyzing a certain body part. Beside the first convolutional layer of the network
for the head part, the architecture of all Convolutional Neural Networks is identical.
Furthermore, the main topic is the comparison of two different multi-label losses for
training. Specifically, binary cross-entropy and pairwise ranking are examined, where
the first one describes the average over many cross-entropy losses. Each attribute is
considered a binary classification problem, for which cross-entropy can be used as the
loss function. However, the pairwise loss tries to optimize the area under the ROC
curve for each attribute, which leads to a slightly better overall performance than
binary cross-entropy. The PETA dataset, which at the moment is the largest person
dataset labeled with attributes, is used as training data. Additionally, in order to train
a Convolutional Neural Network the data was augmented by horizontally flipping
each image and altering the intensity of color pixels. Furthermore, attributes that
were not present in at least 1% of the dataset and those regarding shoe parts, were
discarded. [Pala, 2016] A direct comparison with already presented methods cannot
be performed, due to the selected performance metrics and the focus on comparing
the mentioned loss functions instead of evaluating re-identification performance.
Concerning this master’s thesis, the dataset used by [Pala, 2016] as well as the binary
cross-entropy will be used as well. Due to the fact, that the architecture for the own
network is predetermined by the pretrained network, the concept of having a network
for each part of the body cannot be adapted.

Multi-label Convolutional Neural Network (MLCNN). Similar to the method
presented in [Pala, 2016], the authors of [Zhu et al., 2015] divide images of persons
into different regions. Instead of pure semantic splitting, the input image is split into
fifteen overlapping regions as illustrated in Figure 3.7. Each region is input to a Convo-
lutional Neural Network which has as many input branches as available regions exist.
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Figure 3.7: Division of an input im-
age
Images of the dataset are split into fif-
teen overlapping regions. [Zhu et al.,
2015]

The outputs of these networks have prede-
fined connections with a following output layer
predicting 21 attributes. Additionally to the
Convolutional Neural Network, they also extract
features and perform metric learning to obtain
a low-level feature representation. In the appli-
cation phase, for two images, a probe image and
one from a gallery set, low-level feature distance
and attribute distance are computed and fused
together, which is then used for ranking the
gallery images. This procedure achieves slightly
better performance on the VIPeR dataset compared to DML and IDLA but stays
inferior to Deep-RDC.
This master’s thesis will not adapt anything from this paper. Especially, the
architecture cannot be used, due to the same reason as mentioned in the presentation
of the DSLAR algorithm.

Semi-supervised Deep Attribute Learning (SSDAL). Finally, the SSDAL al-
gorithm from [Su et al., 2016] is presented. It uses a three-staged process in order
to train a Convolutional Neural Network to learn and predict semantic attributes.
For the architecture, the authors adapt the AlexNet by [Krizhevsky et al., 2012] and
change the output layer to a 105-dimensional sigmoid output layer. In the first stage,
this network is trained on the PETA dataset T in a supervised manor to obtain a
system which is capable of labeling images of persons with attributes. Afterwards, a
second, independent dataset U is taken, for which labels are predicted with the trained
network. The weights of the AlexNet are then fine-tuned by triplet training on U in
the second stage. Contrary to existing approaches, the aim is not to tell which images
show the same person, but to produce similar labels for images showing the same,
and different labels for unsimilar persons. In order to avoid learning meaningless at-
tributes, changes leading to attributes differing too much from the original ones are
penalized. As a last step, the first stage procedure is repeated with combined datasets

29



CHAPTER 3. STATE OF THE ART

T and U , where this time U is labeled by the refined network from the second stage.
Already the trained network from Stage 1 achieves good performance and beats al-
most all presented algorithms in this chapter. In combination with XQDA [Liao et al.,
2015], SSDAL outperforms all existing Deep Learning based and most attribute-based
methods on the percentage of correct matches on the VIPeR dataset. Only LORAE
and some metric learning based methods achieve similar results.
Due to the similarity of the first stage of the SSDAL algorithm and the prerequisite of
this work to use a pretrained network, this paper will be taken as the direct competitor.

3.3 Summary

Many promising attempts have been conducted in order to solve the problem of person
re-identification. Feature-based methods benefit of the relatively fast way of comparing
images of persons due to already handcrafted features, whereas Deep Learning proved
to deliver even better features, leading to an overall improved performance on re-
identification quality. It seems natural to extend the automatic construction of these
descriptors by further steps, in order to enhance the performance even more. The
aim of this thesis and its research is to develop an algorithm – based on an already
existing architecture – using semantic attributes. Due to this fact not all concepts
presented on the last pages, for example splitting up input images, are applicable.
The broadly used siamese networks, however, show a good performance in almost all
of the presented papers and hence seem to be suitable for the scope of this master’s
thesis. The original idea for this master’s thesis was to adapt the concept of siamese
networks for the multilayer perceptron part of the network. Unfortunately, due to the
limited time, this could not be implemented. Additionally, [Su et al., 2016] showed
that adapting an existing architecture can lead to a good performance in re-identifying
persons. Similar to [Su et al., 2016], this master’s thesis will examine whether using
a pretrained network architecture has a positive effect on the prediction of attributes.
In the following chapter, some of the concepts shown beforehand, will be adapted in
order to build a system which allows to identify persons by using Deep Learning and
semantic attributes.
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Classification of Semantic
Attributes 4
As already mentioned in Chapter 1, the algorithm developed in this master’s thesis
consists of two stages: the prediction of semantic attributes on images of persons, and
the re-identification of persons based on these attributes. This chapter focuses on the
first stage, which has the purpose of predicting attributes on images of persons. In
order to achieve this, an already existing Deep Convolutional Neural Network [Eisen-
bach et al., 2016], which takes images of persons as input is adapted. Section 4.1
presents the basic architecture of the model and discusses changes that were made
for this master’s thesis. Detailed algorithmic information about the training process
is given in Section 4.2. Finally, different variations of the basic model architecture
are evaluated in Section 4.3. In addition, some self-made implementations of other
existing architectures are compared to the finally developed architecture as well.

4.1 Model Architecture

The first part of this chapter takes a look at the architecture of the developed model.
Therefore, the original architecture proposed by [Eisenbach et al., 2016] is shortly
presented in Section 4.1.1. In addition to that, the modifications made in order to use
the network are introduced in Section 4.1.2 and Section 4.1.3. Similar to the AlexNet
[Krizhevsky et al., 2012], the architecture of [Eisenbach et al., 2016] consists of eight
layers. These mainly differ in the number of filters and neurons respectively, leading
to an overall reduced model size for the latter.
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Layer Type Nb. Activation Filter Pooling Dropout

1 conv 64 ReLU 5× 5 2× 2 –
2 conv 128 ReLU 4× 4 2× 2 0.25
3 conv 128 ReLU 3× 3 2× 2 0.25
4 conv 128 ReLU 2× 2 – 0.3
5 conv 256 ReLU 2× 2 – 0.4
6 fc 1000 ReLU – – 0.5
7 fc 1000 ReLU – – 0.5
8 fc 2 Softmax – – 0.5

Table 4.1: Layers of the original Convolutional Neural Network
This table shows a list of all existing layers in the Convolutional Neural Network with
additional information about number of neurons and filters respectively, filter size,
and dropout rate at each layer. Layers 1 to 3 are followed bymaxpooling. Additionally,
the output layer is shown here as layer 8. (conv - convolutional, fc - fully-connected).

4.1.1 Network Structure

The network proposed by [Eisenbach et al., 2016] was initially developed with the aim
of detecting persons. This is done by taking an input image and deciding whether
it shows a person or not. Thus, the network solves a binary classification problem.
The architecture of the network is characterized by five convolution layers, followed
by three fully-connected layers. Except the output layer, each of the remaining layers
uses dropout regularization in order to avoid overfitting. The filter sizes begin with
5 × 5 in the first layer and are reduced by one at each layer. At layer 4 and 5 the
final size is 2 × 2. In addition to that, the first three convolution layers are followed
by maxpooling. In total, this architecture consists of over four million weights. For
further information about the original architecture see Table 4.1 and [Eisenbach et al.,
2016].
As shown in the following, some changes on the network are necessary in order to use
the network for the purpose of attribute prediction.
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4.1.2 Output Encoding

As mentioned above, the original paper [Eisenbach et al., 2016] focuses on detecting
people. Hence, the authors try to solve a single(-label) binary classification problem:
person vs. non-person. Classifying images of persons into semantic attributes, though,
results in a multi-label classification problem. This means, the main question changes
from “Does input x belong to a certain class C?” to “Which S ⊆ C = {C1, . . . , Cn}
does input x represent?”. This differs slightly from the multi-class classification, where
each input belongs to exactly one class, since here, multiple attributes can be active
at the same time. Analogous to the multi-label problem, this can be seen as the task
of finding a subset S ⊆ C = {C1, . . . , Cn} with |S| = 1 for each input x. Table 4.2
illustrates the mentioned problems.

Problem Available classes Classes per sample

single-label 2 1
multi-label n ≤ n

multi-class n 1

Table 4.2: Comparison of single-, multi-label and multi-class problems
The single-label problem is a special case (n=2) of the multi-class problem. The
multi-label and multi-class problems differ only in the number of predicted classes.

As the table shows, changes on the output layer are necessary in order to apply the
existing architecture on the problem of predicting semantic attributes. This is due
to the larger number of classes the network has to predict. Taking a look on the
architecture overview in Table 4.1, therefore, reveals that the size of the output layer
has to be expanded from two to 44 neurons.
In addition, the original softmax activation has to be replaced by a sigmoid activation.
This decision was made due to the properties of the sigmoid activation, which are
beneficial for the multi-label problem. A closer look on Equation 4.1 and 4.2 reveals
that the activation of a sigmoid neuron is independent of the activation of the other
neurons in the output layer. This is not the case for softmax activated neurons. For
the softmax output function, each activation is normalized by the activations of all n
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neurons in the output layer. In combination with the exponential influence, in most
cases this leads to one dominant output.

fsigmoid(xi) = 1
1 + e−xi

(4.1)

fsoftmax(xi) = exi∑n
j=1 e

xj
(4.2)

Figure 4.1 illustrates the consequences of these behaviors. It shows the actual acti-
vation of each neuron before applying an activation function (4.1(d)), as well as the
output with three different activation functions. The two plots on the left-hand side
display the resulting sigmoid (4.1(a)) and softmax (4.1(c)) output. Additionally, an-
other popular activation, the hyperbolic tangent activation (4.1(b)), is shown in the
upper right. The hyperbolic tangent activation can be written as a function of the
sigmoid activation as Equation 4.3 shows.

ftanh(xi) = tanh(xi) = sinh(xi)
cosh(xi)

= exi − e−xi

exi + e−xi
= 1− e−2xi

1 + e−2xi
=

= 1− e−2xi

1 + e−2xi
+ 1− 1 = 2

1 + e−2xi
− 1 = 2 · fsigmoid(2xi)− 1

(4.3)

Therefore, the tanh activation will not be examined further in this master’s thesis.
Instead the master’s thesis uses the sigmoid function as used in the literature.
Another way to implement an output for multi-label classification would be to aggre-
gate different attributes into groups. Some examples for suitable groups are gender,
hair color, or age, since they form cliques of attributes, where typically only a single
element applies to a person. In that case, each group would be activated by softmax
outputs. This should be addressed in future work.

4.1.3 Inner changes on the Network

In order to improve the performance of the network, the activations for each layer were
changed, compared to the original architecture by [Eisenbach et al., 2016]. One way
to do this, is to use so called Exponential Linear Units (ELUs) [Clevert et al., 2016]
instead of the broadly adapted ReLUs. These differ slightly from ReLUs and allow
negative input values to have influence on the training of the network as illustrated
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Figure 4.1: Comparison of sigmoid, tanh and softmax output for seven classes
Figures 4.1(a) and 4.1(c) show how the actual values for each neuron differ when
applying sigmoid or softmax output function respectively on exemplary activations
as seen in Figure 4.1(d). Additionally, the tanh output is shown in Figure 4.1(b) as
well.

in Figure 4.3. As stated by [Clevert et al., 2016], this can have a positive impact
on the training speed as well as the quality of the weights. This decision was made,
since ELUs outperformed ReLUs in almost all experiments, which will be shown in
Section 4.3. In addition, training was performed by using stochastic gradient descent.
Due to the limited time, the batch size was not evaluated further, but set to 256
for all experiments as proposed by [Eisenbach et al., 2016]. A summary of the most
important information given above is presented in Table 4.1.
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Figure 4.3: Visualization of the ReLU and ELU, as well as their derivatives
The left hand side shows the graph of both functions, ReLU and ELU. In addition to
that, the right hand side shows the corresponding derivatives. Since the derivative
of the ELU does not drop automatically, when reaching 0, it allows allows negative
input values to have at least a small influence on the training of the weights.

4.2 Training for Attribute Recognition

After introducing the developed model in the first part of the chapter, the following
paragraphs focuses on learning to recognize attributes. First, the dataset used for
model training, namely PETA, is presented in Section 4.2.1. Second, the preprocessing
of the dataset is described in Section 4.2.2, followed by general information about data
augmentation and details about its implementation within the scope of this master’s
thesis in Section 4.2.3. Finally, Section 4.2.4 takes a short look at the used loss function.

4.2.1 Attribute Dataset PETA

As mentioned in the State of the Art (Chapter 3), the PETA (PEdesTrian Attribute)
dataset [Deng et al., 2014] is currently the largest labeled dataset for learning at-
tributes. It is composed of multiple datasets for person re-identification and detection.
By combining multiple small and middle sized datasets, the resulting dataset achieves
a size of 19,000 images of 8,705 different individuals. Each person is labeled with 65
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different attributes, for instance hair color, gender, age, and accessories. These 65
attributes can be split in 61 binary and four multi-class labels. Each of the multi-class
labels has eleven different peculiarities. In order to use them, the multi-class labels
are ”flattened“, which results in 105 binary labels altogether. Even though PETA
is the largest available dataset for attribute learning, it might be of insufficient size
for training a deep neural network from scratch, but big enough for finetuning a pre-
trained network. Therefore, it is inevitable to use techniques like data augmentation
to mitigate its influence. The performed steps will be presented later in Section 4.2.3.
When using PETA, one faces the problem that the frequencies of the attributes in the
dataset differ substantially. Some attributes appear only once or twice in the whole
dataset. Blue hair and pink hair do not appear at all, although they are listed as
available attributes. This makes it impossible for the model to learn them. Therefore,
of the 105 attributes only 44 attribute that can be found in at least 5% of the dataset
are used for training the network. For further details regarding information about the
dataset, e.g. the frequency of different attributes, see Appendix B.

