
Technische Universität Ilmenau

Fakultät für Informatik und Automatisierung

Fachgebiet Neuroinformatik und Kognitive Robotik

3D Person Sensing for interactive industrial process

monitoring

Masterarbeit zur Erlangung des akademischen Grades Master of Science

Thomas Schnürer

Betreuer: Dr. Stefan Fuchs (Honda Research Institute Europe)

Dipl.-Inf. Markus Eisenbach (Technische Universität Ilmenau)

Verantwortlicher Hochschullehrer:

Prof. Dr. H.-M. Groß, FG Neuroinformatik und Kognitive Robotik

Die Masterarbeit wurde am 02.01.2018 bei der Fakultät für Informatik

und Automatisierung der Technischen Universität Ilmenau eingereicht.

An dieser Stelle möchte ich mich bei all denjenigen bedanken, die mich während der

Anfertigung dieser Masterarbeit unterstützt haben.

Zunächst bedanke ich mich bei Prof. Dr. H.-M. Groß sowie Dipl.-Inf. Markus Eisen-

bach, die diese Arbeit betreut und begutachtet haben.

Des Weiteren möchte ich mich bei den Mitarbeitern des Honda Research Institute

Europe und insbesondere meinem Betreuer Dr. Stefan Fuchs bedanken, die mich mit

ihrer Expertise tatkräftig unterstützt haben. Neben all den hilfreichen Kollegen gilt

ein besonderer Dank den Studenten, die durch ihre Unterstützung die Aufnahme von

Trainingsdaten ermöglicht haben.

Ein großes Dankeschön geht auch an Alexander Katzmann und Benjamin Lewandowski

für das Korrekturlesen meiner Arbeit.

Erklärung: "‘Hiermit versichere ich, dass ich diese Masterarbeit

selbständig verfasst und nur die angegebenen Quellen

und Hilfsmittel verwendet habe. Alle von mir aus an-

deren Veröffentlichungen übernommenen Passagen sind

als solche gekennzeichnet."’

Ilmenau, 02.01.2018

Thomas Schnürer

i

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Scenario and Objectives . 1

1.2.1 Target Scenario . 2

1.2.2 Use Case Constraints and Distinctions 4

1.2.3 Objectives . 4

1.3 Tasks and Structure . 5

2 State of the Art 7

2.1 System Input . 7

2.1.1 Benefits of Multiple Cameras 7

2.1.2 Using Depth Data as Input . 9

2.1.3 Using Image Sequences as Input 11

2.1.4 Conclusion . 11

2.2 Human Pose Estimation Architecture Designs 11

2.2.1 Generative and Discriminative Approaches 12

2.2.2 Stacked Hourglass Architecture 13

2.2.3 Conclusion . 15

2.3 System Output . 16

2.3.1 Detection or Regression . 16

2.3.2 Estimation Results in 3D . 17

2.3.3 Multi-Stage Architectures . 18

2.3.4 Multi-Task Architectures . 20

2.3.5 Conclusion . 21

2.4 Summary . 21

3 Theoretical Principles 23

3.1 Depth Sensor Kinect V2 . 23

3.1.1 Time of Flight Measurement . 24

3.1.2 Error Sources and Limitations 25

3.2 Neural Networks and Machine Learning 26

3.2.1 Convolutional Neural Networks 26

3.2.2 Recent Advancements in Machine Learning 28

3.3 Evaluation Metric . 30

4 Analysis of Existing Components 33

4.1 Utilizing the IRON Generator and AdaBoost Classifier 34

4.2 Usability Evaluation of IRON Features 36

4.2.1 IRON Features as Input . 38

4.2.2 Depth and Infrared Images as Input 41

4.2.3 Conclusion . 43

4.3 Training Data . 45

4.3.1 Experiments . 45

4.3.2 Conclusion . 46

5 Training Data 47

5.1 Requirements . 48

5.2 Room Setup, Calibration and Label Creation 50

5.3 Variations for Generalization . 51

5.3.1 Person Variations . 51

5.3.2 Background and Foreground Variations 51

5.3.3 Position, Pose and Hand Usage variations 52

5.4 Post-processing and Error Correction 55

5.5 Results . 57

6 System Design and Development 61

6.1 Base Architecture . 62

6.1.1 Convolutional Pose Machine . 63

6.1.2 Stacked Hourglass . 64

6.1.3 ResNet 50 . 66

6.1.4 Conclusion . 67

6.2 Performance Improvements . 70

6.2.1 Training data augmentation . 70

6.2.2 Weight Optimization Using the Layer Inspection Tool 73

6.2.3 Layer Reduction: Weight Merging 76

6.2.4 Conclusion . 77

6.3 3D Pose Estimates . 79

7 Final Design 83

7.1 Overview . 83

7.2 Image Capture and Preprocessing . 86

7.3 Deep CNN for Human Pose Estimation 86

7.3.1 Basic Architecture . 86

7.3.2 Approach for Improvements . 88

7.3.3 Improvements . 88

7.4 Post Processing for 2D and 3D Pose Estimates 90

8 Experiments 95

8.1 Evaluation . 95

8.2 Comparison to State of the Art Approaches 102

8.3 Limitations . 106

8.3.1 Appearance of a Person . 106

8.3.2 Pose Limitations . 107

8.3.3 Detection of Multiple People . 108

8.3.4 Distance and Occlusion Limitations 110

8.3.5 Background and Camera Position 112

9 Summary and Perspective 113

9.1 Summary . 113

9.2 Perspective . 114

A Additional Documents 117

A.1 Use Case Constraints . 117

A.2 Convolutional Pose Machine . 119

A.2.1 Original Pose Machine . 119

A.2.2 CNN Implementation of the Pose Machine 120

A.3 Training Data . 122

A.3.1 Existing Options . 122

A.3.2 Complete List of Motion Sequences 124

A.3.3 Error Detection, Synchronization and Filtering 127

A.3.4 Heatmap Generation . 130

A.4 Layer Inspection Tool: Mathematical Background for Visualization . . 131

Bibliography 143

1

Chapter 1

Introduction

1.1 Motivation

In modern production plants a commonly observed objective is to increase the amount

of automation. Besides other strategies, this objective can be achieved by the intro-

duction of robots into the work flow. While this approach is not new, the amount of

interaction between such robots and human workers is usually either highly limited or

prohibited entirely. To enable a scenario in which robots work together with humans,

a number of problems need to be solved.

For example, it is essential for the robot to always be aware of the location and pose

of any humans within the shared workspace. This knowledge can then be used to plan

and perform interactions and avoid accidents.

One possible solution for this task is to represent a humans pose by estimating the

location of their body joints. In this master thesis, such an approach for human

pose estimation by body joint localization in an industrial workbench scenario will be

presented.

1.2 Scenario and Objectives

The problem of Human Pose Estimation for human-machine interaction occurs in a

wide variety of scenarios that can lead to different approaches and solutions. The main

2 CHAPTER 1. INTRODUCTION

focus of this thesis is to find a feasible solution for a specific industrial scenario within

certain limitations. The following section will outline the scenario, its limitations and

the consequential objectives for finding a feasible solution.

1.2.1 Target Scenario

Figure 1.1: Specific industrial workbench scenario for Human Pose Estimation

A Kinect V2 sensor (J) will be used to detect any pose of a human worker within

the detection area (B) while he is performing tasks on the workbench (C).

Within an industrial environment, there are several possible scenarios for human-

machine interaction. Here, a scenario called “industrial workbench scenario” will be

considered. It is mainly characterized by a small, fixed operational area and a single

1.2. SCENARIO AND OBJECTIVES 3

human worker at a defined position. This worker will be performing tasks in front of

a workbench or table and can be monitored by a camera at a fixed location.

The specific setup used for this master thesis is displayed in figure 1.1. The overall

dimensions for the whole room are roughly 3.4× 3.45m, the operational area is 2.6×
2.05m (A) and the detection area about 1.8 × 2.05m (B). Within the latter, one

human worker will perform some simple tasks that may include the workbench (C) or

several small objects (see sec. 1.2.2 for details on the tasks).

Next to the workbench, a stationary robot is situated (F). It is equipped with a

mechanic arm that can be moved freely within a limited area and will be used to

assist the human. For a controlled cooperation between both actors, the available

operational area is split into three parts:

• A robot manipulation space (G) which will be accessed exclusively by the

robot

• A shared manipulation space (E) which can be accessed by both the human

worker and the robot

• A human manipulation space (D) which will be accessed exclusively by the

human worker

Lastly, a desk for the operator is located outside of the operational area for supervision.

The detection area can be observed by two Kinect V2 cameras (I,J), which are

mounted at fixed positions in an effort to minimize occlusions.

The industrial partner provided this target scenario as well as the following require-

ments:

• Only the depth sensor of the front facing camera above the workbench (I) must

be used for the task of Human Pose Estimation.

• The estimation must be possible at about 30 Hertz (Hz).

• The estimation must only use independent, single images (no tracking)

4 CHAPTER 1. INTRODUCTION

• The estimation must be independent of any specific background

• If possible, the estimation should build on the existing system presented by

[Arenknecht, 2016]

1.2.2 Use Case Constraints and Distinctions

From the characteristics of the workbench scenario and the specifications provided

by the industrial partner described above, a number of constraints were derived to

narrow down the specific requirements and limitations. Those constraints are divided

into five groups and describe the circumstances under which the pose estimation must

work properly. The complete list of constraints can be found in appendix A.1. In

short, they address the sensor, room setup, detection area specification, a person’s

appearance and detectable poses. Within the setup described above, all upper body

joints of a typical worker must be estimated while performing some simple tasks.

Whether, and to what extend, they actually influence the performance of the resulting

system will be examined in section 8.3. Ideally, only a few constraints are mandatory

to ensure optimal performance.

1.2.3 Objectives

The aim of this master thesis is to estimate human joint positions within the constraints

described above. Therefore, a suitable solution must fulfill the following requirements:

• Joint Detection: The location of all visible upper body joints (see figure 1.2)

must be estimated to reconstruct the pose (preferable in 3D)

• Real Time: To fully exploit the camera frame rate, the detection must be

possible at 30Hz

• Accuracy: The average detection error must be less than 10 cm per joint to

ensure usability for later applications

• Versatility: Within the above constraints, every pose in every environment for

any person must be estimated as accurate as possible

1.3. TASKS AND STRUCTURE 5

Figure 1.2: The eight upper body joints that are to be estimated

All upper body joints (red) can be arranged into a kinematic chain (grey arrows).

On the right side (grey), the level within this chain is shown. Joints higher up (like

the head and neck) can be detected more easily than joints further down.

1.3 Tasks and Structure

In order to reach the above stated objectives for the scenario described in section 1.2,

a number of problems need to be solved. In a most general view, the overall task is to

develop a system that produces pose estimates from the data of a singe depth sensor.

These pose estimates consist of location estimations for every visible upper body joint

(shown in figure 1.2). Since the data of a depth sensor can be represented in different

ways, three main tasks can be derived from this:

• Input Data Preprocessing: An advantageous representation for the succeed-

ing joint estimator must be found and implemented. This may also include

feature extraction, filtering or other types of preprocessing.

6 CHAPTER 1. INTRODUCTION

• Pose Estimator: Based on the preprocessed input data, a system for pose

estimation by body joint detection must be developed, implemented and fine-

tuned. Certain types of Human Pose Estimation systems also require suitable

training data.

• Benchmark and Validation: The finished system must be tested under dif-

ferent conditions and the performance must be compared to similar solutions.

For this, a suitable measure of performance must be found first.

This thesis presents an approach to solve the aforementioned tasks and is structured

as follows:

First, a review of the state of the art in Human Pose Estimation will be provided

in chapter 2. By comparing different aspects of relevant approaches, a development

strategy will eventually be derived in section 2.4. Thereafter, a brief introduction to

the most important theoretical principles will be provided in chapter 3, including a

metric for performance measurement in section 3.3.

Since the preceding work of [Arenknecht, 2016] should be utilized if possible, differ-

ent options for this are explored and compared in chapter 4. As a part of this analysis,

multiple input representations are compared in section 4.2. Besides other results, this

showed that new training data was necessary. Thus the process of training data cre-

ation will described in chapter 5. Guided by the performance on this dataset, the

development process of the Human Pose Estimation system will be described in chap-

ter 6. Subsequently, chapter 7 will provide a detailed description of the final design.

In chapter 8, the performance of the presented system will be analyzed and compared

to state of the art systems. Finally, a brief summary and potential for future work will

be given in chapter 9.

7

Chapter 2

State of the Art

Human Pose Estimation is a topic with a wide range of applications and therefore a

wide range of approaches. Publications like [Sarafianos et al., 2016] provide some

form of structured overview, but their structure is not completely sufficient for the

scope of this thesis. In the following sections, a review of the state of the art in

the field of Human Pose Estimation will be provided based on the structure and key

characteristics displayed in figure 2.1. The most important aspects within each of the

three parts will be discussed in the next three sections.

2.1 System Input

This first section considers important aspects of the input data, from data capture to

feature generation and preprocessing. Specifically, benefits of multi-camera systems as

well as possible ways to utilize depth data and image sequences will be examined.

2.1.1 Benefits of Multiple Cameras

In this thesis, only one camera will be used. Still, it is worth thinking about what

kind of disadvantages this implies - especially for pose estimation in 3D space.

If multiple cameras are used for Human Pose Estimation, they are usually utilized on

one of two ways:

8 CHAPTER 2. STATE OF THE ART

Figure 2.1: Key characteristics used to structure the state of the art for Human

Pose Estimation

The approaches are structured based on the differences along the signal processing

chain. The signal processing chain itself is divided into three main sections: input

processing (green, section 2.1), Human Pose Estimation architecture (blue, section

2.2) and system output (red, section 2.3). An additional criterion is weather or not

one pass of the signal chain can be processed in real time (tpass ≤ 100ms).

2.1. SYSTEM INPUT 9

• Multiple 2D observations are used to create a system of equations that can then

be solved by an optimizer to find the best matching 3D pose. [Kadkhodamo-

hammadi et al., 2017] report accuracy improvements by combining multiple

RGB-D views in such a way compared to a single view. Similarly, [Elhayek

et al., 2015] combine multiple 2D views to create 3D estimates, even for multiple

persons.

• Alternatively, the Human Pose Estimation can be applied directly on the depth

point cloud. In this case, multiple cameras are used to improve the quality of

the point cloud. Such an approach is presented in [Zhang et al., 2012].

Most approaches, however, did not utilize more than one camera and are still able to

reach or surpass the performance of the mentioned multi-camera systems. Therefor,

it is assumed that multiple cameras are not mandatory for a well performing 3D pose

estimation system.

2.1.2 Using Depth Data as Input

The vast majority of Human Pose Estimation approaches use 2D RGB images as input

data. Since a depth sensor will be used in this thesis, approaches using depth data are

especially interesting.

[Baak et al., 2011], for example, first filter the depth data to get a point cloud that

only contains the human and no background. In a second step, a shape model is fitted

into this point cloud. In a similar approach, [Zhang et al., 2012] also fit a shape model

into a point cloud, but they use multiple depth cameras to improve the accuracy of

the point cloud first. These approaches require a sophisticated model of the human

body in both shape and articulation.

A different kind of concept is to compute features on the depth data. For example,

[Shotton et al., 2013] compute simple features for each pixel like shown in figure 2.2.

These features describe the differences in depth at specific offsets from the examined

pixel and can be computed relatively fast. Random decision forests are then used to

classify each pixel based on those features. In a similar approach, [Arenknecht,

10 CHAPTER 2. STATE OF THE ART

2016] computed IRON-features on the depth image and then used AdaBoost for clas-

sification. These IRON-features describe the 3D shape in a local area around the pixel.

Possible benefits of IRON-features for Human Pose Estimation will be examined in

section 4.2. Yet another way to process depth information is by treating it as an image

Figure 2.2: Simple but effective depth features

“The yellow crosses indicates the pixel x being classified. The red circles indicate the

offset pixels. In (a), the two example features give a large depth difference response.

In (b), the same two features at new image locations give a much smaller response.”

Source: [Shotton et al., 2013]

channel and feed it into a Convolutional Neural Network (CNN). With only a single

depth image as input, [Huang and Altamar] use a CNN to derive joint positions

and utilize an original loss function that incorporates constraints from a kinetic model.

Multiple possible ways to utilize the depth information of a single sensor with a CNN

will be compared in section 4.2. In a more extensive use of input data, [Kadkho-

damohammadi et al., 2017] use the RGB-D images of multiple kinect cameras for

Human Pose Estimation in operating rooms. Here, the depth data is just used as an

additional channel on top of the RGB images and fed into a deep-CNN. After creat-

ing a 2D estimation for every view, the estimations are fused into 3D poses. Like in

[Huang and Altamar], a kinetic model is used to introduce skeleton constrains in

addition to the multi-view constraints.

2.2. HUMAN POSE ESTIMATION ARCHITECTURE DESIGNS 11

2.1.3 Using Image Sequences as Input

It is also worth noting, that almost all approaches focus on Human Pose Estimation

in single images rather than sequences. However, [Gkioxari et al., 2016] present a

system using chained CNNs to detect human body poses in single images as well as

image sequences. Some approaches also use filtering and smoothing after the pose

estimation like in [Mehta et al., 2017] to improve the results for video sequences. But

still, the estimation only uses single images. Conclusively, the detection in sequences

rather than single images seems to be unprofitable.

2.1.4 Conclusion

The characteristics of the input data can be altered in many ways. Nevertheless, there

seems to be no method that provides a systematical advantage.

Multiple cameras can be used to improve the results for Human Pose Estimation in

3D. However, the results are not significantly better than single image approaches and

usually come at the cost of higher processing times. Depth information can either

be exploited explicitly by fitting a volumetric shape model into a point cloud or by

calculating features specifically on the depth data. Alternatively, a trend in recent

approaches is to move away from hand crafted features and towards deep CNNs and

image representations. Since this kind of approach has shown to be very effective re-

cently (see benchmark is section 2.4), a CNN based system might be best suited for the

task of this thesis. This might even eliminate the need for sophisticated preprocessing

and manual feature computation, reducing both complexity and computation time.

2.2 Human Pose Estimation Architecture Designs

The most common way to categorize architectures for Human Pose Estimation is by

differentiating between generative and discriminative approaches. Such a comparison

will be provided in the next subsection.

On the other hand, a specific type of architecture becomes increasingly prominent in

recent approaches. At least since [Toshev and Szegedy, 2013] introduced DeepPose,

12 CHAPTER 2. STATE OF THE ART

deep CNNs gained a lot popularity and have now taken a clear lead in benchmarks (see

section 2.4). Additionally evident in these recent benchmarks, the Stacked Hourglass

architecture is especially influential. Therefore, it will be described in more depth

afterwards. The principle of another CNN design, the Convolutional Pose Machine, is

outlined in appendix A.2.

2.2.1 Generative and Discriminative Approaches

Generative methods use some form of a model of the human body as a priori

knowledge. At the most basic level, it usually consists of a kinematic model describing

the relation between the individual joints (similar to the kinematic chain in figure

1.2). As an example, this kinematic model can then be used to manipulate a shape

model in such a way that it fits the observation the closest like described in [Zhang

et al., 2012] and [Baak et al., 2011]. Kinematic models can also be used to introduce

constraints, e.g. the maximum possible angle between limbs or bone lengths like

in [Elhayek et al., 2015]. A subcategory of generative methods are part base

approaches. There, a human is modeled by defining body parts and constrains to

connect them. The most popular approach for part based Human Pose Estimation is

the Pictorial Structure Model like used in [Eichner et al., 2012].

In any case, the performance of such systems is always dependent on the quality of

the model.

Discriminative methods, on the other hand, don’t exploit this kind of a priori

knowledge. Instead, they usually try to learn the relation between input data and

pose directly. Often times, those designs are able to perform faster. With the growing

success of CNN approaches, discriminative methods become more and more dominant

recently. One of them will be described in the next section in more detail.

Finally, hybrid approaches try to combine the benefits of both methods. For example,

[Baak et al., 2011] extract features from a filtered depth cloud to find the closest match

in a pre-defined pose database. Then, they use a kinematic and volumetric model to

2.2. HUMAN POSE ESTIMATION ARCHITECTURE DESIGNS 13

match the found pose more closely to the actual point cloud. [Elhayek et al., 2015]

compare a generative, a discriptive and a hybrid approach. They report that the

descriminative method outperforms the generative. Further, the hybrid method does

not significantly improve the performance but is able to better resolve more difficult

situations.

2.2.2 Stacked Hourglass Architecture

Figure 2.3: Basic building block of the Stacked Hourglass architecture

All rectangular blocks represent some sort of feature computation. The grey blocks

resemble Residual Modules like displayed in figure 2.4, the blue block can either be a

Residual Module as well or yet another Stacked Hourglass building block to create a

nested architecture like shown in figure 2.5.

While the upper branch computes features on the original resolution (here: 32 ×

32 pixel), features in the lower branch are downscaled to half the original resolution

(max-pooling) and successively upscaled (deconvolution with fixed weights). Finally,

both branches are combined by adding the results. This resembles a multi-resolution

residual module.

The Stacked Hourglass (SHG) is a discriminative CNN architecture for Human Pose

Estimation that is able to preocess images and produce 2D joint estimates. It was

introduced in [Newell et al., 2016] and gained a lot of popularity since then. As

discussed later in section 2.4, five out of the ten best performing approaches on the

MPII Human Pose Dataset benchmark are based on SHG architectures.

14 CHAPTER 2. STATE OF THE ART

The SHG combines some principles of the Pose Machine (see appendix A.2) into a

more efficient architecture by the extensive use of residual learning (see section 3.2.2)

on multiple levels. One foundation is the assumption that features at different scales

are needed for a good estimation result. Instead of multiple identical pipelines that

process the image at different scales, the SHG uses a single pipeline with skip layers.

