

Klausur: Regelungs- und Systemtechnik 2

Helmholtz-Hörsaal Freitag, den 17.03.2023 Beginn: 08.00 Uhr

Bearbeitungszeit: 120 Minuten

Modalitäten

- Als Hilfsmittel sind **nur** handschriftliche Aufzeichnungen sowie Kopien der Vorlesungsund Übungsunterlagen sowie Übungsklausuren zugelassen.
- Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte oder Kugelschreiber).
- Zur Lösung der Aufgaben ist der freie Platz nach den jeweiligen Aufgaben vorgesehen; bei Bedarf werden Ihnen Zusatzblätter ausgehändigt.
- Für alle Berechnungen sind die **Lösungswege** darzustellen. Die alleinige Angabe eines Ergebnisses wird als Lösung nicht bewertet.

Name:	
MatrNr.:	
Studiengang:	

Aufgabe	1	2	3	4		Σ
max. Punkte	16	14	21	15		66
erreichte Punkte						
Note						

Klausur:	Regelungs	- und Syst	emtechni	k 2	

Aufgabe 1 16 Punkte

Gegeben sei das freie System

$$\dot{x}(t) = Ax(t), \qquad A = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}.$$

a) Bestimmen Sie die Lösung x = x(t) für $t \ge 0$ zum Anfangszustand $x(0) = x_0$.

Betrachten Sie nun das System

$$\dot{x}(t) = Ax(t) + b_1u(t) + b_2d(t), \qquad A = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}, \qquad b_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \qquad b_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$

mit dem Regelgesetz $u(t) = \begin{pmatrix} -1 & -1 \end{pmatrix} x(t)$ und der Störung d(t).

b) Sei zunächst $d\equiv 0$. Geben Sie die Dynamikmatrix \bar{A} des geschlossenen Regelkreises an und bestimmen Sie die Transitionsmatrix $\bar{\Phi}(t,t_0)$.

Hinweis: Wenn Sie b) nicht lösen können, nutzen Sie ab hier $\bar{\Phi}(t,t_0) = \begin{pmatrix} 0 & e^{-(t-t_0)} \\ e^{-(t-t_0)} & 0 \end{pmatrix}$.

c) Die Störung d sei stückweise gegeben als

$$d(t) = \begin{cases} e^{t_1 - t} & \text{für } t_0 \le t \le t_1, \\ 1 & \text{für } t > t_1 \end{cases}$$

mit Konstanten $t_1 > t_0$. Bestimmen Sie die Lösung x = x(t) im geschlossenen Regelkreis mit Störung d(t) und Anfangswert $x(t_0) = x_0$, d.h. stückweise für $t_0 \le t \le t_1$ und $t_1 < t$.

d) Geben Sie den stationären Endwert $\lim_{t\to\infty} x(t)$ des geschlossenen Regelkreises mit Störung aus Aufgabe c) an.

Klausur:	Regelungs	- und Syst	emtechni	k 2	

Klausur:	Regelung	s- und Sys	stemtech	nik 2	

Aufgabe 2 14 Punkte

Betrachten Sie das Modell eines inversen Pendels mit Aktordynamik, das an der oberen Ruhelage linearisiert wurde. Die Dynamik lässt sich beschreiben durch

$$\dot{x}(t) = \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 10 & -3 & -1 \\ 0 & 0 & -10 \end{pmatrix}}_{=A} x(t) + \underbrace{\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}}_{=B} u(t)$$

$$y(t) = \underbrace{\begin{pmatrix} 10 & 1 & 0 \\ 0 & 1 \end{pmatrix}}_{=C} x(t)$$

mit Zustand $x(t) \in \mathbb{R}^3$, Eingang $u(t) \in \mathbb{R}$ und Ausgang $y(t) \in \mathbb{R}$.

- a) Ist das System (asymptotisch) stabil?
- b) Ist das System steuerbar?
- c) Zeigen Sie nun, dass es mindestens einen nicht-beobachtbaren, aber stabilen Eigenwert λ gibt. Das heißt, finden Sie ein λ für das gilt: Rang $\binom{\lambda I A}{C} < 3$.

Das System soll mit einer dynamischen Ausgangsrückführung der Form

$$\dot{x}(t) = A\hat{x}(t) + Bu(t) + l(\hat{y}(t) - y(t))
\hat{y}(t) = C\hat{x}(t)
u(t) = k^{\top}\hat{x}(t)$$

mit $k^{\top} = \begin{pmatrix} 1 & 13 & 10 \end{pmatrix}$ und $l^{\top} = \begin{pmatrix} -1 & -7 & 0 \end{pmatrix}$ geregelt werden.