4.2.2 Preprocessing the Dataset

Preprocessing the input is necessary, since the images of the dataset have different
shapes. Furthermore, in order to use the adapted network structure including pre-
trained weights, the input images have to be converted into a particular form. Since
the PETA dataset is very heterogeneous and differs in image shape and size, all con-
tained images are resized to the same size of 128 × 48 × 3 pixel. The benefit of this
procedure is, that the network has to learn to find the person within the image, which
makes it robust over badly cropped bounding boxes. Nevertheless, it is doubtful if the
network is able to adapt this behavior by training on such a small dataset, since most
of the images are already cropped correctly showing only the body. Typically, pixel
values at each color channel range between 0 (dark) and 255 (bright). For the training,
the values of each pixel are normalized to the range between −1 and 1.
Each person in the dataset is associated with a set of attributes. These sets contain
all attributes that are represented by the corresponding person. In order to train on
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Algorithm 1 Initial dataset generation

1: Strain ← ∅ . Final training dataset
2: Svalid ← ∅ . Final validation dataset
3: Construct list Lim = {x0, ..., xn} of all available images from PETA dataset
4: Generate setD of person identifiers from Lim (|D| = m)
5: Construct list Latt = {y0, ...,ym} of attribute vectors for persons p ∈ D
6: SplitD into two disjoint setsDtrain andDvalid . Random or by sub-dataset
7: for i ∈ {train, valid} do
8: for all p ∈ Di do
9: Gather all imagesXp = {x ∈ Lim | x shows person p} ⊂ Lim

10: for all xj ∈ Xp do . h height, w width of image
11: Normalize image: xj ← 2xj

255 − 1 ∈ [−1, 1]h×w×3

12: Resize image: xj ← f(xj) with f : [−1, 1]h×w×3 → [−1, 1]128×48×3

13: Si ← Si ∪ {(xj ,yp)}
14: end for
15: end for
16: end for

these attribute sets, they have to be converted to binary vectors. The elements of
these vectors are ’1‘ when a particular attribute is available for the person and else ’0‘.
Each resulting attribute vector yp ∈ R105 is then paired with all corresponding images
xj ∈ Xp of person p. By writing the preprocessed data back to disk, this step has to
be performed only once for all following trainings.
The described procedure is shown in Algorithm 1 in a more compact way. All per-
formed steps are necessary due to the requirements of the adapted model structure.

4.2.3 Data Augmentation

For the purpose of Deep Learning, it is very important to have large amounts of data.
As stated earlier, the used PETA dataset is very small compared to typical datasets for
Deep Learning, which consist of millions of samples. Hence, the model is very likely to
overfit, while training it on the dataset. Therefore, a necessary step is to augment the
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data, which increases the size of the dataset. This is typically done by transforming the
already available data. Depending on the type of data, different kinds of augmentation
techniques can be used. In the case of images, there exist different transformations that
can be performed randomly: translation, rotation, flipping, stretching, and shearing are
examples for such transformations. Even adding a bit of noise to the input can be seen
as a special kind of (random) data augmentation. However, it is very important to
perform operations that preserve labels. Since many attribute labels relate to colors,
adding noise is critical due to possible changes in color appearances. Therefore, this
kind of augmentation was not considered within this master’s thesis. In addition to
the decision what kind of augmentation to use, the question at which point of the
algorithm to perform augmentation must be answered. Concerning this, two kinds of
data augmentations exist: online and offline respectively. In the scope of this master’s
thesis, data augmentation is performed online at each epoch of the training. This
means, for each image of the original training dataset, a transformed copy is generated.
The training is then performed on these copies. This is repeated in every epoch.

Algorithm 2 Data augmentation at epoch m

1: Strain ← {(x0,y0), ..., (xn−1,yn−1)} . Training dataset
2: Smaug ← ∅ . Augmented dataset for epochm
3: pflip ← 0.5 . Probability for flipping image
4: for all (xk, yk) ∈ Strain do
5: θ ← draw uniformly from [−5◦, 5◦]

6: ∆x← draw uniformly from [−0.05 · w, 0.05 · w] . width w of image
7: ∆y ← draw uniformly from [−0.05 · h, 0.05 · h] . height h of image
8: Flip image horizontally xaugk ← flip(xk) with probability pflip
9: Rotate image xaugk ← rot(xaugk , θ) around center of image

10: Shift image xaugk ← shift(xaugk ,∆x,∆y)

11: Smaug ← Smaug ∪ {(x
aug
k ,yk)}

12: end for
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Figure 4.4: Empty pixels
Rotation and translation lead to
lost (gray) and empty (shaded)
pixels.

The downside of this decision is that each epoch of
training takes more time, whereas the algorithm ben-
efits from lower memory and disk space consumption
at the same time. Additionally, performing augmen-
tation online results in a potentially larger ”virtual“
dataset, compared to a pre-augmented dataset. Here,
the augmentation includes randomly flipping, rotat-
ing, and translating images. Algorithm 2 shows the
performed augmentation. It is important to know,
that the different performed transformations like translation and rotation, lead to
”empty“ pixels. This is shown in Figure 4.4 by the example of rotation and transla-
tion. As previously reported in 4.2.2, all pixel values range between -1 and 1. This
means, a medium gray color corresponds to pixels with value 0. Filling empty pixels
with 0’s is beneficial to the training, since they do not influence subsequent layers.

4.2.4 Loss Function

Last of all, this part of the chapter takes a look at the used loss function. This function
is very important for the training, as it quantifies the training performance of the model
and serves as the objective for the used optimizer. Therefore, in order to train the
network, the broadly used cross-entropy (CE) is adapted. As [Patrice Y. Simard, 2003]
showed, using cross-entropy for training classifiers improves performance and allows
to train even faster compared to traditional mean-squared error. For a single sample
xk ∈ X, a binary classifier f : X 7→ [0, 1] with f(xk) = ỹk, and the teacher yk ∈ {0, 1},
the cross-entropy can be written as displayed in Equation 4.4.

CE = −yk ln ỹk − (1− yk) ln(1− ỹk) (4.4)

This equation can be expanded in order to compute the loss of n samples.

L′ = − 1
n

n∑
i=1

yi ln ỹi + (1− yi) ln(1− ỹi) (4.5)

Since the problem addressed in this master’s thesis is a multi-label instead of a binary
classification problem, the current loss function has to be adjusted. As previously
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stated, the model predicts c classes for a sample xk. Each class Cl can be seen as a
binary classification problem. For each class Cl, the cross-entropy formula in Equa-
tion 4.4 can be adapted, leading to the formula 4.6.

CEl = −ykl ln ỹkl − (1− ykl) ln(1− ỹkl) (4.6)

Extending this formula analogous to Equation 4.5 leads to the following final loss
function, which combines multiple losses.

L = − 1
n · c

n∑
i=1

c∑
j=1

yij ln ỹij + (1− yij) ln(1− ỹij) (4.7)

This loss function was also used by [Pala, 2016] and [Su et al., 2016] for the purpose
of attribute classification.

4.3 Experiments

With the knowledge about the chosen architecture and training procedure in mind,
this chapter takes a look on the practical part of this master’s thesis. It begins with
the information about the used validation dataset in Section 4.3.1. The different
metrics used for evaluation are introduced and explained in Section 4.3.2, followed
by information about the environment of the experiments in Section 4.3.3. Finally,
Section 4.3.4 evaluates and discusses different examined approaches.

4.3.1 Validation Dataset

In the scope of this master’s thesis, the VIPeR dataset is used for validation at all
experiments. Since it is a sub-dataset of PETA, it was excluded from the training
dataset. The VIPeR dataset is composed of 1,264 images of 632 persons. For each
person, there are two images, each from a different perspective. Further and more
detailed information about the composition of the complete PETA dataset can be
found in Section 4.2.1 and Appendix B.
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Figure 4.5: Contour lines of the F1 score with reference to precision and recall
The F1 score takes values between zero and one, with small values indicating poor
and high values good classification performance.

4.3.2 Evaluation Metrics

In order to evaluate the classification performance of the developed system, different
metrics were taken into account. The metrics were chosen for comparison with existing
approaches and own variations of the used architecture. In the following, these metrics
are shortly presented.

F1 score

For general attribute prediction performance, the F1 score was chosen. The F1 score
describes the harmonic mean between precision = tp

tp+fp and recall = tp
tp+fn of a classi-

fier.

F1 = 2 · 1
1

precision + 1
recall

= 2 · precision · recallprecision + recall (4.8)

The F1 score is a special case (β = 1) of the Fβ score. The parameter β ∈ R+ controls
the influence of the precision within the score. A greater value β > 1 weights recall
higher than precision. On the other side, small values 0 < β < 1 weight precision
higher than recall. This general form is shown in Equation 4.9.

Fβ = (1 + β2) · precision · recall
β2 · precision + recall (4.9)
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Since precision and recall range between 0 and 1, the following property is always
satisfied.

0 ≤ Fβ ≤ 1 ∀β ∈ R+ (4.10)

An Fβ score value near 1.0 indicates a good performance of the classifier. Figure 4.5
illustrates the behavior of the F1 score with reference to precision and recall.

Attribute Classification Accuracy

This Attribute Classification Accuracy was proposed by [Su et al., 2016]. Taking this
metric into account allows to compare the performance of the developed model to the
SSDAL algorithm presented in Section 3.2.2.
For a sample xk ∈ X, let nk ∈ N be the number of ones in the attribute la-
bel vector yk = (yk1 , . . . , ykn) ∈ {0, 1}n. For the predicted attribute label vector
ỹk = (ỹk1 , . . . , ỹkn) ∈ [0, 1]n, the index set

Ik = { i | ỹki is one of nk largest elements of ỹk } ⊂ N (4.11)

contains the indices of the top-nk components of the predicted attribute label vector.
Additionally, the set Jk contains the indices of all components of yk that equal ’1‘.

Jk = { j | ykj = 1 } ⊂ N (4.12)

Therefore, Equation 4.13 shows the resulting formula for the Attribute Classification
Accuracy.

ACA = | Ik ∩ Jk |
nk

(4.13)

From | Ik | = |Jk | = nk directly follows that 0 ≤ | Ik ∩Jk | ≤ nk. Hence, the final score
ranges between 0 and 1. For a better understanding of the ACA score, Figure 4.6
illustrates how to determine the score with an example.
A major drawback of this metric is that only a fraction of all attribute labels is con-
sidered for the calculation of the accuracy. For instance, if all ỹki have a high value
and Ik = Jk, the score would be 1.0 despite the fact that all remaining attribute labels
are predicted wrong. However, in order to compare the performance to the SSDAL
algorithm, the metric is considered as well.
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Figure 4.6: Attribute Classification Accuracy
The number of 1’s in the ground truth label vector is nk = 3. Therefore, the three largest
values of the predicted label vector are assumed as 1 and compared to the ground
truth label vector. For this example, the ACA = 2/3.

4.3.3 Experimental Setup

The following paragraphs gives a short overview of the used hardware and software for
all experiments performed. The here presented setups are used for every experiment
in Chapter 4 and 5.

Hardware

All experiments presented in this master’s thesis were performed on the machines
listed in Table 4.3. Each computer has a built-in nVidia graphic card, which allows to
perform many computations on the GPU instead of on the CPU. This is much faster
and cheaper, compared to a similar number of CPUs with the same performance.
Furthermore, due to the number of available computers, it was possible to run up
to five experiments at the same time. Hence, substantially more experiments could
be performed in the time for this master’s thesis. Machine 0 was mainly used for
development and first experiments, since it was the slowest computer of all as displayed
in Table 4.4. The remaining computers were primarily used for conducting different
experiments. Due to the massive amount of memory, machines 2 and 3 allowed to
keep the complete dataset in memory, which was beneficial for some experiments.
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Mach. CPU GPU Mem.

0 AMD Phenom II X4 945 nVidia GeForce GTX 960 (4 GB) 12 GB
1 Intel Core i5 6600 nVidia GeForce GTX 970 (4 GB) 8 GB
2 2 × Intel Xeon E5-2650 v3 2 × nVidia Tesla K20c (5 GB) 505 GB
3 2 × Intel Xeon E5-2650 v3 nVidia Tesla K20c (5 GB) 505 GB

Table 4.3: Different machines used for training
Machine 0 was mainly used for development and training of prototypes. Actual ex-
periments were performed on machines 1, 2 and 3. However, the two graphic cards
of machine 2 were used rather for training two networks at once, than for boosting
the performance of a single training process. Due to the fact of having multiple ma-
chines, significantly more experiments could be performed.

Machine Avg. time

0 36.4776 sec.
1 17.2367 sec.
2 32.2975 sec.
3 32.3943 sec.

Table 4.4: Duration of training epochs
The final architecture as presented in Section 4.1.1 was trained on each machine
for about 3,000 epochs. The right column shows the average duration of a training
epoch.

Deep Learning Framework

For the implementation of the developed Deep Learning model, Keras [Chollet, 2015]
was used. Keras is a minimalist, highly modular neural networks library written in
Python and is capable of running on top of either TensorFlow or – in this case – Theano
[Theano Development Team, 2016]. It was developed with focus on enabling fast
experimentation and developing prototypes with little effort [Chollet, 2015]. Since the
Neuroinformatics and Cognitive Robotics Lab mainly uses Python and Keras for Deep
Learning development, the decision to use the mentioned library was predetermined.
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4.3.4 Performance Comparison

After the presentation of relevant information on the previous pages, this chapter
continues with the evaluation of the performed experiments. These were conducted
in order to determine the best architecture and settings for the purpose of attribute
prediction. All evaluations were done on VIPeR dataset, as mentioned in Section 4.3.1.
Unless otherwise stated, all displayed plots in this chapter show the corresponding
mean score values over all attributes.
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Figure 4.7: Different numbers of fixed layers for training
This figures shows the F1 scores for different trainings. Higher values are better. The
experiment shows, that it is better to fix less layers. This means that filter in deeper
layers are not as useful for the prediction of attributes, as the filters in the first layers.
For details about the training, see Table A.1 in Appendix A.