The basic building block of this pipeline is a multi-resolution residual module as

displayed in figure 2.3. Features are computed on two separate resolutions and then

combined by element wise addition like in a regular residual module. By nesting

multiple of these blocks in each other (replacing the blue module in figure2.3 by yet

another block), the hourglass architecture in figure 2.5 is created. In [Newell et al.,

2016], 4 of these blocks are nested within each other so that the network reaches its

lowest resolution at 4x4 pixel.

The SHG will be compared to alternative CNN architectures in section 6.1.

Figure 2.4: Residual Module that is used in the Stacked Hourglass architecture

The design of the basic Residual Module is based on [He et al., 2016]. It consists

of three Convolutions which form a bottleneck and a skip connection (dashed line).

If the number of filters in the last Convolution is different from the input, the skip

connection contains an additional Convolution.

Source: [Newell et al., 2016]

2.2. HUMAN POSE ESTIMATION ARCHITECTURE DESIGNS 15

Figure 2.5: Basic Stacked Hourglass architecture

“An illustration of a single “hourglass” module. Each box in the figure corresponds to

a residual module as seen in Figure 2.4. The number of features is consistent across

the whole hourglass”

Source: [Newell et al., 2016]

2.2.3 Conclusion

State of the art architectures for Human Pose Estimation differ in the way they try to

incorporate a priori knowledge. A lot of early designs utilized a human model, but the

definition of such a model is not trivial and increases complexity. Hybrid approaches

mostly tried to stabilize a fast discriminative pose estimation by including some sort

of model. However, many recent CNN based designs like OpenPose [Cao et al., 2017]

and VNect [Mehta et al., 2017] have shown that this is not necessary for a robust real

time detection. For these reasons, a discriminative CNN approach will be considered

for this thesis.

16 CHAPTER 2. STATE OF THE ART

2.3 System Output

While several common principles can be observed regarding the system input and

architecture across a lot of approaches, the concepts for system output are more

diverse. This section will examine the differences in targets and results of the

methods for Human Pose Estimation. Specifically, the difference between detection

and regression tasks, approaches for estimation in 3D and the possibilities to utilize

multiple stages or tasks will be discussed.

2.3.1 Detection or Regression

One possible way of categorization is to distinguish between detection and regression

tasks. While regression is used to produce numeric estimates in a (more or less) contin-

uous range, the detection task is a form of classification. In Human Pose Estimation,

regression is mostly used to directly produce the coordinates for each joint. This can

be done in 2D like shown in [Toshev and Szegedy, 2013], but is mostly found in 3D

like described in [Li et al., 2014], [Sun et al., 2017] or [Martinez et al.]. Attempts

to produce 3D pose estimates with regression are briefly mentioned in section 6.3

Detection, on the other hand, is mostly used for a per-pixel classification with one

class per joint. As a result, a matrix is created that describes the probability for every

pixel to be in a specific class (see figure 2.6). With one class per joint, the location of

a joint can be found by looking for the maximum. Such a matrix is called heatmap

or belief map and arguably the most popular choice in recent approaches. Especially

the majority 2D approaches utilizes heatmaps, for example [Insafutdinov et al.,

2016], [Chu et al., 2017], [Gkioxari et al., 2016], [Bulat and Tzimiropoulos,

2016], [Newell et al., 2016], [Cao et al., 2017], [Ramakrishna et al., 2014], [Rafi

and Leibe, 2016], [Tompson et al., 2014] or [Wei et al., 2016]. However, they can

also be used for 3D estimation, as successfully demonstrated by [Mehta et al., 2017].

Because joint detection with heatmaps is successfully utilized in a wide range of well

performing state of the art approaches, it will be used in this thesis.

Both tasks can also be combined, as discussed later in subsection 2.3.3 and 2.3.4.

2.3. SYSTEM OUTPUT 17

Figure 2.6: Heatmap representation of a pose

The joint’s positions (center) that represent the pose of a person (right) can be

denoted as a heatmap (left). Each color intensity represents the probability of a

pixel to belong to one of the eight joint classes.

2.3.2 Estimation Results in 3D

One of the main differences regarding the result is weather the estimation is in 2D or

3D. Although very few approaches use depth information for the input data, several

approaches try to reconstruct a 3D pose. For example, [Mehta et al., 2017] use a

complex CNN architecture to create 3D poses from single 2D RGB images in real time.

Similar to other CNN approaches, heatmaps are used to indicate the 2D-location

of joints. Different to other approaches, however, three location maps additionally

describe the relative distance from a root joint in all three dimensions (X,Y,Z) for

every joint. Also, auxiliary tasks like bone length estimation are incorporated into

the CNN to guide the detection.

Following a different strategy, [Kadkhodamohammadi et al., 2017] use a multi-

camera setup to first create one 2D skeleton estimate with certainty scores per view.

In a second fusion step, these multi-view estimates are merged into a 3D skeleton

estimate by energy minimization.

The approach presented in [Tekin et al., 2016] tries to stabilize the 3D pose

estimation by fusing it with the results of a heatmap based 2D estimation. Since

18 CHAPTER 2. STATE OF THE ART

the optimal fusion strategy was not obvious, the used CNN architecture learned the

fusion parameters itself.

Focusing more on speed than accuracy, [Baak et al., 2011] use a big database of 3D

poses and just search for the pose that matches the input the best. Thus the output

is a discrete pose out of a set of predefined poses. [Huang and Altamar] adapt

this approach for the use of depth images as input, but use absolute coordinates to

describe resulting joints rather than relative ones. Their comparison shows, that this

can improve the regression accuracy slightly. However, [Sun et al., 2017] suggest that

using joint coordinates for the pose estimate has some disadvantage and suggests

using bones (vector pointing from one joint to its parents) instead.

Independently of the pose estimation itself, [Martinez et al.] describe a simple CNN

architecture that can be used to efficiently transform normalized 2D joint estimations

into 3D skelton estimations without additional information.

In conclusion, pose estimation in 3D is still comparably rare and attempted with

diverse methods. However, most of them show that a 3D estimation can be done as a

subsequent step to a 2D estimation. This would allow to focus on 2D estimation first

and benefit from the high number of good state of the art approaches in this area.

2.3.3 Multi-Stage Architectures

A common theme in more recent approaches is the use of multi-stage architectures,

where each stage refines the result of the previous stage and therefore increasing pre-

cision. One of the early popular approaches exploiting this is the Pose Machine in-

troduced in [Ramakrishna et al., 2014], where multiple similarly constructed stages

create pose estimates based on the output of the previous stage and the original input

image (see appendix A.2). This allows to exploit intra-joint relations (spatial context)

in higher stages by computing features on the output of previous stages like displayed

in figure 2.7. For example, if the result of the first stage suggests the head to be in a

specific location, suggestions for the right elbow that are very far from this location

become very unlikely.

2.3. SYSTEM OUTPUT 19

Figure 2.7: Usage of spatial context in multi-stage architectures

“Spatial context from belief maps of easier-to-detect parts can provide strong cues

for localizing difficult-to-detect parts. The spatial contexts from shoulder, neck and

head can help eliminate wrong (red) and strengthen correct (green) estimations on

the belief map of right elbow in the subsequent stages.”

Source: [Wei et al., 2016]

Similarly, [Toshev and Szegedy, 2013], [Newell et al., 2016] and [Chu et al.,

2017] also use a multi-stage CNN to gradually refine the pose estimation results.

[Tompson et al., 2014] also exploits spatial context, but by learning a explicit spatial

model.

Another advantage of multi-stage architectures is how easy the trade-off between speed

and precision can be influenced. By reducing the number of stages and sacrificing a

certain degree of precision, they can be tweaked for faster inference times. However,

since speed is one of the main concerns in this thesis, fewer stages will be preferred.

20 CHAPTER 2. STATE OF THE ART

Figure 2.8: Network architecture that is trained for multiple tasks

“For network training using multi-task learning, the pool3 layer is connected to both

the fcd1 and fcr1 layers. For pre-training with detection tasks, pool3 is only connected

to fcd1 layer. After pre-training, this connection is removed and pool3 is connected

to fcr1. N is the number of joints.”

Source: [Li et al., 2014]

2.3.4 Multi-Task Architectures

Rather than stacking multiple similar stages on top of each other, there are also ap-

proaches that combine different tasks. For example, [Li et al., 2014] use a multi-task

approach to generate 3D pose estimates from 2D RGB images like shown in figure

2.8. First, they train a CNN to perform the easier detection task where just the 2D

location of joints is detected. Then, the last layers of the network are replaced by a

regression head. The full Network is then trained to reconstruct the full 3D pose from

the 2D images by using the pre-trained layers from the detection task. The resulting

3D joint positions are relative to their parent joint which decreases the possible error

range.

[Bulat and Tzimiropoulos, 2016] use a similar approach where the two tasks (de-

tection and regression) are combined at run time. The regression network takes the

result of the detection network as input to produce the estimates. In that respect, the

architecture is also a multi-stage-architecture. Other concepts also combine detections

for different resolutions (like [Rafi and Leibe, 2016]) or 2D and 3D detection tasks

2.4. SUMMARY 21

(like [Tekin et al., 2016]).

This also demonstrates the possibility to first solve the easier 2D estimation task and

later extend the system for 3D estimation.

2.3.5 Conclusion

In conclusion, tasks can be formulated either as detection or regression. Both can

be performed in 2D or 3D. While detection is easier in general, pose estimation in

3D usually is a regression problem. By utilizing multi-task architectures, the problem

of 3D pose estimation can be split in more manageable parts. A system could build

upon the wide range of well performing 2D estimation approaches and extend it to 3D

estimation with an additional task.

The result of these tasks can be defined as bones or joints, either relative to a root or

absolute. Further investigation is needed to determine which definition performs the

best (see section 6.3). It is also possible to combine all of the above in several different

ways or improve accuracy with multiple stages.

2.4 Summary

In this chapter, several ways of structuring the state of the art were presented. Most

notably, the majority of approaches try to solve the problem of heatmap based 2D

joint detection in single 2D images. While there are also several approaches for 3D

detection, they are more diverse in their methods and results. However, most of these

3D approaches extend a preceding 2D estimation.

Even though early approaches often tried to incorporate different types of a priori

models or hand crafted features, a clear trend towards CNN architectures could be

observed recently. This also becomes apparent in rankings and benchmarks, for

example the MPII Human Pose Dataset (MPII) Benchmark (see 2.9). By closer

inspection, the SHG architecture design is especially successful, being used in five of

the ten best performing approaches.

22 CHAPTER 2. STATE OF THE ART

Taking all of this into consideration, the task of Human Pose Estimation using depth

data will be tackled in multiple steps. First, a state of the art CNN architecture

will be utilized for discriminative 2D joint detection. For this, a suitable depth data

representation (section 4.2) and CNN architecture (section 6.1) must be found. After

different improvements (section 6.2), possibilities for an extension to 3D estimation

will be considered (section 6.3).

Method Head Shoulder Elbow Wrist Hip S0.5

[Insafutdinov et al., 2016] 96.8 95.2 89.3 84.4 88.4 88.5

[Wei et al., 2016] 97.8 95.0 88.7 84.0 88.4 88.5

[Bulat and Tzimiropoulos, 2016] 97.9 95.1 89.9 85.3 89.4 89.7

[Newell et al., 2016] 98.2 96.3 91.2 87.1 90.1 90.9

Ning et al., 2017 98.1 96.3 92.2 87.8 90.6 91.2

Luvizon et al., 2017 98.1 96.6 92.0 87.5 90.6 91.2

[Chu et al., 2017] 98.5 96.3 91.9 88.1 90.6 91.5

Chou et al., 2017 98.2 96.8 92.2 88.0 91.3 91.8

Chen et al., 2017 98.1 96.5 92.5 88.5 90.2 91.9

Yang et al., 2017 98.5 96.7 92.5 88.7 91.1 92.0

Figure 2.9: Comparison of the ten best performing approaches on the MPII

The scores represent the accuracy on the MPII using the S0.5 metric (see section

3.3). All entries use deep CNNs and more specifically, the bold entries use the SHG

architecture.

Excerpt taken from the MPII Benchmark [MPI]

23

Chapter 3

Theoretical Principles

This chapter briefly introduces the theoretical background of the most important com-

ponents in three sections. First, the measurement principle and possible error sources

of the used depth sensor are described. Next, the basic concept of Convolutional Neu-

ral Networks as well as recent advancements in Machine Learning are discussed briefly.

Finally, an evaluation metric will be introduced that is used throughout this thesis .

3.1 Depth Sensor Kinect V2

In this thesis depth information will be used as input data. A depth sensor can be

used to capture such depth information by measuring its distance to objects in the

scene. This can then be used to create a depth image (displaying the measured depth

for every pixel). Different depth sensor types vary in the measurement method that is

used to acquire the depth information. Here, the depth sensor of a Microsoft Kinect

V2 shown in figure 3.1 will be used which utilizes the Time of Flight measurement

method. It’s measurement method and limitations will be described in the following

section.

24 CHAPTER 3. THEORETICAL PRINCIPLES

Figure 3.1: Features of the Kinect V2 sensor

The Kinect V2 can measure depth by utilizing the IR emitters and IR camera. Ac-

cording to the requirements for this thesis, the RGB camera will not be used.

3.1.1 Time of Flight Measurement

The goal of Time of Flight measurement is determining the time it took a wave to travel

a distance through a medium. For this, the scene is first illuminated by emitting near

infrared intensity modulated periodic light (Continuous Wave Intensity Modulation).

After being reflected by objects in the scene, the light eventually returns and is received

by the sensor of the infrared (IR) camera. Due to the traveled distance, the received

light will be phase shifted by the time it reaches the sensor. This shift is detected by

each sensor pixel in a so called “mixing proces” and used to calculate the corresponding

object distance. In [Sarbolandi et al., 2015], this measurement process is described

in more detail and compared to structured light measurement.

The Kinect V2 performs such a measurement at 30Hz to create a 512× 424pixel (px)

depth image. As shown in figure 3.2), the raw IR image used for depth calculation is

available as well.

3.1. DEPTH SENSOR KINECT V2 25

Figure 3.2: Example data provided by the Kinect V2

The raw infrared image (right) is available along with the depth image (left) created

with Time of Flight measurement.

3.1.2 Error Sources and Limitations

According to the official specifications [kin, 2017], the depth sensor works best at ranges

from 0.5 to 4.5 meters. In [Sarbolandi et al., 2015], the limitations are examined

more closely and compared to the previous Kinect generation. There, a decrease in

accuracy at the edges of the image and with increasing distance to the sensor could

additionally be observed. Since the measurement principle of the Kinect V2 depth

sensor relies on IR light measurement, it is sensitive to other light sources with the

same modulation frequency. Also, strong light sources like sunlight will cause satura-

tion and decrease the signal-to-noise ratio. For consistency, those influences should be

reduced as much as possible.

Furthermore, multiple Kinect V2 in close range can interfere with each other. It is

reported, that the phases of two Kinect V2Ls IR sensors in close proximity will over-

lap periodically which results in distorted measurements [Sarbolandi et al., 2015].

However, this could not be reproduced in the used setup.

Another issue are reflections and multi-path effects which result in conflicting mea-

surements regarding the distance. To minimize those effects, mirroring surfaces should

be avoided.

26 CHAPTER 3. THEORETICAL PRINCIPLES

3.2 Neural Networks and Machine Learning

The review of the state of the art in chapter 2 has show that Convolutional Neural

Networks (CNNs) are the most popular and successful result. In this section, a brief

introduction to CNNs will be given, followed by an overview of recent advances in this

field.

3.2.1 Convolutional Neural Networks

Figure 3.3: Basic principle of the convolution operation

The kernel (a) is multiplied with the input to create the output (b). In this example,

only a single input channel is used. However, this operation is also possible with

multiple input channels (for example three channels for red, green and blue).

Source: [Wu, 2016]

Convolutional Neural Network (CNN)s are a specific form of Neural Networks that

is able to process data in a grid-like topology. This makes them especially useful for

tasks where the data can be represented as images.

One of it’s main building block is the convolutional layer. Like shown in figure 3.3

such a layer performs a convolution for an input using a kernel. The result of such an

operation is called feature map, heatmap or belief map. By applying multiple different

kernels to the same input, multiple output channels can be created. In example shown

in figure 3.3, the output resolution was reduced by the convolution. In order to keep the

3.2. NEURAL NETWORKS AND MACHINE LEARNING 27

output resolution the same, padding can be added around the input image. Besides the

amount of padding, the kernel size as well as the distances between kernel applications

(stride) are the main parameters to configure the behavior of a convolutional layer.

A more detailed explanation of CNNs can be found in [Ian Goodfellow, Yoshua

Bengio, 2015] and [Wu, 2016].

The aforementioned kernels are stored as weights and need to be learned in a training

process. Stochastic gradient descent can be used to adapt the weights during this

training process. A prerequisite for this is a sufficiently large set of training examples.

While the amount of time necessary for this training might be in the order of days, it

is not relevant in this thesis. Because, however, the system is expected to run in real

time, the duration for processing a single frame is important. This duration is called

inference time.

28 CHAPTER 3. THEORETICAL PRINCIPLES

3.2.2 Recent Advancements in Machine Learning

A number of recent advancements enabled deeper networks, faster training, less mem-

ory consumption and a reduction in computation time. In this subsection, two of these

advancements which are relevant for this thesis will be introduced.

Batch Normalization

When training very deep Neural Networks, a commonly observed problem is the dis-

tribution change of each layer’s inputs during training (internal covariance shift). In

an effort to provide means for compensating this internal covariance shift, [Ioffe and

Szegedy, 2015] introduced the method of Batch Normalization. It can easily be im-

plemented by adding BatchNorm layers at the desired locations. These layers calculate

the output y to an input x by applying the following formula:

y = γ
x− µB

σ2
B + ε

+ β (3.1)

where x ∈ XB = (x1, . . . ,xn, . . . ,xk) is the batch of training samples used to calculate

the mean µB = 1
k

∑k
n=1 xn and variance σ2

B = 1
k

∑k
n=1 xn − µB while 0 < ε� 1 avoids

division by zero

During training, a normalization is estimated within each layer by normalizing over

each batch’s mean and variance. These estimations for each batch are accumulated

during training. At run time, the normalization is done regarding these accumulated

values of the whole training set.

This kind of normalization helps with vanishing or exploding gradients, enables the use

of higher learning rates and up to 14 times fewer training steps [Ioffe and Szegedy,

2015]. Besides others, it was used for Human Pose Estimation with a deep CNN by

[Newell et al., 2016], [Rafi and Leibe, 2016], [He et al., 2016], [Mehta et al., 2017]

and [Bulat and Tzimiropoulos, 2016]. Furthermore, it is an essential component

to build deep residual networks.

3.2. NEURAL NETWORKS AND MACHINE LEARNING 29

Deep Residual Learning

When designing deep architectures, adding more layers often times increases the train-

ing process and sometimes even decreases the overall performance. Introduced by [He

et al., 2016], Deep Residual Learning is an architectural design pattern to counter these

problems. At its core, the basic idea is to only learn what was not already learned by

lower layers. By adding the output from lower layers to the own output like shown

in figure 3.4, only the difference is learned. As a result, additional layers are used

more effectively. By preventing additional layers from decreasing the performance,

Deep Residual Learning enables the effective training of even deeper networks and

helps with vanishing gradients. To achieve network depths of 50 layers and more, [He

et al., 2016] utilized Batch Noramilzation layers. These principles were used in deep

CNN for Human Pose Estimation by [Chu et al., 2017], [Bulat and Tzimiropou-

los, 2016], [Kadkhodamohammadi et al., 2017], [Newell et al., 2016], [Sun et al.,

2017], [Insafutdinov et al., 2016], [Mehta et al., 2017] and others.

Figure 3.4: Residual learning building block

The basic building block for residual learning contains multiple weight layers (here:

two) and a shortcut connection. The result of this block is calculated by adding the

shortcut (and therefor the original input) to the result of the weight layers.

Source: [He et al., 2016]

30 CHAPTER 3. THEORETICAL PRINCIPLES

3.3 Evaluation Metric

A metric for objective comparison is very important for both the development process

and the evaluation of the final results. Such a metric depends on the specific goals and

properties the evaluated system should achieve. In this thesis, the goal is to design a

joint detection system that is precise, robust and fast. The amount of time needed to

train such a system is not considered relevant.

Precision can be measured as the distance between the systems output and the ground

truth (detection error). Robustness can be perceived as the amount of precision vari-

ance and the existence of a (soft) upper limit for the detection error. For speed

comparison, the number of processed frames per second can be used. A proper metric

should enable a fair comparison of those properties between different systems.

Several metrics for this purpose are used in the literature, three of which will be briefly

compared here. All of them are based on measuring the percentage of correctly de-

tected joints or limbs. They differ in the way the maximum allowed distance to the

ground truth is determined in order to be considered correct. Some of the make an

effort to normalize this distance so that it is independent to the objects distance to

the camera.

• Percentage of Correct Parts (PCP) [Eichner et al., 2012]: a limb is con-

sidered detected, if the distance between its detected endpoints and the ground-

truth endpoints is within a fraction p of the limb length. Usually, p is chosen to

be 0.5. It comes with the disadvantage of penalizing shorter limbs.

• Percentage of Detected Joints (PDJ) [Toshev and Szegedy, 2013]: a

joint is considered detected, if the distance between detection and ground-truth

is within a fraction p of the torso length. Usually, p is chosen to be 0.2. It

requires a torso to be labeled and detected.

• Probability of Correct Keypoint (PCKh) [Andriluka et al., 2014]: it is

similar to Percentage of Detected Joints, but a joint is considered detected if the

distance between detection and ground-truth is within a fraction p of the head

length. Usually, p is chosen to be 0.5.

3.3. EVALUATION METRIC 31

The PCKh is best suited here because it introduces normalization regarding the camera

distance without requiring a torso joint. Additionally, it is popular in recent papers and

therefore allows for an easier comparison of the results. Conclusively, the PCKh will

be used in this thesis. Specifically, a graphical evaluation will be provided by plotting

the detection rates for a varying p ∈ [0, pmax] like shown in figure 3.5 (performance

curve).

