

Bearbeitungszeit: 120 Min

Modalitäten

- Es sind keine Hilfsmittel zugelassen.
- Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte oder Kugelschreiber).
- Zur Lösung der Aufgaben ist der freie Platz¹ nach den jeweiligen Aufgaben vorgesehen; bei Bedarf werden Ihnen weitere Lösungsblätter ausgehändigt.
- Für alle Berechnungen sind die **Lösungswege** darzustellen. Die alleinige Angabe eines Ergebnisses wird als Lösung nicht bewertet.

(Dr. Kai Wulff) Seite 1 von 5

¹In der Übungsklausur ist dieser Platz nicht enthalten

Aufgabe 1 17 Punkte

Betrachtet wird der folgende Regelkreis: $G_3(s)$ $G_2(s)$ $G_3(s)$ $G_1(s)$

- a) Bestimmen Sie die Streckenübertragungsfunktion $G(s) = \frac{Y(s)}{U(s)}$ in Abhängigkeit von den Übertragungsfunktionen $G_1(s)$, $G_2(s)$, $G_3(s)$!
- b) Bestimmen Sie die Führungsübertragungsfunktion $T(s) = \frac{Y(s)}{R(s)}$ sowie die eingangsseitige Störsensitivität $S_i(s) = \frac{Y(s)}{D(s)}$ jeweils in Abhängigkeit von C(s), $G_1(s)$, $G_2(s)$, $G_3(s)$!

Gegeben sind nun die folgenden Übertragungsfunktionen

$$G_1(s) = \frac{1}{(s+1)(s+2)}$$
, $G_2(s) = \frac{1}{s+3}$, $G_3(s) = \frac{1}{s+1}$, $C(s) = \frac{6s+1}{6s^2}$.

Hinweis: Falls Sie a) nicht lösen konnten, rechnen Sie mit $G(s) = \frac{G_2G_3 + G_1G_2}{1 - G_2G_3 - G_1G_2}$ weiter.

- c) Bestimmen Sie G(s) mit den angegebenen Übertragungsfunktionen in Polynomialform! *Hinweis: kürzen Sie, wenn möglich!*
- d) Zeigen Sie, dass der Standardregelkreis aus G(s) und C(s) intern stabil ist! *Hinweis*: det $H_4 = a_4$ det H_3 .
- e) Bestimmen Sie die stationäre Verstärkung der Führungsübertragungsfunktion T(s) für o.g. Übertragungsfunktionen!
- f) Wie wirken sich sprungförmige Störungen $d(t)=1,\,t\geq 0$ auf den stationären Ausgang $\limsup_{t\to\infty}y(t)$ aus? (Begründen Sie Ihre Aussage mit kurzer Rechnung!)

(Dr. Kai Wulff) Seite 2 von 5

Aufgabe 2 18 Punkte

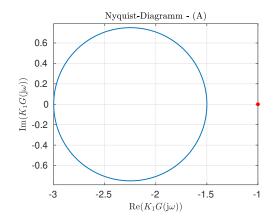
Gegeben ist der Standardregelkreis mit Regelstrecke G(s) und P-Regler C(s) = K, $K \in \mathbb{R}$.

$$G(s) = \frac{s+1}{s+2}.$$

- a) Abb. 1 zeigt die Ortskurve der offenen Kette L(s) für verschiedene Werte K. Markieren Sie jeweils die Punkte $\omega = 0$ und $\omega \to \infty$ und bestimmen Sie die jeweilige Verstärkung K_1 und K_2 !
- b) Skizzieren Sie den Phasengang für K < 0 und markieren Sie den Ast positiver Frequenzen in den beiden Ortskurven!
- c) Entscheiden Sie durch Auswertung des Nyquist-Kriteriums für K_1 (Diagramm A), ob das Führungsverhalten im geschlossenen Regelkreis BIBO-stabil ist!
- d) Bestimmen Sie anhand des Nyquistkriteriums alle Werte $K \in \mathbb{R}$, für die das Führungsverhalten im geschlossenen Regelkreis BIBO-stabil ist!

Die folgenden Aufgaben sind unabhängig von den vorangegangenen lösbar.

- e) Bestimmen Sie die Führungsübertragungsfunktion und die Stellsensitivität des geschlossenen Regelkreises in Abhängigkeit von *K*!
- f) Berechnen Sie für K = -2 die Sprungantwort der Führungsübertragungsfunktion!
- g) Berechnen Sie für K=-1 die Stellgröße u(t) für die Referenz $r(t)=4te^{-2t}$!



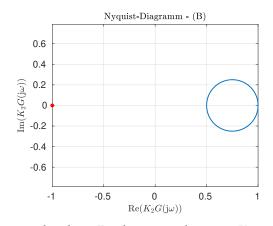


Abbildung 1: Ortskurven der offenen Kette für verschiedene Reglerverstärkungen K.