Experiments on pre-trained network

As already mentioned, the original idea for this master’s thesis was to perform
fine-tuning on a pre-trained architecture in order to predict attributes. However,
different experiments showed that fine-tuning weights of the pre-trained network
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Figure 4.8: Two trainings compared by amount of noise added
In both trainings (orange and blue) the weights for the first five layers were loaded.
Additionally, the first three layers were fixed, i.e. excluded from training. The remain-
ing network weights were initialized randomly. Of the two layers that were imported
but not fixed, p percent of the filters were re-initialized randomly. Furthermore, zero-
centered normal distributed noise (standard deviation of q) was added to the filters
in both layers as well. The solid lines consider attributes which appear in at least five
percent of the dataset. The dotted lines show those in at least one percent of the
dataset. The training was performed on all attributes. The curves show, that by re-
moving filters from the network, or disturbing them by adding noise, the performance
worsens. Therefore, the pretrained network contains weights that are already useful
and contribute to the prediction of attributes.

was inferior to a training from scratch. As mentioned earlier, the model consists of
eight layers. Due to the changes on the output layer, the existing weights cannot
be imported for the last layer. This means that, at most, weights for the first seven
layers of the model can be imported. First, Figure 4.7 shows seven trainings on a
subset of the available attributes, namely the upper body colors. The upper body
color is one of four multi-class attributes and can assume one out of eleven different
colors. This first experiment investigated the influence of the number of fixed layers

48



CHAPTER 4. CLASSIFICATION OF SEMANTIC ATTRIBUTES

on the training of the network. Therefore, each time, all weights were loaded from
the original network, but different numbers of layers were excluded from training.
For instance, the yellow curve shows the performance when fixing the first five layers.
Apparently, excluding too many layers from training leads to a significant drop
of the classification performance. However, the best performance was achieved by
experiments fixing not more than the first two layers. These results imply that the
imported weights need even more adaption in order to be useful for classifying upper
body colors. Since about 42 percent of all attributes are colors, it is important to
have filters which react on this kind of features. Hence, keeping all filters from the
pre-trained network could prevent the training from adapting the weights in the right
manner.

Based on this result, additional experiments examined the effect of randomly
re-initializing filters as well as adding noise to the filter weights. The aim of this
experiment is to examine, if the imported but not fixed weights are useful at all.
Figure 4.8 illustrates two selected trainings that were performed on all 105 attributes.
In this experiment, two training runs are compared. The figure shows the performance
evaluated on attributes that appear in at least 1% and 5% of the individuals of the
dataset. Details about the training parameters can be found in Table A.2. Both
experiments were identical except of the number of filters that were reset and the
amount of noise added. At a first glance, both setups seem difficult to compare, due to
simultaneous changes on the number of re-initialized filters and the amount of noise.
Still, both changes have in common that they alter the existing weights. However,
re-initializing is a more radical step, since each filter’s weights get completely new
random values. On the other side, adding a small amount of zero-centered normal
distributed noise leads to weights that are similar to the original ones. Therefore, both
can be seen as disturbance for the original layer weights. Summarizing the results
displayed in Figure 4.8, in both cases – one percent and five percent of the attributes –
the network with less disturbed weights performed best. This means, that the weights
in the imported but not fixed layers are definitely useful for the attribute recognition.
Therefore, the imported weights will not be discarded. Nevertheless, in the follow-
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Figure 4.9: Training with and without imported weights
Two networks with identical configurations were trained. One of them with imported
weights, the other without. As the curves show, the pretrained network reaches faster
a higher F1 score and therefore performs better in early training stages. In later train-
ing stages, however, the network with randomly initialized weights performs slightly
better. This result opens broad possibilities regarding architectural decisions. For
detailed information about the training see Table A.1 in Appendix A.

ing it will be examined how the network performs when no weights are imported at all.

In addition to the experiments from above, further were performed in order to
compare the pre-trained version of the network, with a completely random initialized
version. Figure 4.9 shows the results of this experiment. It is obvious that not
importing any weights leads to a similar performance. However, it takes more epochs
and, therefore, more time to achieve the same level of performance. In late training
stages, the network with random initial weights performs slightly better, compared
to the pretrained network. This means, that adapting the pretrained weights for the
purpose of attribute prediction leads to fairly good results. Nevertheless, training
from scratch seems equally well or potentially even better suited for the purpose of
predicting attributes.
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Figure 4.10: ELU versus ReLU
This experiment examines the effect of using the ELU activation function. Noweights
are imported, so the architecture can be varied more freely. It is obvious, that with
the same parameters, the ELU performs much better from the beginning. Even if
the ReLU network comes closer at later stages, the ELU network stays superior. For
detailed information about the training see Table A.3 in Appendix A

This result opens broad possibilities regarding architectural decisions. Since keeping
the weights of the pre-trained network is not necessary for predicting attributes, it
offers the possibility to alter the original architecture. This possibly leads to even
better results, which means the existing architecture is not limited to the original
decisions made by [Eisenbach et al., 2016]. Furthermore, different techniques can
now be used for training, for example several different optimizers or varying neuron
activation functions. Especially, with imported weights, other optimizers were not
applicable, since most of them like RMSprop, Adam, and Adagrad tend to behave
very radically at the beginning of the training. Usually, this behavior destroys already
trained weights, which makes them useless for the training.
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Figure 4.11: Softmax versus Sigmoid: Upper body color
All networks were trained on upper body colors. According to [Deng et al., 2014], the
upper body color is a multi-class attribute. Therefore, each image should be labeled
with exactly one color. This experiment examines the effects on the classification
performance, when using sigmoid or softmax activation function for the output layer.
Both output functions are paired with ReLU and ELU activation for the hidden neu-
rons. The experiment shows, that using sigmoid output activation performs better
combined with ELU and ReLU activation function. The combination of ELU and Soft-
max, however, performs very bad. It seems that the combination of both activation
functions is not suited for learning labels distributed like the upper body color (see
Figure 4.12(a)). For further details about the training see Table A.4 in Appendix A.

Experiments without pre-trained weights

As mentioned above, not using pre-trained weights gives the opportunity to examine
the effect of different changes on the architecture. Figure 4.10, therefore, shows that
the use of ELU activation instead of ReLU boosts the performance even more. Not
only does it reach a higher average F1 score, but also a faster adaption to the problem
as the first few hundred epochs already show. The reason as stated by [Clevert et al.,
2016] is marginal influence of negative values. This may lead to a better adaption
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Figure 4.12: Multi-class attributes
Compared to the upper body color case, the gender labels (male and female respec-
tively) show a ”better“ distribution of labels. Almost all persons have at most one
label at the same time. Only one single person is labeled with neither female nor
male gender.

to the problem. In addition to that, the effect of different output functions was ex-
amined as well. Since the experiments shown in Figure 4.10 were performed on the
upper body color – which is by definition of the PETA dataset a multi-class attribute
– it seems natural to examine the effect of the softmax output function as well (see
4.1.2). Figure 4.11 displays the corresponding experiments. Therefore, four different
combinations of ELUs (red) and ReLUs (blue) with sigmoid (dotted line) and softmax
(solid line) activation were examined. Evidently, using sigmoid output achieves better
results than using softmax output. Taking a look at the distribution of the number
of upper body colors per person reveals, that the information given by [Deng et al.,
2014] should be treated with caution. Actually, over ten percent of all persons are
labeled with at least two different or no colors as illustrated in Figure 4.12(a). This is
very likely to be the reason for the softmax output function to perform worse than the
sigmoid output. Surprisingly, the performance is particularly poor for the combination
of softmax output function and ELUs within the network. This result could be repro-
duced for multiple experiments. It seems that the combination of ELUs and softmax
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Figure 4.13: Softmax versus Sigmoid: Gender
Both experiments were performed on gender attributes. The network with the soft-
max output performs better than the network with sigmoid output, as the higher F1

score indicates. In addition to the experiment in Figure 4.11, this shows that the soft-
max activation function achieves better performance, if the distribution of the used
labels is not too noisy. For details about the used learning parameters see Table A.4
in Appendix A.

output is not suited for learning labels that are distributed like the upper body color.
In addition, another experiment was performed on a different group, namely the gender
of people. As Figure 4.13 shows, both ELUs and softmax work together and achieve
very good results. In this case, softmax performs even better than sigmoid. This
underlines the initial thoughts that softmax output should be avoided for multi-label
problems. Compared to the experiments in Figure 4.11, each person has at most one
label for gender as illustrated by Figure 4.12(b). Further research showed that only
a single image in the whole dataset exists that has no gender label. This particular
image is shown in Figure 4.14. Due to the difficult viewing angle and the bad cropping
of the image, a final statement about the gender is not possible. Since this is a singular
case, it has no considerable influence on the gender classification problem. Based on
these results, the decision to use ELUs for the final version of the architecture was

54



CHAPTER 4. CLASSIFICATION OF SEMANTIC ATTRIBUTES

Figure 4.14: Genderless person
This image is taken from the PRID dataset, another sub-dataset of PETA. It is the only
occurrence of a person not labeled with any gender.

made, since the networks with ELUs performed better in almost all cases. Motivated
by the overall performance and the encountered difficulties of the softmax function,
the decision has been made in favor of the sigmoid function for the output layer.
Therefore, the sigmoid output function will be used for all following experiments. So
far, stochastic gradient descent was used for optimizing the loss function, because it
is broadly used by many researchers and shows good performance in many different
cases. Another reason was, that the original weights of the pre-trained model were
trained by using this optimizer. Due to the fact, that other optimizers often behave
very radical, it was necessary to use the identical optimizer for the fine-tuning as well.
For the initial experiments, the stochastic gradient descent parameters were chosen as
proposed by [Eisenbach et al., 2016]. Thus, the learning rate was set to 0.01 and the
momentum to 0.7. These are the parameters for all experiments performed so far.
Unless specified differently, for the following ones, only attributes that are available in
at least five percent of all persons were considered. This decision is motivated by the
assumption that labels that are available only in few samples are unlikely to contribute
to the overall classification performance. Therefore, Figure 4.15 shows three different
training runs. The red one used all of the 105 available attributes from the dataset for
training. Afterwards, it was evaluated on 44 of the 105 attributes in order to compare
it with the other trainings. The performance, though, stays below its direct competi-
tor, depicted by the blue curve. This means, the training does not benefit from taking
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Figure 4.15: Parameter evaluation for stochastic gradient descent optimizer
The stochastic gradient descent has multiple parameters to set up. Here, only learn-
ing rate and momentum were taken into account. The number in square brackets
indicates the number of attributes on which the training was performed.

the additional attributes into account. Both trainings differ only in the amount of
presented labels, which is indicated by the number in square brackets. The blue and
the orange curve show the average F1 score when training directly on the attributes
that are available in at least five percent of all persons. This time, the orange one is
outperformed by the blue one as well. Of all tested learning rates, hence, a value of
0.005 has shown the best quality. Additional tests, so as to examine similar effects of
the momentum were disregarded, since this would go beyond the scope of this mas-
ter’s thesis. As the experiment showed that considering only the attributes that are
present in at least 5% of all individuals leads to a better classification performance,
the decision was made to use only these for the rest of this master’s thesis.
In a second experiment, the Adam [Kingma and Ba, 2014] optimizer has been exam-
ined in order to figure out whether the classification performance could be improved
even more. The best results were achieved by Adam with a learning rate of 10−5.
Independent of the chosen learning rates, all curves reach a hill after some hundred
epochs, which is clearly visible in Figure 4.17(a). Despite the good performance on
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(a) Adam (b) stochastic gradient descent

Figure 4.16: Filters from first convolution layer
Resulting filters of the best network trained with Adam and stochastic gradient de-
scent optimizer. The weights of the network trained with Adam look like they were
in a very early stage of training. Since they correspond to the network with the best
F1 score, it seems that the network reached some local minimum. The weights of
the stochastic gradient descent trained model, hence, seem much more cleaner, al-
though many weights look still very noisy.

the validation dataset, which is even better than the best stochastic gradient descent
conducted, the weights still show a significant amount of noise. This indicates, that
the network has not learned anything useful so far. Therefore, this leads to the as-
sumption that the optimizer has reached a local minimum, suggested by the weights of
the first convolution layer (see Figure 4.16). Furthermore, Figure 4.17(a) shows that
the default learning rate is too high, as indicated by the orange curve. Decreasing the
learning rate, hence, is beneficial to the performance on the validation data. But not
all tested optimizers (SGD, Adam [Kingma and Ba, 2014], and Adagrad [Duchi et al.,
2011]) were applicable. Especially, Adagrad [Duchi et al., 2011] performed surprisingly
bad as shown in Figure 4.17(b). The optimizer seems to have problems with the ELUs,
since the average F1 score does not change at all for most of the time. This theory
could not be verified yet due to the limited time for this master’s thesis, and should

57



CHAPTER 4. CLASSIFICATION OF SEMANTIC ATTRIBUTES

be addressed in future work.
Finally, it can be summarized that almost all examined optimizers showed a fairly
good performance. However, the most stable results were achieved by stochastic gra-
dient descent, which needs more epochs and time respectively to achieve a comparable
performance. Therefore, for the final architecture – in the following referred to as
attCNN (attribute Convolutional Neural Network) – stochastic gradient descent was
chosen as the optimizer, with a learning rate of 0.005 and a momentum of 0.7. These
showed the best performance in all performed experiments. Even more optimizers
exist that could be used for training, like Adamax [Kingma and Ba, 2014] or Adadelta
[Zeiler, 2012]. But these were not taken into account, since analyzing them would go
beyond the scope of this master’s thesis.

Comparison to other architectures and attempts

Layer Filt. F. size Activ. MaxPooling Dropout Outp. Volume

conv1 32 9× 9 ELU 2x2 — 60× 20× 32
conv2 64 7× 7 ELU 2x2 0.25 27× 7× 64
conv3 128 6× 6 ELU 2x2 0.25 11× 1× 128
fc1 500 — ELU — 0.3 500
fc2 500 — ELU — 0.5 500

output 44 — sigmoid — 0.5 44

Table 4.5: Architecture of the reduced smallCNN model
This architecture has less convolution layers and less fully-connected neurons. The
parameterswere chosen similar to the architecture shown in Table 4.1. By altering the
network structure, the size of the network could be reduced from about four million
to less than one and a half million weights.