For a detailed evaluation, several aspects of such a graph are of interest. First of all,

the median detection error (marked with a dot or short line) is an indicator for the

precision. The slope of a curve (top graphic) and spread of points (bottom graphic)

correlates to robustness. In figure 3.5, for example, the neck detection is more robust

than the head detection, even though it has a higher median error. This is apparent in

the steeper curve (top graphic) and smaller error variance (bottom graphic). Finally,

the maximum detection rate marks the highest possible detection rate for the

maximum allowed error pmax. Depending on the type of graphic pmax might be equal

to or grater than 0.5.

In this thesis, the head length used for scale is the distance between the head and

neck joints and can be expected to be roughly about 20 cm at pmax = 1.0. In all

chapters regarding design and development, p ∈ [0, 1.0] will be used. This allows for

a more detailed analysis and the exposure of potential improvement possibilities. In

chapter 8, p ∈ [0, 0.5] will be used for evaluation because it is common in the state of

the art and therefore allows for a better comparison of the results.

In the following chapters, the PCKh(p) will be denoted as Sp.

Unless noted otherwise, all experiments in this thesis were done on a single GeForce

GTX TITAN X with 12 GB G5X RAM using Caffe 1.0 [caf, 2017] and cuda 7.5 [cud,

2015].

32 CHAPTER 3. THEORETICAL PRINCIPLES

Figure 3.5: Example performance curve used for Evaluation

B: For each joint, the error of every single detection (normalized to head size) is

marked as a dot on the distance axis. With this visualization, the variance and

median (denoted by a small line) of the detection error becomes easily visible.

A: For each joint, the percentage of correct detections Sp ≡ PCKh(p) is plotted

for varying p ∈ [0, pmax]. A joint is correctly detected if it’s error is below p. The

median error distance (resulting in 50% detection rate) is marked with a dot.

In both graphics, the average performance across all joints is marked with a bold

black line. A small vertical line indicates the commonly used PCKh(0.5) metric

where p = 0.5. To enable for easy comparison, the median detection error as well

as the detection rate at p = 0.5 across all joints are additionally shown at the top of

the graphic.

33

Chapter 4

Analysis of Existing Components

Figure 4.1: Main components of the Human Pose Estimation system presented by

[Arenknecht, 2016]

An IRON generator is used to calculate IRON features based on a single depth

image. All of those features are then fed into eight AdaBoost classifiers,one for

each joint. The output of each of those classifiers is then clustered to find the 2D

center for each joint.

34 CHAPTER 4. ANALYSIS OF EXISTING COMPONENTS

This thesis succeeds the work of [Arenknecht, 2016], where a Human Pose Estima-

tion system was developed as well. The basic principle of that system is shown in figure

4.1. As explained in section 2.4, a CNN architecture will be used in this thesis, but it

might still be possible to build upon some of the already existing components. More

precisely, the IRON generator, the AdaBoost classifier and a set of annotated

images used for training (training data) can be used.

In this chapter, the possibilities to utilize those components will be explored.

4.1 Utilizing the IRON Generator and AdaBoost

Classifier

Figure 4.2: Possible architecture options incorporating existing modules

The figure shows three possible options (A (refine), B (iron) and C (depth))

using the preexisting modules (yellow box) for IRON descriptor generation (1) and

joint detection (2) from [Arenknecht, 2016] to different degrees.

The system from [Arenknecht, 2016] provides IRON-feature computation followed

by a classification of these with one classifier per body joint. However, no high-level

knowledge like the spacial relation between joints is considered, which in many cases

was shown to be highly beneficial for Human Pose Estimation (see section A.2). Similar

4.1. UTILIZING THE IRON GENERATOR AND ADABOOST CLASSIFIER 35

to the multi-stage and multi-task approaches presented in section 2.3.3 and 2.3.4, high

level knowledge may be introduced by a succeeding CNN that refines the initial results.

To combine the existing modules of [Arenknecht, 2016] with a CNN-based state of

the art architecture, this work proposes three options as illustrated in figure 4.2:

Option A (refine)

As described in section 2.3.3, the state of the art implies that refining initial estimations

can be done using multiple successive stages. Following this idea, the entire existing

system could be used for an initial estimation. A subsequent CNN can then be trained

to refine this estimation by using high level knowledge like spacial relations between

joints. However, this option may not be practical as the existing system needs at least

30ms per frame to compute, which is already equal to the target frame rate. Since the

computation time was additionally found to be significantly higher in reality, option A

and therefore the AdaBoost Joint classifier by [Arenknecht, 2016] will not be used.

Option B (iron)

As a second option it might be possible to replace the AdaBoost classifier by a CNN

that produces the initial estimates directly. This would allow to build upon the fea-

ture generator and use IRON features as input for the CNN. If the IRON features

contain valuable information this might simplify the problem and allow for a better

pose estimation.

Option C (depth)

In case that the IRON features prove to be of no advantage, a deep CNN should also

be able to find meaningful features on its own. This third option results in the simplest

architecture but does not use any of the existing components.

To determine if IRON features can provide an advantage, they are compared to mul-

tiple alternative input representations in the next section.

36 CHAPTER 4. ANALYSIS OF EXISTING COMPONENTS

4.2 Usability Evaluation of IRON Features

To examine the usability of IRON features for a CNN, a comparison with four

alternatives will be presented in this section. This corresponds to a comparison

of option B (iron) and option C (depth) in figure 4.2 by testing several specific

implementations.

In order to find the best solution, all available options were evaluated using a simple

CNN architecture. It is similar to the first stage of the Convolutional Pose Machine

(see A.2) and consists of five convolutional layers and one pooling layer after the

first convolution. The network was trained for 5,000 iterations with a batch size

of 32 on all five input data representations, resulting in a total of five individual CNNs.

The tests in this section were originally performed on the data by [Arenknecht,

2016] described in section 4.3, but were repeated later on the training data that is used

throughout this thesis (described in chapter 5) in order to verify the initial results.

These experiments on the new dataset did indeed support the original conclusions by

matching the initial results very closely. To allow for better comparison with other

experiments in this thesis, they will be described here instead.

In order to simplify the problem and allow a faster and easier comparison, only a

small portion of the available data was used. However, this small portion should be

comparably homogeneous so that it is possible for the tested network to converge

quickly. For this reason, only the data of the G4 movement category (dataset CG4w,

see section 5.5) was used. More precisely, it was found to be suitable by fulfilling the

following criteria:

• The range of positions within the detection area is comparably small, since the

person is always in front of the desk and facing the camera.

• Additionally, the persons position is the closest to the camera. Therefor, the size

of the person is as big as possible and roughly constant.

• The range of motions and poses is limited to moving objects on the table and

therefore relatively small and uniform.

4.2. USABILITY EVALUATION OF IRON FEATURES 37

In total, the CG4w data set used for training contained roughly 5,000 images. For

evaluation, the CEvalW dataset with about 500 frames was used, because it belongs

to the same G4 movement category (see section 5.5).

Since a CNN will be used, the input must be presented as I ∈ RX×Y×C . This can

be interpreted as an image with C channels of size X × Y px in width and height.

x ∈ [1, X] and y ∈ [1, Y] describe a point within such an image. In this way, depth

information can be represented as a value z ∈ R for each point (x, y) of the image,

denoting the distance from the recording camera.

The five different input representations use this image-like input format by filling the C

channels with different kinds of data, following either option B (iron) or C (depth)

of figure 4.2. A visual comparison of the used representations is shown in figure 4.3.

In more detail, they use the channels in the following ways:

• IRON (option B) uses 39 channes in total, one for the depth (z) and the re-

mainder for the 38 numeric values of the IRON features.

• IRONZ (option B) uses one channel containing only the depth information (z)

of the IRON features

• Depth (option C) uses one channel containing the depth image of the Kinect

V2 (after normalization without clipping)

• IR (option C) uses one channel containing the IR image of the Kinect V2 (after

normalization with clipping)

• IrDepth (option C) uses both the depth and IR image of the Kinect V2 after a

custom normalization on two separate channels

A final comparison of the performance using these input representations is provided

with figure 4.8 in section 4.2.3.

38 CHAPTER 4. ANALYSIS OF EXISTING COMPONENTS

Figure 4.3: Visual comparison of input representations

top left: only IR data, capped at intensity 70000 and normalized to be within [0, 1]

top right: only depth data, normalized to be within [0, 1]

bottom left: IR(green) and depth(red) data together, normalized to be within [0, 1]

bottom right: IRON (or IRONZ) values projected into the image

4.2.1 IRON Features as Input

As shown in figure 4.1, [Arenknecht, 2016] used IRON features as proposed by

[Schmiedel et al., 2015] for a joint classification. They contain information about

the surface structure in a small region around a specific point. With the existing IRON

generator, about 2,000 features are created for every depth image at interesting points

in a grid-like fashion. Every feature has three coordinates for its (x, y, z) position

and a vector of 38 numerical values that describe its characteristics. To make them

4.2. USABILITY EVALUATION OF IRON FEATURES 39

usable for a CNN, the feature’s x and y coordinates were used to project them into

images with 39 channels (see fig. 4.3 bottom right). That is one channel for its depth

value z and one for every numerical value in the feature vector. Because features were

only computed on surfaces with a high amount of linearity, their location alone might

contain information about the unterlying object.

For this evaluation, the features were created offline using the tools that resulted from

the work of [Arenknecht, 2016]. On average it took 2.07 seconds to create the

features for one image.

As figure 4.4 (top) shows, the detection performance is acceptable for the head, neck

and shoulders but gets worse further down the kinematic chain. By this results alone

it is difficult to say whether the IRON-Features can provide advantages for this task.

By closely inspecting the estimation results, it was assumed that only the z values

of the IRON-Features are used while the other values provide no additional advantage.

To verify this, a CNN that uses only the z value of the IRON features (IRONZ) is

trained and compared to the one using full IRON features. As can be seen in figure

4.4, both networks seem to perform identically. This suggests, that the features

themself are not used at all and only their location is used. This was then additionally

verified by inspecting the first layer of the IRON-network with Layer inspection

Tool (LiT) (see section 6.2.2). The inspection results are shown in figure A.8 and

confirm that only the depth information (first channel) of the IRON features was used.

Conclusively, IRON features do not seem to be suitable for this application though

depth values seem to contain meaningful information. However, since the features are

only generated for surfaces with specific properties, their location alone might contain

some useful information. To investigate this assumption, different possibilities for

using the image data directly will be examined in the next section.

40 CHAPTER 4. ANALYSIS OF EXISTING COMPONENTS

Figure 4.4: Performance for using IRON-features as input

The detection rate of the CNN trained on IRON features (top) is not noticeable

different form the one that only used their depth values (bottom). In both cases,

head, neck and even shoulders could be detected well. However, the detection for

elbows and especially hands is not sufficient.

4.2. USABILITY EVALUATION OF IRON FEATURES 41

4.2.2 Depth and Infrared Images as Input

As a baseline for comparing the IRON features, a network was trained using only

normalized depth images as input. The performance of this network is illustrated in

figure 4.5. With even higher detection rates than the previous results, the detection

for head and neck is very robust. Even though the detection of the hands and elbows is

still very noisy, it is noticeably better than using IRON features. Nevertheless, the de-

tection rate S0.5 for hands and elbows is still only about 50%. To further improve these

results the depth images were filtered before normalization by removing any informa-

tion further away than 3.5m. This was however found to be ineffective and did not

improve the performance, possibly because of the large amount of noise still remaining.

Figure 4.5: Performance for using depth images as input

The detection rate of the CNN trained on depth images is significantly better com-

pared to the performance using IRON features (figure 4.4).

42 CHAPTER 4. ANALYSIS OF EXISTING COMPONENTS

Apparently, one of the main error sources are situations where the hands are close to

the background, for example lying on the table or in front of the body. The usage

of IR images may lead to better decomposition in those situations because they still

contain easily visible edges in those cases.

Figure 4.6: Performance for using IR images as input

The detection rate of the CNN trained on IR images is better for all joints compared

to the performance using depth images (figure 4.5). Especially the mean detection

error for elbows improved by more than 100%.

To investigate this assumption, a CNN was trained that uses only normalized IR

images as input. An illustration of the resulting performance is shown in figure 4.6.

Compared to the previous results, the detection for head and neck is even more robust

and the hands and elbows are getting detected better as well. Even though the hand

detection with S0.5 > 50% may seem reasonable, it is still the biggest source of errors.

4.2. USABILITY EVALUATION OF IRON FEATURES 43

Figure 4.7: Performance for using both depth and IR images as input

The combination of depth and IR images does not seem to noticeably improve the

detection rates compared to using only IR images (figure 4.6).

To examine if a combination of both IR and depth images can provide more expressive

information than each of them alone, a network was trained that uses both as input.

Even though minor improvements could be observed, the difference in performance

was very small (see figure 4.7).

4.2.3 Conclusion

A performance comparison for all five input data representations evaluated in this

section is shown in figure 4.8. As discussed in section 4.2.1, the performance for IRON

and IRONZ features is virtually identical and the lowest of all tested representations.

This suggests that only their depth information is used. Hence, this sort of represen-

44 CHAPTER 4. ANALYSIS OF EXISTING COMPONENTS

Figure 4.8: Comparison of input data representations for CNN pose estimation

The usage of depth information in the form of IR or depth images as input data

seems more suitable than using IRON features.

tation is not beneficial. In addition to those disadvantages, the computation of these

features is with up to two seconds quite time intensive. Therefore, IRON features will

not be used in this thesis.

In contrast, the performance using the Kinect V2 camera data directly as input is

significantly better. While the IR images performed slightly better than depth im-

ages, a combination of both could only improve the results marginally. However, the

latter did not increase the computation time either and might prove to be beneficial

in situations where the distance between person and camera is higher.

For these reasons stated above IRON features and therefor option B (iron) of figure

4.2 will not be used. Following option C (depth) instead, a combination of IR and

depth images will be used as input.

4.3. TRAINING DATA 45

4.3 Training Data

Besides the components for IRON feature detection and joint classification described

previously, the work of [Arenknecht, 2016] also includes training data that was

recorded for a very similar scenario to the one described in section 1.2. This data is

still available and consists of two sequences, walking around the detection area and

simulated work, each performed by two different persons. The data was recorded at

30 fps, but only a fraction of it was annotated, resulting in a total of four sequences

and 1,400 labeled frames. Each labeled frame was annotated by hand and contains

the 2D position of eight upper body joints.

The Kinect V2 camera used for recording was installed above head height and is angled

down, which results in a noticeable perspective distortion of the human body. Because

of that, the head appears very big if the person is close to the camera.

The recorded data contains IR, depth and RGB images. However, the depth images

are preprocessed so that they only contain information that is closer than 3.5 meters.

4.3.1 Experiments

In order to determine if the existing training data can be used for the use case

scenario described in section 1.2, a simple CNN architecture was implemented and

trained on this data. Similar to the experiments in section 4.2, a simplified version of

the Convolutional Pose Machine was used.

About 75% of the available data was utilized for training and 25% for evaluation.

With a process similar to the one described in section A.3.4, heatmaps were generated

from the available annotations as labels for training. Multiple different networks were

trained to perform increasingly difficult tasks, ranging from detecting solely the head

to full upper body detection.

The networks trained in this fashion were able to detect the head robustly and

the shoulders most of the times. The detection for elbows and hands was more

problematic though. Poses with the hands above shoulder height were never detected

correctly. Instead, the network falsely assumed them to be in a neutral position

next to the body. This also happened a lot for simulated work movements. Those

46 CHAPTER 4. ANALYSIS OF EXISTING COMPONENTS

observations indicate, that the neutral position is overrepresented in the training data

and therefore the network always defaults to it when unsure. Also, more uncommon

poses where the hands are above elbow height seem to be underrepresented, since

they were never detected correctly. A closer inspection of the pose distribution in the

training data verified this assumption.

To further investigate whether the available data is applicable for the use case scenario,

a simple motion sequence was recorded with the setup detailed in section 1.2.1 and

preprocessed to fit the training data. The networks described above performed quite

poorly on this sequence, struggling to detect the head. This may have been due to the

different camera position which depicts the person (and especially the head) smaller

and less distorted.

4.3.2 Conclusion

In conclusion, the available training data is not suitable for the task of Human Pose

Estimation like outlined in section 1.2 because of three reasons:

• The perspective across all recordings is quite similar which limits the possibilities

for generalization. In addition, this consistent perspective differs too much from

the use case and introduces a high degree of distortion.

• The number of contained poses is too low and their distribution is disadvanta-

geous. The neutral pose is highly over represented and a lot of more uncommon

poses (for example hands above the head) are missing entirely.

• The number of 1,400 training samples is comparably low which likely results in

overfitting, especially since many samples are quite similar. The state of the art

approaches presented in section 2 usually were trained on at least 5,000 data

samples, but often the number of training samples is much higher.

Therefore, better suitable training data has to be found. The process of creating such

data will be described in the next chapter.

47

Chapter 5

Training Data

As explained before, a deep CNN architecture will be used for Human Pose Estima-

tion in this thesis. Such a CNN usually contains a large number of free parameters

(weights) that needs to be adjusted in order to perform as needed. This adjustment

will be done in a training process called supervised learning, where the network is

presented with pairs of input data and desired output. In order to enable the CNN to

generalize and avoid overfitting, a sufficiently large number of such training samples

is needed.

As of now, there is no broadly accepted heuristic available to determine the minimum

amount of required training samples, since it depends on many different factors. Well

performing approaches in the literature are usually trained on at least 5,000 data

samples, but often times the number is much higher.

Besides quantity, sufficient training data also needs to fit the intended task qualita-

tively. In the scope of this thesis, suitable training data must therefore fulfill at least

the following criteria:

• Input: Data from a depth camera (depth image, IR image or point cloud) must

be available as input.

• Labels: The 3D location of the 8 upper body joints (see figure 1.2) must be

available as ground truth.

48 CHAPTER 5. TRAINING DATA

• Poses: The training data must include generic poses of a single person as well

as working poses where the lower body is often occluded. It must not contain

multiple persons.

• Count: Especially for training deep CNNs, a large amount of training samples

is needed. About 10,000 unique samples is expected to be sufficient.

A more detailed requirement profile will be given in section 5.1.

As examined in the previous section, a dataset by [Arenknecht, 2016] is available,

but not suitable for this thesis. In addition, several different data sets for the task of

Human Pose Estimation are publicly available. These are reviewed in appendix A.3.1.

In summary, none of the described datasets is suitable for the task because the input

data format and the available poses are not sufficient. Synthetic dataset creation is an

alternative but would exceed the scope of this thesis. Therefore, the best solution is

to manually record a new dataset specifically for the presented task. This also allows

ensuring the data is best suitable as well as balanced for the intended use case.

The details regarding the scope, capture and post processing of this training data will

be described in this chapter.

5.1 Requirements

To ensure good performance under the use case constraints described in section 1.2.2,

several requirements for the training data were derived. These requirements can be

split in two groups:

• Match use case characteristics:

– Sensor constraints: The data is recorded with the Kinect V2 ToF camera.

– Room and detection area constraints:

∗ The room and detection area for data recording are set up like described

in section 1.2.2.

5.1. REQUIREMENTS 49

∗ The Kinect V2 camera is positioned like described in section 1.2.2 (be-

hind the workbench, front facing the worker).

• Achieve generalization for:

– Person: There must be various images from multiple people with different

optical characteristics across the dataset.

– Pose: The data must include as many different relevant poses (see section

1.2.2) as possible in roughly equal quantity.

– Person position: The poses have to be performed all over the detection area.

– Background and foreground: The data must include at least minor changes

in back- and foreground configuration

– Hand usage: The data must include different tasks in which the hands are

used to manipulate objects

Since the detection is based on depth information, the network might learn features

based on the shapes of things in 3D space. This means that not only the visual ap-

pearance (like seen in a 2D image) needs to be considered when thinking about what

training data to generate, but also basic shapes in 3D space. For example, characteris-

tics of the basic shape of a hand might be learned. Such characteristics would change

drastically, if an object was held in the hand. To allow for robustness in this aspect,

different kinds of tasks in which the hands are used to manipulate objects need to be

introduced.

Also, when using the depth information as input, big depth differences between fore-

ground and background (for example a hand 5m in front of a wall) are ideal for a good

detection. Similarly, very small differences (for example a hand flat against the chest)

proved to be especially difficult. So additional attention is needed for poses where

hands are touching other body parts or objects.

Generalization regarding the specific camera position would be desirable, but was not

possible within the used setup. Data augmentation (see section 6.2.1) was later used

to compensate for this.

50 CHAPTER 5. TRAINING DATA

Finally, different datasets for training and validation are needed. This is necessary to

monitor the training process and objectively evaluate and compare the results.

5.2 Room Setup, Calibration and Label Creation

The data was acquired in the setup of the use case scenario described in section 1.2.1.

Additionally, a second Kinect V2 camera was installed in the opposite direction of

the first one. It was used to better calibrate the setup and capture the scene more

holistically, but not for the actual training data.

Beyond that, the setup was extended by installing hardware for label generation.

Specifically, the multi-camera markerless motion capturing system “Captury Live”

[cap, 2017] was used. It provides a robust realtime 3D skeleton with 28 bones (29

joints) based on at least four cameras.

The whole setup was carefully calibrated. First, the instrinsics and extrinsics

for Captury Live were adjusted to match the four used cameras and to align the

skeleton with a reference point in the real world. Then, a laser based precision

measurement system was used to determine the spatial relation between this Captury

Live reference point and the lenses of the two Kinect V2 depth sensors. Nevertheless,

this calibration cannot completely compensate for all measurement errors. Especially

the ToF-based Kincet V2 introduces some errors that are not covered by the sensor

model, like multipath and distance related errors due to imperfect sinusoidal IR

illumination. For this reason, a tool for refinement based on manual inspection

and online adjustment was developed and used to decrease the remaining error

between both kinects to about one voxel. The tool was also used to align the Cap-

tury Live skeleton equally in the center of the point cloud produced by the two Kinects.