Original funktion, $t > 0$	Bildfunktion	Konvergenzbereich
f(t) = 1	$F(s) = \frac{1}{s}$	$Re{s} > 0$
$f(t) = t^n$	$F(s) = \frac{n!}{s^{n+1}}$	$Re{s} > 0$
$f(t) = e^{-at}$	$F(s) = \frac{1}{s+a}$	$\operatorname{Re}\{s\} > -a$
$f(t) = t^n e^{-at}$	$F(s) = \frac{n!}{(s+a)^{n+1}}$	$\operatorname{Re}\{s\} > -a$

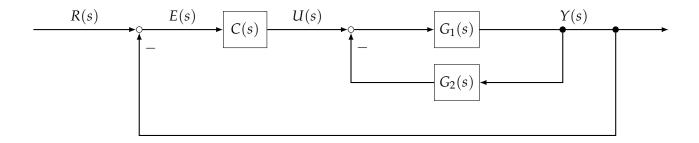
Tabelle 1: Auszug einer Transformationstabelle ($n \in \mathbb{N}$; $a, \omega \in \mathbb{R}$)

(Dr. Kai Wulff) Seite 3 von 5

Aufgabe 3 19 Punkte

Gegeben ist Regelkreis untenstehender Struktur mit dem Regler C(s) = k sowie

$$G_1(s) = \frac{s+4}{s^2-2}$$
 und $G_2(s) = p$, $p \in \mathbb{R}$.



- a) Zeigen Sie, dass $G_1(s)$ als offene Kette **nicht** vom einfachen Typ ist!
- b) Bestimmen Sie die Übertragungsfunktion $G(s) = \frac{Y(s)}{U(s)}$ mit dem freien Parameter $p \in \mathbb{R}!$

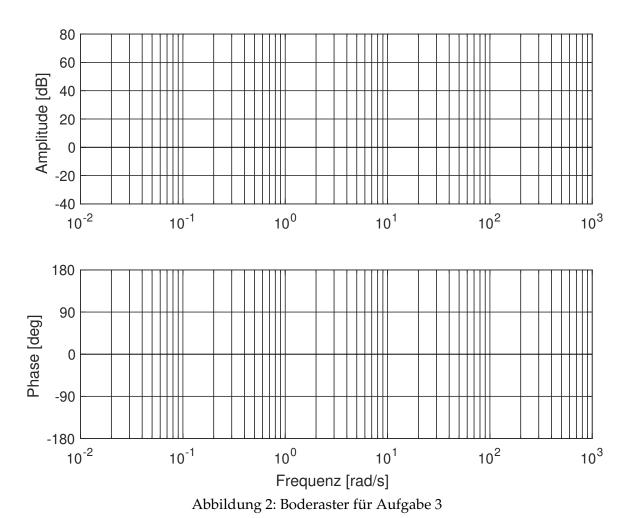
Im Folgenden ist $p=\frac{1}{2}$. Mit dem Regler C(s)=k, k>0 soll der geschlossene Regelkreis intern stabil sein, die Führungssprungantwort keine bleibende Regelabweichung und eine Anstiegszeit von $t_{\rm r}=\frac{3}{4}$ aufweisen.

- c) Geben Sie die offene Kette L(s) = C(s)G(s) in Zeitkonstantenform an und skizzieren Sie deren Bode-Diagramm für $k = \frac{5}{8}$ in das Raster in Abb. 2!
- d) Zeigen Sie, dass L(s) für alle k > 0 vom einfachen Typ ist!
- e) Formulieren Sie anhand der Spezifikation Bedingungen an die offene Kette! Eignet sich der Regler C(s) = k, um die Spezifikation zu erfüllen? Berechnen Sie gegebenenfalls k > 0, sodass die Spezifikation erfüllt ist!
- f) Berechnen Sie die resultierende Phasenreserve! Welche Überschwingweite M_p erwarten Sie in der Sprungantwort der Führungsübertragungsfunktion? Hinweis: Nutzen Sie bei Bedarf Tabelle 2.

$$\phi[^{\circ}] \mid \approx 14 \mid \approx 26 \mid 30 \mid 45 \mid 60 \mid \approx 63 \mid \approx 76$$
 $\tan(\phi) \mid \frac{1}{4} \mid \frac{1}{2} \mid \frac{1}{\sqrt{3}} \mid 1 \mid \sqrt{3} \mid 2 \mid 4$

Tabelle 2: Wertetabelle der Tangensfunktion

(Dr. Kai Wulff) Seite 4 von 5



Aufgabe 4 14 Punkte

Gegeben ist der Standardregelkreis mit Regelstrecke der Übertragungsfunktion

$$G(s) = \frac{1}{2s^2 + 40s}.$$

Mittels Polvorgabe soll der Regler C(s) so entworfen werden, dass das Führungsverhalten eine stationäre Verstärkung von eins besitzt und durch das konjugiertes Polpaar mit Knickfrequenz $\omega_0=5$ und Dämpfung $\zeta=0.5$ dominiert wird.

- a) Ergeben sich durch die Spezifikation Nebenbedingungen an den zu entwerfenden Regler C(s)? (Begründen Sie Ihre Ausssage!)
- b) Welche Reglerordnung wird mindestens zum Polvorgabeentwurf benötigt und wie groß ist der entsprechende minimale Grad des Entwurfspolynoms $Q_T(s)$?
- c) Geben Sie ein minimales $Q_T(s)$ mit einem dominanten Polpaar gemäß der Spezifikation in Polynomialform an!
- d) Geben Sie eine Parametrierung für den Regler C(s) an und bestimmen Sie dessen Parameter so, dass $Q_T(s)$ Nenner der Führungsübertragungsfunktion T(s) ist!
- e) Besitzt die erziehlte Führungsübertragungsfunktion T(s) ein dominantes Polpaar entsprechend der Faustregel? Ist T(s) minimalphasig? (Begründen Sie Ihre Ausssage!)

(Dr. Kai Wulff) Seite 5 von 5