With the results from the previous experiments, the attCNN will be compared with
different state-of-the-art methods, namely the approaches of [Pala, 2016] and [Su et al.,
2016], in order to examine if it can outperform those. Motivated by the improvements
achieved by modifying different parts of the original architecture, which led to the
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Figure 4.17: Training with different optimizers
Adam [Kingma and Ba, 2014] and Adagrad [Duchi et al., 2011] are further well known
optimizer. It is recommended to use the default for most parameters. For Adam,
however, the learning rate is variable and should be adapted to the problem. Further-
more, Adam seems to get stuck in a local minimum very fast. The experiment shows,
that Adagrad seems to have problems, whereas Adam seems to be better suited than
Adagrad for training the network.
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attCNN, a smaller model was derived from the attCNN, the so called smallCNN in
order to examine, if the performance can be enhanced even more, with a less complex
model. This mentioned model is evaluated here as well. The architecture for the latter,
is shown in Table 4.5. The smallCNN has a lower number of layers, filters, and neurons
in the fully-connected part of the network. It consists of less than one and a half million
weights, which is a drastic reduction of the original attCNN size. Figure 4.18 shows
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Figure 4.18: AttCNN vs. smallCNN vs. AlexNet (SSDAL [Su et al., 2016]) on 44
attributes
The smallCNN achieves even better performance than the attCNN. Moreover, both
beat the pre-trained AlexNet, for which the last (FC7) and last two fully-connected
layers (FC6+7) respectively were trained.

the consequences of these changes. Of all examined models, the smallCNN achieves
the best performance, followed by the attCNN and the two AlexNet approaches. The
most likely reason is the reduced complexity of the model, which is preferable for a
small dataset. This reduction improves the generalization capability of the network
and, thus, leads to better performance. As the green curve indicates, the performance
of smallCNN is constantly above all other presented algorithms. However, over time,
attCNN gets very close to the performance of smallCNN. As the smallCNN and the
attCNN achieve almost the same performance, the decision was made to use the latter
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for the following experiments, since it is more similar to the original adapted network
by [Eisenbach et al., 2016].
In the following, the attCNN will be compared to approaches of [Pala, 2016] and [Su
et al., 2016]. Since [Su et al., 2016] only used the attribute classification accuracy for
evaluating the attribute prediction performance, this metric was adapted here as well.
In addition, the reproduction of the network from stage 1 of the SSDAL algorithm
was attempted. Since stage 1 simply consists of fine-tuning a pre-trained AlexNet,
this could be achieved relatively fast. Due to the lack of information about the fine
tuning, it was attempted to follow the procedure presented in [Krizhevsky et al., 2012],
which seemed to be the most likely way [Su et al., 2016] implemented it. These are
shown in Figure 4.18 as well. Both experiments used pre-trained weights for all layers
except for the last or the last two layers respectively. Obviously, both trained AlexNets
stayed below the competing attCNN and smallCNN. This outcome is also confirmed
by the resulting Attribute Classification Accuracy (ACA) scores in Table 4.6.

Method ACA (105) ACA (44)

SSDAL [Su et al., 2016] 0.586 —
AlexNet 0.637 0.639
attCNN 0.651 0.654
smallCNN — 0.655

Table 4.6: Comparison of attribute classification accuracy
In order to compare attCNN, smallCNN, and the re-implemented fine-tuned AlexNet
of the SSDAL approach [Su et al., 2016], the attribute classification accuracywas eval-
uated. Both, attCNN and smallCNN, outperform the SSDAL algorithm. The number in
parentheses indicates the number of attributes on which the metric was evaluated.

The score for SSDAL is taken from the paper as they evaluated the algorithm only on
all 105 attributes. Since the AlexNets and attCNN were trained in the context of this
master’s thesis, both scores could be determined. Due to the limited time, smallCNN
was only evaluated on the 5-percent-subset of the attributes and, therefore, does not
provide any value for the training on all attributes.
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The second algorithm, to which this master’s thesis is compared to, is the already
mentioned one by [Pala, 2016], which was presented in Section 3.2.2. [Pala, 2016] use
three almost identical Convolutional Neural Networks for different parts of the body,
namely head, torso, and legs. These use less but larger filters in the first layer, as well
as less layers (only two convolution and two fully-connected layers). This results in a
total of up to half a million weights per network.
Table 4.7 shows all attributes that were considered for training, meaning all attributes
that are available for at least five percent of individuals. The table demonstrates
that attCNN achieves better performance for almost all attributes compared to the
tripartite attempt of [Pala, 2016]. Since [Pala, 2016] ignored some attributes, the
corresponding entries in the table are marked with ”—“. Despite both the large ar-
chitecture and the relatively small size of the dataset, the developed model achieves
better results. Especially, splitting it into different body parts is not required in order
to predict all considered attributes. It could be possible that the performance can be
enhanced further, since the weights shown in Figure 4.16(b) seem not have reached
their final form, which is indicated by their noisy appearance. In order to achieve
this improvement, one step could be to add further regularization like L1- and L2-
regularization to the layers of the network. Whether this improves the performance
should be evaluated in future work.
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Attribute attCNN Pala Attribute attCNN Pala

footwearBlack 0.5255 — personalFemale 0.7229 —

footwearBrown 0.0588 — lowerBodyFormal 0.1389 0.026

footwearGrey 0.0945 — upperBodyFormal 0.1565 0.163

footwearWhite 0.4903 — upperBodyJacket 0.0766 0.049

hairBlack 0.8051 0.779 lowerBodyJeans 0.7717 0.701

hairBrown 0.3911 0.365 footwearLeatherShoes 0.3000 —

lowerBodyBlack 0.6954 0.587 upperBodyLogo 0.1070 0.104

lowerBodyBlue 0.6250 0.573 hairLong 0.7252 0.577

lowerBodyGrey 0.4336 0.442 upperBodyLongSleeve 0.7740 0.773

upperBodyBlack 0.7736 0.659 personalMale 0.7511 —

upperBodyBlue 0.6191 0.477 carryingMessengerBag 0.3018 —

upperBodyBrown 0.1595 0.128 accessoryNothing 0.5922 —

upperBodyGrey 0.3529 0.265 carryingNothing 0.4372 —

upperBodyRed 0.7569 0.724 footwearShoes 0.3867 —

upperBodyWhite 0.7006 0.618 hairShort 0.8228 0.649

personalLess30 0.8480 — lowerBodyShorts 0.3020 0.320

personalLess45 0.2325 — upperBodyShortSleeve 0.4248 0.467

personalLess60 0.1159 — lowerBodyShortSkirt 0.2155 0.275

carryingBackpack 0.5192 — footwearSneakers 0.4379 —

carryingOther 0.1826 — lowerBodyTrousers 0.6099 0.529

lowerBodyCasual 0.9905 0.972 upperBodyTshirt 0.3958 0.453

upperBodyCasual 0.9814 0.978 upperBodyOther 0.6179 -

Table 4.7: Comparison of area under the precision-recall-curve
This table shows the attributes used for the training of the network. They are rep-
resented by at least five percent of the individuals. [Pala, 2016] focused on training
separately on the head, torso, and leg part. The foot part and some soft biometric
features were not considered for training and, therefore, marked with ”—“. For each
attribute, the better value is highlighted in bold.
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4.4 Summary

As this chapter showed, predicting attributes is a difficult problem. Many different
aspects have influence on the training of a Convolutional Neural Network for attribute
prediction. Especially, the relatively small amount of labeled data is a crucial point. In
order to mitigate this problem, different techniques and architectural details have to be
considered. The chapter showed, that the initial idea to adapt a pre-trained network in
order to get around the problem of small amounts of data, achieves fairly good results.
With particular changes on the original architecture and training methods, the model,
as trained from scratch, accomplishes even better results. This implies switching the
activation from ReLU to ELU, decreasing the learning rate, and reducing the amount
of labels considered for training, improves the classification performance.
The final attCNN, hence, outperforms the architecture of [Pala, 2016] in almost all
cases and does not need splitting into different body parts. Furthermore, considering
the performance metric introduced by [Su et al., 2016], the attCNN presented in this
chapter achieves better results than the SSDAL algorithm [Su et al., 2016]. Further
reduction of the network size leads to a slightly better performance. Since the attCNN
seems not to have reached its final performance yet, it might be able to outperform
the smallCNN with further improved training.
Despite the evaluation of many parameters, the experiments suggest, that the perfor-
mance might be improved further. Therefore, in future work e.g. further regularization
techniques and experiments using modified architectures should also be addressed. But
this is beyond the scope of this master’s thesis.
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Attribute-based Person
Re-Identification 5
The first part of this master’s thesis focused on the prediction of semantic attributes.
For this reason, a Deep Convolutional Neural Network was introduced in order to rec-
ognize attributes on images of persons. The aim of the second part of the developed
algorithm is to perform person re-identification based on these predicted attributes.
Given an attribute vector of a certain person, it is necessary to rank all other per-
sons from the probe set by their attribute representation. Therefore, two different
approaches were developed. First, a distance network was implemented, which uses
triplet-based training in order to learn a distance function, which allows to rank at-
tribute vectors by these distances. Furthermore, a second network, which classifies
two persons by their similarity to a probe person, is presented afterwards. The archi-
tectures of these different models is presented in Section 5.1, followed by details about
the underlying dataset and training in Section 5.2. Finally, the performed experiments
and results are shown and discussed in Section 5.3.

5.1 Model Architecture

As mentioned above, this part of the chapter addresses the architectural details of the
two networks. Both have in common that they are multilayer perceptrons. As input,
each network takes multiple attribute label vectors x ∈ Rd, which were predicted by
the attCNN presented in Chapter 4. Regarding the internal structure, both networks
consist of two hidden layers, both having an identical amount of neurons. They mainly
differ in the number of inputs and the desired output. First, this part of the chapter
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Figure 5.1: Distance network architecture
The network consists of two d-dimensional inputs. The output of the network is a
single neuron that emits the final distance value. In addition to the shown neurons,
each layer has bias neurons as well.

takes a look on the distance network. Afterwards, the classification network will be
presented in detail.

5.1.1 Distance Network

As already mentioned, the distance network approach was developed to solve the re-
identification problem by learning a distance function and rank the gallery images
base on the distance to the probe image. Similar persons should have a small dis-
tance, compared to dissimilar ones with a larger distance. Therefore, the task for this
network is to solve a regression problem. In particular, its aim is to learn a func-
tion D : Rd × Rd 7→ R. This function assigns a distance score D(xi,xj) ∈ R to two
d-dimensional inputs xi and xj.
In order to achieve the desired behavior, the network is equipped with two input layers.
Each input layer takes the attribute representations xk ∈ Rd of an image i for person
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Distance Network Classification Network

layer neurons activation dropout neurons activation dropout

input 0 d — — d — —
input 1 d — — d — —
input 2 — — — d — —
hidden 0 875 ReLU — 1000 ReLU —
hidden 1 875 ReLU 0.5 1000 ReLU 0.5
output 1 linear 0.5 2 softmax 0.5

Table 5.1: Overview of the network structures
Both network architectures are summarized in this table. It shows the architectural
differences between both networks. Analogous to the network from the first stage,
the input layers do not use any dropout regularization. Examining the effect of using
dropout for the input layers as well should be covered in future work.

k. Both input layers are fed into the first hidden layer, which is followed directly by
the second hidden layer. For simplicity reasons, both hidden layers are identical. This
includes the choice of ReLU activation function for each neuron, as well as the num-
ber of neurons per layer. In addition to the just mentioned properties, both hidden
layers are equipped with a dropout rate of 0.5. This serves, analogous to Chapter 4
as regularization, which aims to avoid overfitting of the network. Analogous to the
network from the first stage, the input layers do not use any dropout regularization.
Examining the effect of using dropout for the input layers as well should be covered in
future work. Since the desired output of the network is a distance score, it is sufficient
to use a single neuron with linear activation as output. The information given above
is summarized in Table 5.1. In addition to that, Figure 5.1 visualizes the network.

5.1.2 Classification Network

The second developed architecture follows a slightly different approach. This time,
three instead of two inputs are fed into the network. In opposite to the distance net-
work, the classification network takes three inputs x0, x1 and x2 ∈ Rd and decides
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which pair (x0,x1) or (x0,x2) is more similar. In order to achieve this, all three inputs
are passed to the first hidden layer of the network. Despite the number of neurons in
both hidden layers (1,000 and 875 neurons, see experiments in Section 5.3.3 for further
details), the layers themselves are identical between both networks regarding activa-
tion of single neurons and regularization techniques. Since the network has to decide
which pair is more similar, the output layer differs from the output layer of the distance
network by the number of neurons. Specifically, this means that it uses two neurons
with softmax activation. The first neuron is active, if the pair (x0,x1) is more similar
than the second pair (x0,x2). Otherwise the second neuron is active. As mentioned
earlier in this master’s thesis, the softmax output leads to one dominant neuron acti-
vation in almost all cases. This suits the desired behavior. Thus, the function learned
by the network can be seen as F (x0,x1,x2) ∈ R2 with F : Rd × Rd × Rd 7→ R2. The
information presented above is summarized in Table 5.1. Analogous to the distance
network, Figure 5.2 visualizes the architecture of the classification network.
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x1
1

x1
d

x2
1
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(x0,x1)

(x0,x2)

Figure 5.2: Classification network architecture
The network consists of three d-dimensional inputs and two output neurons. Fur-
thermore, two output neurons indicate which pair is more similar. In addition to the
shown neurons, each layer has bias neurons as well.
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5.2 Training of the Networks

This part of the chapter takes a look on the training of both approaches. This in-
cludes the dataset (Section 5.2.1), which is the same for both networks, as well as
different data augmentation techniques (Section 5.2.2) used in the scope of this chap-
ter. Furthermore, the slightly different training procedures and the used loss function
(Section 5.2.3) are presented here, too. Finally, the chapter takes a look on the used
ranking techniques for both networks (Section 5.2.4).

5.2.1 Triplet Dataset

As mentioned above, this section introduces the dataset used for the re-identification
part of the algorithm. Different to the first part of the algorithm introduced in Chap-
ter 4, the approaches developed here use attribute vectors x ∈ Rd as inputs. These
attribute vectors are generated by employing a dataset independent from the PETA
dataset used in Chapter 4, which consists of multiple images of different persons. This
is necessary, since the Deep Convolutional Neural Network that provides the attribute
labels for the training of the distance and classification network has been trained on the
PETA dataset. As a consequence, the resulting attribute label vectors would be proba-
bly to close to the ground truth labels, thus limiting the the achievable re-identification
performance of the two networks. For each of these images I ∈ R128×48×3, the attCNN
M was used to predict attribute vectors x := M(I) ∈ Rd . Hence, the dimension of the
attribute vectors is d = 44. Based on these vectors, so called triplets were constructed.
Within the scope of this master’s thesis, a triplet t = (xa,xp,xn) is composed of three
representations x1

i , x2
i , and xj ∈ Rd of two different individuals i, j: an anchor vector

xa = x1
i describing a certain person i, a second representation of the same person

xp = x2
i and a third one xn = xj that describes a different person j. These three rep-

resentations, are referred to in the literature as anchor, positive, and negative sample.
Figure 5.3 shows the conceptual idea behind the introduced triplets.