The resulting setup allowed to easily record high quality depth and IR images at 30Hz

and 512× 424px along with matching skeletons at about 50

glsHz. The accuracy and residual errors of the recorded data are discussed in section

5.4 in more detail.

5.3. VARIATIONS FOR GENERALIZATION 51

5.3 Variations for Generalization

To ensure that the desired generalization described in section 5.1 is possible, three cat-

egories of variations were introduced. This section will describe the specific variations

for each category.

5.3.1 Person Variations

To allow generalization regarding the person to be detected, five different people with

these varying characteristics were recorded:

• The participants differ in height, ranging between 1.65m and 1.90m, as well as

in their physique.

• The hair color is ranging from blond to black across different hair styles (no

longer than shoulder-length).

• The clothing differs in color and appearance, but all participants wear T-shirts

and long pants.

• Additionally, one participant is wearing glasses.

5.3.2 Background and Foreground Variations

For a flexible background configuration, a big black board with a curtain was placed

in the background, roughly 4m away from the front facing Kinect. It was moved

randomly to occlude varying parts of the background. Considering depth features,

this acts like moving the back wall closer and farther (or just parts of it) and might

influence the features that can later be used to separate a person from the background

Furthermore, a chair and a box were randomly positioned in the background or on

the sides to introduce some noise around the detection area. Sometimes, a box was

positioned randomly on the workbench. This occludes parts of the workbench and the

detection area and introduces noise to the shape of the work bench.

52 CHAPTER 5. TRAINING DATA

5.3.3 Position, Pose and Hand Usage variations

To ensure equally good performance for all poses, a set of motion sequences was chosen

to cover the whole range of relevant poses as holistic as possible. The sequences

and poses are structured into two categories: Basic Poses and Work Poses.

Additionally, a third category exclusively for evaluation was created, enabling

independent and objective assessment. Within each category, several subcategories

were introduced in an effort to cover all their important characteristics explicitly.

This segmentation further allows to manually balance the training data later on, if it

was found that a certain type of pose is overrepresented or underrepresented. Possible

consequences of disadvantageous pose distribution were already discussed in section

4.3.

In short, the sequences were designed around three main goals:

• Contain the complete range of relevant poses

• Crate location independence

• Do not underrepresent unusual non-work poses

To achieve those goals, motion sequences were designed in a two step process. First,

key poses are defined which are extremes of a certain type of body part positioning.

For example, holding the hands straight above head as one extreme and letting the

hands hanging low next to body as the other. Next, a specific pattern to move between

them is determined. By performing this movement pattern, all poses between those

extremes on the specific path will be covered.

Following this process, the key ingredients for good pose variations are finding mean-

ingful key poses and movement paths between them. A detailed overview of the

complete list of motion sequences can be found in the appendix A.3.2.

Basic Poses

The Basis Poses category covers all poses that are not common during work. This

includes idle poses like standing and walking, unusual poses like pointing in the air

5.3. VARIATIONS FOR GENERALIZATION 53

and particularly difficult poses like covering the head with both hands. The focus is

especially on the unusual and difficult poses, since they would be underrepresented

and therefore hard to detect otherwise. Because the person may not be working, the

location can be anywhere in detection area and the body (hips) and face can be facing

any direction.

Four subcategories are introduced to ensure all important aspects are covered:

straight arms (A), bent arms (B), body touching (C) and random move-

ment (D).

The CNN that will be trained on this data may learn features based on the relation

between joints. Because of that, the subcategories (A) and (B) are meant to cover the

range of possible constellations between the 6 joints for left and right hands, ellbows

and shoulders.

As explained before, the detection based on 3D features will be difficult if the hands

touch something. Therefore, the subcategory (C) is included to provide training data

specifically for those poses.

Finally, motion sequences following the previous categories might be a bit unnatural

sometimes and may exclude some important poses. For this reason, the subcategory

(D) was introduced in which the participants can freely move in any way they feel

like.

Work Poses

This category aims to cover typical and common poses during work, even though

the requirements do not specify the kind of work that will be done in great detail.

Nevertheless, it will include pressing some buttons on the workbench, manipulating

smaller objects and using a keyboard. During work, the person will stand in front of

the workbench with their hips roughly facing the camera. In this category, the focus

is especially on manipulation of and interaction with objects, as well as performing

the tasks specified as work.

54 CHAPTER 5. TRAINING DATA

Three subcategories are introduced to ensure all important aspects are covered: idle

poses (E), button interaction (F) and box/LEGO interaction (G).

The focus of subcategory (E) are neutral poses where the desk or keyboard is touched.

This might be particularly difficult regarding depth features. Subcategory (F) is

similar in this respect, but also one of the actual work tasks intended for this scenario

and therefor more dynamic. Complementary, subcategory (G) is the other intended

work task and focuses on moving objects with the hands. This influences the 3D

appearance of the hands and might also cause occlusions.

Evaluation

The evaluation category is intended for objectively measuring the performance of

classifiers trained on the data described above. For a fair and critical analysis, all

aspects a classifiers should be able to generalize must differ from the training data.

Therefor, it must feature unseen poses (both from the front and back), a different

background configuration and a new person that is not present in the training data

at all.

To allow for a more detailed and independent analysis, thee subcategories were

created: basic poses (V1), work poses(V2) and body touching (V3). The first

two subcategories are analog to the previously discussed categories and contain a mix

of common and especially difficult positions. For example, bending the upper body

in category (V1) (which is not included in the training data) or crossing both hands

while manipulation objects in category (V2). Additionally, the subcategory (V3)

focuses on particularly difficult poses where the hands are touching the body.

In summary, about half of the validation data is intended to push the classifier to it’s

limits and to allow for a detailed analysis of performance.

5.4. POST-PROCESSING AND ERROR CORRECTION 55

Figure 5.1: Captury skeleton used for labels

Skeletons with 29 joints like this one above are generated by CapturyLive and later

used for labels.

5.4 Post-processing and Error Correction

After recording the raw data, errors need to be detected and the recordings need to

be transformed into a more useful representation before it can be used for training.

The raw data consists of time-stamped depth- and IR images and labels in the form of

time-stamped Captury skeletons. A Captury skeleton consits of 29 joints in 3D space

(x,y and z coordinates) which resemble a human skeleton like shown in figure 5.1.

The used methods of transformation and normalization are described in appendix

A.3.3 in more detail. Likewise, the found errors are investigated more closely in that

section.

Eventually, the algorithm shown in figure A.6 is used for a joint correctness classifi-

56 CHAPTER 5. TRAINING DATA

cation. It detects occlusions and erroneous poses based on the difference between the

supposed joint locations and the actual depth information captured by the Kinect V2

camera. An example result of this algorithm can be seen in figure 5.2.

Figure 5.2: Example result of the joint correctness classification

All three possible correctness values for joints are shown in this image of a person

standing sideways. The white joint (left shoulder) was labeled as occluded because

it is hidden behind the head and chest. The red joint (left hand) was labeled as

incorrect because it is not in the hands center, but rather on its edge. All other

joints (green) were labeled as correct.

The correctness values are then used to synchronize the input images to the training

labels with an optimization algorithm. For each recording, a timing offset between

both is found that would minimize the number of incorrect joints. Visual inspection

additionally ensured, that this offset is indeed correct and there is no delay between

movements in the depth image and movements of the skeletons.

The correctness values are also used to filter the training data and exclude wrongly

5.5. RESULTS 57

labeled data. Only those frames are used, where all labels are correct or occluded. As

soon as there is one incorrect joint, the complete frame is rejected. Otherwise, there

would be visible joints which are not labeled. Training on this data would decrease

the performance because detecting such a joint would be wrong according to the label.

After excluding all frames with incorrect joints, about 25.000 frames remained. The

dataset with these frames is called C25K dataset.

In order to use this data to train CNNs, the labels need to be transformed from

skeletons into heatmaps, which represent the desired output of the CNN. With the

algorithm shown in code A.7, one such heatmap was created for every joint in every

frame.

5.5 Results

In total, 44 labeled motion sequences across all subcategories with a length of ≈ 30−60

seconds each were recorded, which results in roughly 100,000 frames. The complete

list of included motion sequences can be found in the appendix A.3.2. After post

processing, about 25,000 usable frames remained. By using data augmentation like

described in section 6.2.1, a dataset of 150,000 frames was created. Additionally,

three labeled motion sequences of about 30 seconds with a total of ≈ 700 frames were

recorded for validation and augmented to 1,400 frames by flipping them along the

vertical axis. A list of all datasets that were recorded with the methods described

in this chapter is shown in tab. 5.3. The workflow that was used to create them is

displayed in figure 5.4.

For testing the limitations of the trained system, additional datasets were needed

later on. For comparison with the state of the art, RGB images are also necessary.

But since the Captury Live system was only available for a short period of time, it

could not be used for label creation anymore. A new set containing motion sequence

V2 including RGB images was recorded and 127 frames were labeled manually (see

section 8.2). Further, sets with difficult poses, multiple subjects and difficult clothing

were recorded without labels. Even though they are not usable for a quantitative

58 CHAPTER 5. TRAINING DATA

Name Frames Description

C25K 25,000 initial dataset after post processing

C150K 150,000 C25K with 5 additional augmentations for each frame

CG4w 5,000 all frames of C25K that contain the motion sequence G4

CEval 1,400 all frames in the validation motion sequences (700) with augmentations

CEvalW 500 set with only the motion sequence V2 with augmentations

Figure 5.3: All datasets that were created for this thesis using CaturyLive

All datasets contain IR images, depth images and labels in form of 3D skeletons with

8 joints and corresponding heatmaps.

evaluation, they are used to evaluate the limitations qualitatively in section 8.3.

5.5. RESULTS 59

Figure 5.4: Workflow used to create the datasets

This graphic displays the methods (blue) that were used to create the final datasets

(green) from the raw data (white). The yellow colored elements are used to assist

this process by some means of normalization. The validation datasets are processed

accordingly.

60 CHAPTER 5. TRAINING DATA

61

Chapter 6

System Design and Development

As shown in chapter 2 almost all state of the art approaches are creating pose

estimates by using CNNs to process image data quite successfully, especially most

recent ones. Because the output of a depth sensor can be represented as images, it

is possible to build upon those promising state of the art results by implementing a

similar CNN architecture. More specifically, section 4.2 has shown that a combination

of IR and depth images is the most beneficial representation for this purpose an will

therefore be used as input.

Despite this decision, a very broad scope of development possibilities for a concrete

architecture still remains. Especially because the resulting system is expected to

produce pose estimates in 3D, which is still comparably rare in the state of the art.

In order to guide the development process and allow for informed decisions, the

training data recorded in chapter 5 was used to perform systematic experiments. The

resulting development process can be divided in three parts and will be presented in

this chapter. First, a well performing state of the art architecture was determined

to serve as a basis for further development. This basic design was then improved

regarding speed and detection rates by applying different methods. Finally, multiple

possibilities for pose estimation in 3D using this improved design were examined.

62 CHAPTER 6. SYSTEM DESIGN AND DEVELOPMENT

6.1 Base Architecture

While there are many different approaches for Human Pose Estimation with a CNN,

a lot of them rely on similar base architectures. As a first step to narrow down the

possibilities, three such popular designs were identified and compared. Based on

this comparison, a base architecture design was chosen as a foundation for further

development.

As a first option, the Convolutional Pose Machine (CPM) was chosen because it’s

basic concepts are well established and often used, most recently in what is arguably

the best Human Pose Estimation system to date, OpenPose [Cao et al., 2017].

In contrast, the Stacked Hourglass (SHG) is comparably new but happens to be

increasingly popular in recent approaches, featured in many of the best performing

systems to date (see table 2.9). Therefore, it was chosen to be the second option

Finally, the ResNet was chosen to be the third option because it is often used for

feature computation by approaches for image processing and Human Pose Estimation.

Even though is is usually extended by a specialized detection or regression head, it

will make for a good baseline.

All three architectures were implemented in Caffe 1.0 [caf, 2017], either by directly

using publicly available code or by manually implementing them as described in the

corresponding papers. Additionally, small modifications were made to adjust them

for the scenario of this thesis and allow for the fastest possible speed. If, for example,

the original architecture uses multiple stages to refine the estimation result, only one

stage was used.

In order to compare the performances, all architectures were trained on the C25K

dataset which uses two input channels, one for the depth image and one for the

infrared image. The performance was then evaluated using the CEval dataset

(datasets described in section 5.5).

The following subsections will first introduce the three candidates, describing their

6.1. BASE ARCHITECTURE 63

implementation and performance in more detail. Finally, a comparison of all three

architectures will be given in subsection 6.1.4.

6.1.1 Convolutional Pose Machine

The principle of the Convolutional Pose Machine (CPM) is described in appendix

A.2. Its specific implementation was taken from [gitb], featuring the following

characteristics:

As input, the original CPM takes images at a resolution of 368 × 368px with four

channels. That is three channels for the RGB image and one additional channel

containing a Gaussian peak that denotes the center of the primary subject (person).

The images were also preprocessed by cropping them around this center peak.

This input was then processed by six consecutive stages, each refining the result of

the previous one while also considering low-level features computed from the input

image directly. Finally, the last layer with 15 channels produces one heatmap per

joint at a resolution of 46× 46 px.

In order to allow training on the C25K dataset, the input layer was adapted to take

two-channel images at 368 × 368px. Aiming at high framerates, any preprocessing

like center peak computation or person centric cropping was dropped. For the same

reason, only a single stage of the CPM was used. Finally, the output was reduced to

eight channels at 46× 46 px to only predict the upper body joints.

The resulting architecture will be called CPM vanilla in this thesis.

This CNN with 30,571,504 free parameters was trained for 60,000 iterations with the

hyperparameters described in [gitb] on the C25K dataset. The resulting performance

(last epoch) on the evaluation dataset CEval is shown in figure 6.1.

64 CHAPTER 6. SYSTEM DESIGN AND DEVELOPMENT

Figure 6.1: Performance of the Convolutional Pose Machine

The reference implementation of the Convolutional Pose Machine is able to detect

the head, neck an shoulders equally good with a fairly equal distribution of error

distances for p < 0.5. While the detection rate for shoulders is just about acceptable,

it is not sufficient for the hands.

6.1.2 Stacked Hourglass

As described in more detail in section 2.2.2, the Stacked Hourglass (SHG) exploits

residual learning on multiple scales and is used in some of the best performing

approaches at the time. Its specific implementation was taken from [Alejandro

Newell, Kaiyu Yang and Deng, 2017] and manually translated to the Caffe

framework.

Originally, the CNN takes images at at a resolution of 256×256px with three channels

(RGB). Then, two successive hourglasses and finally two fully connected layers are

used to produce 16 heatmaps at 64× 64 px, one per joint estimate.

6.1. BASE ARCHITECTURE 65

This architecture was modified slightly to accept a two-channel image as input and

employed only a single hourglass to produce eight heatmaps for the upper body joints.

The resulting architecture will be called SHG vanilla in this thesis.

This CNN with 17,368,904 free parameters was trained for 60.000 iterations on the

C25K dataset. The resulting performance (last epoch) on the evaluation dataset CEval

is shown in figure 6.2.

Figure 6.2: Performance of the Stacked Hourglass

The reference implementation of the Stacked Hourglass is able to detect the head,

neck, shoulders and even elbows equally good with a fairly equal distribution of error

distances for p < 0.4. However, the distribution for the head’s detection errors is

not as equal and shows two distinct peaks around p ≈ 0.05 and p ≈ 0.4. Although the

hands are the joints with the weakest detection, their detection rates are acceptable.

66 CHAPTER 6. SYSTEM DESIGN AND DEVELOPMENT

6.1.3 ResNet 50

Similar to the SHG, the ResNet50 (RSN) also exploits the technique of residual

learning as described in section 3.2.2. Multiple different ResNet architectures were

introduced by [He et al., 2016] and are used since then in several approaches as a base

to build upon, like for example in [Insafutdinov et al., 2016], [Mehta et al., 2017]

and [Bulat and Tzimiropoulos, 2016]. These approaches use the ResNet mainly

for feature computation and implement specialized modules for pose estimation on

top. Although these approaches don’t use the pure ResNet without any additions, it

is a good baseline for comparison.

In [He et al., 2016], multiple ResNet architectures of varying sizes are proposed. For

a fair comparison, the smallest architecture ResNet50 was chosen, because it matches

the other architectures the closest regarding wight count and inference time.

The original implementation available at [gita] uses images at 224× 224px with three

channels (RGB) as input. Multiple successive convolutions with stride two are then

employed, downsizing the image resolution to eventually 7 × 7 px. Finally, pooling

with kernel size seven, a fully connected layer and succeeding softmax produce a

vector of length 1,000 as output. This vector is usually used for classification or as

input features for succeeding specialized modules.

The described original architecture was modified to take a two-channel image at

256 × 256px as input. To keep the output resolution reasonable for heatmap

generations, the stride of all convolutions was reduced to one. This resulted in a

constant resolution of 64 × 64 px after an initial convolution with stride two and

pooling. Finally, the last layers for prediction were replaced by a single convolution

to produce eight heatmaps at 64× 64 px, one for each upper body joint.

The resulting architecture will be called RSN vanilla in this thesis.

This CNN with 23,578,504 free parameters was trained for 60.000 iterations on the

C25K dataset. The resulting performance (last epoch) on the evaluation dataset CEval

is shown in figure 6.3.

6.1. BASE ARCHITECTURE 67

Figure 6.3: Performance of the ResNet50

The detection rates of the ResNet50 reference implementation gradually decrease

along the kinematic chain. While the error distribution for all joints is fairly equal

for p < 0.4, the head’s error distribution shows two distinct peaks around p ≈ 0.05

and p ≈ 0.4. Although the hands are the joints with the weakest detection, their

detection rates are just about acceptable.

6.1.4 Conclusion

A comparison of the three evaluated approaches (Stacked Hourglass (SHG) ,

Convolutional Pose Machine (CPM) and ResNet50 (RSN)) is shown in figure 6.4,

illustrating the difference in average performance and inference time (speed). First,

only the average performance (left) will be examined.

As an initial observation, the RSN and SHG performed quite similar while the

performance of the CPM is noticeably lower. In fact, the median detection error of

≈ 0.28 is virtually the same for RSN and SHG, but roughly 50% higher for the SHG

with ≈ 0.42. Based on those observations, the CPM is assumed to be the least eligible

68 CHAPTER 6. SYSTEM DESIGN AND DEVELOPMENT

Figure 6.4: Precision comparison of base architecture candidates

A reference implementation of the Stacked Hourglass(SHG vanilla), Convolutional

Pose Machine(CPM vanilla) and ResNet50(RSN vanilla) were trained for 60.000

iterations on the C25K dataset. The left graph shows the average detection rates of

these networks on the CEval evaluation dataset. The right graph depicts the average

inference speed in frames per seconds (higher is better).

architecture and excluded from further discussion.

By taking also the detailed results (shown in figure 6.2 and 6.3) into consideration,

more differences between the remaining two approaches become apparent. The RSN’s

detection rates are more diverse and spread out across the individual joints compared

to the SHG. More precisely, its detection rate decreases more drastically for joints

further down in the kinematic chain. This is especially apparent when comparing the

hand’s detection rate, which is noticeably lower for the RSN.

Additionally, the SHG’s detection rate continues to increase for distances p > 0.5

6.1. BASE ARCHITECTURE 69

where the RSN’s detection rate shows little to none gains (see figure 6.4). Because of

that, the SHG has a higher maximum detection rate.

A likely explanation for this was found by visual inspection of the detection results.

The differences were most prominent in difficult situations: while the RSN tended to

fail the detection entirely, the SHG was more often able to at least “guess” a joints

location approximately, like shown in figure 6.5. Even though this “guess” was not very

exact, such behavior might indicate potential for further improvements. For example,

more training data could help to refine those “guesses”. This will be examined in

subsection 6.2.1.

Figure 6.5: Comparison of Stacked Hourglass(left) and ResNet50(right) perfor-

mance

The person in this image (zoomed for better visibility) performs an especially diffi-

cult task by standing in great distance to the camera and placing both hands behind

the head. Although the SHG’s estimation (left) is not very precise, still all joint

locations (white dots) are estimated and even quite close to the actual location. The

RSN (right), on the other hand, fails the detect or even guess half of the joints.

Altogether, the SHG seems to perform slightly better than the RSN, reaching higher

maximum detection rates while struggling less on difficult joints further down the

kinematic chain.

70 CHAPTER 6. SYSTEM DESIGN AND DEVELOPMENT

Since the resulting system is expected to perform in realtime, a speed comparison like

in figure 6.4 (right) is also highly relevant. Regarding speed, the SHG performs clearly

the best with ≈ 40% higher frame rates.

Combining the results of the detection rate and speed comparisons, the SHG is there-

fore the best suitable architecture of all three. In the next sections, it will be used as

a basis for further refinements and improvements.

6.2 Performance Improvements

Starting from the base architecture established in section 6.1, several approaches to

increase the performance are possible. They either focus on increasing the accuracy

and subsequently the detection rate or on decreasing the inference time and allowing

for higher frame rates. In this section, three approaches for performance improvements

will be examined.

6.2.1 Training data augmentation

First, it might be possible to improve the accuracy of the detection result. When

training a CNN, often times the quality or quantity of data can be a big factor for

accuracy. More precisely, for training a deep CNN the 25.000 frames of the C25K

dataset might not be enough. Especially since the camera’s position is constant across

all frames, there might not be enough variance to allow for good generalization. As

previously mentioned in section 6.1.4, there are already indications that more (and

more diverse) training data might be beneficial.

A common technique to overcome such shortages in training data is data augmentation.