- d) Stellen Sie das System im geschlossenen Regelkreis mittels $e = \hat{x} x$ im Zustand $\begin{pmatrix} e \\ x \end{pmatrix}$ auf. Nutzen Sie für die Darstellung neben dem Zustand die Variablen A, B, C, k und l.
- e) Ist das System im geschlossenen Regelkreis asymptotisch stabil? Hinweis: $(\lambda + a)^3 = \lambda^3 + 3a\lambda^2 + 3a^2\lambda + a^3$

Klausur:	Regelung	s- und Sys	stemtech	nik 2	

Aufgabe 3 21 Punkte

Gegeben ist das zeitkontinuierliche System Σ mit einem Parameter $p \in \mathbb{R}$

$$\Sigma : \begin{cases} \dot{x}(t) = \begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix} x(t) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u(t) \\ y(t) = \begin{pmatrix} p & 2 \end{pmatrix} x(t). \end{cases}$$

Das System soll mit einer Zustandsrückführung mit integralem Anteil gemäß

$$u(t) = k^{\top} x(t) + K_{\mathbf{I}} \underbrace{\int_{0}^{t} (r(\tau) - y(\tau)) d\tau}_{=x_{\mathbf{I}}(t)}$$

geregelt werden.

- a) Geben Sie die Systemdarstellung von Σ bzgl. des erweiterten Zustands $\bar{x} = \begin{pmatrix} x \\ x_{\rm I} \end{pmatrix}$ an.
- b) Für welche Werte p ist das erweiterte System bezüglich des Eingangs u steuerbar?
- c) Geben Sie die Systemdarstellung des geschlossenen Regelkreises an.
- d) Berechnen Sie die Reglerparameter k^{\top} und $K_{\rm I}$ so, dass die Dynamikmatrix im geschlossenen Regelkreis Eigenwerte ausschließlich bei $\lambda=-1$ aufweist.

Sei nun p = 0 und die Reglerparameter wie folgt gewählt: $k^{\top} = \begin{pmatrix} 1 & -1 \end{pmatrix}$ und $K_{\text{I}} = 1$.

- e) Untersuchen Sie die Stabilität der Ruhelage im geschlossenen Regelkreis.
- f) Bestimmen Sie die Übertragungsfunktion des geschlossenen Regelkreises $G(s) = \frac{Y(s)}{R(s)}$, wobei $Y(s) \leftarrow y(t)$ und $R(s) \leftarrow r(t)$.
- g) Bestimmen Sie für die konstante Referenz r(t)=1 den Grenzwert des Ausgangs y(t) und der Stellgröße u(t) für $t\to\infty$.

Ein äußerer Regelkreis wird nun mit Hilfe des neuen Eingangs r gebildet, d.h.

$$r(t) = k_r^{\top} \begin{pmatrix} x(t) \\ x_{\mathrm{I}}(t) \end{pmatrix}.$$

h) Können die Eigenwerte mit Hilfe der äußeren Rückführung beliebig platziert werden?

Klausur:	Regelungs-	und Syste	emtechni	k 2	

Klausur:	Regelung	s- und Sys	stemtech	nik 2	

Klausur:	Regelung	s- und Sys	stemtech	nik 2	

Aufgabe 4 15 Punkte

Gegeben ist das durchgriffsfreie System

$$\dot{x}(t) = \begin{pmatrix} 1 & 1 \\ -4 & -3 \end{pmatrix} x(t) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u(t)$$
$$y(t) = \begin{pmatrix} 1 & 0 \end{pmatrix} x(t).$$

- a) Bestimmen Sie den Relativgrad des Ausgangs y des Systems. Existiert eine interne Dynamik?
- b) Entwerfen Sie bzgl. einer zweifach stetig differenzierbaren Solltrajektorie $y^* = y^*(t)$ eine Folgeregelung so, daß der Folgefehler $e(t) = y(t) y^*(t)$ asymptotisch stabil zu null geregelt wird. Bestimmen Sie die Eigenwerte der Folgefehlerdynamik in Abhängigkeit der Reglerparameter.
- c) Drücken Sie \ddot{y} in Termen von \dot{y} , y sowie dem Eingang u aus und untersuchen Sie daran die Stabilität des freien Systems ($u \equiv 0$).
- d) Finden Sie damit für u abhängig von y^* , aber unabhängig von \ddot{y} , \dot{y} und y eine Vorsteuerung $u = u^*(t)$, so dass y asymptotisch stabil zu y^* konvergiert.
- e) Vergleichen Sie qualitativ das Konvergenzverhalten im geschlossenen Regelkreis des Entwurfs aus Teilaufgabe b) mit dem aus Teilaufgabe d).

Klausur:	Regelung	s- und Sys	stemtech	nik 2	