As already mentioned, these triplets are used for training both the classification and
the distance network. Therefore, it is possible to generate a single dataset instead of
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Figure 5.3: Conceptual idea of a triplet
Anchor and positive image show the same person from varying perspectives. The
negative image shows a different person. (Images taken from [Deng et al., 2014].)

a different dataset for each approach. In Chapter 4 the problem was, that the used
dataset, namely PETA, was relatively small and not suited very well for training
deep neural networks. By constructing triplets as defined above, this problem can
be eliminated. Even with relatively small datasets, the number of possible triplets
explodes very fast. This will be shown in the following.

Derivation of the formula for the size of the dataset

Let X = {x1, . . . ,xm} be the set of the attribute representations of all available images
for n individuals of a certain image dataset. Therefore, X can be split by individuals
into n different subsets X1, . . . , Xn ⊆ X. Let X = {X1, . . . , Xn} be the set containing
all person-subsets of X. X is a partition of X and therefore the following conditions
hold:

1. ∅ /∈ X

2. X = ⋃
Xi∈X

Xi

3. if Xi, Xj ∈ X and Xi 6= Xj then Xi ∩Xj = ∅

It is simple to prove that X is a partition of X, since every person has at least one
image (→ Condition 1) and each image is assigned to exactly one individual (→ Con-
dition 3). Condition 2 is satisfied by definition of X . The fact, that X is a partition
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of X makes it simpler to determine the maximum size of the dataset.
In order to compute the total number of producible triplets, two sets X̂i and X̄i are
defined for each person i in the following way. The first set X̂i consists of pairs of at-
tribute vectors that describe the same person. Pairs (xk,xk) of the same representation
are excluded from the dataset.

X̂i = { (xk,xl) ∈ Xi ×Xi | xk 6= xl } (5.1)

Obviously, X̂i = ∅ if and only if one attribute vector for person i exists. X̄i on the
other hand holds all attribute vectors not describing person i.

X̄i = X \Xi (5.2)

In order to generate triplets, each possible pair of anchor and positive match from X̂i

can therefore be combined with each image in X̄i showing a different person. The total
number Ñ of possible triplets can be computed as follows.

Ñ = |
⋃

i∈{1,...,n}

(
X̂i × X̄i

)
| =

n∑
i=1
|X̂i| · |X̄i|

=
n∑
i=1

(|Xi ×Xi| − |Xi|) · |X \Xi|

=
n∑
i=1
|Xi| · (|Xi| − 1) · (|X| − |Xi|)

(5.3)

Market-1501 for triplet dataset creation

Now, with the formula derived in Equation 5.3, it is possible to determine the total
number of producible triplets. In order to create triplets, the Market-1501 dataset
[Zheng et al., 2015] was employed, which is independent to the PETA dataset used
for the first part of this master’s thesis. Market-1501 consists of over 30,000 images
for 1,501 different individuals. For the construction of the triplet dataset, images that
do not show persons labeled with an identifier are disregarded, which reduces the
size of the original Market-1501 dataset to 26,051. In addition to that, one randomly
collected part of the VIPeR dataset, consisting of one half of the individuals including
all their attribute vectors, was included as well. The VIPeR dataset has not been
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used for training of the attCNN, therefore it is uncritical to use it. Hence, for the final
set X results that |X| = 26,051 + 632 = 26,683. By using the formula obtained in
Equation 5.3 follows that the total number of producible triplets is Ñ = 15,224,645,260.

Due to the lack of time and space, the size of the training dataset was set to
N = 220 = 1020·log10 2 ≈ 1 million samples. This training dataset is constructed
independently from the training step. Therefore, in a first step, N pairs of different
persons i and j are generated randomly. For each pair of individuals, corresponding
attribute vectors are generated randomly, two for person i and one for person j.
These three vectors are then combined to a triplet and added to the dataset. For the
training of both networks, 1

16 of the generated training set is randomly chosen and
used for validation and, therefore, excluded from training.
In addition to the training dataset, another small set of triplets for testing the
performance of the classifier is constructed as well. The dataset consists only of
attribute vectors generated from the second part of the VIPeR dataset. Furthermore,
this is done ten times with different random partitions of VIPeR. This is necessary,
since [Su et al., 2016] uses this evaluation procedure. The generation of the triplets for
the second dataset is done completely deterministic by pairing each individual i with
all other individuals j. The just described procedure is summarized in Algorithm 3.

5.2.2 Data Augmentation

Data Augmentation is an important topic for data driven methods, since its aim is to
increase the number of data samples for training. So far, the obtained dataset can be
used for training the distance and classification network. However, depending on the
network used, different techniques for data augmentation are possible. First, some gen-
eral techniques that are applicable for both approaches are presented in short: adding
random noise and transforming images. In particular, adding random zero-centered
normal distributed noise to the attribute vectors already serves as data augmentation.
It is very difficult to tell how much this method increases the theoretical size of the
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Algorithm 3 Triplet dataset generation

1: T ← ∅

2: V ← ∅

3: X = {X1, . . . , Xn} ← load sets of images for all persons i ∈ I from Market-1501
4: Split I into training set It and testing set Iv . It, Iv include each one half of VIPeR
5: SplitX into training setXt and testing setXv . Xt ∩Xv = ∅, Xt ∪Xv = X

6: Load attCNN modelM : R128×48×3 7→ Rd

7: Randomly sample N identifiers ik ∈ It with replacement into multiset A
8: for all ik ∈ A do
9: Randomly sample identifier il from It \ {il}

10: Randomly sample two images x1
ik

and x2
ik

for ik and one xil for il fromXik andXil

11: T ← T ∪ {(M(x1
ik

),M(x2
ik

),M(xil))} . Predict vectors and add triplet to dataset
12: end for
13: for all ik ∈ Iv do
14: Vk ← ik × (Iv \ {ik}) . pair ik with all other ij from second half of VIPeR except ik
15: for all (iu, iw) ∈ Vk do
16: Randomly sample images x1

iu and x2
iu ∈ Xiu and one xiw ∈ Xiw

17: V ← V ∪ {(M(x1
iu),M(x2

iu),M(xiw))}

18: end for
19: end for

underlying dataset. In a continuous world, this leads to an infinite number of possible
samples. Since computers work in a discrete and bounded world, this is obviously not
the case. In addition to that, it is hard to determine the proper standard deviation
σ of the normal distribution. Too much noise (high value for σ), however, will have
a negative effect on the data, because information is lost. Therefore, it is necessary
to find a suitable amount of noise, which has to be large enough in order to have any
effect, but cannot be too large in order to retain the information within the data. Due
to the limited time for this master’s thesis, adding random noise was not examined
further.
Instead of augmenting the dataset by direct manipulation of the attribute vectors, it is
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also possible to perform the augmentation on the image dataset. For this, all methods
presented in Algorithm 2 can be used. The simplest way would be to horizontally flip
each image, which doubles the size of X. Let X∗ be the resulting theoretical dataset
with |X∗| = 2 · |X|. X∗i , X̂∗i and X̄∗i are defined based on X∗ analogous to 5.1 and 5.2.
Therefore, the new total number Ñ∗ of possible triplets is at least eight times larger
as shown in Equation 5.4.

Ñ∗ = |
⋃

i∈{1,...,n}

(
X̂∗i × X̄∗i

)
| =

n∑
i=1
|X̂∗i | · |X̄∗i |

=
n∑
i=1
|X∗i | · (|X∗i | − 1) · (|X∗| − |X∗i |)

≥
n∑
i=1

2 · |Xi| · (2 · |Xi| − 2) · (2 · |X| − 2 · |Xi|)

=
n∑
i=1

2 · |Xi| · 2 · (|Xi| − 1) · 2 · (|X| − |Xi|)

= 8 · Ñ

(5.4)

This way of augmenting the data was not employed, either. The reason is, that it
is not possible to perform the augmentation with the here used models at training
time (i.e. live), which is the preferred way. Performing the augmentation live, the-
oretically allows to explore a much larger virtual dataset Ñ . If the augmentation
is performed beforehand, the training is limited to the generated data for the whole
training. In order to benefit from the augmentation, it is necessary to generate more
samples before training, which take even more disk space. This, however, could be
done as well by creating a larger training dataset without data augmentation, since
the theoretical dataset provides enough possible triplets. Therefore, in this case the
data augmentation by transforming images is not beneficial to the training.
Beside these methods, that could be used for both networks, for the classification
network, however, another additional way of augmenting the data exists. Specifically,
the size of the dataset can be increased by simply swapping the second and third
element of each triplet, which is shown in Figure 5.4. This swapping of the elements
of the triplets is referred to as inner triplet shuffling. By doing this, the size of the
virtual dataset can be doubled, since for each sample (xa,xp,xn) the corresponding
sample (xa,xn,xp) can be used as well. At each epoch, for each of the available triplets
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Figure 5.4: Data augmentation by inner triplet shuffling
Each row represents a triplet sample. Initially, samples are sorted as shown in the
left part of the figure. The anchor members stay untouched at the first position. For
each sample, positive and negative members are switched randomly at each epoch.
In addition to that, triplets are shuffled for training as well.

the algorithm determines with a probability of 0.5, whether it will be flipped or not.
Obviously, the ground truth labels have to be swapped then, too. The benefits of this
kind of augmentation are that it can be performed live, and it is cheap concerning
computation time. Yet, this is not applicable for the distance network due to the
numerical nature of the problem and the way the network is trained. This is mainly
due to the used loss function, which will be shown in the next section. Performing the
shuffling is important, in order to avoid the network to develop a behavior that simply
always predicts the first sample as more similar. If the data is not shuffled, this is very
likely to happen.
Therefore, it can be summarized, that data augmentation was not used for the training
of the distance network. The classification network, however, uses the necessary inner
triplet shuffling.
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5.2.3 Loss Function and Training

Beside the architectural differences, the two approaches differ in their training, too.
In this part of the chapter, all relevant information for the understanding of both
methods are presented.

Distance Network

As already mentioned earlier, the distance network presented in this master’s thesis
tries to predict a distance value between two attribute vectors. Specifically, the net-
work tries to decrease the distance between attribute vectors that describe the same
person, whereas the distance between attribute vectors showing different people will be
increased. For this purpose, the so called Triplet Loss, as used for example by [Schroff
et al., 2015] and [Su et al., 2016], was adapted. The main concept as explained above
can be expressed as shown in Equation 5.5, where fdist : Rd × Rd 7→ R is an arbitrary
distance function.

fdist(xa,xp) + α ≤ fdist(xa,xn) (5.5)

Instead of simply trying to achieve that the distance between anchor vector xa and
positive vector xp is smaller than the corresponding distance between anchor vector
xa and negative vector xn, a margin parameter α ∈ R+ is included. This margin
controls how big the distance between these pairs should be at least. By subtracting
the distance between anchor and negative sample from both sides of the equation, the
formula can be brought into the form shown in Equation 5.6.

fdist(xa,xp) + α− fdist(xa,xn) ≤ 0 (5.6)

This leads directly to the final loss function as shown in Equation 5.7, where the
arbitrary distance function fdist is replaced by the function computed by the distance
network D(xi,xj) ∈ R.

Ldist =
n∑
i=1

max{ 0, α−D(xa,xn) +D(xa,xp) } (5.7)
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This loss is non-negative and reaches its minimum, if the condition from Equation 5.6
is fulfilled by all triplets in the training dataset. In order to train the distance network
with the triplet dataset, a method based on two networks, which share their weights,
was developed. Figure 5.5(a) illustrates how the training of the distance network is
performed. As explained in Section 5.2.1, the attribute vectors are provided by the
attCNN. Each of the distance network instances, gets a pair of attribute vectors and
outputs a corresponding scalar. Since both instances are identical due to the shared
weights, both outputs can be used for computing the triplet loss.

Classification Network

Similar to the attCNN, the classification network uses the cross entropy for training.
This time, due to the fact that the network only has to classify which of the two
representations xp and xn introduced earlier is more similar to the anchor xa, the loss
function can be simplified. For the classification network, F : Rd×Rd×Rd 7→ R2 with
F (xa,x0,x1) = ỹ = (ỹ0, ỹ1)T ∈ R2 is the function of the network. In other words, the
classification network takes three inputs, where the first one is the anchor element, and
decides which of the remaining two elements is more similar to the anchor. This is done
by returning a two-dimensional vector, where the elements yi provide the probability
that the corresponding elements xi is the more similar one. The corresponding ground
truth label vector is y = (y0, y1)T , where yi = 1 if xi is more similar to the anchor and
0 else. Therefore, the loss function can be written as shown in Equation 5.8.

Lclass = −
n∑
i=1

y0 ln ỹ0 + y1 ln ỹ1 (5.8)

Due to the softmax activation, which ensures that ỹ0 + ỹ1 = 1, the formula can
be rewritten depending on ỹ0 only without loss of generality. This is displayed in
Equation 5.9.

Lclass = −
n∑
i=1

y0 ln ỹ0 + (1− y0) ln(1− ỹ0) (5.9)

Analogous to Figure 5.5(a), Figure 5.5(b) illustrates the training of the classifier.
Again, the attribute vectors are provided by the attCNN. This time, there is no need

77



CHAPTER 5. ATTRIBUTE-BASED PERSON RE-IDENTIFICATION

(a) Distance network approach

(b) Classification network approach

Figure 5.5: Triplet training alternatives
Two different triplet-based approaches were developed for re-identification. Both
have in common that they take predicted attribute vectors as input. 5.5(a) computes
distance values between two attribute vectors, whereas 5.5(b) decides which of two
presented descriptions is more similar to the anchor.
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Algorithm 4 Ensemble Training

1: S1
train ← { (x1

a,x1
p,x1

n), . . . , (xma ,xmp ,xmn ) } . Generate triplets (Algorithm 3)
2: F1, F2, F3 initialize classification networks
3: Train network F1 on S1

train

4: for all i ∈ {2, 3} do
5: Create S̃itrain with |S̃itrain| = 4 · |Si−1

train|

6: Sitrain ← { (xka,xkp ,xkn) ∈ S̃itrain | (xka,xkp ,xkn) misclassified by Fi−1 }

7: Train network Fi on Sitrain
8: end for

to use two instances of the network, since all three inputs are used directly by the
classification network.