Depending on the type of data, new training samples are generated by introducing a

random amount of specific modifications to the available data. For image data, the

most common modifications are rotation, translation and scaling, as employed by

many state of the art approaches for Human Pose Estimation. More specifically, the

following modifications were employed:

6.2. PERFORMANCE IMPROVEMENTS 71

For every frame of the training datset C25K, five additional frames were created by

randomly applying one of the following augmentations, resulting in a total size of

150.000 frames (C150K dataset):

• mirroring: flip image across the vertical axis

• rotation: randomly rotate up to ±30◦, border filled with nearest values

• translation: randomly move up to ±20% of the total length for each axis,

borders not filled (black)

• scaling: randomly scale up to ±25% of the original size around a randomly

chosen center point (resulting in scaling and translation). The borders are not

filled (black). Also, the depth values are scaled accordingly to keep dimensional

relationships constant. An upscaled image with unchanged depth values would

represent a unrealistically giant human otherwise

Furthermore, the validation datasets proved to be a little bit to small for an objective

and expressive evaluation. Also, they slightly favored the left joints over the right

because the poses were not evenly distributed in respect to the vertical axis. Therefore,

the validation datasets were also augmented by adding the mirrored version of every

frame.

Conclusion

To evaluate the improvements by training data augmentation, two networks were

trained on the C25k and the C150k dataset respectively. Building upon the results of

section 6.1, the SHG vanilla architecture was used for both. As shown in figure 6.6,

data augmentation could drastically improve the detection rates. The median detec-

tion error decreased about 50% to 0.15 while the maximum detection rate increased

about 25% to S0.5 = 93%.

72 CHAPTER 6. SYSTEM DESIGN AND DEVELOPMENT

Figure 6.6: Performance increase by data augmentation

Training on the augmented dataset with 150.000 frames significantly improved the

performance compared to the initial dataset with 25.000 frames.

6.2. PERFORMANCE IMPROVEMENTS 73

6.2.2 Weight Optimization Using the Layer Inspection Tool

A lot of architectures are created generously to avoid bottlenecks by too few or too

small layers in advance, even though not all weights and layers might be needed for

a specific task. However, the number of weights and layers has influence on training

time, inference time and overall performance. A higher number of weights usually

increases training time while a higher number of layers increases inference time.

If it would be possible to identify and cut such dispensable weights and layers,

the networks inference time, memory usage and training time could be improved

while preserving the networks accuracy. With deep CNNs, however, it is often hard

to understand what happens internally, which makes such an identification rather

difficult. Therefore a tool that allows to inspect a network after training will be very

helpful basis for meaningful architecture optimization.

The only available tool for this purpose that works with networks built in Caffe is

the Deep Visualization Toolbox [Yosinski et al., 2015]. However, it only works with

networks that take a three channel RGB image as an input. Modifying the source

code to allow it to work with two channel networks proved to be quite time consuming

and not easily possible. Therefor, a new tool called Layer inspection Tool (LiT) was

developed for deep neural network layer inspection. Its purpose is to visualize weight

usage and indicate possibilities for architecture improvements by providing statistics

for every convolution layer.

In this section the LIT’s visual interface will be introduced and the results of the

realized weight reduction are presented. The mathematical background for the visual-

ization is described in appendix A.4. In the subsequent sections, a different approach

for reducing the number of weights and a final comparison will be presented.

Visual Interface of the Layer Inspection Tool

The visual interface of LIT for a typical, healthy layer is displayed in figure 6.7. It

is always displaying information for one specific layer. The most prominent element

is the weights matrix (B). It displays the raw data of the layers weights, color

74 CHAPTER 6. SYSTEM DESIGN AND DEVELOPMENT

Figure 6.7: Overview of the visual interface of LIT

(A) header: layer name, (channel count, filter count, filter dimensions)

channel usage –> filter usage

(B) weights matrix: visualization of all weights in this layer (raw data)

(C) color key: color coding of the weights matrix

(D) channel significance: significance for each channel (input)

(E) filter significance: significance of each filter (output)

(F) channel usage: histogram of channel significance

(G) total wight distribution: histogram of channel weights matrix

(H) filter usage: histogram of channel significance

coded like shown in the color key (C). Each weight connects an input channel on

the y-axis with a filter (output channel) on the x-axis. Weights close to zero appear

white, strong positive weights appear red and strong negative weights appear blue.

6.2. PERFORMANCE IMPROVEMENTS 75

The weight matrix allows for a first, quick visual inspection of the learned weights

and helps to identify possible directions for improvements. For example, all weights

for channels 56, 73 and 96 in figure 6.7 are zero, resulting in a white row. This

indicates, that those channels have no influence on the layers output and therefore

are not necessary. However, since there are no white columns, it can be concluded

that all filters produce output that is useful for later layers. If there would be a great

number of unused channels or filters, this can be spotted very quickly in the weights

matrix. The total weight distribution (G) additionally displays the distribution

of absolute weight values as a histogram with a fitted normal distribution (red dotted

line).

For a more exact description of the importance of each channel and filter, channel

significanceMc and filter significanceMf are calculated (see appendix A.4) and

displayed as bar graphs (D) and (E) next to the weights matrix. Again, white gaps

indicate unused channels and filters. Also, the distribution of bar lengths correlate

to the distribution of strong and weak channels and filters. Fig. 6.7 shows the

distribution of an average, healthy layer. By contrast, mostly equal bar lengths

usually indicate that the layer hasn’t learned anything at all and is still very close to

its initialization configuration

A more easily readable display of this distribution is provided in the channel usage

histogram (F) and the filter usage histogram (H). They depict the number

of channels and filters with a specific significance. Channels and filters with a

significance below 0.05 are considered as unused. Their quantity is represented by the

height of the left most bar and is also described numerically above the histograms.

This is one of the most relevant pieces of information for weight reduction. A high

quantity of unused filters for example suggests, that the layers number of filters can

be reduced without impacting the performance.

Finally, the most important information like layer name, filter count, channel count,

filter dimensions, used channels and used filters can be found in a brief summary in

the header (A) on the very top.

76 CHAPTER 6. SYSTEM DESIGN AND DEVELOPMENT

Results

The indications of the LIT were used to conservatively remove weights, always leav-

ing more weights than necessary. This was done by reducing the number of output

channels for each layer according to the channel usage. As a result, the number of

weights was reduced from 17,368,904 to 7,442,797, which corresponds to a removal of

more than 55% of the original weights. The final, reduced architecture is presented in

section 7.3 in more detail.

An evaluation of the resulting differences in accuracy and speed will be given in sub-

section 6.2.4. Further inspection has shown, that there is still a good amount of unused

weights remaining. Additional less conservative reductions might be able to improve

the framerate even further.

6.2.3 Layer Reduction: Weight Merging

Besides weight reduction as part of the architecture design process, additional layer

reduction is possible post training by a technique called weight merging. This allows

to decrease the inference time without any impact on the accuracy.

Weight merging can be applied for layers that perform static operations which are in-

dependent on the input data, for example multiplication or addition with a constant.

Instead of performing these operations successively during inference time, they can be

computed in advance by merging their weights with the weights of the previous layer.

Because inference for the resulting combined layer can be calculated in a single step,

weight merging allows to decrease the overall inference time by reducing the number

of non parallelizable computation steps.

In particular, the batch normalization layer (see 3.2.2) is such a mergable layer and

heavily utilized in the used CNN architecture. In this arcitecture, it always succeeds

a convolutional layer.

As explained in section 3.2.2, a batch normalization layer uses the four internal pa-

rameters µ̄, σ̄, γ and β to create the output y by scaling the input x like shown in

6.2. PERFORMANCE IMPROVEMENTS 77

equation 6.1.

y = f(x, µ̄, σ̄, γ, β) = γ
x− µ̄
σ̄2 + ε

+ β (6.1)

All four of them are learned during the training process. The parameters µ̄ and σ̄

correspond to the inputs mean and variance and are accumulated over the whole

training data. Like the actual scaling parameters γ and β, they remain constant after

training. Therefore, they can be merged with the weights WC and bias bC of the

preceding convolutional layer, creating the merged weights WM and merged bias bM .

α =
γ√
σ̄ + ε

WM = WC ∗ α

bm = α ∗ bC + β − αµ̄

(6.2)

The equations in 6.2 were implemented as an algorithm that merged all batch normal-

ization layers into the preceding convolutional layers. This decreased the number of

layers from 363 to 185, which resulted in a layer reduction of 51%. Consequently, the

framerate increased from 24.21 fps to 58.58 fps which extends an improvement of more

than 140%. The number of weights, however, reduced only by 0.85%.

A comparison to the performance of the original SHG vanilla architecture is given

in figure 6.8 in the next section.

6.2.4 Conclusion

In section 6.1, the SHG architecture was found to be the best performing for the

task. Building upon this basic design, three approaches for improvements were

presented. While the data augmentation described subsection 6.2.1 could increase the

accuracy and detection rate, weight reduction as in subsection 6.2.2 and successive

layer reduction as shown in subsection 6.2.3 aimed to increase the CNNs speed. The

results of these improvements are displayed in figure 6.8.

Because weight reduction applies prior to training, the improved minimal architecture

needed to be trained again. For this reason, a slight difference in the detection rate

78 CHAPTER 6. SYSTEM DESIGN AND DEVELOPMENT

Figure 6.8: Improvements by weight and layer reduction

The detection rates (left) and speed (right) of the original SHG design (SHG

vanilla) are compared to the improvements by weight reduction (SHG minimal)

and layer reduction (SHG merged). All variants were trained on the augmented

C150K dataset. With no noticeable difference in detection rates, the speed could

be increased by a factor of three. Because the merged and minimal architectures

performed identical, their curves overlap each other.

curves is apparent. However, this can be attributed to stochastical differences during

the training process rather than actual differences in performance.

Layer reduction, on the other hand, was applied after training. The used process of

weight merging is expected to preserve all mathematical characteristics of the CNN,

resulting in identical detection rates. The performance curves of the minimal and

merged architecture in figure 6.8 verify this assumption, because they overly each

other exactly.

6.3. 3D POSE ESTIMATES 79

Even though the detection rates of all three architectures are virtually the same,

there is a great difference in speed (see figure 6.8, left). The combination of

weight reduction and layer reduction improved the framerates by a factor of three.

Although weight merging only removed 0.85% of all weights, it resulted in the

biggest speed improvement. This confirms that the number of layers has a bigger

impact on inference speed for CNNs implemented in Caffe than the number of weights.

A visualization of the improvements presented in this section along with all experi-

ments so far is shown in figure 6.9. Altogether, the median detection error could be

decreased by about 50% while increasing the framerate by more than 250%. These

results exceed the target specifications and therefore create space for further develop-

ment. The next section will describe efforts to utilize this space for prediction results

in 3D.

6.3 3D Pose Estimates

Besides the improvements discussed in section 6.2, multiple ways to produce 3D

estimates were tested. Following the state of the art approaches presented in section

2, it might be possible to create a multitask CNN architecture for 3D prediction which

can be trained end-to-end. For this, the base architecture determined in section 6.1

was extended in several ways, like shown in figure 6.10.

By simply appending multiple fully connected layers at the end, option A is the

most straight forward extension. These additional layers are expected to predict 3D

coordinates by processing the 2D heatmaps along with original input images. The

original input images were also preprocessed for the 3D predictions by a varying

amount of convolutions. Similar to [Bulat and Tzimiropoulos, 2016], [Martinez

et al.] and [Toshev and Szegedy, 2013], two to four fully connected layers with 256

to 4,096 output channels were used for the 3D predictions, followed by a final fully

connected layer with 24 outputs. The output corresponds to eight points (x, y, z) in

3D, containing one position for every joint.

80 CHAPTER 6. SYSTEM DESIGN AND DEVELOPMENT

Figure 6.9: Overview of all experiments during the development

All tested architectures are plotted in regards to their accuracy and speed. The results

highlighted in blue are the tests regarding the input data representation discussed in

section 4.2. The base architecture comparison provided in section 6.1 is highlighted

in red. The final performance improvements discussed in this section are indicated

by the red arrows. Denoted by a star, SHG_merged is the final architecture after

weight reduction and weight merging.

However, none of the tested configurations was able to produce reasonable results.

Alternatively, both the 2D detection and 3D regression can be performed in parallel,

similar to [Tekin et al., 2016] and [Li et al., 2014] (option B in figure 6.10). Like

in the serial architecture described above, the 3D regression was implemented using

6.3. 3D POSE ESTIMATES 81

Figure 6.10: Modified architectures used to create 3D pose estimates

The two tasks of 2D detection and 3D regression can either be tackled successively

(A) or in parallel (B). In both cases, the 3D prediction uses the original depth image

input either directly or by computing additional features.

multiple fully connected layers and exploited the original input images as well. This

design, however, was also not able to produce good results.

As [Sun et al., 2017] suggests, the regression might work better for bones than for

joints. Following this principle, the training labels were adapted so that the regression

result (x, y, z) did not denote the position of a joint, but rather a vector describing a

bone. This approach was tested on all of the above architectures, but did not result

in sufficient improvements.

Additionally, the composite loss function proposed by [Sun et al., 2017] was imple-

mented as well, but without the desired effect.

Because none of the described approaches lead to sufficient results, the design of an

end-to-end system was abandoned in favor of a more simple concept. Like described

later in section 7.4, a lookup method was implemented. It takes the 2D position

denoted by the heatmaps and reads the depth information for this position from the

depth image directly.

82 CHAPTER 6. SYSTEM DESIGN AND DEVELOPMENT

Figure 6.11: Comparison of 2D and 3D prediction performance

The prediction in 3D is not as strong as the 2D prediction. Although the maximum

detection rate at p = 1.0 is only slightly lower, the median detection error is about

50% higher.

The performance of this 3D prediction is compared to the previous 2D prediction in

figure 6.11. The results are noticably weaker in 3D than in 2D. This might be partially

due to the high noise in the depth image, which results in errors while retrieving the

depth information.

83

Chapter 7

Final Design

In the previous chapter, the process of developing a CNN architecture for Human Pose

Estimation was described. This chapter will present its results by illustrating the final

system for Human Pose Estimation in detail.

After the over all concept is introduced in the first section, all individual parts will be

explained in the following sections.

7.1 Overview

The final system is able to produce pose estimates in 2D and 3D from single depth

images. A more detailed placement in comparison to the state of the art is given in

figure 7.1.

Like shown in figure 7.2, the system consists of three main parts. The focus of this

thesis is heavily on the CNN that is used for the second part (B). Everything else is just

an example to demonstrate the capabilities. In the following sections, the individual

components will be explained along the signal path shown in figure 7.2.

84 CHAPTER 7. FINAL DESIGN

Figure 7.1: Placement of the presented approach within the state of the art struc-

ture

The presented system creates 2D joint estimates for a single and multiple persons

from single depth images by utilizing a deep CNN for discriminative detection in

realtime. Based on that, a 3D estimate for a single person is created as well.

7.1. OVERVIEW 85

Figure 7.2: Overview for the whole pose estimation system

The system can be divided into three different parts: a simple interface for image

capture, normalization and synchronization (A), a deep CNN for 2D pose estimation

(B) and two post-processing modules to create joint position estimates in 2D and 3D

from the CNN output (C).

86 CHAPTER 7. FINAL DESIGN

7.2 Image Capture and Preprocessing

A single Kinect V2 camera is used as image source, providing both the IR and depth

images. The following preprocessing steps are necessary in order to use them for pose

estimation with the succeeding CNN.

First, both images are resized to 256 x 256 px. Additionally, the IR images are clipped

at intensity 7,000 to be robust against bright light sources that might be visible (for

example the IR emitter of another Kinect V2 camera). Next, the values of both images

are normalized to be between 0 and 1. Since both images are created independently

by the Kinect V2 camera, a small ring buffer is used to find pairs of images with the

smallest time difference. Finally, both images are combined into a data format that

can be understood by Caffe (which is the the framework used for the CNN).

All of the above steps are implemented in Python using the Robot Operating System

(ROS)-Framework as middleware to communicate with the depth sensor and take

about 5ms in total to compute.

7.3 Deep CNN for Human Pose Estimation

For pose estimation, a deep CNN architecture was developed (see chapter 6) and

trained with the data described in section 5.5. Its task is is to produce heatmaps from

depth and IR images.

In this section, the basic architecture will be introduced first. Then, the specific

improvements and the resulting final architecture are demonstrated.

7.3.1 Basic Architecture

The architecture is based on the Stacked Hourglass design described in section 6.1.2.

As the high level overview in figure 7.3 indicates, it can be divided in three main parts:

In the first part (A), a set of Convolutions creates a lower resolution representation of

the image. The second part (B) is the actual hourglass that calculates combined fea-

tures with the help of ResBloks on several resolutions. Finally, multiple fully connected

7.3. DEEP CNN FOR HUMAN POSE ESTIMATION 87

layers take those combined multi-resolution features and create the final predictions

(C).

Figure 7.3: High level structure of the CNN architecture

The architecture is based on the stacked hourglass shown in figure 2.5. After creating

a lower resolution feature representation of the input (A), the image will be step

wise downscaled (pooling) and features are calculated at each resolution by the use

of ResBlocks. The resulting feature maps are then upscaled (deconvolution) and

combined with the features of the next higher resolution by element wise addition

(B). Finally, the heatmaps are generated by multiple fully connected layers (C).

88 CHAPTER 7. FINAL DESIGN

7.3.2 Approach for Improvements

The basic architecture was not altered and corresponds to the one described by

[Newell et al., 2016]. However, the implementation of the ResBlocks was optimized

to improve inference times by a factor of three. While the architecture by [Newell

et al., 2016] used the exact same ResBlock with the same number of channels

throughout their whole network, the design presented here was tailored to the specific

task.

Following the principle of residual learning (see section 3.2.2), the features of all

ResBlocks are combined eventually by element wise addition. Because of this,

ResBlocks that will be added need to have the same number of output channels.

However, some ResBlocks actually compute quite simple features using only a very

small number of channels internally. This can be exploited for optimization by

introducing bottlenecks which decrease the number of internal channels while keeping

the number of output channels the same. Also, in some cases the number of output

channels could be lowered as well.

Decreasing the total number of channels (and therefore weights) is desirable because

it also decreases inference- and training times. Bottlenecks can be introduced at

different scales between multiple ResBlocks or even within a single one. The specific

implementation of those bottlenecks will be analyzed in the next section.

7.3.3 Improvements

To illustrate the made improvements, the components within a ResBlock will be

described first. Each ResBlock consists of one or more successive Residual Modules.

Like shown in figure 7.4, these Residual Modules differ in the number of output

channels, the number of bottleneck channels and weather or not an additional Convo-

lution is used. In [Newell et al., 2016], all Residual Modules within a ResBlock are

identical and the number of bottleneck channels is always half the number of output

channels. Here, these numbers are adjusted for all Residual Modules to better align

the quantity of available channels with the actually used channels.

7.3. DEEP CNN FOR HUMAN POSE ESTIMATION 89

Figure 7.4: The two variations of the Residual Modules that are used throughout

the network

The used residual Module is a Caffe implementation of the one described by [Newell

et al., 2016] (see section 2.2.2 and figure 2.4).

left: The number of input channels (256) matches the number of output channels.

Therefor, the original input and the output of the last Convolution can be added

directly.

right: The number of input channels (128) is different from the number of output

channels (256). Therefor, an additional Convolution is needed to match the number

of channels before adding.

bottom: This short notation is used hereafter to symbolize a Residual Module. The

first number highlighted in blue denotes the output channel count of the last Convo-

lution(s) and with that of the whole Residual Module. The second number highlighted

in red stands for to the bottleneck which corresponds to the output channel count of

the first two Convolutions. A thick border indicates an additional Convolution to

match the channel count before adding.

90 CHAPTER 7. FINAL DESIGN

By analyzing the channel usage with the help of the LIT (see section 6.2.2) for

all the Convolutions in all Residual Modules, unused channels could be identified.

The minimum number of output channels for every Residual Module can then be

determined by backtracing channel usage, going from the CNNs output to the input.

Similarly, the minimum number of bottleneck channels within a Residual Module can

be determined by backtracing its internal channel usage, going from its output to the

input.

By removing about 90% of the channels that were labeled as unused by LIT, the

optimized architecture shown in figure 7.5 was created. As examined in section 6.2.4,

this increased the framerate by a factor of three while having no influence on the

accuracy and detection rate.

7.4 Post Processing for 2D and 3D Pose Estimates

The post processing produces pose estimations from the CNNs heatmaps in 2D and

3D. To simplify this process for the outlined use case, it is assumed that at most one

person is present at any time. Therefore, it is sufficient to produce exactly one estimate

per joint.

This is done in 2D first by finding the highest peak in the heatmap with the algorithm

shown in 7.6.

The second step done in post processing is to create 3D estimates from the 2D

estimates and the original input data. This means to extend every 2D joint location

by a matching depth value. The algorithm shown in 7.7 is used to extract this

information from the original depth image.

Eventually, a skeleton is created based on these 3D joint locations. To place this

skeleton as close as possible to the actual skelton, a static depth offset for each joint

was calculated based on the training data. It corresponds to the difference between

the depth image distance (distance to skin) and the actual distance to the joint

“within” the human.

Finally, the resulting skeleton is transformed into world coordinates by using the

7.4. POST PROCESSING FOR 2D AND 3D POSE ESTIMATES 91

Figure 7.5: Detailed overview of the improved, final architecture

About 10,000 weights could be removed. Compared to the original architecture, this

extends more than 55% of all weights.

known camera location and characteristics (intrinsic and extrinsic) for a better

visualization.

In the next chapter, the performance of the described final system will be evaluated.

92 CHAPTER 7. FINAL DESIGN

Input

1 Hj ∈ RX×Y×1;Hjxy ∈ [0, 255] // heatmap image at resolution X × Y px for joint j

Initialization

2 Ta ← 75 ; // absolute threshold (minimum activation for a joint to be present)

3 Tr ← 0.75 ; // relative threshold (percentage of activation contributing to center)

4 noCenter ← [-1,-1] ; // return value if no center was found

5 Pj ← [] ; // point containing the location of the joint in image coordinates

Algorithm

6 Hj = clip_below(Ta, HJ); // remove activations < Ta

7 if get_maximum_value(Hj) == 0; // no activation > Ta is present

8 Pj = noCenter; // no joint detected

9 break; // return noCenter

10 Hj = normalize(Hj); // make Hjxy ∈ [0, 1]

11 Hj = clip_below(Tr, Hj); // remove activations < Tr

12 if count_nonzero_values(Hj) == 0; // no activation > Tr is present

13 Pj = noCenter; // no joint detected

14 break; // return noCenter

15 Pj = get_center_of_mass(Hj); // center of remaining values > Tr

Return

16 Pj = [xj , yj];xj ∈ [0, X]; yj ∈ [0, Y] // location of joint in image coordinates

Figure 7.6: Algorithm to deduce the 2D joint location from a heatmap

To detect if a joint is occluded or not present, only activations > Ta are considered.

