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Abstract

The importance of modeling and performance evaluation for the design of
manufacturing systems is obvious. A new modeling method based on Colored
Petri Nets is introduced in this paper, which is especially tailored to manu-
facturing systems. We propose the separate modeling of the manufacturing
system’s structure and the production routes with dedicated colored Petri
nets. After an automatic compilation into a complete model, performance
and dependability measures can be obtained numerically or by simulation.
The firing times associated with timed transitions can be deterministic, ex-
ponentially, or generally distributed.

1 Introduction

Modern manufacturing systems are complex configurations of machines, transport
systems, and manual workplaces. To be successful in a rapidly changing mar-
ket, manufacturers have to be able to change their production program very fast.
Therefore, the design process of manufacturing systems has to be accelerated. The
economic success is decided by the quantitative properties of the system (e.g. the
throughput). The above mentioned problems apply not only to the design of new
manufacturing systems, but as well to the re-design of existing ones.

Without modeling and quantitative evaluation techniques it is often difficult to
predict the behavior of a real manufacturing system with adequate accuracy. This
1s especially the case if one takes into account failures and repairs of the system
and their effect on the performance measures.

To overcome this problem, many techniques for the modeling and quantitative
analysis of discrete event systems have been investigated. Among them, Petri nets
are now considered as a powerful tool especially suitable for systems that exhibit
concurrency, conflicts, and synchronization. To study the performance and the
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dependability of a system it is necessary to include the notion of time and prob-
ability into the model. This is usually done by associating delays or probabilities
with transitions. Stochastic Petri nets (SPNs, [1]) and generalized stochastic Petri
nets (GSPNs, [4]) are two popular extensions of Petri nets which have been widely
used in the application field of manufacturing (see, for instance, [3] and [17]). Nev-
ertheless, if more than one product is processed by one machine in the model, the
machine’s model has to be replicated due to the lack of distinguishable tokens.

To cope with problems of this type, colored Petri nets (CPNs) have been in-
troduced [8] and applied to manufacturing systems. Martinez and Silva showed
that colored Petri nets are a powerful tool for the modeling of complex concur-
rent systems [16]. In order to do so, independent subsystems are identified and
modeled in isolation. The resulting submodels are then put together by a fusion
of corresponding transitions, and a main model is generated. After eventual sim-
plifications, the structure of the main model can be analyzed. Commands as in
programming languages can be associated with transitions, resulting in an inter-
preted net model. It is thus possible to include the control system of a FMS in
the model. In [19], Viswanadham and Narahari used colored Petri nets for the
modeling of automated manufacturing systems. Based on these models, deadlocks
can be found by analyzing the invariants. A colored Petri net model of a manu-
facturing cell controller is described by Kasturia, DiCesare and Desrochers in [9].
The net model is checked to be live after obtaining its invariants. Additionally,
it 18 “implemented” and “executed” in order to control the cell by exchanging
messages with it, and to show its current status. Martinez, Muro and Silva show
in [15], how the coordination subsystem of a flexible manufacturing system can
be described by a colored Petri net. The obtained model is embedded into the
surrounding levels of control (local controllers and scheduling subsystem), while a
terminology based upon the Petri net colors is used for the interaction. Analyzing
the model detects deadlocks, decision problems, and gives performance measures
that depend upon variations in the modeled system. A scheduler is needed to de-
cide indeterminacies, which tries to influence the manufacturing system such that
an “optimal” behavior is achieved. The authors of [15] propose an expert decision
system for this task, using artificial intelligence methods.

In general, colored Petri nets allow a higher level of modeling, but contain
complex definitions of colors, types and variables. These textual inscriptions are
part of the model behavior’s specification, thus spoiling the understandability
of the graphical Petri net model. However, it is possible to omit most of the
inscriptions using a restricted class of colored Petri nets especially dedicated to
manufacturing systems [21].

In manufacturing systems with a certain degree of flexibility in the production
program, there is no notion of production line, rather for each product a production
route is defined [17]. A Petri net model of a manufacturing system includes both
the structural information of the modeled system and the specification of the
production routes. Such an integrated model is advantageous for visualization,
but there is a need to redefine the whole model even if the production route of a
single part changes. The independence of the manufacturing system’s structure



from the parts to be processed should be reflected in the modeling technique.