Classification Ensemble

A simple way to build a classifier, which improves the performance, is to use an
ensemble of networks. One possible way to build an ensemble is to use multiple
instances of the same network. Here, the decision was made to use three networks
F1, F2, and F3. These network have to be trained independently. For this, F1 is first
trained on the dataset S1

train as introduced in Section 5.2.1. Afterwards, a second and
four times bigger dataset S̃2

train is generated. This dataset is not used for training.
Instead, it is employed to build another dataset S2

train. This one consists of triplet
samples from S̃2

train that were misclassified by the trained network F1. On the obtained
dataset, another randomly initialized copy of the classification network, F2 is trained
on. The just described procedure is then repeated again in order to obtain a third
network F3. It was also considered to use both networks, F1 and the F2, to generate
the dataset for F3. Therefore, this dataset would consist of samples that are difficult
for both networks. As it turned out, after filtering, far too few samples remained for
training another instance of the classification network. Hence, an even larger dataset
would be needed to increase the total number of triplets. Generating such a dataset,
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(a) Training phase (b) Application phase

Figure 5.6: Ensemble training and application phase
In the training phase, the classification network is trained on the initial dataset.
Afterwards, the network is used to create another dataset, which then will be used
for training a second network. This is done a third time. The three obtained networks
are combined to an ensemble afterwards.

was not possible, since the time for this master’s thesis was limited. Therefore, this
modification of the training procedure was disregarded.
Figure 5.6(a) illustrates the procedure explained above, which is also summarized in
Algorithm 4. These three networks F1, F2, and F3 are then composed to an ensemble,
which decides what element of the triplet is more similar to the anchor part by a
majority vote. The concept is illustrated in Figure 5.6(b).

5.2.4 Ranking of Gallery Samples

So far, the distance and the classification network were presented. The last missing
detail, which is necessary to perform re-identification, is the ranking of the gallery
samples. Typically, for a given probe xi and a gallery of multiple samples xj, the task
is to order the gallery by similarity of the samples in descending order. As mentioned
earlier, due to the different aims of both networks, the ranking has to be performed
differently for each approach. The ranking techniques for the distance and classification
network are presented separately for each network in the following.
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Distance Network

Ranking a gallery by employing the distance network is fairly simple. Due to the
construction and training of the network, the distance network is able to provide scores
for pairs of attribute vectors. Therefore, it is sufficient to determine the scores for all
pairs P = { (xi,xj) | xi probe vector,xjgallery vector }. Afterwards, the elements xj
can be arranged in ascending order by the determined distance scores predicted by the
distance network.

Classification Network

The classification network decides which attribute vector of two individuals j and k

from the gallery set is more similar to the attribute vector of the third individual i
from the probe set. Therefore, the gallery set has to be ranked by these pairwise
comparisons, which makes the sorting of the gallery samples for each individual xj
more complex. For the classification network, two different ranking approaches were
evaluated: an adapted sorting algorithm and a winning-based ranking. Both need the
comparison matrix Mi, which is defined for each probe i as shown in Equation 5.10.

Mi =



0 mi
1,2 · · · mi

1,n−1 mi
1,n

mi
2,1 0 · · · mi

2,n−1 mi
2,n

... ... . . . ... ...
mi
n−1,1 mi

n−1,2 · · · 0 mi
n−1,n

mi
n,1 mi

n,2 · · · mi
n,n−1 0


(5.10)

with mi
j,k defined as follows:

mi
j,k =


1 if j is more similar to i than k

−1 if k is more similar to i than j

0 if both j and k are equally similar to i

(5.11)

In the case of a perfect classification of all triplets, Mi is a skew-symmetric matrix,
meaning mi

k,j = −mi
j,k ∀i, j ∈ {1, . . . , n} or simply Mi = −MT

i .
For the first ranking method, the BubbleSort algorithm was adapted, with the slight
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Algorithm 5 BubbleSortRanking

1: Generate M as described in Equation 5.11
2: n← Number of gallery samples . number of gallery elements
3: Generate initial order of elements (e.g. by ascending identifier or better, random order)
4: for all i from n-1 to 1 do
5: for all j from 1 to i do
6: if mj,j+1 == -1 then
7: swap(j,j+1)
8: end if
9: end for

10: end for

change that the comparison of two elements j and k is performed by looking at the
matrix Mi. First, the elements from the gallery set are put into a list on which
the algorithm is performed afterwards. If the corresponding entry in Mi equals -1,
then the elements are swapped. Algorithm 5 shows this procedure. With a certain
probability, the classification network makes wrong decisions. These can disturb the
sorting performed by Algorithm 5. Thus, this method has the major drawback, that it
is not independent from the initial order of the list, which can lead to a highly ranked
individual which has only “won” the comparison to some weak competitors.
Therefore, the second approach was designed to be more robust. This winning-based
method counts the number of wins for all individuals. For the individual j, therefore,
the number of 1’s in the jth row, as well as the number of -1’s in the jth column are
counted. This is done for all individuals in the gallery set. Based on these numbers,
the elements are arranged in descending order.

5.3 Experiments

With all the knowledge about the architecture and training of the networks, the chapter
continues with the presentation of the performed experiments. Section 5.3.1 gives a
short overview of the datasets used for validation and testing. Analogous to Chapter 4,
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the employed metrics for the evaluation of the performance of the single networks
are presented in Section 5.3.2. These experiments show the performance of both
approaches developed and compare them with each other. Furthermore, the networks
are compared to the SSDAL algorithm proposed by [Su et al., 2016].

5.3.1 Datasets for Validation

Similar to the first part of this master’s thesis, the VIPeR dataset is used for testing
in all experiments. Since VIPeR was excluded from training of the attCNN, it is
uncritical to generate attribute vectors for the images of this dataset. The resulting
attribute vectors can be used for training and testing of the distance and classification
network. For evaluating the algorithms, the protocol for the VIPeR dataset is to split
the dataset into half: one half can be used for training, the other half is reserved
for testing. This is repeated ten times with different, randomly determined splits.
Afterwards, the resulting performance metrics are averaged over these ten results.

5.3.2 Evaluation Metrics

In order to compare different experiments, evaluation metrics are necessary to quan-
tify the performance of the tested networks. Therefore, depending on the performed
experiments, different evaluation metrics were employed. These are: multiple rank-k
scores from the Cumulative Matching Characteristic (CMC) curve for the distance
network, and F1 score introduced in Section 4.3.2 for the classification network. In
order to compare the networks regarding their re-identification performance, the cu-
mulative match score is employed. The CMC curve describes the matching rate at
specific ranks over all performed rankings. At rank k, the value describes the number
of matches within the first k ranks. For a better understanding, Figure 5.7 gives a sim-
plified example for the computation of the CMC matching rates at different ranks. In
addition to the CMC curve the Synthetic Recognition Rate (SRR) curve is employed
for performance comparisons between the different networks. This metric shows, de-
pending on the number of considered individuals k, the (synthetic) rank-1 score and
can be interpreted as the probability of finding the corresponding gallery element at

83



CHAPTER 5. ATTRIBUTE-BASED PERSON RE-IDENTIFICATION
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Figure 5.7: Example for computation of matching rates for different ranks
Four different personsW, X, Y, and Z are compared to a gallery consisting of four indi-
viduals A, B, C, and D, resulting in a ordered list for each anchor. For each anchor, the
correct match can be found at a specific position in the ranking. These positions of
the correct matches are highlighted. From thesematches, the correspondingmatch-
ing rates can be determined. One out of four persons matched at rank 1 (25%), two
out of four rankings matched within the first two ranks (50%) and so on. The corre-
sponding CMC curve can be found in Figure 5.7(b).

the first rank, when investigating k targets. The score can be derived directly from
the CMC metric as displayed in Equation 5.12, where n is the number of persons in
the probe gallery.

SRR(k) = CMC(n
k
) (5.12)

5.3.3 Performance Comparison

In order to achieve a good re-identification performance, it is necessary to investigate
the influence of different architectures and other parameters for both developed net-
works. Therefore, different experiments need to be performed. They investigate the
effects of certain changes and therefore help to choose the best network configuration
and training parameters. First, the experiments for the distance network are pre-
sented. Afterwards, the same is done for the classification network and the presented
ranking techniques. The obtained best configurations for the distance and classifica-
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Figure 5.8: Trends of the rank scores of a certain distance network architecture
The figure shows the progress of the selected rank matching rates over training
epochs. As one can see, the scores stop to improve after several epochs. For de-
tails about the used network configuration see Table A.6 in Appendix A.

tion network are then compared to each other in the third part of this section. In
addition, the networks are also compared to the SSDAL [Su et al., 2016] algorithm,
which currently achieves the best attribute-based person re-identification performance
of a Deep Learning approach. Due to limited time, only some aspects of the developed
networks could be investigated. As the distance network showed a bad performance
from the beginning, more time was invested on the experiments for the classification
network. Nevertheless, all obtained results for the distance network are presented here
and compared to the classification network.

Distance Network

As mentioned in Section 5.3.2, the distance network was evaluated by comparing the
matching rates at different ranks in order to compare different variations of the network
configuration. Therefore, a set of ranks was selected in order to investigate the progress
of the matching rates. The chosen ranks are: rank 1, 5, 10, 15, 25 and 50. These are
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Figure 5.9: Rank scores of the validation dataset for certain distance network ar-
chitectures
The experiment examines the effect of different amounts of neurons per hidden layer
on thematching rates. Since the original curves are very noise but stationary in some
way, it was decided to evaluate the rank scores at each rank averaged over epochs.
It is obvious that the changes do not have much impact on the matching rates. Nev-
ertheless, the smallest network seems to lack complexity, since it stays behind all
other architectures. The best performance, however, is achieved by a middle-sized
architecture. Therefore the network with 875 hidden neurons was chosen as the final
architecture. For details see Table A.6 in Appendix A.

used in order to obtain a simplified CMC curve. As Figure 5.8 illustrates, the single
rank-k curves are very noisy, without a significant improvement over training epochs.
Most of the performance improvement occurs in the first few epochs, before almost all
scores seem to reach a plateau. Higher ranks compared to lower ones, however, show
improvements over a longer time but stop to improve as well after few hundred epochs.
This is the case for all conducted trainings. Independently from the chosen architec-
tures or learning parameters, the network reaches the plateau within a few epochs.
This makes it difficult to find an appropriate architecture for the distance network
based on the rank performances, since almost all training results seem to be nearly
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identical. Figure 5.9 shows the investigated architectures. The best performance was
achieved by the network with 875 neurons per hidden layer. Reducing or increasing
the size of the network, leads to an declining performance on all ranks. Especially, the
smallest network shows the worst performance, but these are very marginal differences.
Nevertheless, the architectures can be compared and the best performing one could
be identified. Thus, for the final architecture and for later experiments the number of
hidden neurons was set to 875. The corresponding CMC curve is shown in Figure 5.10.
For further information about the training parameters, see Table A.6 in Appendix A.
In addition to the experiment that investigated the network size, it could be examined
how the learning rate or different neuron activations influence the performance of the
network. In particular, different activations for the output neuron could be examined,
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Figure 5.10: CMC curve for the distance network
The re-identification performance for the distance network with 875 neurons per hid-
den layer. For further information about the training parameters, see Table A.7 in
Appendix A.

like e.g. sigmoid or ReLU activation. Additionally, the learning rate was not evalu-
ated, but set to 0.05 with a momentum of 0.7. The influence of this parameters and
further configurations of the network could be examined in future work. The following
experiments focus on the classification network and the comparisons to the SSDAL
algorithm.
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Classification Network

In order to determine the best architecture and parameters for the classification net-
work, different aspects that influence the performance were examined. The first exper-
iment, therefore, examines the influence of the network size, which is mainly affected
by the number of neurons in the hidden layers, has on the classification performance.
All trainings performed have in common, that they use the same number of neurons
for both hidden layers, since most of the deep learning based methods that include
multilayer perceptrons follow this procedure. The experiment investigated networks
from 500 to 1,250 neurons per hidden layer. Starting with 500 neurons per layer, the
size was increased by 125 neurons multiple times in order to examine a sufficient num-
ber of architectures. As Figure 5.11(b) shows, the smaller networks achieve an almost
identical performance compared to all others. At some points, the curve of the net-
work with 750 neurons per layer, achieves a slightly higher F1 score and hence a better
performance. Increasing the size of the network even more improves the performance,
as shown in Figure 5.11(a). Choosing a network with 875 or 1,000 neurons respectively
achieves the best performance compared to the other investigated architectures. The
performance measured by the F1 score starts to drop with even larger networks. The
reason for the dropping performance with larger networks could be that the network
are to complex for the problem, and therefore have less generalization capability com-
pared to the networks with 875 and 1,000 neurons respectively. Altogether, these are
slight differences in the performance and no significant changes in the F1 score were
encountered. The best performing architecture, which consists of 1,000 neurons per
hidden layer, was chosen for the final experiments. The influence of training param-
eters as learning rate and momentum, or other optimizers was not examined, since
this would go beyond the scope of this master’s thesis. The parameters used in this
experiment are presented in Table A.8 in Appendix A. It provides further information
about the network, the performed training and the used dataset.
The ranking methods introduced in Section 5.2.4, are examined in the next two ex-
periments shown in Figure 5.12 and 5.13. In the first experiment, for both methods,
the same configuration of the classification network was applied. The only difference
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(a) Larger sized models
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Figure 5.11: Impact of different numbers of hidden neurons per layer
The curves show the performance measured by the F1 scores over the training
epochs for different architectures. Higher values are better. The legend shows the
amount of neurons per hidden layer. The experiment shows, that the chosen number
of neurons per hidden layer has only a small effect on the performance. Since the
network with 1,000 neurons per hidden layer achieves the best performance, this one
was chosen for all following experiments. For details, see Table A.8 in Appendix A.
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Figure 5.12: Comparison of both presented ranking techniques using the same net-
work configuration
The figure shows the CMC curves (evaluated at ranks 1, 5, 10, 15, 25 and 50) for the
classification network using the two ranking techniques. Both presented methods
are evaluated with the same configuration of the classification network. A higher
matching rate indicates a better re-identification performance. It is obvious that the
counting method performs much better at all ranks. This result highlights that the
ranking by simply counting the number of wins is the method of choice. For further
details on training parameters see Table A.9 in Appendix A.

was the way of ranking the gallery for each probe. Analogous to the distance network,
the matching rate was evaluated for the ranks 1, 5, 10, 15, 25 and 50. The results are
shown in Figure 5.12. Apparently, the counting wins method achieves far better results
than the sorting-based method. The reason for this is, that counting the number of
times a certain individual wins against its “competitors”, is more robust than sorting
the elements, since the obtained score values are of a more general nature. Sorting
algorithms, however, rank by few comparisons with certain other elements. Therefore,
for a given probe xa, the element at rank 1 does not necessary has to be the most
similar one. For example due to a decent initial ordering, the probe element might
have been pushed forward, although far more similar elements can be found on later
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Figure 5.13: Ranking by counting wins on different architectures
This experiment examines how the counting of wins performs with two different net-
works. It confirms the choice of architecture. Similar to the classification perfor-
mance, the larger network shows a slightly better performance, than the smaller one.
This is understandable, since an improvement in the classification performance im-
plies more accurate comparisons results between different individuals and therefore
better rankings.

ranks. This problem might be mitigated, by ranking multiple times. First, the whole
list is ranked. In a next step, the elements within the first and second half are ranked
another time. This is repeated multiple times. Future work could examine, if this
procedure improves the performance. In addition to the experiment for finding the
best architecture for the classification network, Figure 5.13 highlights the findings of
the experiment presented in Figure 5.11.