Then, only the strongest relative activations above Tr are used for a center of mass

calculation. Besides detecting if a joint is present at all, both thresholds also improve

the accuracy by suppressing noise.

7.4. POST PROCESSING FOR 2D AND 3D POSE ESTIMATES 93

Input

1 ID ∈ RX×Y×1 // depth image at resolution X × Y px

2 S2D = [(x1, y1), . . . , (xN , yN)] // 2D skeleton with N joints

Initialization

3 O ← [0.098, 0.086, 0.030,0.057, 0.063, 0.041,0.045, 0.077] ; // static offset for each joint

4 S3D ← [] ; // empty 3D skeleton

Algorithm

5 ID = erode_image(D, size = (3, 3)); // reduce noise

6 ID = dilate_image(D, size = (5, 5)); // thicken human silhouette

7 for j in count_joints(S2D) do; // for each joint of the skeleton

8 Pj = S2D[j] = (xj , yj); // 2D point of joint in image coordinates

9 patch = get_region_around(Pj , ID); // depth in circle around joint

10 mean = get_mean_depth(patch); // mean depth in circle around joint

11 zj = mean+O[j]; // add specific static offset for joint

12 S3D[j] = (xj , yj , zj); // add 3D joint to skeleton

Return

13 S3D = [(x1, y1, zj), . . . , (xN , yN , zN)] // 3D skeleton in image coordinates and depth in m

Figure 7.7: Algorithm create the 3D skeleton by lookup

The original depth image is eroded and dilated to fill in gaps introduced by noise and

widen the human silhouette for a more robust result. In a circle around the 2D joint

location, the average distance to the camera is calculated. Finally, a joint specific

static offset is added to the result. This puts the skeleton "inside" the silhouette

rater than on the outline.

94 CHAPTER 7. FINAL DESIGN

95

Chapter 8

Experiments

In this chapter, the capabilities of the final design described in section 7 will be ex-

amined closely in three parts. First, the evaluation dataset is used for a quantitative

assessment. Next, the performance will be compared against two state of the art ap-

proaches. Finally, the limitations of the presented system are examined qualitatively.

All graphics in this chapter have a range of p ∈ [0, 0.5]. An upper limit of p = 0.5 is

commonly used as a metric and therefore allows for better comparison with the state

of the art. All tests were conducted with people that did not appear in the training

data.

8.1 Evaluation

For evaluation of the final system, the CEval dataset was used. As described in section

5.5, it also contains a mirrored version of each frame to compensate for imbalances in

the distribution of left and right body joints.

In order to allow for a good evaluation, the following three aspects need to be consid-

ered:

• The detection task gets harder along the kinematic chain (see figure 1.2). Because

of that, the hand’s detection rate is a better quality indicator than the head’s

detection rate.

96 CHAPTER 8. EXPERIMENTS

• Poses can be of varying difficulty. More difficult poses are a better quality indi-

cator than easy ones. For example, the number of occluded joints increases the

difficulty of a pose. Additionally, poses which greatly differ from the training

data can also be labeled as difficult. They allow an evaluation of the ability to

generalize.

• The precision is correlated with the distance between person and camera. The

higher a person stands away from the sensor, the higher is the error which results

from a deviation of one pixel.

A breakdown of the average necessary computation time for a single frame is provided

in figure 8.1. While the 2D estimation takes a total of 22ms, the depth lookup increases

the duration for a 3D estimate to 57ms. The latter is only implemented as a proof of

concept and requires further optimization to reach higher speeds.

Figure 8.1: Breakdown of the average computation time in ms for a single frame

Less than five seconds are necessary for image synchronization and normalization.

Because this is mainly due to the specific setup, it will not be considered for compari-

son. The CNN achieved 17ms using caffe 1.0 [caf, 2017] on a single GeForce TitanX

graphics card. Both the 2D (find Center) and 3D (Depth Lookup) postprocessing were

implemented as ROS modules using Python.

The overall performance for the CEval datasets is shown in figure 8.2. Since the dataset

provides three different individual pose categories, the performance for each category

will be described in the next subsections separately.

8.1. EVALUATION 97

Figure 8.2: Performance across the entire CEval dataset

Overall, a successful detection was possible over 90% of the time. The head can be

detected very robust and precise, but the performance decreases along the kinematic

chain. Conclusively, the hands proved to be the most difficult to detect with a failure

rate of up to 20%.

Basic Poses

All poses in this category were performed at varying distances to the camera and

include common idle poses as well as especially difficult ones. The detection rates are

shown in figure 8.3. Because of the high number of failed detections and the broad

range of error distances, the performance on the “basic” category is the worst out of

all three. The failed detections (≈ 20%) were mostly caused by bending the upper

body sideways, which was not present in the training data. These poses disrupted

the detection for all joints (see section 8.3). However, bending the body forwards and

backwards less than 90◦ could be detected correctly, even though is was not present in

98 CHAPTER 8. EXPERIMENTS

Figure 8.3: Performance on the “basic” category of the CEval dataset

All joints get detected reasonably well for basic poses. The error distribution is

equally spread out for all joints except for the head, resulting in almost linear curves.

There is no distinct average error for these joints, but a decline in precision can be

noticed along the kinematic chain.

the training data as well.

The high diversity of error distances might be due to the high diversity of poses and

positions. Some of the poses were performed close to the table while others were

performed as far away from the camera as possible. Because the detection error is

normalized to the head size, an error of a few pixels results in a higher detection error

for poses further away.

In conclusion, poses in varying distances result in varying errors. Basic poses are

generally detected well except for sideways bending, which cannot be detected.

8.1. EVALUATION 99

Body Touching

Figure 8.4: Performance on the “body touching” category of the CEval dataset

For body touching, a big spread in detection rates across the joints can be noticed,

with decreasing precision along the kinematic chain. While the head detection suc-

ceeded in all frames with an median error of only 0.075, the hand detection failed in

roughly 25% of all cases with an median error almost three times that high.

In this category, the hands are either at the hips, behind the back, crossed in front

of the chest or behind the head. The resulting detection rates are displayed in figure

8.4. Even though the hands were mostly not visible, they were still estimated ≈ 70%

of the time with a median accuracy of about 0.25. Even though this category is

expected to be more difficult than the previous one, the overall average error distance

of 0.14 is lower. This might be due to two reasons. First, there were less poses in

a great distance to the camera. Therefore, the error distances are smaller and more

uniform. Secondly, there were no poses that caused the detection to fail completely

100 CHAPTER 8. EXPERIMENTS

(like sideways bending). This becomes apparent in the maximum detection rate of

≈ 100% for the head, neck and even shoulders.

In conclusion, the head, neck and shoulders detection is robust even if the hand’s

position cannot be estimated. In difficult situations where the hands are close to the

body or hidden entirely, a hand detection is still possible in most cases with acceptable

precision.

Work

The “work” category resembles the use case described in section 1.2.2. The poses in

this category were performed in front of the table (close to the camera) and include

manipulating and moving some objects with both hands. As can be seen in figure 8.5,

the neck, shoulders and elbows get detected almost equally well without failures and

a median precision of ≈ 0.11. This behavior suggests that the system is facing nearly

ideal conditions and performing at its highest possible precision. Even the hands have

a failure rate of less than 10% with median precision of ≈ 0.16. The lower precision

originates from the object manipulation. Holding an object or placing the hands on

the table results in a slight offset in the hands detection.

The “work” category also includes poses with crossed hands which were all detected

correctly.

Summing up, the performance for the work category is the best of all three. This

might be due to three reasons:

• The work category is the most prominent in the training data because it corre-

sponds to the use case.

• The person is the closest to camera, therefore detection derivations of a few pixels

have less impact.

• The category includes the fewest occlusions and unseen poses.

In conclusion, poses in front of the table get detected ≈ 98% of the time with a

median error of 0.113. Object manipulation only introduces a small error to the hand

estimation, but does not result in any failures.

8.1. EVALUATION 101

Figure 8.5: Performance on the “work” category of the CEval dataset

The spread in precision across the joints is quite low. The detection rates for the

neck, shoulders and elbows are almost identical, only the head and hands diverged

noticeably. The maximum detection rate for all joints is almost 100%, even the

hands are above 90%.

Conclusion

The presented system reached all objectives outlined in section 1.2.3:

• Joint detection: The 2D detection of all visible upper body joints is possible

with an overall detection rate of 92%. When sticking to the use case, a detection

rate of 98% was achieved. With an average detection rate of 80%, 3D pose

estimation is also possible.

• Real time: While the CNN is able to almost double the target framerate of

30 fps, 2D pose estimations can be produced in real time with 22ms per frame.

102 CHAPTER 8. EXPERIMENTS

With an average duration of 57ms per frame an estimation in 3D is also possible.

• Accuracy: The median error for joint estimation is about 2.8 cm overall and

about 2.3 cm for the use case.

• Versatility: The pose estimation also performs well outside the use case con-

straints. This will be examined more closely in section 8.3.

8.2 Comparison to State of the Art Approaches

In order to better interpret the described results, the performance of the final design

was compared against two reference systems. For this, an implementation of the

Convolutional Pose Machine (CPM) and OpenPose was chosen and evaluated on a

newly created dataset.

The CPM was implemented like described in [gitb]. In contrast to the CPM vanilla

architecture described in section 6.1.2, this one used six stages and processed three

different resolutions by three successive passes. Further, the available pretrained

models from [gitb] were used. This design needed a total of 1.28 seconds (including

post processing) on average to process a single RGB frame, running on a single

GeForce Titan X graphics card.

For OpenPose, the implementation of [Ope, 2017] was used. It processed the IR

images with an average framerate of 30.59 fps, resulting in an average processing time

of 32.7ms per frame. In order to achieve these results, it needed to run on four cores

of a GeForce GTX 1080 graphics card.

As already mentioned, the CEval dataset was not used for this comparison and the

recording of a new dataset was necessary. This was mainly because of two reasons:

• The used CPM only works with RGB images, which are not available in any

of the recorded datasets. Therefore a new dataset containing RGB images was

necessary.

• All three systems were trained on different datasets with distinct label policies

8.2. COMPARISON TO STATE OF THE ART APPROACHES 103

(for example labeling the wrist instead of the palm of the hand). For a fair

comparison, an independent labeling policy must be used.

The newly recorded dataset includes RGB, IR and depth images, along with 127

frames labeled by hand. However, it was found that the difference in head labeling

across the three contestants was to big. Specifically, the CPM detected the very top

of the head, the SHG final detected the center of the head and OpenPose the nose.

For this reason, the head label was excluded from the evaluation. The difference for

the remaining joint labels was up to 5 cm and therefore acceptable.

The performed poses are mainly within the work category (see section A.3.2) and

feature a lot of occlusions, manipulations of larger objects, movements with crossing

hands and also some poses far away.

A comparison of the results on this dataset is shown in figure 8.6. It shows that

the presented system (SHG final) has a higher detection rate than the CPM, but

cannot match up to the precision of OpenPose. A more detailed qualitative analysis

is provided below.

Convolutional Pose Machine (CPM)

As mentioned above, the CPM performed the poorest. The main problem seems to be

that the detection failed completely about 30% of the time. In these cases, not even

a single joint could be estimated. Apparently, this happens when some of the upper

body joints are occluded, for example while standing sideways. Possible reasons for

this might be the used training data and architecture features. The CPM was trained

on full body poses which also contain joints for lower body. When standing in front of

a table the lower body is already occluded. Additionally occluding upper body joints

seems to be too much occlusion (> 50%) for a proper pose estimation. Furthermore,

one feature of CPM is exploiting the relations between joints for detections. If these

relations are missing because of occlusions, a reliable estimation might not be possible

anymore. Maybe training on a pure upper body dataset like presented in section 5.5

might enable to tackle these problems.

104 CHAPTER 8. EXPERIMENTS

Figure 8.6: Comparsion of the presented system against two state of the art ap-

proaches

Because often times the detection failed completely with a resulting maximum detec-

tion rate of S0.5 = 70.65, the CPM performed the worst. However, if the detection

was successful, its accuracy is higher than the SHG final. Combining both of these

effects, the median detection error of the CPM and SHG final is almost identical at

≈ 0.2.

The performance of OpenPose, on the other hand, is better with an median detec-

tion error of 0.12 and a maximum detection rate of S0.5 = 97.67. Although the SHG

final’s maximum detection rate is only 5% worse with S0.5 = 93.17, its median de-

tection error is about 73% higher.

In the speed comparison on the right side, OP4 and OP1 correspond to OpenPose

being run on four cores and a single core respectively.

Nevertheless, it takes about 1.28 seconds for the CPM to process a single frame, making

it almost two orders of magnitudes slower than the presented system. Even if it would

be possible to reach better detection rates, it would still not be the favorable approach

8.2. COMPARISON TO STATE OF THE ART APPROACHES 105

for the intended use case.

OpenPose

OpenPose could reach the highest maximum detection rate but also, more impor-

tantly, the highest precision. In order to derive opportunities for future improvements

of the presented system, possible causes for the differences in performance will be

considered. Like for the CPM, the main differences are concerning the training data

and architecture details. First of all, OpenPose was trained on a much more extensive

data set. Specifically, the CMU Panoptic Dataset [CMU, 2017] [Joo et al., 2016] was

used which was recorded in a dome with 480 VGA cameras, 31 HD cameras and 10

Kinect V2 sensors. In this setup, multiple actors performed over 60 sequences, result-

ing in over 1.5 million annotated 3D skeltons. Because these skeletons can be used in

combination with each camera, the quantity of possible training images exceeds the

dataset presented in section 5.5 by several orders of magnitude. Considering the high

number of cameras and the professional setup, the annotations can be assumed to be

superior in quality as well. The difference in precision between the presented system

and OpenPose is very likely correlated to the described differences in the datasets.

As of now, the CMU dataset does not contain depth images and can therefore not be

used for this thesis. Nevertheless, a dataset with a higher quantity of more accurate

annotations might be able to improve the precision of the presented system.

Besides the difference in training data, [Cao et al., 2017] describe the use of part

affinity fields for disambiguation in multi-person detection. This approach might

additionally be able to improve the results of the presented system or even extend it

to multi-person detection.

Utilizing four GPU cores, OpenPose was able to process a single frame in 32.7ms.

The other two contestants, however, only used a single core. When running OpenPose

on a single core as well, the computation time for a single frame increases to 116ms,

making it five times as high compared to the presented system (see figure 8.6).

In conclusion, the system presented in this thesis performs well compared to state

106 CHAPTER 8. EXPERIMENTS

of the art approaches while needing significantly less time to process a single frame.

Further research is needed to determine if different training data might be able to

overcome the described deficits in precision.

8.3 Limitations

In the previous section, the performance within use case conditions was examined. In

order to investigate the capabilities of the presented system more closely, deliberate

violations of certain use case constraints will be examined in this section.

8.3.1 Appearance of a Person

Figure 8.7: Altering the body shape and appearance with clothing

The appearance and shape was altered by wearing a big jacket, ski mask and a hat.

As shown in the left image, this seems to have no influence on the detection results.

Solely when looking down (right) problems occur due to occlusions introduced by the

hat.

The focus of this subsection is on the appearance of the person, both visually

(regarding IR images) and in shape (regarding depth images). First, the appearance

8.3. LIMITATIONS 107

was modified by different types of clothing. Altering the visual appearance of the face

with a ski mask, beanie or a hood showed to have no effect. Only when changing the

head’s shape by wearing a straw hat, detection errors occurred when the person was

looking straight down so that the head is fully occluded by the hat (see figure 8.7).

Different clothing (t-shirts, sweaters, jackets) seem to cause no problem in general.

Nevertheless, some difficulties in arm detection could be noted when the clothing was

very uniform in color and structure (like an all white lab coat or an all black jacket).

Especially when the arms are close to the body and therefore difficult to detect in the

depth image, uniform clothing decreases the detection quality slightly. This might be

because edges become less obvious with this kind of clothing.

Since all persons in the training data were male with short hair, persons with different

features were tested. Specifically, the gender, hair length, body size, facial hair and

glasses were found to have no impact on the performance at all. The detection worked

equally good for all these persons.

In conclusion, the approach is robust against almost all aspects of the person’s appear-

ance. Only minor problems were found when the clothing is very uniform in color and

structure or occluding body parts. Including such clothing in the training data could

possibly fix these problems.

8.3.2 Pose Limitations

In this subsection, the pose constraints of section 1.2.2 were intentionally violated in

an effort to find poses that systematically cause failures.

Since only the upper body is estimated, the pose of the feet was found to be completely

irrelevant. Knee bending, kneeling or even sitting have no influence on the detection

at all. Solely lying flat on the floor could not be detected. Regarding the upper

body, only a high angle of bending was found to be of relevance. Like shown in figure

8.8, the detection fails if the whole upper body is bent more than 90◦ sideways or

forward. Additionally, crossing the hands when further away from the desk could not

be detected, switching left and right hands and elbows. Because this kind of pose is

108 CHAPTER 8. EXPERIMENTS

Figure 8.8: Failed detections due to extensive body bending

Bending the upper body heavily sideways (left) or forward (right) causes the detec-

tion to fail.

successfully detected when close to the table, this is assumed to be correlated to the

training data. Specifically, this crossing pose only appeared in the training data when

in front of the table. Furthermore, having the hands touching the head or body is

sometimes harder to detect correctly, but this is more due to occlusions (see section

8.3.4). Besides that, no other poses were found to systematically disturb the detection.

In conclusion, only a few uncommon poses could be found to systematically disturb

the detection. All of them can be related to the training data. Adding examples of

these poses to the training set will likely enable a correct detection in these cases.

8.3.3 Detection of Multiple People

As defined by the use case, only one person ever appears in the training data simulta-

neously. Nevertheless, it might be beneficial to investigate the detection capabilities

for multiple people. For this, the postprocessing module was deactivated because is

not designed for this task. The bare CNN was tested with one, two, three and four

8.3. LIMITATIONS 109

Figure 8.9: Detection of multiple people

Multiple people are detected as good as a single person (left). Even when close

to each other, the joints are assigned to correctly (right). Despite the person in

the background (second from left), the arms and hands are correctly assigned to the

persons in front.

persons in the same picture. Because of the limited space within the detection area,

it was not possible to fit more then four persons in a single frame with only minor

occlusions. Like shown in figure 8.9, the detection works very good without added

computation time as long as there is some space between the persons body parts.

However, if they are really close to or occluding each other, not all upper body joints

could be detected correctly anymore. Nevertheless, the detection of multiple people

works very good in general.

To also enable the postprocessing module for multi-person detection, further adjust-

ments are necessary. For example, a technique using part affinity fields could be

implemented like in OpenPose.

In conclusion, the CNN is able to reliably handle multiple person detection, even

though it was never trained for that. The postprocessing module, on the other hand,

would require modifications.

110 CHAPTER 8. EXPERIMENTS

8.3.4 Distance and Occlusion Limitations

First, the detection was tested at varying distances. It works equally good for all

distances within the specified range, but decreases in precision with greater distance

to the camera. As described before, this is because a deviation of one pixel results in a

higher error if the person appears smaller. At a distance of about 2.4m the detection

quality reduces drastically (see figure 8.10, top left). The hands are no longer detected

and the precision for the head, shoulders and neck estimation is not very high. At

a distance of 2.8m the detection stops completely. This might be mainly because

poses at this distance never appeared in the training data. Additionally, a hand at

this distance is only three to six pixels wide and therefore hard to detect. To increase

the maximum detection range, training data at higher distances should be provided,

either newly recorded or augmented. Also, the input and output resolutions could be

increased.

Secondly, different kinds of occlusions were tested with varying results. When slowly

lowering the body below the table, the hand are often estimated to be at the edge

of the table. Moving outside the frame results in very poor and noisy detections, as

soon as the head is not visible anymore (see figure 8.10 bottom left). In general, the

detection almost always fails if the head is not visible. This might be because the head

was always visible in the training data.

If the head is visible and some joints are occluded, the estimation will be attempted

anyway. Like shown in figure 8.10 (top right), this even works for extreme occlusions,

even though the precision is quite low. For less extreme occlusions like shown is figure

8.10 (bottom right), the estimation is quite close.

To further investigate the effects of occlusions, joints could be occluded systematically

in post processing in the future.

In conclusion, the detection works well up to a range of 2.4m. Minor occlusions are

still estimated reasonably well, but occluding the head results in failure.

8.3. LIMITATIONS 111

Figure 8.10: Examples for different occlusions

Top left: Maximum distance to the camera at which a detection is possible.

Top right: Occluding the neck, shoulders and elbows by holding a board results in

erroneous detection. The estimation is close considering the joints are not visible,

but the left and right sides are switched.

Bottom left: Only the right arm is visible, resulting in a very noisy detection. The

head is outside the right edge of the frame.

Bottom right: The right hand is behind the back and not visible. The detection is

correct anyway.

112 CHAPTER 8. EXPERIMENTS

8.3.5 Background and Camera Position

To investigate the influence of the background and camera position, a Kinect V2 was

installed in another room at a different angle. As shown in figure 8.11, the detection

works equally good as long as the person is within the maximum detection distance of

2.5m. Therefore, the approach is robust against changes of background and camera

angle.

Figure 8.11: Using a different camera setup and background

The new setup utilized the pose estimations in combination with point clouds. Even

though the used camera was installed a a different angle (higher up) in a different

room, the estimation worked equally good.