To overcome this limitation, a technique for the separate modeling of the pro-
duction routes and the manufacturing system’s structure has been proposed in [22].
Both model parts use dedicated colored Petri nets from [21], and are automatically
compiled into one unique model. Based on this method, we present an integrated
modeling and quantitative evaluation technique in this paper, facilitating numer-
ical analysis or simulation to obtain the desired measures.

Another approach of separate modeling of production routes and the man-
ufacturing system structure has been proposed before. Villarcel, Martinez and
Silva presented GRAMAN [18], a graphical system for describing manufacturing
systems. We briefly describe it in the following to contrast it with our approach.

In GRAMAN, a manufacturing system is modeled by a plant description and a
description of the work plans. While for the latter colored Petri nets are used, the
structure of the system is modeled by predefined building blocks. An internal model
is generated from these two descriptions: for each building block, a predefined
subCPN is assigned to the block and parameterized by its structural relations.

There are many cases, however, where more parameters are necessary for an
instantiation of a submodel. Properties of a machine may not only be related to
the structure (its general capabilities), but to an actual processing task as well (e.g.
the processing time or the mean time until a tool breaks while processing part A).
In our approach, library modules are used for the refinement of transitions that
model machines etc. In addition to the structural description of such a machine,
it contains a model of the possible production paths through its structure as well.
Both parts are instantiated and parameterized during the modeling process.

In GRAMAN, the translation of connections between the building blocks is
done by fusing transitions of the submodels that represent synchronized activities
(e.g. the unloading of a machine is done by a robot), resulting in a coordination
model. This implies that the number and types of connections from a machine to its
surroundings are already known at the time when the submodel is specified. This
somehow contradicts the aim of a modular modeling technique. Even more, it leads
to submodels that do not strictly describe the structure of the modeled subsystem.
The description of how a machine’s buffer is loaded and unloaded should be done
in the submodel describing the robot etc. that does the unloading. We believe
that a model of a manufacturing system should reflect its actual structure, in
order to enhance the clearness of the model and to facilitate a visualization of
its behavior. Opposed to that, GRAMAN allows the “folding” of equivalent model
parts, making the model smaller, but less understandable. Moreover, this prevents
a natural specification of buffer capacities. Qur approach follows the structure
of the modeled system and allows places to have capacities, because this is an
important attribute of manufacturing system buffers.

GRAMAN’s Petri net models of the work plans hierarchically describe the
execution of orders at different levels of abstraction. These models are not compiled
into the internal model, they interact with the structural model by a “rendezvous-
type” mechanism. The production orders can be passed to the Petri net model
by a superior level of the manufacturing system controller. In contrast to this,



our technique automatically compiles the production route specifications into a
complete model, as it is aimed at the performance and dependability evaluation
and not the control of a manufacturing system.

As our approach makes use of a restricted class of colored Petri nets [21], it
1s not necessary to hide the Petri nets from the modeler. Namely, the complex
arc and guard expressions as well as the definition of types and variables are
superfluous. Therefore, it is possible to model both the manufacturing system
structure and the production routes with the same type of dedicated Petri nets,
without the need for an additional graphical description language.

The remainder of this paper is organized as follows. In section 2 a manufacturing
cell and its GSPN model is presented, showing the difficulties encountered when
using uncolored nets for the modeling of manufacturing systems. Section 3 recalls
the used specialized modeling method which is subsequently applied to the man-
ufacturing cell from section 2. In section 3.4 the derivation of measures from the
obtained complete model is shown. Finally, section 4 provides some concluding
remarks.

2 Modeling with Uncolored Petri Nets

Throughout this paper, a simple manufacturing cell is used as an example. The
left part of figure 1 shows its layout. The raw and finished parts enter and leave
the system through the In and Out stations, respectively. They can be processed
in machine M1 and M2. Each of these stations and machines contains at most one
workpiece. The robot transfers the workpieces from one place to another.
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Figure 1: Layout of the manufacturing cell and production routes

The production system behaves as follows: If the robot places a raw part in a
machine, an appropriate tool is loaded and the processing starts. While being
used, the tool may break and has to be replaced by a worker. There is only one
worker available to repair both machines.