Comparison with state-of-the-art methods

As mentioned in the beginning of the section, this part focuses on the re-identification
performance of the distance network, the classification network and the SSDAL algo-
rithm. Therefore, different experiments were conducted to investigate the performance
of each approach. All experiments, presented in this part are evaluated on the VIPeR

91



CHAPTER 5. ATTRIBUTE-BASED PERSON RE-IDENTIFICATION

1 5 10 15 20 25 50
rank

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
at

ch
in

g 
ra

te

SSDAL (L2)
AlexNet (L2)
attCNN105 (L2)

Figure 5.14: Comparison of SSDAL and attCNN
This figure shows the CMC curves for the SSDAL algorithm (AlexNet with finetun-
ing), the AlexNet itself (values for both taken from [Su et al., 2016]) and the attCNN
(trained on 105 attributes), which was proposed in the first part of this master’s the-
sis. Apparently, the SSDAL algorithm performs much better than the attCNN.

dataset.
The first experiment, shown in Figure 5.14 examines how SSDAL and attCNN per-
form, when ranking the gallery set by using the L2 distance on the predicted attribute
vectors. This comparison is conducted, since the SSDAL algorithm uses exactly this
metric as a distance measure for ranking. Obviously, SSDAL outperforms the attCNN
developed in this master’s thesis by a large margin. Even the first stage of the SSDAL
algorithm, which is simply an adapted AlexNet, performs better than the attCNN.
It is difficult to tell, what the exact reason for this significant better performance of
the SSDAL algorithm is. One reason could be, that the used pretrained AlexNet is
much larger and was initially trained on a huge and diverse dataset. This might lead
to more diverse filters, which include filters that are better suited for classifying differ-
ent attributes. The attCNN, however, was trained from scratch on a relatively small
dataset. Therefore, the attCNN might have learned different filters that are useful for
predicting semantic attributes, whereas some filters might not have been able to learn,
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since to few examples were provided by the dataset. Although, the attCNN achieves
a decent performance on attribute prediction, this might not be enough for competing
with the AlexNet approach. Furthermore, the SSDAL algorithm uses different fine
tunings in order to improve the attribute classification performance of the AlexNet.
This could all be reasons for the better performance of the SSDAL algorithm. For a
better comparison, the scores for some ranks provided by [Su et al., 2016] are listed in
Table A.11 in Appendix A. These correspond to the curve for the SSDAL algorithm
in Figure 5.14. All this should be addressed in future work.
Since the decision to restrict the training of the network on attributes from a subset
of all attributes was made in Chapter 4, the corresponding network is examined in the
next experiment. The aim of this experiment is to examine, whether the better perfor-
mance in classifying attributes is also beneficial for the re-identification performance.
Figure 5.15 shows the results of the experiment. Surprisingly, the network that uses all
105 attributes performs slightly better. Of course, as already mentioned in Chapter 4,
rare attributes are well suited for re-identifying persons, however, they are difficult to
learn. Although, the overall attribute classification performance of the attCNN44 is
superior to the one of the attCNN105, the additional attributes seem to be beneficial
for the re-identification. However, it seems that the better decision would have been
to retain all attributes in order to achieve a better performance at re-identifying per-
sons, even if it does not have a significant effect on the performance. At this point,
it would be interesting to see, if using the pretrained weights, that were discarded in
Chapter 4 would increase the re-identification performance even more. Unfortunately,
for this experiment was not enough time left. In addition to the experiment in Fig-
ure 5.15, it was also examined if the re-identification performance can be improved by
the developed triplet-based networks. For a first experiment the classification network
was chosen in order to compare itself to the L2-based re-identification. Figure 5.16
shows that using the classification network leads to a significant improvement. As
mentioned in Section 5.1.2, an attempt to improve the performance even more was to
use an ensemble for classifying triplets. However, Figure 5.18 shows that this is not
the case. Surprisingly, the achieved performance is even worse than working with a
single network. The explanation for this can be found in Figure 5.19. Only two of
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(a) Cumulative Match Characteristic curve
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(b) Synthetic Recognition Rate curve

Figure 5.15: Comparison of the attCNN trained on 44 and 105 attributes
Both curves show, that the two networks perform almost equal. Nevertheless, the
network with all 105 attributes shows a slightly better performance at some points.
Especially, in places where many people are detected, the attCNN105 is likely to per-
form better. As a consequence, it seems that the decision to reduce the number of
labels was not beneficial for the re-identification performance.
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Figure 5.16: Comparison of the attCNN with L2-based ranking and classification
network (CN) ranking
The curves show, that the L2-based re-identification is inferior to the classification
network with win-based ranking. Furthermore, the classification network has an
equivalent effect on both, the attCNN44 and attCNN105, and therefore does not ben-
efit from the different numbers of labels.

three networks show a good performance, whereas the performance of the third one
drops very fast. Consequently, this has a negative influence on the overall performance
of the ensemble. The reason for the behavior of the second network can be found in
its training. As explained earlier, the first classification network is used to create the
training dataset for the second network. This is done by taking an initial, randomly
generated dataset with over four million triplets. The first network is then used to
filter this dataset in order to obtain all triplets that were misclassified, which were on
average about 130,000 triplets. These are far to few triplets for training the second
classification network. Therefore, one possible way to solve this problem could be to
use a ten times larger initial dataset consisting of 40 million triplets. After filtering
this dataset, the expected size of the remaining dataset would be about one million
triplets. Another possibility would be, to train a smaller architecture on the dataset
that can be trained by 130,000 triplets. Eventually, this would perform better and

95



CHAPTER 5. ATTRIBUTE-BASED PERSON RE-IDENTIFICATION

1 5 10 15 20 25 50
rank

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
at

ch
in

g 
ra

te

DistNet
ClassNet
L2

(a) Cumulative Match Characteristic curve

1 5 10 15 20 25 50
number of targets

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
at

ch
in

g 
ra

te

DistNet
ClassNet
L2

(b) Synthetic Recognition Rate curve

Figure 5.17: Comparison of distance and classification network
This experiment compares the distance and the classification network, using the ear-
lier determined best network configurations. Apparently, the classification network
achieves a significantly better performance at all shown ranks. However, both out-
perform the L2 distance based re-identification. For further details see Table A.10 in
Appendix A
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Figure 5.18: Classificaton network vs. Ensemble
This figure shows the CMC curves for classification network and the ensemble of
classification networks. One would expect the performance to improve, when using
an ensemble approach. This is not the case. The ensemble reaches approximately
the same performance. At earlier ranks, the performance is even slightly worser than
the single network performance. As Figure 5.19 shows, this is due to the second
network of the ensemble.

therefore contribute to the performance of the ensemble. These ideas should be ad-
dressed in future work.

5.4 Summary

In this chapter, two conceptually different networks were presented, which try to solve
the person re-identification problem based on semantic attributes. The first attempt,
tries to learn a distance function, which is used to assign a distance score to pairs of
attribute vectors. These scores are then used to perform the ranking of individuals
from the probe gallery. The network itself uses pairs, however, the training of the
network is triplet-based.
The second approach, tries to solve the mentioned problem by deciding which of the two
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Figure 5.19: Evaluation of the performance of the single parts of the ensemble
This figure shows the SRR curves for three parts of the ensemble as presented in
Section 5.2.3. Network #1 performs well. Network #2, however, achieves a very bad
performance. Most likely, due to the size of the used dataset. On average, the first
network misclassifies about 3% of the original triplets (130,000 of 4 million triplets).
This dataset is even with the used data augmentation techniques to small for the
training of the network. Since the second network performs rather bad, many triplets
are misclassified, so that the third network gets a much larger dataset and therefore
is able to perform better again. This problem should be addressed in future work.

attribute vectors is more similar to the anchor vector. For this network, certain ranking
techniques are necessary. In this chapter, two methods for ranking were introduced and
evaluated. In addition, for increasing the performance of the classification network,
an ensemble was presented and evaluated as well. Finally, the two networks were
compared with each other, as well as the SSDAL algorithm by [Su et al., 2016]. As
already mentioned in the summary of Chapter 4, much more time has been invested
into learning to predict attributes. Therefore, some aspects presented in this chapter
should be addressed in future work.
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Conclusion 6
Finally, this chapter concludes the master’s thesis. Section 6.1 focuses on giving an
overview of the results obtained for both parts of this master’s thesis: the recogni-
tion of semantic attributes, and the re-identification of persons by using the predicted
attributes. Afterwards, Section 6.2 takes a look at further ways to improve the per-
formance of the proposed algorithm

6.1 Summary

This master’s thesis addresses the problem of person re-identification based on
semantic attributes and Deep Learning. Therefore, it is divided into two different
parts: the prediction of semantic attributes, and the re-identification based on these
predicted attributes. In the first part a pretrained model is adapted in order to predict
semantic attributes. This pretrained model is a Deep Convolutional Neural Network
proposed by [Eisenbach et al., 2016], which was initially trained on images of persons
in order to detect people. In order to use this model, it was adapted and extended.
Different experiments were conducted to examine the suitability of the network for the
task of recognizing attributes. Since the aim of the original architecture was to detect
people, changes were necessary for the purpose of predicting semantic attributes.
Therefore, the output layer of the Convolutional Neural Network was modified by
increasing the number of output neurons to the amount of available attributes.
Furthermore, the activation of the output neurons was changed to the sigmoid
activation function, in order to use the network for the new task. The experiments
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showed, that compared to other state-of-the-art methods based on Deep Learning and
semantic attributes the adapted model achieves state-of-the-art classification results
already. In addition to that, further experiments showed that different modifications
on the architecture of the Convolutional Neural Network, as well as constraints on
the used attributes enhanced the attribute classification performance of the original
network. Especially, this master’s thesis showed that the attribute classification
performance of the modified Convolutional Neural Network could be improved by
using so called Exponential Linear Units [Clevert et al., 2016]. Altogether, this part
of the master’s thesis showed, that the modified network achieves state-of-the-art
performance when predicting semantic attributes.
As mentioned above, the second part of this master’s thesis focused on the
re-identification based on semantic attributes that were predicted by the Deep
Convolutional Neural Network from the first part. For this purpose, two different
approaches were examined for the purpose of re-identification. The first one tries
to learn a distance function, which assigns a distance score to pairs of images. For
this, a novel training procedure was proposed, which uses triplets in order to train
the network. The second one tries to classify triplets into two classes, depending on
which element of the triplet is more similar to the anchor element. These networks
were both trained on a dataset of triplets, which was generated by using the Deep
Convolutional Neural Network from the first part of the master’s thesis. The images
used for the construction of the triplet dataset were taken from a dataset, which
is independent to the one used in the first part of this master’s thesis. In a first
experiment, it was examined how the Deep Convolutional Neural Network developed
in the first part of this master’s thesis performs compared to the SSDAL algorithm
proposed by [Su et al., 2016], when applying the L2 distance for re-identification.
The results showed, that the algorithm by [Su et al., 2016] performs better than the
own developed approach. Further experiments showed that, by using the developed
distance or classification network, a significant improvement of the re-identification
performance could be achieved. As it turned out, the classification network achieved
the best performance of both approaches that were mentioned above and brought the
performance of the Convolutional Neural Network closer to the SSDAL algorithm.
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6.2 Future Work

In order to improve the re-identification performance, different aspects could be ex-
amined in future work. As, the recognition of semantic attributes is a very important
task for the re-identification of persons, it could be examined whether a more sophisti-
cated output layer, using multiple softmax activated groups of neurons instead of one
flat output layer improves the overall classification performance. These groups could
contain for example a single or multiple corresponding semantic attributes. This idea
was initially planned to be examined in this master’s thesis. Due to the limited time
this could not be considered and should be addressed by future work. Further im-
provement could be achieved by splitting images into different body parts. For each
body part, a network could be trained to recognize semantic attributes as proposed by
[Pala, 2016]. The output of these networks could be fused with the network developed
in this master’s thesisafterwards. The most promising enhancement, however, could
be a fine-tuning by using an independent dataset as proposed by [Su et al., 2016].
The slight adjustment of the predicted attribute vectors could probably improve the
performance even more.
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Tables and Implementation
Details for the Algorithms A
A.1 Classification of Semantic Attributes

This part of the appendix contains additional information about the experiments per-
formed in Chapter 4. The tables contain parameters for the performed trainings,
grouped by experiments. In addition, they contain information about the used acti-
vation and output functions, as well as the numbers of fixed and imported layers from
the original network by [Eisenbach et al., 2016].

Parameter Value

Optimizer Stoch. Grad. Descent
Learning rate 0.01
Momentum 0.7
Activation ReLU
Output sigmoid
Nb. of imported layers varying
Nb. of fixed layers varying

Table A.1: Parameters and Details for Experiment on page 47, 48, and 50
This table contains the parameters used for the training of the networks in the first
experiment, which has the purpose to examine the effects of the number of fixed
layers on the performance of the network. The training was performed on a subset
of the available attributes, namely the upper body colors. In Experiment 3, no layers
were fixed at all.
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Parameter Value

Optimizer Stoch. Grad. Descent
Learning rate 0.01
Momentum 0.7
Activation ReLU
Output sigmoid
Nb. of imported layers 5
Nb. of fixed layers 3

Table A.2: Parameters and Details for the experiment on page 48
This table contains parameters used for the training of the networks in the second
experiment. Its purpose is to examine the effects removing filters or adding noise to
imported filters.