113

Chapter 9

Summary and Perspective

9.1 Summary

This master thesis discussed the design of a system for real time body joint estimation

within an industrial workbench scenario using a depth sensor. Its main contributions

are the creation of a training dataset, the introduction of novel tool for weight

optimization and a system for real time Human Pose Estimation based on depth data.

First, different possibilities for depth data representation and processing were explored

and compared. Being the best approach in both speed and precision, a Convolutional

Neural Network (CNN) for direct processing of the sensor’s image data was chosen.

By further comparing three different state of the art CNN architectures, the Stacked

Hourglass (SHG) design was found to be best suitable and used as a basis for further

refinements. A novel visual tool for weight reduction was developed and used to

optimize this initial architecture. In combination with weight merging, the average

framerate could be increased by a factor of three. The final CNN was embedded in

a pose estimation pipeline using the ROS framework. Besides a module for image

capture and preprocessing, a post processing module was developed. This module

produces joint estimations in both 2D and 3D.

Finally, the systems performance was examined closely and compared to two state of

the art approaches. It was able to reach nearly state of the art performance with an

114 CHAPTER 9. SUMMARY AND PERSPECTIVE

average detection rate of 92% and a median detection error of 0.14 ≈ 2.8 cm. These

results include difficult and unseen poses up to a range of 2.5m. Regarding solely

the use case, a higher performance was reached with a detection rate of 98% and a

median detection error of 0.113 ≈ 2.26 cm. It takes an average of 22ms to produce a

2D estimate which surpasses the speed of state of the art systems. With the additional

postprocessing module, a 3D estimation needs 56ms. The trained CNN is also able to

detect multiple people. Only extensive occlusions or head occlusion as well as a few

unseen poses were found to disturb the detection.

In order to guide the development process, train the CNN and evaluate the results, a

novel training dataset with 25,000 annotated samples was recorded. The preparation,

recording, annotation, post processing and error correction for this dataset was

described in detail. By additionally applying data augmentation, the size could be

increased to 150,000 samples. Training on this dataset reduced the median detection

error by 50%.

9.2 Perspective

Several options would allow to improve the presented system.

First of all, an end-to-end system for direct 3D estimation with a CNN might be

possible. As of now, the seperate 3D prediction takes the longest to compute and

introduces errors. For example, a design like presented in [Martinez et al.] or

[Bulat and Tzimiropoulos, 2016] could be used to transform 2D estimates into

3D estimates. Alternatively, [Li et al., 2014] suggests that this should also be possible

using a single network architecture.

In order to achieve higher framerates, the current Python implementation of both the

pre- and post-processing modules could be exchanged.

To further improve the CNN’s speed multiple passes of layer inspection and weight

reduction can be employed. By extending the capabilities of the Layer inspection

9.2. PERSPECTIVE 115

Tool, this process could also be automated.

Regarding the training data, a more extensive dataset could be used or created. This

should additionally include poses that were found to be difficult, performed at greater

distances and feature more occlusions.

116 CHAPTER 9. SUMMARY AND PERSPECTIVE

117

Appendix A

Additional Documents

A.1 Use Case Constraints

• sensor constraints:

– The data of a single Time of Flight depth sensor must be used exclusively.

– The characteristics of the depth sensor are assumed to be constant.

– The input data arrives at a frequency of at least 30Hz.

• room constraints:

– The location of the detection area is fixed within the room.

– The location and orientation of the depth sensor is fixed within the detection

area

– The lighting is fixed within the room.

– There are no signal or light sources present that might interfere with the

Time of Flight measurements

– The background is mostly static (small changes like repositioning objects

might occur).

• detection area constraints:

– The detection area has a fixed size of 1.8× 2.05m

118 APPENDIX A. ADDITIONAL DOCUMENTS

– There is a workbench at a fixed position.

– There is a desk (robot manipulation space) at a fixed position.

– There is at most one person present in the detection area.

– There might be no person in the detection area at all.

– There is a keyboard on the workbench.

– There are nine buttons on the workbench at a fixed location.

– There may be the following objects somewhere on the workbench:

∗ a cubic box of size 0.32× 0.32× 0.28m.

∗ several big LEGO pieces roughly 0.16× 0.07× 0.07m in size.

• person constraints:

– The person is an adult with short hair.

– The person’s clothing is limited to long pants, T-shirts and sweatshirts

– The person may wear glasses.

• pose constraints:

– The person is standing in an upright position at all times, but is free to

bend over.

– The person must not bend their knees.

– The upper body joints (head, shoulders, elbows, hands) are above knee level

at all times.

– Some upper body joints may be outside the detection area or occluded.

– Some or all lower body joints (hips, knees, feet) might be outside the de-

tection area or occluded.

– Objects must be manipulated roughly at workbench height (above knee

level and below head level) and in front of the body.

– the person is free to:

A.2. CONVOLUTIONAL POSE MACHINE 119

∗ interact with the workbench (e.g. resting hands on it).

∗ interact with the keyboard and buttons on the workbench.

∗ manipulate the objects on the workbench with one or two hands.

∗ take any pose within the above described limitations.

A.2 Convolutional Pose Machine

As the first important CNN architecture for Human Pose Estimation the CPM will

be presented in this section. It was introduced in [Wei et al., 2016] and since then

utilized multiple approaches. One of the most recent and also popular usages of this

architecture is OpenPose [Cao et al., 2017].

The CPM is able to predict 2D body joints in 2D images. Since its design is basically a

CNN implementation of a Pose Machine [Ramakrishna et al., 2014], the underlying

Pose Machine will be described first.

A.2.1 Original Pose Machine

On a high abstraction level, the main principle of the Pose Machine is to process

multiple resolutions (levels) simultaneously and successively (stages) and therefore

utilizing more complex, intra-join relations.

Like shown in figure A.1 (a), the basic building block is a multi-class predictor where

each class corresponds to one of the joints. Its task is to predict the likelihood of of a

patch belonging to each class. The prediction is based on features that are calculated

from a specific region (patch) of the input image. Based on this per-patch prediction,

one belief map per class is created that contains the likelihood for each patch to

belong to this class. Multiple of these predictors are arranged in stages and levels like

displayed in figure A.1 (b). The first stage computes features based on the original

image, all subsequent stages compute features based on the output of previous stages

instead. Therefore, each stage is refining the previous result by also considering inter-

joint-relations.

For each stage, there are multiple levels which differ in the patch size used for the

120 APPENDIX A. ADDITIONAL DOCUMENTS

Figure A.1: Overview of the original Pose Machine

“(a) Multi-class prediction. A single multiclass predictor is trained for each level of

the hierarchy to predict each image patch into one of Pl + 1 classes. By evaluating

each patch in the image, we create a set of confidence maps lbt.

(b) Two stages of a pose inference machine. In each stage, a predictor is trained to

predict the confidence of the output variables. The figure depicts the message passing

in an infer- ence machine at test time. In the first stage, the predictors produce

an estimate for the confidence of each part location based on features computed on

the image patch. Predictors in subsequent stages, refine these confidences using

additional information from the outputs of the previous stage via the context feature

function ψ.”

source: [Ramakrishna et al., 2014]

feature creation. This allows the pose machine to consider features on multiple scales

and combine them for predictions in later stages.

A.2.2 CNN Implementation of the Pose Machine

While the features in [Ramakrishna et al., 2014] were hand crafted, [Wei et al.,

2016] adopt the basic principle and implement it using a deep CNN. This allows to

learn the features by training. Similarly to [Ramakrishna et al., 2014], their system

architecture (see figure A.2) consist of multiple stages, each refining the previous result.

The multiple levels (patch sizes) are realized by multiple successive convolutions which

gradually increase the effective receptive field.

A.2. CONVOLUTIONAL POSE MACHINE 121

Figure A.2: Architecture and receptive fields of the Convolutional Pose Machine

(CPM)

“We show a convolutional architecture and receptive fields across layers for a CPM

with any T stages. The pose machine [Ramakrishna et al., 2014] is shown in

insets (a) and (b), and the corresponding convolutional networks are shown in insets

(c) and (d). Insets (a) and (c) show the architecture that operates only on image

evidence in the first stage. Insets (b) and (d) shows the architecture for subsequent

stages, which operate both on image evidence as well as belief maps from preceding

stages. The architectures in (b) and (d) are repeated for all subsequent stages (2 to

T). The network is locally supervised after each stage using an intermediate loss layer

that prevents vanishing gradients during training. Below in inset (e) we show the

effective receptive field on an image (centered at left knee) of the architecture, where

the large receptive field enables the model to capture long-range spatial dependencies

such as those between head and knees. (Best viewed in color.)”

source: [Wei et al., 2016]

122 APPENDIX A. ADDITIONAL DOCUMENTS

A.3 Training Data

A.3.1 Existing Options

As examined in the section 4.3, a dataset by [Arenknecht, 2016] is available, but not

suitable for this thesis. In addition, several different data sets for the task of Human

Pose Estimation are publicly available. By reviewing the literature, it was found that

most approaches use one of the following datasets for training:

• The Frames Labeled In Cinema (FLIC) dataset contains 5003 images from

Hollywood movies and was introduced by [Sapp and Taskar, 2013]. It was

labeled using the crowdsourcing marketplace Amazon Mechanical Turk. For each

image, five independent labels for the upper body parts were combined using

their median for a robust annotation. Successful uses of this dataset include

[Tompson et al., 2014], [Ramakrishna et al., 2014], [Toshev and Szegedy,

2013], [Rafi and Leibe, 2016] and [Newell et al., 2016].

• The MPII Human Pose (MPII) dataset contains about 25.000 images ex-

tracted from YoutTube videos and was introduced by [Andriluka et al., 2014].

It includes over 40.000 different people with annotated body joints performing

over 410 human activities in total. Besides being a popular dataset for bench-

marks (see [MPI] and section 2.4), several approaches use it for training, includ-

ing [Rafi and Leibe, 2016],[Tekin et al., 2016], [Mehta et al., 2017], [Insa-

futdinov et al., 2016], [Elhayek et al., 2015], [Bulat and Tzimiropoulos,

2016], [Newell et al., 2016] and [Sun et al., 2017].

• The Human3.6M dataset introduced in [Ionescu et al., 2014] contains 11

professional actors performing 16 scenarios altogether in a studio setup. Four

cameras were used to capture 3.6 million human poses while 3D joint positions

and joint angles were provided by a high-speed motion capture system. The

dataset also contains Time of Flight data (depth images) and was used, besides

others, by [Tekin et al., 2016], [Mehta et al., 2017], [Li et al., 2014] and [Sun

et al., 2017].

A.3. TRAINING DATA 123

• The Leeds Sports (LSP) dataset was introduced by [Johnson and Evering-

ham, 2010] and consists of 2.000 images from Flickr displaying mostly sports

people. The images were cropped around the person and annotated with 14

joint locations. Usages of this dataset include [Toshev and Szegedy, 2013],

[Tompson et al., 2014], [Rafi and Leibe, 2016], [Tekin et al., 2016], [Ra-

makrishna et al., 2014], [Mehta et al., 2017], [Toshev and Szegedy, 2013],

[Insafutdinov et al., 2016] and [Bulat and Tzimiropoulos, 2016].

All of the aforementioned datasets provide RGB images as input, but only the

Human3.6M dataset additionally includes depth data. This depth information is

provided as Time of Flight measurements (depth images), but does not include IR

images. However, the experiments presented in section 4.2 suggest that using IR

images can significantly increase the performance.

Furthermore, most of the poses in the Human3.6M dataset are full body poses and

don’t include a lot of lower body occlusions or work poses (object manipulation).

Many scenarios additionally contain multiple persons, which does not match the

requirements.

In conclusion, none of the described datasets is suitable for the task because the input

data format and the available poses are not sufficient. Therefore, alternatives need to

be considered.

Facing similar problems, [Huang and Altamar] created a synthetic dataset of depth

images. Their dataset creation pipeline utilizes a 3D human model with varying pa-

rameters that gets manipulated by motion capturing data like shown in figure A.3.

Apart from that, [Shotton et al., 2013] have also created a synthetic dataset in a

similar fashion. However, those datasets are not publicly available.

The creation of synthetic datasets would be possible, but is rather time consuming

since there is no ready-to-use pipeline for it yet. Also, it might require some extensive

effort until it matches the use case data close enough.

In conclusion, no sufficient dataset is available and synthetic dataset creation would

exceed the scope of this thesis.

124 APPENDIX A. ADDITIONAL DOCUMENTS

Figure A.3: Process for synthetic dataset creation

[Huang and Altamar] describe their process of creating a dataset of labeled depth

images displaying humans of varying shape in front of varying backgrounds.

Image source: [Huang and Altamar]

A.3.2 Complete List of Motion Sequences

1. Basic Poses

A: straight arms

A1: hands motion: hanging → T-Pose → top

A2: hands motion: hanging → front → top

A3: hands motion: front → T-pose (different heights)

B: bent arms

B1: hands motion: hanging → T-Pose → top

B2: hands motion: hanging → front → top

A.3. TRAINING DATA 125

B3: hands motion: front → T-pose (different heights)

C: body touching

C1: hands motion: holding front → resting hip → holding back

C2: hands motion: crossed → both behind head

C3: head with single hand (l/r) at many different angles

C4: head with both hands touching head at many different angles

D: random movement

D1: reaching imaginary points in 3D with l/r/both hands (full upper body

motion)

D2: completely random movement of full upper body

2. Work Poses

E: idle poses (l/r/both hands), different positions, both tables):

E1: hands resting on table

E2: hands supporting body on table

E3: typing on keyboard while slightly changing position

F: button interaction (l/r hand)

F1: pressing every button once at a time from different locations

G: box and LEGO interaction (both hands)

G1: walking around detection area with box in both hands

G2: picking up box from desks and putting it at random locations on desks

G3: getting LEGOs out of box, stacking them, moving the box to a different

location, putting them in again

G4: moving the LEGOs around on the tables one at a time

3. Validation Poses

V: poses for performance validation

126 APPENDIX A. ADDITIONAL DOCUMENTS

V1: basic: hanging –> T-pose, turning around, upper body bending

V2: work: moving LEGOs on table, including arms crossing

V3: body touching and hands hiding while walking around

A.3. TRAINING DATA 127

A.3.3 Error Detection, Synchronization and Filtering

A Captury skeleton consits of 29 joints in 3D space (x,y and z coordinates) which

resemble a human skeleton like shown in figure 5.1. First of all, the skeleton is trans-

formed in such a way, that only 8 joints remain: head, neck, left shoulder, left elbow,

left hand, right shoulder, right elbow, right hand. Additionally, the coordinates are

converted to be relative to the viewpoint of the depth camera and normalized, so that

they are independent from specific image sizes.

Since the Kinect runs with 30 Hz and Captury Live with 50 Hz, the data was not syn-

chronized at recording time. As found out after recording, there are also some static

delays between the images and skeletons which vary between recordings (displayed in

figure A.4). Furthermore, the labels showed to be incorrect sometimes. Those errors

need to be excluded and the data needs to be synchronized before training

Figure A.4: Timing offset between depth images and Captury skeletons

This image is a still frame during a motion where the hands move downwards quickly.

Because of the timing offset, the hands of the Captury skeleton are slightly higher

than in the depth image.

It was found that Captury had mainly two failure modes that were problematic for

the intended data usage. Sometimes, the skeleton is slightly offset so that a body joint

would be on the edge of a body part or even outside (see figure A.5, left). Sometimes,

128 APPENDIX A. ADDITIONAL DOCUMENTS

the detection failed completely so that the skeleton was not even close to the actual

body pose (see figure A.5, right). Especially at the edges of objects an persons, the

depth image was very noisy.

Figure A.5: Examples for Captury skeleton failures

Left: One limb of the skeleton is offset too much so that it’s not inside the actual

limb anymore. This happens rarely but usually affects multiple frames.

Right: The detection failed entirely and the skeleton is mostly wrong. This happens

very rarely and usually affects only 1-5 frames

Such errors need to be filtered before the frames can be used for training. Since the

quantity of frames is fairly high and small offsets might be hard to notice, an automated

process was developed that assigned each joint into one of three categories:

• -1: joint label is incorrect and must be ignored

• 0: joint label is occluded (not visible to camera)

• 1: joint label is valid and can be used for training

A.3. TRAINING DATA 129

Input

1 S3D = {(x1, y1, z1), . . . , (xN , yN , zN)} // skeleton with N joints

2 ID ∈ RH×W×1 // depth image at resolution H ×Wpx

3 CM ∈ R3×3 // camera matrix for depth camera

Initialization

4 CJ ← {} ; // used to store the correctness class for each joint

Algorithm

5 for j in S3D do; // for each joint of the skeleton

6 (xj , yj , zj) = get_img_coord(j, CM); // transform joint to image coordinates

7 patch = get_region_around((xj , yj), ID); // depth in circle around joint

8 mean = get_mean_depth(patch); // mean depth in circle around joint

9 min = get_minimum_depth(patch); // minimum depth in circle around joint

10 max = get_maximum_depth(patch); // maximum depth in circle around joint

11 if mean− zj > 0.1m or; // joint “in front” of person, closer to camera

12 if max− > 3.5m or; // patch further away than possible –> on background

13 if min− < 0.2m then; // patch closer than possible –> too much noise

14 CJ(j) = −1; // joint is incorrect

15 else if zj −mean < 0.17m then; // joint “behind” person

16 CJ(j) = 0; // joint is occluded

17 else then;

18 CJ(j) = 1; // joint is correct

Return

19 CJ = {c0, . . . , cN}; c0...n ∈ {−1, 0, 1} // correctness for every joint

Figure A.6: Algorithm used to automatically detect errors in the recorded label

data

Depending on what the corresponding depth image ID displays at the location (xj , yj)

of a joint j, each joint is assigned to one of three classes: -1 for incorrect, 0 for

occluded and 1 for correct. A joint is incorrect, if it is between the camera and the

person, at the edge of a limb or not on the person at all . It is occluded, if something

at the same location is closer to the camera than the joint. Otherwise, it is correct.

130 APPENDIX A. ADDITIONAL DOCUMENTS

A.3.4 Heatmap Generation

Input

1 S3D = [(x1, y1, z1), . . . , (xN , yN , zN)] // skeleton with N joints

2 RH = [X,Y] // desired resolution of the resulting heatmap

3 CM ∈ R3×3 // camera matrix for depth camera

Initialization

4 H ← [] ; // used to store the heatmap for each joint

5 scale ← [0.95,0.5,0.5,0.45,0.5,0.5,0.45,0.5] ; // how much each joint scales with distance

Algorithm

6 for j in count_joints(S3D) do; // for each joint of the skeleton

7 Hj = get_empty_image(RH); // create empty heatmap

8 (xj , yj , zj) = get_img_coord(S3D[j], RH); // transform joint to image coords

9 σ = 2.5× scaling[j]× (4− zj)× RHx

100 ; // calculate size of blob

10 Hj = put_gaussian_at(xj , yj , σ,Hj); // place gaussian blob at joint position

11 H[j] = Hj; // store heatmap for joint

Return

12 H ∈ RX×Y×8 // 8 heatmaps, one for every joint

Figure A.7: Algorithm to create heatmaps from 3D skeletons

A gaussian blob is placed at the location of each joint in the image. The size of the

blob depends on the type of body part and its distance to the camera.

A.4. LAYER INSPECTION TOOL: MATHEMATICAL BACKGROUND FOR
VISUALIZATION 131

A.4 Layer Inspection Tool: Mathematical Back-

ground for Visualization

From a mathematical perspective, each convolution layer basically applies a number

of F filters with size X × Y px to an input image with C channels (for example, for

an RGB-image C = 3). Further, each filter is a collection of C filter patches with size

X×Y - one patch per channel. These filter patches are stored as a matrix wf,c ∈ RX×Y

containing weights. To produce the output of a layer, each filter f applies its patches

to the input on channel c by performing multiplicative operations. A filters output

is calculated by summarizing the results of each patch. So if a channel has little

significance for the result of a specific filter, the weights of its patch will be close to

zero. If, on the other hand, a channel contains important information for the specific

filter, the weights of its patch will have relatively high absolute values.

For weight usage optimization, it is of interest how much those patches influence the

final output of a layer. Therefor, an activation measure Af,c of a patch is introduced

and defined as the sum of its absolute weights.

Af,c = ||wf,c||1 =
X∑

x=1

Y∑
y=1

|wx,y
f,c | (A.1)

Channel activation Ac and filter activation Af can now be defined as the sum of

activation across all channels and filters respectively.

Ac =
F∑

f=1

Af,c (A.2)

Af =
C∑
c=1

Af,c (A.3)

Since the absolute values of the weights can differ greatly between layers, the activation

is normalized. The normalized activation across all channels and filters respectively is

called channel significance Mc ∈ [0, 1] and filter significance Mf ∈ [0, 1] (1 meaning

132 APPENDIX A. ADDITIONAL DOCUMENTS

most significant).

Mc =
Ac

max
c′

(Ac′)
(A.4)

Mf =
Af

max
f ′

(Af ′)
(A.5)

The higher the significance of a channel or filter, the higher is its influence on the

layers output. A channel or filter is labeled as unused, if its significance is below 0.05.

This is the most piece of information for weight reduction, since it indicates how

many weights filters can be removed from the layer without significantly decreasing

its performance.

A.4. LAYER INSPECTION TOOL: MATHEMATICAL BACKGROUND FOR
VISUALIZATION 133

F
ig

u
re

A
.8

:
In
pu

t
ch
an

ne
lu

sa
ge

w
he

n
pr
ov
id
in
g
IR

O
N
-F
ea
tu
re
s
as

in
pu

t
fo
r
a
C
N
N

O
nl
y
th
e
fir
st

in
pu

t
ch
an

ne
l
co
nt
ai
ni
ng

th
e
de
pt
h
in
fo
rm

at
io
n
(z
)
is

us
ed
.
T
he

w
ei
gh
ts

fo
r
al
l
ot
he
r
ch
an

ne
ls

(c
on

ta
in
in
g

sh
ap
e
in
fo
rm

at
io
n)

ar
e
ze
ro
.
T
hi
s
vi
su
al

in
te
rf
ac
e
is

ex
pl
ai
ne
d
in

se
ct
io
n
6.
2.
2
in

m
or
e
de
ta
il.