In our example, the manufacturing cell processes two different workpieces. Part
A is machined by M1. Part B can be machined by M1 or M2 (figure 1, right part).
The GSPN in figure 2 models the complete production system behaving as ex-
plained above. The process state of part A is represented by a token, passing
through the following locations:
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Aln part A enters the cell AInP input buffer

Q1 check for available robot R1 transfer part

Robil transfer from input buffer to M1 AM1.0 raw part in machine
AM1Job | machine works on part AM1.1 processing finished
Q4 check for available robot R4 transfer part

Rob4 transfer from M1 to output buffer | AOutP | output buffer
AQut part A leaves the cell

Part B enters the system by BIn and is then transferred to M1 (Q2) or to M2 (Q3).
In the first case the route through the cell is similar to that of parts A:

BIn - BInP - Q2 - R2 - Rob2 - BM1_0 - BM1Job - BM1_1 - Q5 - R5 -
- Rob5 - BOutP - BOut,

while in the second case machine M2 is used:

BIn - BInP - Q3 - R3 - Rob3 - BM2_0 - BM2Job - BM2_1 - Q6 - R6 -
- Rob6 - BOutP - BOut.

The limited resources of the cell are modeled by capacity places:

FreeInP | capacity of input buffer | FreeOutP capacity of output buffer
FreeMi availability of M1 Freel2 availability of M2
FreeRob | availability of robot FreeWorker | availability of the worker

The following elements model the behavior of M1 (similar to M2):

MiIdle machine is idle AStart load tool for part A
BStart load tool for part B
MiReady | machine is loading tool M1iLd duration of loading
MiWork machine is working M1F failure (tool breaks)
MiBroken | machine is out of order QRep1l applying for repair
Repl machine 1s being repaired | M1R duration of repair

Due to the lacking individual tokens, all buffers that can contain n parts of different
type (or state) have to be modeled with n places in order to distinguish between
them (see, for instance, AInP and BInP). Furthermore, a maximum capacity for a
buffer cannot be associated with one place in the model, which leads to the need
for additional capacity places (e.g. FreeInP).

The transitions modeling an active resource have to be unfolded exactly like
the places that model buffers. In our example, the robot is described by 12 tran-
sitions and 7 places. For every possible action of the robot, a starting immediate
transition, one place and a timed transition modeling the transport time is used.
This is necessary to guarantee the mutual exclusion of the robot actions. This is
a cumbersome and error-prone way, however, to specify which transitions belong
to the same resource.

Zurawski and Dillon [23] encountered the same kind of problem and proposed
a method to construct uncolored subnets in a systematic way.

In SPNs as well as in GSPNs, the exponential distribution is used for the
firing times of transitions due to its analytical simplicity. This is often a good



approximation of the real behavior. The processing time of a certain workpiece
or a transport delay, e.g., can be modeled more realistically using deterministic
times. It has been shown, that the results obtained from models with different
distributions may vary significantly [6]. To obtain more realistic results, recent
analysis methods [7] have to be utilized for models incorporating non-exponentially
distributed firing times.

In general, using uncolored nets leads to models that do not reflect the cell
structure, making the model less understandable.

3 Specialized Colored Petri Nets

The consequence of the above mentioned problems is to use Colored Petri Nets
(CPNs, [8]), which offer more advanced modeling facilities like distinguishable to-
kens and hierarchical modeling. The pure graphical description method of Petri
nets is, however, hampered by the need to define color types and variables compa-
rable to programming languages. This is often not well accepted by users without
a strong background of computer science. To solve this problem, a new method
for the modeling of manufacturing systems is presented.

The main idea lies in the predefinition of two color types, which are adapted to
manufacturing systems. Object tokens model workpieces inside the manufacturing
system, and consist of a name and the current state, e.g. wheel.raw. Elementary
tokens do not have a special color, and are equivalent to tokens from uncolored
Petri nets.

Places can contain only tokens of one type. Object places are drawn as thick
circles. They model the possible locations of workpieces. Elementary places are
drawn thin. They are used to model states of resources (e.g. a busy machine).
Transitions represent possible events, i.e. state changes in the system. Each input
and output arc is connected to one place, and only tokens of the appropriate
color type can flow through it. Therefore, arcs are drawn thick or thin as well,
corresponding to their associated color type.

With this method, the model of the manufacturing cell’s structure reflects the
layout, which makes it easier to understand. Textual descriptions needed in CPNs
for the definition of variables and color types can be omitted, and the specification
of the types of places and arcs are implicitly obvious.