Parameter Value

Optimizer Stoch. Grad. Descent
Learning rate 0.01
Momentum 0.7
Activation ReLU
Output sigmoid
Nb. of imported layers varying
Nb. of fixed layers varying

Table A.3: Parameters and Details for the experiment on page 51
This table contains the parameters used for the training of the networks in the fourth
experiment. Its purpose is to examine the effects of using ELU activation on the
performance of the network. The training was performed on the attributes that are
available in at least 5% of the individuals. No layers were loaded here at all.
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Parameter Value

Optimizer Stoch. Grad. Descent
Learning rate 0.01
Momentum 0.7
Activation varying
Output varying
Nb. of imported layers 0
Nb. of fixed layers 0

Table A.4: Parameters and Details for Experiments on page 52 and 54
This table contains the parameters used for the training of the networks in the fourth
experiment. Its purpose is to examine the effects of using different activation func-
tions in the output layer on the performance of the network. No layers were loaded
here at all.
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A.2 Attribute-based Person Re-Identification

Analogous to the previous section, detailed information, like learning rates, or specific
characteristics of different performed experiments in Chapter 5 are given here. The
tables contain parameters for the performed trainings, grouped by experiments. All
used networks were trained on 44 semantic attributes.

Distance Network

Parameter Value

α 0.2
Hidden neurons 875
Optimizer Stoch. Grad. Descent
Learning rate 0.005
Momentum 0.7
Activation ReLU
Output linear

Table A.5: Parameters and Details for Experiment on page 85 for the distance net-
work
This table contains the parameters used for the training of the network. α describes
the chosen parameter of the loss function. The evaluation was performed on a sub-
set of the training dataset which was excluded from training. The training includes
half the VIPeR dataset as well.
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Parameter Value

α 0.2
Hidden neurons varying
Optimizer Stoch. Grad. Descent
Learning rate 0.005
Momentum 0.7
Activation ReLU
Output linear

Table A.6: Parameters and details for investigation of the network size of the dis-
tance network
This table contains the parameters used for training the network in the experiment
on page 86. α describes the chosen parameter of the loss function. The evaluation
was performed on a subset of the training dataset which was excluded from training.

Parameter Value

α 0.2
Hidden neurons 875
Optimizer Stoch. Grad. Descent
Learning rate 0.005
Momentum 0.7
Activation ReLU
Output linear

Table A.7: Parameters and details for investigation of the network size of the dis-
tance network
This table contains the parameters used for training of the final network presented
on page 87. α describes the chosen parameter of the loss function. The evaluation
was performed on a VIPeR, following the procedure presented in 5.2.1.
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Classification Network

Parameter Value

Optimizer Stoch. Grad. Descent
Learning rate 0.01
Momentum 0.7
Activation ReLU
Output softmax

Table A.8: Parameters and Details for Classification Network Experiment on
page 90
This table contains the parameters used for the training of the classification net-
work in the first experiment. The purpose of the experiment is to determine the best
number of neurons in the hidden layers. The learning parameters were not evalu-
ated further, but set to the values shown in the table. The training was performed
on attribute labels predicted on images from PETA. VIPeR, which was excluded from
training, was used for the evaluation.

Parameter Value

Optimizer Stoch. Grad. Descent
Hidden neurons 1000
Learning rate 0.01
Momentum 0.7
Activation ReLU
Output softmax

Table A.9: Parameters and Details for Classification Network used for the ranking
experiments on page 90
This table contains the parameters used for the experiment that examines the perfor-
mance of the presented ranking techniques. The training was performed on attribute
labels predicted on images fromPETA. VIPeR, whichwas excluded from training, was
used for the evaluation.
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Parameter Value

Optimizer Stoch. Grad. Descent
Hidden neurons 1000
Learning rate 0.01
Momentum 0.7
Activation ReLU
Nb. of attr. 44
Output softmax

Table A.10: Parameters and Details for Classification Network used for the ranking
experiments on page 96
This table contains the parameters used for the experiment that examines the perfor-
mance of the presented ranking techniques. The training was performed on attribute
labels predicted on images fromPETA. VIPeR, whichwas excluded from training, was
used for the evaluation.

SSDAL AlexNet (SSDAL) attCNN105 attCNN44

Rank 1 37.9 34.5 6.96 5.4
Rank 5 65.5 63.9 17.9 17.3
Rank 10 75.6 73.1 26.6 24.4
Rank 15 — — 33.0 30.3
Rank 20 88.4 87.0 37.6 36.1

Table A.11: Comparison of matching rates from the CMC curves on different ranks
by using L2 distance for re-identification on page 92 and 94
This table shows how the SSDAL algorithm as well as the underlying AlexNet per-
form, compared to the attCNN developed in this master’s thesis for attribute predic-
tion. The number at the end of the name indicates the number of used attributes.
Hence, attCNN44 predicts only 44 attributes. Obviously, both attCNNs are of inferior
performance compared to the AlexNet and the SSDAL algorithm.
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ClassNet CN Ensemble DistNet

Rank 1 13.5 12.2 6.7
Rank 5 35.2 31.8 23.3
Rank 10 47.2 44.9 36.5
Rank 15 54.9 53.0 42.9
Rank 20 61.3 60.2 48.6

Table A.12: Values for the CMC curves of the classification network, the ensemble
of classification networks and distance network architecture 96 and 97
These values correspond to the experiments that involve one of these three architec-
tures. The single classification network performs best of all developed approaches.
These scores were obtained by training the corresponding network on predicted at-
tribute vectors with 44 labels.
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Pedestrian Attribute Dataset
(PETA) B
B.1 List of available attributes

This section gives some detailed information about the attributes existing in the used
dataset, which also implies information about the frequency of each attribute in the
dataset.

Id Name Count %

0 footwearBlack 4070 46.7440
1 footwearBlue 20 0.2297
2 footwearBrown 729 8.3726
3 footwearGreen 42 0.4824
4 footwearGrey 1256 14.4252
5 footwearOrange 34 0.3905
6 footwearPink 16 0.1838
7 footwearPurple 13 0.1493
8 footwearRed 175 2.0099
9 footwearWhite 1753 20.1332
10 footwearYellow 32 0.3675

Table B.1: List of attributes - part #1
This table shows the attributes 0 to 10 with their names, the absolute frequency of
their occurrence in images from the dataset as well as the relative occurrence.
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Id Name Count %

11 hairBlack 6859 78.7757
12 hairBlue 0 0.0000
13 hairBrown 1102 12.6565
14 hairGreen 1 0.0115
15 hairGrey 382 4.3873
16 hairOrange 2 0.0230
17 hairPink 0 0.0000
18 hairPurple 2 0.0230
19 hairRed 1 0.0115
20 hairWhite 99 1.1370
21 hairYellow 205 2.3544
22 lowerBodyBlack 4293 49.3052
23 lowerBodyBlue 1399 16.0675
24 lowerBodyBrown 310 3.5604
25 lowerBodyGreen 29 0.3331
26 lowerBodyGrey 2258 25.9332
27 lowerBodyOrange 8 0.0919
28 lowerBodyPink 21 0.2412
29 lowerBodyPurple 27 0.3101
30 lowerBodyRed 68 0.7810
31 lowerBodyWhite 398 4.5710
32 lowerBodyYellow 18 0.2067
33 upperBodyBlack 3661 42.0466
34 upperBodyBlue 644 7.3963
35 upperBodyBrown 495 5.6851

Table B.2: List of attributes - part #2
This table shows the attributes 11 to 35 with their names, the absolute frequency of
their occurrence in images from the dataset as well as the relative occurrence.
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Id Name Count %

36 upperBodyGreen 264 3.0320
37 upperBodyGrey 1709 19.6279
38 upperBodyOrange 106 1.2174
39 upperBodyPink 161 1.8491
40 upperBodyPurple 276 3.1699
41 upperBodyRed 615 7.0633
42 upperBodyWhite 1882 21.6148
43 upperBodyYellow 128 1.4701
44 accessoryHeadphone 58 0.6661
45 personalLess15 57 0.6546
46 personalLess30 5857 67.2677
47 personalLess45 2164 24.8536
48 personalLess60 495 5.6851
49 personalLarger60 131 1.5045
50 carryingBabyBuggy 36 0.4135
51 carryingBackpack 2518 28.9193
52 hairBald 140 1.6079
53 footwearBoots 249 2.8598
54 lowerBodyCapri 205 2.3544
55 carryingOther 1711 19.6509
56 carryingShoppingTro 13 0.1493
57 carryingUmbrella 19 0.2182
58 lowerBodyCasual 7786 89.4223
59 upperBodyCasual 7738 88.8710
60 personalFemale 3229 37.0851

Table B.3: List of attributes - part #3
This table shows the attributes 36 to 60 with their names, the absolute frequency of
their occurrence in images from the dataset as well as the relative occurrence.
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Id Name Count %

61 carryingFolder 157 1.8031
62 lowerBodyFormal 892 10.2446
63 upperBodyFormal 892 10.2446
64 accessoryHairBand 394 4.5251
65 accessoryHat 306 3.5144
66 lowerBodyHotPants 36 0.4135
67 upperBodyJacket 518 5.9492
68 lowerBodyJeans 2621 30.1022
69 accessoryKerchief 14 0.1608
70 footwearLeatherShoes 1717 19.7198
71 upperBodyLogo 497 5.7081
72 hairLong 2024 23.2457
73 lowerBodyLongSkirt 133 1.5275
74 upperBodyLongSleeve 6785 77.9258
75 lowerBodyPlaid 13 0.1493
76 lowerBodyThinStripes 22 0.2527
77 carryingLuggageCase 105 1.2059
78 personalMale 5477 62.9034
79 carryingMessengerBag 2099 24.1070
80 accessoryMuffler 148 1.6998
81 accessoryNothing 7559 86.8152
82 carryingNothing 2356 27.0587
83 upperBodyNoSleeve 240 2.7564
84 upperBodyPlaid 308 3.5374
85 carryingPlasticBags 407 4.6744

Table B.4: List of attributes - part #4
This table shows the attributes 61 to 85 with their names, the absolute frequency of
their occurrence in images from the dataset as well as the relative occurrence.
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Id Name Count %

86 footwearSandals 257 2.9516
87 footwearShoes 2780 31.9283
88 hairShort 6598 75.7781
89 lowerBodyShorts 487 5.5932
90 upperBodyShortSleeve 1652 18.9732
91 lowerBodyShortSkirt 466 5.3520
92 footwearSneakers 2719 31.2277
93 footwearStocking 390 4.4792
94 upperBodyThinStripes 222 2.5497
95 upperBodySuit 305 3.5029
96 carryingSuitcase 177 2.0328
97 lowerBodySuits 425 4.8811
98 accessorySunglasses 278 3.1928
99 upperBodySweater 164 1.8835
100 upperBodyThickStripes 89 1.0222
101 lowerBodyTrousers 4375 50.2469
102 upperBodyTshirt 840 9.6474
103 upperBodyOther 2232 25.6345
104 upperBodyVNeck 82 0.9418

Table B.5: List of attributes - part #5
This table shows the attributes 86 to 104 with their names, the absolute frequency
of their occurrence in images from the dataset as well as the relative occurrence.

As Table B.1 to B.5 show, some attributes appear very rarely. For instance hair-
Blue (12) and hairPink (17) are not provided by even one example image. Whereas
such rare attributes are perfectly suited for identifying persons due to their unique-
ness, it is a very difficult task to learn the weights of a deep neural network with so
few training examples. Hence, it seems natural not to consider attributes for training,
which do not appear in at least a certain amount of images. Table B.7 shows all 77
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attributes which can be found in at least 1% of individuals. Furthermore, those which
exceed the 5% threshold are marked in black. Already by taking only attributes avail-
able in 1

100 of the dataset, the number of usable attributes shrinks by about 27% to in
total 77 attributes. Raising the threshold to 5%, only 44 of the 105 attributes remain,
which is about 42% of the original size.

B.2 Composition of dataset

As stated by [Deng et al., 2014] the PETA dataset consists of ten different already
existing datasets, containing 19,000 images of 8,705 persons from distinct perspectives
and in different sizes. Each image is labeled with a subset of attributes, which are
presented in Section B.1. An overview on the composition of the PETA dataset is
given in Table B.6.

Dataset Number of images %

3DPeS 1012 5.3263
CAVIAR4REID 1220 6.4211
CUHK 4563 24.0158
GRID 1275 6.7105
i-LIDS 477 2.5105
MIT 888 4.6737
PRID 1134 5.9684
SARC3D 200 1.0526
TownCentre 6967 36.6684
VIPeR 1264 6.6526

Table B.6: Composition of PETA dataset
The PETA dataset contains many smaller datasets and two larger ones, which pro-
vide more than 60% of all available images.
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accessoryHairBand accessoryHat accessoryMuffler

accessoryNothing accessorySunglasses carryingBackpack

carryingFolder carryingLuggageCase carryingMessengerBag

carryingNothing carryingOther carryingPlasticBags

carryingSuitcase footwearBlack footwearBoots

footwearBrown footwearGrey footwearLeatherShoes

footwearRed footwearSandals footwearShoes

footwearSneakers footwearStocking footwearWhite

hairBald hairBlack hairBrown

hairGrey hairLong hairShort

hairWhite hairYellow lowerBodyBlack

lowerBodyBlue lowerBodyBrown lowerBodyCapri

lowerBodyCasual lowerBodyFormal lowerBodyGrey

lowerBodyJeans lowerBodyLongSkirt lowerBodyShortSkirt

lowerBodyShorts lowerBodySuits lowerBodyTrousers

lowerBodyWhite personalFemale personalLarger60

personalLess30 personalLess45 personalLess60

personalMale upperBodyBlack upperBodyBlue

upperBodyBrown upperBodyCasual upperBodyFormal

upperBodyGreen upperBodyGrey upperBodyJacket

upperBodyLogo upperBodyLongSleeve upperBodyNoSleeve

upperBodyOrange upperBodyOther upperBodyPink

upperBodyPlaid upperBodyPurple upperBodyRed

upperBodyShortSleeve upperBodySuit upperBodySweater

upperBodyThickStripes upperBodyThinStripes upperBodyTshirt

upperBodyWhite upperBodyYellow

Table B.7: Subset of attributes with at least 1% frequency
Alphabetically sorted list of all attributes from PETA dataset which can be found in
at least 1% of person images. The black highlighted attributes indicate labels which
are present in at least 5% of person images.
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References C
Conferences

Year ’11 ’12 ’13 ’14 ’15 ’16
CVPR - Conference on Computer Vision and
Pattern Recognition

0 1 1 1 2 0

ICCV - International Conference on Computer
Vision

0 0 0 0 2 0

ECCV - European Conference on Computer
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0 0 0 2 0 1

ICLR - International Conference on Intelligent
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NIPS - Conference on Neural Information Pro-
cessing Systems
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Nature 0 0 0 1 0
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