134 APPENDIX A. ADDITIONAL DOCUMENTS

Acronyms 135

Acronyms

cm centimeter. 31, 102, 103, 114

CNN Convolutional Neural Network. 10–15, 17–23, 26–29, 34–37, 39–42, 44, 45, 47,

48, 53, 57, 61–66, 70, 73, 76–79, 83–87, 90, 96, 101, 108, 109, 113, 114, 119, 120,

133, 137, 138, 142, 143, Glossary: Convolution Neural Network

CPM Convolutional Pose Machine (CPM). 12, 36, 45, 62–64, 67, 68, 102–105, 119,

121, 142, 143, Glossary: Convolutional Pose Machine

fps frames per second. 30, 45, 77, 101, 102

Hz Hertz. 3, 4, 24, 50, 117, 127

IR infrared. 24, 25, 37, 38, 42–45, 47, 50, 58, 61, 86, 102, 103, 106, 123, 142

LIT Layer inspection Tool. 39, 73, 74, 76, 90, 114, 142, Glossary: LiT

m meter. 3, 41, 49, 51, 110, 112, 114, 117, 118

MPII MPII Human Pose Dataset (MPII). 13, 21, 22, 141, Glossary: MPII

ms milliseconds. 35, 96, 101, 102, 105, 114, 142

PCKh Probability of Correct Keypoint. 30–32, Glossary: Probability of Correct

Keypoint

px pixel. 13, 14, 24, 37, 50, 63, 64, 66, 86, 131

136 Acronyms

RGB Red, Greed, Blue channels of an image. 9, 10, 17, 20, 45, 57, 63, 64, 66, 102,

103, 123, 131, 138

RGB-D Red, Greed, Blue and Depth channels of an image. 9, 10

ROS Robot Operating System. 86, 96, 113, Glossary: ROS

RSN ReSNet50. 66–69, 142, Glossary: ResNet50

s seconds. 104

SHG Stacked HourGlass. 12–15, 21, 22, 62, 64–70, 77, 78, 113, 141, 142, Glossary:

Stacked Hourglass

Glossary 137

Glossary

C150K is a dataset of various human poses that was recorded for this thesis and is

meant for training. It was created using data augmentation on the C25K dataset

and contains 150,000 samples (see 6.2.1). 58, 71, 78

C25K is a dataset of various human poses that was recorded for this thesis and is

meant for training. It was labeled using CapturyLive and contains 25,000 samples

(see 5.5). 57, 58, 62, 63, 65, 66, 68, 70, 71, 137

Caffe is a deep learning framework. Version 1.0 [caf, 2017] of it was used to create

and run all CNNs in this thesis. 79, 86

CEval is a dataset of various human poses that was recorded for this thesis and

is meant for evaluation. It was labeled using CapturyLive and contains 1,400

samples (see 5.5). 58, 62, 63, 65, 66, 68, 95–99, 101, 102, 143

Convolution Neural Network is a specific form of Neural Networks that is espe-

cially useful for tasks where the data can be represented as images. It is described

briefly in section 3.2.1. 10, 26, 113

Convolutional Pose Machine (CPM) is a network architecture for CNNs. It mod-

els the basic behavior of the Pose Machine described in [Ramakrishna et al.,

2014] with a Neural Network. 62, 63, 67, 102, 121, 143

Human Pose Estimation is the process of estimation the configuration of the body

pose. Here, this is realized by upper body joint detection. 1–3, 6–13, 15, 16, 22,

28, 29, 33, 34, 46–48, 62, 70, 83, 113, 119, 122, 138, 139, 141

138 Glossary

IRON is a Fast Interest Point Descriptor for Robust NDT-Map Matching intoduced

by [Schmiedel et al., 2015]. 10, 33–41, 43–45, 133, 142, 143

Kinect V2 is a camera that is able to capture RGB images as well as depth infor-

mation using Time of Flight measurement. Here, only it’s depth sensor is used

as a data source. 3, 23–25, 105, 141

LiT is a visual tool to analyze the channel (weight) usage of a CNN as a guide for

weight optimization. It is introduced in section 6.2.2. 39, 73

MPII is a human pose dataset for containing 25,000 annotated images from youtube

with over 40,000 different people and 410 human activities. It is also a basis for

benchmarks of Human Pose Estimation systems. 21

OpenPose is a state of the art real-time multi-person system to jointly detect human

body, hand, and facial keypoints on single images [Ope, 2017]. 62, 102, 103

Probability of Correct Keypoint (PCKh) is a metric for body joint detection. It

describes the percentage of correct detected joints, where a detection is consid-

ered correct if its distance to the ground-truth position is smaller than a fraction

p of the length of a specific body part. This fraction p is usually chosen to be

50%. The h in PCKh denotes that the specific body part used for length reference

is the head. 30

ResNet50 (RSN) is a basic CNN architecture that is often used for feature compu-

tation as a basis for succeeding tasks [He et al., 2016]. 66, 67

ROS (Robot Operating System) is a set of software libraries and tools that act as a

middleware for robotics applications. 86

Stacked Hourglass (SHG) is a network architecture for CNNs. It exploits the ben-

efits of residual learning on multiple resolution scales to allow for a reliable

recognition. Since its introduction in [Newell et al., 2016] in 2016, it quickly

Glossary 139

gained high popularity in the field of Human Pose Estimation. 13, 62, 64, 67,

113

Time of Flight is the property of an object that can be exploited for distance mea-

surement. This is briefly explained in section 3.1.1. 23–25, 117, 122, 123, 138

140 Glossary

LIST OF FIGURES 141

List of Figures

1.1 Specific industrial workbench scenario for Human Pose Estimation . . . 2

1.2 The eight upper body joints that are to be estimated 5

2.1 Key characteristics used to structure the state of the art for Human

Pose Estimation . 8

2.2 Simple but effective depth features . 10

2.3 Basic building block of the Stacked Hourglass architecture 13

2.4 Residual Module that is used in the Stacked Hourglass architecture . . 14

2.5 Basic Stacked Hourglass architecture 15

2.6 Heatmap representation of a pose . 17

2.7 Usage of spatial context in multi-stage architectures 19

2.8 Network architecture that is trained for multiple tasks 20

2.9 Comparison of the ten best performing approaches on the MPII 22

3.1 Features of the Kinect V2 sensor . 24

3.2 Example data provided by the Kinect V2 25

3.3 Basic principle of the convolution operation 26

3.4 Residual learning building block . 29

3.5 Example performance curve used for Evaluation 32

4.1 Main components of the Human Pose Estimation system presented by

[Arenknecht, 2016] . 33

4.2 Possible architecture options incorporating existing modules 34

4.3 Visual comparison of input representations 38

142 LIST OF FIGURES

4.4 Performance for using IRON-features as input 40

4.5 Performance for using depth images as input 41

4.6 Performance for using IR images as input 42

4.7 Performance for using both depth and IR images as input 43

4.8 Comparison of input data representations for CNN pose estimation . . 44

5.1 Captury skeleton used for labels . 55

5.2 Example result of the joint correctness classification 56

5.3 All datasets that were created for this thesis using CaturyLive 58

5.4 Workflow used to create the datasets 59

6.1 Performance of the Convolutional Pose Machine 64

6.2 Performance of the Stacked Hourglass 65

6.3 Performance of the ResNet50 . 67

6.4 Precision comparison of base architecture candidates 68

6.5 Comparison of Stacked Hourglass(left) and ResNet50(right) performance 69

6.6 Performance increase by data augmentation 72

6.7 Overview of the visual interface of LIT 74

6.8 Improvements by weight and layer reduction 78

6.9 Overview of all experiments during the development 80

6.10 Modified architectures used to create 3D pose estimates 81

6.11 Comparison of 2D and 3D prediction performance 82

7.1 Placement of the presented approach within the state of the art structure 84

7.2 Overview for the whole pose estimation system 85

7.3 High level structure of the CNN architecture 87

7.4 The two variations of the Residual Modules that are used throughout

the network . 89

7.5 Detailed overview of the improved, final architecture 91

7.6 Algorithm to deduce the 2D joint location from a heatmap 92

7.7 Algorithm create the 3D skeleton by lookup 93

8.1 Breakdown of the average computation time in ms for a single frame . 96

LIST OF FIGURES 143

8.2 Performance across the entire CEval dataset 97

8.3 Performance on the “basic” category of the CEval dataset 98

8.4 Performance on the “body touching” category of the CEval dataset . . . 99

8.5 Performance on the “work” category of the CEval dataset 101

8.6 Comparsion of the presented system against two state of the art ap-

proaches . 104

8.7 Altering the body shape and appearance with clothing 106

8.8 Failed detections due to extensive body bending 108

8.9 Detection of multiple people . 109

8.10 Examples for different occlusions . 111

8.11 Using a different camera setup and background 112

A.1 Overview of the original Pose Machine 120

A.2 Architecture and receptive fields of the Convolutional Pose Machine

(CPM) . 121

A.3 Process for synthetic dataset creation 124

A.4 Timing offset between depth images and Captury skeletons 127

A.5 Examples for Captury skeleton failures 128

A.6 Algorithm used to automatically detect errors in the recorded label data 129

A.7 Algorithm to create heatmaps from 3D skeletons 130

A.8 Input channel usage when providing IRON-Features as input for a CNN 133

144 LIST OF FIGURES

BIBLIOGRAPHY 145

Bibliography

[gita] GitHub - KaimingHe_deep-residual-networks Deep Residual Learning for Image

Recognition. https://github.com/KaimingHe/deep-residual-networks.

[gitb] GitHub - shihenw_convolutional-pose-machines-release Code

repository for Convolutional Pose Machines, CVPR’16 .

https://github.com/shihenw/convolutional-pose-machines-release.

[MPI] MPII Human Pose Database Benchmark . http://human-pose.mpi-

inf.mpg.de/#results.

[cud, 2015] (2015). Cuda 7.5 . https://developer.nvidia.com/cuda-75-downloads-

archive.

[caf, 2017] (2017). Caffe BVLC 1.0 . https://github.com/BVLC/caffe/releases/tag/1.0.

[cap, 2017] (2017). Captury Live. http://thecaptury.com/captury-live/.

[CMU, 2017] (2017). CMU Dataset . http://domedb.perception.cs.cmu.edu.

[Ope, 2017] (2017). No Title. https://github.com/CMU-Perceptual-Computing-

Lab/openpose.

[kin, 2017] (2017). Official Kinect Specifications .

https://developer.microsoft.com/de-de/windows/kinect/hardware.

[Alejandro Newell, Kaiyu Yang and Deng, 2017] Alejandro Newell,

Kaiyu Yang and J. Deng (2017). Stacked Hourglass Networks for Human Pose

Estimation (Demo Code). https://github.com/anewell/pose-hg-demo.

146 BIBLIOGRAPHY

[Andriluka et al., 2014] Andriluka, Mykhaylo, L. Pishchulin, P. Gehler

and B. Schiele (2014). 2D human pose estimation: New benchmark and state

of the art analysis . In Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pp. 3686–3693.

[Arenknecht, 2016] Arenknecht, Robert (2016). 3D Person Sensing for Inter-

active Industrial Process Monitoring Robert Arenknecht . PhD thesis, Technische

Universität Ilmenau.

[Baak et al., 2011] Baak, Andreas, M. Muller, G. Bharaj, H. P. Seidel and

C. Theobalt (2011). A data-driven approach for real-time full body pose recon-

struction from a depth camera. In Proceedings of the IEEE International Conference

on Computer Vision, pp. 1092–1099.

[Bulat and Tzimiropoulos, 2016] Bulat, Adrian and G. Tzimiropoulos

(2016). Human pose estimation via convolutional part heatmap regression. In Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-

gence and Lecture Notes in Bioinformatics), vol. 9911 LNCS, pp. 717–732.

[Cao et al., 2017] Cao, Zhe, T. Simon, S.-E. Wei and Y. Sheikh (2017). Realtime

Multi-Person 2D Pose Estimation using Part Affinity Fields . In CVPR.

[Chu et al., 2017] Chu, Xiao, W. Yang, W. Ouyang, C. Ma, A. L. Yuille and

X. Wang (2017). Multi-Context Attention for Human Pose Estimation.

[Eichner et al., 2012] Eichner, M., M. Marin-Jimenez, A. Zisserman and

V. Ferrari (2012). 2D Articulated Human Pose Estimation and Search in (Almost)

Unconstrained Still Images . International Journal of Computer Vision, 99:190–214.

[Elhayek et al., 2015] Elhayek, A, E. De Aguiar, A. Jain, J. Tompson,

L. Pishchulin, M. Andriluka, C. Bregler, B. Schiele and C. Theobalt

(2015). Efficient ConvNet-based marker-less motion capture in general scenes with

a low number of cameras . In Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, vol. 07-12-June, pp. 3810–3818.

BIBLIOGRAPHY 147

[Gkioxari et al., 2016] Gkioxari, Georgia, A. Toshev and N. Jaitly (2016).

Chained Predictions Using Convolutional Neural Networks . arXiv preprint arXiv,

pp. 1–17.

[He et al., 2016] He, Kaiming, X. Zhang, S. Ren and J. Sun (2016). Deep residual

learning for image steganalysis . In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR).

[Huang and Altamar] Huang, Jingwei and D. Altamar. Pose Estimation on

Depth Images with Convolutional Neural Network .

[Ian Goodfellow, Yoshua Bengio, 2015] Ian Goodfellow, Yoshua Ben-

gio, Aaron Courville (2015). Deep Learning Book . Deep Learning, 21(1):111–

124.

[Insafutdinov et al., 2016] Insafutdinov, Eldar, L. Pishchulin, B. Andres,

M. Andriluka and B. Schiele (2016). DeeperCut: A Deeper, Stronger, and

Faster Multi-Person Pose Estimation Model .

[Ioffe and Szegedy, 2015] Ioffe, Sergey and C. Szegedy (2015). Batch Nor-

malization: Accelerating Deep Network Training by Reducing Internal Covariate

Shift .

[Ionescu et al., 2014] Ionescu, Catalin, D. Papava, V. Olaru and C. Smin-

chisescu (2014). IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MA-

CHINE INTELLIGENCE Human3.6M: Large Scale Datasets and Predictive Meth-

ods for 3D Human Sensing in Natural Environments .

[Johnson and Everingham, 2010] Johnson, Sam and M. Everingham (2010).

Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation.. In

BMVC , vol. 2, p. 5.

[Joo et al., 2016] Joo, Hanbyul, T. Simon, X. Li, H. Liu, L. Tan, L. Gui,

S. Banerjee, T. Godisart, B. Nabbe, I. Matthews, T. Kanade,

148 BIBLIOGRAPHY

S. Nobuhara and Y. Sheikh (2016). Panoptic Studio: A Massively Multiview

System for Social Interaction Capture. pp. 1–14.

[Kadkhodamohammadi et al., 2017] Kadkhodamohammadi, Abdolrahim,

A. Gangi, M. de Mathelin and N. Padoy (2017). A Multi-view RGB-D

Approach for Human Pose Estimation in Operating Rooms .

[Li et al., 2014] Li, Sijin, A. B. Chan and A. B. C. Sijin Li (2014). 3D Human

Pose Estimation from Monocular Images with Deep Convolutional Neural Network .

Accv, pp. 332–347.

[Martinez et al.] Martinez, Julieta, R. Hossain, J. Romero and J. J. Little.

A simple yet effective baseline for 3d human pose estimation.

[Mehta et al., 2017] Mehta, Dushyant, S. Sridhar, O. Sotnychenko,

H. Rhodin, M.-H. Shafiei, H.-P. Seidel, W. Xu, D. Casas and C. Theobalt

(2017). VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera.

To Appear in ACM TOG.

[Newell et al., 2016] Newell, Alejandro, K. Yang and J. Deng (2016). Stacked

Hourglass Networks for Human Pose Estimation. Eccv.

[Rafi and Leibe, 2016] Rafi, Umer and B. Leibe (2016). An Efficient Convolu-

tional Network for Human Pose Estimation. pp. 1–11.

[Ramakrishna et al., 2014] Ramakrishna, Varun, D. Munoz, M. Hebert,

J. Andrew Bagnell and Y. Sheikh (2014). Pose machines: Articulated pose

estimation via inference machines . In Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-

ics), vol. 8690 LNCS, pp. 33–47.

[Sapp and Taskar, 2013] Sapp, Benjamin and B. Taskar (2013). Multimodal

Decomposable Models for Human Pose Estimation. In In Proc. CVPR.

BIBLIOGRAPHY 149

[Sarafianos et al., 2016] Sarafianos, Nikolaos, B. Boteanu, B. Ionescu and

I. A. Kakadiaris (2016). {3D} human pose estimation: A review of the literature

and analysis of covariates . Computer Vision and Image Understanding, p. 1.

[Sarbolandi et al., 2015] Sarbolandi, Hamed, D. Lefloch and A. Kolb

(2015). Kinect range sensing: Structured-light versus Time-of-Flight Kinect . Com-

puter Vision and Image Understanding, 139:1–20.

[Schmiedel et al., 2015] Schmiedel, Thomas, E. Einhorn and H. M. Gross

(2015). IRON: A fast interest point descriptor for robust NDT-map matching and

its application to robot localization. In IEEE International Conference on Intelligent

Robots and Systems , vol. 2015-Decem, pp. 3144–3151.

[Shotton et al., 2013] Shotton, Jamie, A. Fitzgibbon, M. Cook, T. Sharp,

M. Finocchio, R. Moore, A. Kipman and A. Blake (2013). Real-time hu-

man pose recognition in parts from single depth images . Studies in Computational

Intelligence, 411:119–135.

[Sun et al., 2017] Sun, Xiao, J. Shang, S. Liang and Y. Wei (2017). Composi-

tional Human Pose Regression.

[Tekin et al., 2016] Tekin, Bugra, P. Márquez-Neila, M. Salzmann and

P. Fua (2016). Fusing 2D Uncertainty and 3D Cues for Monocular Body Pose

Estimation.

[Tompson et al., 2014] Tompson, Jonathan, A. Jain, Y. LeCun and C. Bre-

gler (2014). Joint Training of a Convolutional Network and a Graphical Model for

Human Pose Estimation. Advances in neural information processing systems, pp.

1799—-1807.

[Toshev and Szegedy, 2013] Toshev, Alexander and C. Szegedy (2013).

DeepPose: Human Pose Estimation via Deep Neural Networks . 2014 IEEE Confer-

ence on Computer Vision and Pattern Recognition, pp. 1653–1660.

150 BIBLIOGRAPHY

[Wei et al., 2016] Wei, Shih-En, V. Ramakrishna, T. Kanade and Y. Sheikh

(2016). Convolutional Pose Machines . 2016 IEEE Conference on Computer Vision

and Pattern Recognition, pp. 4724–4732.

[Wu, 2016] Wu, Jianxin (2016). Introduction to Convolutional Neural Networks . pp.

1–28.

[Yosinski et al., 2015] Yosinski, Jason, J. Clune, A. Nguyen, T. Fuchs and

H. Lipson (2015). Understanding Neural Networks Through Deep Visualization.

[Zhang et al., 2012] Zhang, Licong, J. Sturm, D. Cremers and D. Lee (2012).

Real-time human motion tracking using multiple depth cameras . Intelligent Robots

and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 2389–2395.

	Introduction
	Motivation
	Scenario and Objectives
	Target Scenario
	Use Case Constraints and Distinctions
	Objectives

	Tasks and Structure

	State of the Art
	System Input
	Benefits of Multiple Cameras
	Using Depth Data as Input
	Using Image Sequences as Input
	Conclusion

	Human Pose Estimation Architecture Designs
	Generative and Discriminative Approaches
	Stacked Hourglass Architecture
	Conclusion

	System Output
	Detection or Regression
	Estimation Results in 3D
	Multi-Stage Architectures
	Multi-Task Architectures
	Conclusion

	Summary

	Theoretical Principles
	Depth Sensor Kinect V2
	Time of Flight Measurement
	Error Sources and Limitations

	Neural Networks and Machine Learning
	Convolutional Neural Networks
	Recent Advancements in Machine Learning

	Evaluation Metric

	Analysis of Existing Components
	Utilizing the IRON Generator and AdaBoost Classifier
	Usability Evaluation of IRON Features
	IRON Features as Input
	Depth and Infrared Images as Input
	Conclusion

	Training Data
	Experiments
	Conclusion

	Training Data
	Requirements
	Room Setup, Calibration and Label Creation
	Variations for Generalization
	Person Variations
	Background and Foreground Variations
	Position, Pose and Hand Usage variations

	Post-processing and Error Correction
	Results

	System Design and Development
	Base Architecture
	Convolutional Pose Machine
	Stacked Hourglass
	ResNet 50
	Conclusion

	Performance Improvements
	Training data augmentation
	Weight Optimization Using the Layer Inspection Tool
	Layer Reduction: Weight Merging
	Conclusion

	3D Pose Estimates

	Final Design
	Overview
	Image Capture and Preprocessing
	Deep CNN for Human Pose Estimation
	Basic Architecture
	Approach for Improvements
	Improvements

	Post Processing for 2D and 3D Pose Estimates

	Experiments
	Evaluation
	Comparison to State of the Art Approaches
	Limitations
	Appearance of a Person
	Pose Limitations
	Detection of Multiple People
	Distance and Occlusion Limitations
	Background and Camera Position

	Summary and Perspective
	Summary
	Perspective

	Additional Documents
	Use Case Constraints
	Convolutional Pose Machine
	Original Pose Machine
	CNN Implementation of the Pose Machine

	Training Data
	Existing Options
	Complete List of Motion Sequences
	Error Detection, Synchronization and Filtering
	Heatmap Generation

	Layer Inspection Tool: Mathematical Background for Visualization

	Bibliography