To meet the requirements of a modeling technique for manufacturing systems,
the structure of the manufacturing system has to be modeled separated from the
production routes [18]. We present another method to describe the manufacturing
system’s structure and production routes separately.

Each of the processing steps of the production routes has to be performed
on a machine in the manufacturing system. Therefore, a production route can
be thought of as a path through the manufacturing system. This relationship
is now reflected on the modeling level. Every transition in a production route
model corresponds to a transition in the structural model, indicating that the
production route action is executed by the modeled resource. Thus we introduce
the term associated Petri nets for the production route models.



3.1 Modeling the Structure of the Manufacturing System

Modeling the manufacturing cell described in section 2 with a specialized colored
Petri net yields a much more concise and realistic model. Figure 3 shows the top
layer of the hierarchical model (the prime page).

—
[1] Robot [1] Worker

E (1]

[1]
Figure 3: Model of the cell structure

Physically existing locations are represented by object places (with maximum ca-
pacities in square brackets):

InP input buffer OutP | output buffer
M1P workplace in machine M1 | M2P workplace in machine M2

The elementary place Worker, which initially holds one elementary token, repre-
sents a globally limited resource: only one machine can be repaired at the same
time. All transport actions are performed by the transition Robot. There is no
need for additional resource places.

The substitution transitions M1 and M2 (depicted as Dv are refined by subpages
as shown in figure 4 for M1. The port places of the subpage (drawn as dashed
circles) are linked to the socket places on the prime page by port assignments.
Port places and their assigned socket places are structurally identical (PP1@M1
means place PP1 at the subpage of transition M1):

PP1GM1 -> M1P PP1GM2 -> M2P
PP20M1 -> Worker PP20M2 -> Worker

The state of the machine is described by the location of an elementary token,
stepping through elementary places (drawn thin). Initially, the machine is Idle.
When an appropriate object token enters the machine, the transition Start fires
(see below). Now the machine begins to load a tool (Loading, LoadTool). The
firing of Work changes the color of the object token in PP1, thus modeling the
completion of a workpiece. While Working, the tool can Break and the machine
has to be repaired. The transition StartRep can only fire, if PP2 contains an
elementary token, i.e., a repairman is available. PP2 is assigned to the global
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Figure 4: Super- and subpage of machine structure

resource place Worker on the prime page. The repairing time is deterministic
(transition Rep).

Subpages can be taken from a library of templates. A template contains a
structural superpage and subpage, with appropriate port assignments. Each time
a new subpage is created, the template is copied and instantiated with the name of
the substitution transition. A template can be used several times. To avoid name
clashes, the elements of subpages are addressed using their name and subpage
label, as shown above.

3.2 Modeling of the Production Routes

Given the model of the cell structure, the production routes for different workpieces
can be defined (figure 5). They represent paths through the structural model,
hence the same places and transitions can be found there possibly several times.
The arcs are labeled with the names of object tokens, showing the changes in their
processing state.

Alternative routes of workpieces can be modeled using different paths. Square
brackets enclose the wversion of a workpiece being in one of the alternative routes
(see figure 5). Guards at the starting transitions of each branch decide which path
will be chosen, thus implementing a scheduling strategy. If the processing time
for a specific workpiece differs from the machine’s default, firing time distributions
can be specified here.

For each subpage template in the library there is a route template, too (figure 6
for our example). Tt is used to refine a substitution transition in the production
routes. The arc inscriptions and guard expressions in route templates may contain
variables. Transition Start may only fire if there is a raw part in place PP1, which
has to be specified in the production subroute (see guard [@PP1 = #1]). Each
time the appropriate substitution transition is used, the route template is copied
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Figure 6: Production subroute template and instance

and all variables are instantiated with names of object tokens. In our example,
the substitution transition M1 is used in the route for A, and the template from
figure 6 is instantiated as follows: 1 -> A.0, z2 -> A.1.

3.3 Compilation of a Complete Model

Subsequently, the structure and production route nets are automatically merged
to create the complete model of the manufacturing cell. During this process, the
informations contained in the production route models are added to the structural
model. The transitions are enriched with hidden informations, their firing possi-
bilities (see below). This procedure is invisible for the modeler, who only has to
construct the model of the cell structure (figure 3) and the production routes for
the products (figure 5).

In a colored Petri net, each transition may have several firing possibilities. Each
of them 1s characterized by different values of the arc expressions attached to the
transition’s input and output arcs. In contrast to other colored Petri net mod-
eling techniques, we do not need variables inside these arc expressions. Instead,
we obtain all the different firing possibilities automatically from the production

10



route models. A firing possibility in a dedicated Petri net is characterized by an
assignment of a token multiset to each input and output arc, a guard (boolean
expression) that has to evaluate to true for the firing possibility to be enabled,
and a firing time distribution.

For each transition in a production route model, a new possible firing is added
to the corresponding transition in the structural model. The guard and the firing
time distribution of this firing possibility are copies of the transition’s guard and
firing time in the production route model, respectively. Empty guards are true by
definition. If no firing time distribution is specified in the production route model,
the (default) firing time is taken from the structural model. The firing possibility’s
assignment of tokens to the input and output arcs can be derived from the arc
inscriptions in the production route model.

After the compilation, the structural model together with all firing possibilities
of the transitions completely describes the behavior of the modeled system and
can be evaluated.

3.4 Evaluation

In order to obtain quantitative measures from colored Petri nets, several stochastic
extensions have been developed. Zenie proposed colored stochastic Petri nets [20],
while Lin and Marinescu introduced stochastic high-level Petri nets [12, 13]. Chiola
et al. developed stochastic well-formed colored Petri nets (SWNs, [5]), aiming at
the exploitation of symmetries in the model that can be detected at the net level.
In order to do so, subsets of the color types have to be specified such that a
permutation of a token’s color inside its corresponding subset does not alter the
behavior of the model. The token colors in our dedicated colored nets correspond to
the different types of workpieces (and their various processing states). It is obvious
that a manufacturing system behaves differently for each of these workpieces, and
thus there are no such symmetries. Moreover, only exponentially timed transitions
are allowed in SWNs.

Most of these models as well as the original definition of colored Petri nets [8]
focus on homogeneous systems, consisting of identical processing elements perform-
ing identical tasks. A (stochastic) colored Petri net is therefore often interpreted
as a folded (stochastic) Petri net. A firing semantics is used for colored transitions
that allows all its possible firings (equivalent to the “folded” uncolored transitions)
to be enabled and fire concurrently. We refer to this as infinite server semantics
for colored Petri nets, because it 1s a straightforward extension of the same idea
for uncolored nets.

As our approach to the modeling of manufacturing systems intends to follow the
modeled systems structure, transitions correspond e.g. to machines or transport
systems. Thus, the firing possibilities of these transitions do not model folded
machines, but different activities of one machine. Because a machine can only
perform one task at a time, at most one of the different firing possibilities of
an enabled transition should be fireable. To ensure this, a preselection between
the enabled firing possibilities has to be made prior to the further execution. To
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distinguish this behavior from the one described above, we refer to it as single
server semantics for colored Petri nets. The behavior of a colored transition with
single server firing semantics 1s comparable to the local preselection policy defined
in [2] for uncolored nets. The preselection sets are explicitly given by the colored
transitions with single server semantics, which makes the correct specification
easier than for uncolored nets.

Although transitions with single server semantics are most frequently used
when modeling a manufacturing system, there are examples when an nfinite server
semantics 1s needed. A conveyor belt that transports all parts on it simultaneously
is an example, because in that case all firing possibilities of the transition mod-
eling the transport are enabled concurrently. We therefore allow in our models
transitions to be either of single server or infinite server type.

These considerations lead to more compact models that are much better un-
derstandable (compare figure 2, 3, and 4). Even though, the reachability graphs
of both models are exactly the same (except for the firing time distributions of
the transitions modeling the repairing time). After the generation of the reduced
reachability graph, numerical analysis techniques (cf. [6]) can be utilized to ob-
tain quantitative measures of the model. It is possible to numerically analyze
models that contain transitions with firing time distributions from a wide class of
functions that may be immediate, exponential, deterministic and more generally
distributed. If no more than one general or deterministic transition is enabled in
each marking, a semi-regenerative stochastic process underlies the Petri net model.
If numerical evaluation is impossible due to the large state space or limitations in
the analyzable firing time distributions, simulation has to be utilized. Fast simu-
lation techniques such as parallelization, RESTART [11], and control variates [10]
speed up the computation.

In the following, the example manufacturing cell is analyzed and performance
measures are derived. Currently, the algorithm to construct the reachability graph
directly from the dedicated Petri net models is still under construction. Unfolding
the colored Net yields a model similar to the one depicted in figure 2. In contrast to
the net shown in figure 2 the firing times of the transitions M1R and M2R were chosen
to be deterministic, because the repairing times are fixed. For the derivation of
quantitative measures from the resulting deterministic and stochastic Petri net,
the software tool TimeNET [7] has been used.

Subsequently, the performance and dependability of the cell is evaluated, com-
paring different variations of the model and detecting bottlenecks. The following
transition rates (1/hour) are used:

Robz 1000 AM1Job | 500 BM1Job | 500 BM2Job | 3333
AOut 500 BOut 500 M1Ld 1000 M2Ld 1000
M1F 1.667 || M2F 1.667 || M1R 33.33 || M2R 33.33

Different transport strategies for the robot were evaluated first. They were imple-
mented by assigning priorities to the immediate transitions Qz. The result for the
model with a random choice between the transport tasks is marked 11 in figure 7.
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The following strategy turned out to be the most efficient: if there are different
transport tasks to be performed, then load M2 first, then load M1, and unload
last. The analysis results for this strategy are marked by an asterisk in the same
figure. The gain in productivity is not very high, but a change in the strategy
does not require any investment.

11 —-— transport rate (1000/h) ——
= 11* —— = falurerate (L/h) ——
5 350 | 21 =— 1 3 350 .
< 12 % <
g 22% —-— g
2 2
m 300 | b m 300 | b
+ +
< <
k) k)

c c
S 250 r b S 250 r b
B B //
> >
e] e]
e e
o o
200 b 200 b
0 20 40 60 80 100 0 2 4 6 8 10
percentage of A
Figure 7: Experiment 1 Figure 8: Experiment 2

Moreover, some buffer configurations were compared, evaluating the performance
of the system with different proportions of incoming parts A and B and with a
constant sum of both. The throughput decreases with increasing percentage of
parts A, because they are machined only in M1, while parts of type B may be
processed in both machines. Configuration 21 means that the capacity of the
input buffer is 2 and the capacity of the output buffer is 1; analogously 11, 12 and
22. The gain in the throughput is much higher when the output buffer capacity is
increased compared to increasing the input buffer’s capacity.

Secondly, the impact of the transport rate and the failure rate were investigated
(figure 8). Speeding up the robot can considerably improve the performance of
the system. On the other hand, the gain in productivity must be compared with
the high investment costs for a new robot. Taking expensive measures for less
machine failures may be useless in comparison to the gain in performance, because
the improvements achieved will not be significant.

4 Conclusion

In this paper we investigated modeling techniques for manufacturing systems with
Petri nets. Motivated by the problems encountered when using uncolored nets,
a specialized modeling method based on colored Petri nets has been introduced.
Utilizing this technique, simpler and more concise models are produced that reflect
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the modeled system’s structure. This makes the modeling process easier and less
error-prone, and leads to models that are much better understandable. In order
to render the modeled active resources correctly, a single server firing semantics
for colored Petri nets is used. Therefore, the modeler does not have to use the
construct of immediate transitions and additional places to specify the behavior.
In addition to immediate and exponentially timed transitions, we allow firing times
of transitions to be non-exponentially distributed. Thus, the timing behavior can
often be modeled more realistically.

Furthermore, the separate modeling of the production routes and the system’s
structure is employed. A modification of the routes does not necessitate a complete
redesign of the model, thus reflecting that the manufacturing system is independent
of the parts being processed. A complete model is derived automatically by a
compilation of both model parts. The complete model can subsequently be used
to obtain performance and dependability measures using numerical analysis or
simulation. The introduced modeling technique has been applied to an example
in the paper, showing its usefulness.

Work is currently in progress in order to implement the automatic generation
of the complete model as well as the generation of the reachability graph of the
dedicated colored Petri nets. The computational cost of the reachability graph
generation and the subsequent numerical analysis depend on the complexity of
the reachability graph, which may be very high for real application examples. To
cope with this problem, we will investigate techniques for the efficient analysis of
the dedicated colored Petri net models.
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