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Abstract

For the analysis of large systems modeled with
stochastic Petri nets, state explosion is a well known
problem. Many real-life systems are thus impossible
to analyze. Several research activities try to overcome
this limitation. Diverse approaches can be found in
the literature, e.g. 1, 2, 3, 4].

This paper presents an iterative approximation
technique for the steady-state throughput computa-
tion of complex concurrent systems. The proposed
technique makes use of the divide and conquer prin-
ciple. It i1s derived from the response time approxi-
mation method presented in [5, 6]. We generalize this
approach to a special class [7] of hierarchical colored
stochastic Petri nets [8].

1 Introduction

Verification of correctness and optimization are the
main tasks during the planning and development of
systems. Qualitative and quantitative analysis can be
used for this. Petri nets are a well-known modeling
means for the specification of systems. Moreover, the
necessary analysis techniques are known from Petri
net theory. The usual performance analysis meth-
ods require the generation of the whole state space
of the model. For many systems of real-life size the
state space is too large to be handled. This is called
the state explosion problem and necessitates advanced
techniques that overcome this limitation.

The throughput is often the most important per-
formance measure of technical systems. An algorithm
for the approximate analysis of GSPNs [9] has been
presented in [5, 6]. However, colored Petri nets are
better suited for the modeling of complex systems.

This paper describes the extension of the response
time approximation method presented in [5, 6] to a
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special class of colored stochastic Petri nets. This
modeling has been developed especialy for the descrip-
tion of manufacturing systems. They are a popular
example for systems where the throughput is substan-
tial for the design. The approximation technique pre-
sented in this paper 1s applied to a flexible manufac-
turing system example modeled using the mentioned
class of colored Petri nets.

The method presented in this paper makes use of a
model decomposition. Thus, several models with sub-
stantially smaller state space have to be analyzed. The
disadvantage is that only approximate performance re-
sults are computed, although experiences show that
the error is acceptable in most cases.

Decomposition methods commonly contain the fol-
lowing three steps: A partitioning of the analyzed
system into smaller disjunctive subsystems has to be
found first. This can be a serious problem for unstruc-
tured models like GSPNs. Dedicated colored Petri net
models used here are hierarchically partitioned into
pages. Those pages describe subsystems in a mod-
ular way. Thus, a simple method is to treat each
page as a subsystem. Modules of real-life systems as
well as modeled subsystems interact asynchronously
by means of buffers. The application example pre-
sented in the paper shows that this clear and simple
heuristics leads to acceptable results.

After the decomposition the main model is cut into
submodels, which are not analyzeable in isolation.
The task of the second step is then to build a so-called
low-level system for each of the subsystems. This 1s
done by keeping the current subsystem and adding an
aggregation of the others. Additionally a basic skele-
ton is derived which includes an aggregation of all sub-
systems.

Approximate performance measures are computed
during the third step. In this case the method pre-
sented here differs only slightly from the iterative re-



sponse time approximation technique developed in [5].
More details are given in section 4.

The main advantage of decomposition approaches is
that the analysis of small subsystems needs less mem-
ory. Despite the need to iteratively repeat the algo-
rithm, the approximate results are computed faster
than with standard methods.

The remainder of this paper is organized as follows.
The following section introduces the manufacturing
system example that is used throughout the paper,
and the proposed modeling method, which is applied
to the example. In section 3 the partition and aggre-
gation method is shown. The iterative approximation
algorithm is the contents of the fourth section. Finally,
section 5 provides some concluding remarks.

2 An Example Modeled With Dedi-
cated Colored Petri Nets

This section describes a flexible manufacturing sys-
tem example modeled with a dedicated colored Petri
net. In this special Petri net class there are only two
color types. Object tokens model workpieces inside
the manufacturing system, and consist of a name and
the piece’s current state. Elementary tokens do not
have a special color, and are equivalent to tokens from
uncolored Petri nets. Elementary tokens are used to
model the states of the machines, e.g. if they are
failed or busy, or the position of a conveyor system.
Places can contain either object tokens or elementary
tokens. Object places are drawn as thick circles, and
elementary places are drawn as thin circles, respec-
tively. Transitions represent possible events in the
system. FEach input and output arc of a transition
is connected to one place, and only tokens of the ap-
propriate color type can flow through it. Therefore,
arcs are drawn thick or thin as well, corresponding to
their associated color type.

Each model consists of a structural model of the
manufacturing system’s layout and several work plan
models of the production routes. The different model
parts are automatically merged to create a complete
model of the manufacturing system [7].

Model of the Structure

The structural model describes the resources and
their work plan independent properties. Figure 1
shows the top layer of the hierarchical structural
model of our manufacturing system example.

Each of the so called substitution transitions (de-
picted as []) is refined by a subpage that describes the
behavior of a machine or a conveyor in more detail.
Figure 2 shows the detailed structure of the assembly
transition.
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Figure 1: Manufacturing system example
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Figure 2: Detailed structure of the assembly part

Work Plan Models

The work plan models describe the production
routes for each workpiece. Such a model represents
paths through the structural model, hence only places
and transitions that can be found there are usable
here. This applies to all levels of hierarchy; the work
plan models are refined in the same way as the struc-
tural model. Alternative routes of workpieces can be
modeled using different paths, with conditions and
probabilities assigned to them if needed. In our ex-
ample we have three work plans; one for each of the
workpieces A, B, and C.

3 Partition and Aggregation
In this section the low-level systems and a basic
skeleton from the whole system are derived. The state



space of the low-level systems and the basic skeleton
is usually smaller than the original one by more than
one order of magnitude.

In each low-level system one subsystem 1s kept and
the other subsystems are aggregated. Thus,as many
low-level systems are derived as there are subsystems
in the partitioned system. In the basic skeleton all
subsystems are aggregated.

As described above, for each substitution transition
(and thus each page) one subsystem is generated.

N = (P,T,F)isanetif P and T are disjoint sets of
places and transitions and F' C (P xT)U(T x P) is the
set of arcs. The places connected to a subsystem are
called buffers. The set of buffers is denoted with B C
P and the set of subsystems S C N (S; = (P, T;, F)
with S = S1US,U. .. US, where S;NS>N...NS, = 0.
The preset of B is denoted by * B, and the postset B*®,
respectively. The set of transitions IT; C T; (OT; C
T;) where foreach t € IT; (t € OT;)ist € B* (t €*B)
is called input (output) transitions' of the subsystem
Si. There is a path between an input transition ¢; €
I'T; and an output transition t; € OT; if and only if
(t1,t2) € I, where F} is the transitive closure of Fj.
Aggregation Rules for the Structural Model

Two aggregation rules for the structural model are
given in the following. The first aggregation rule sub-
stitutes each path of the subsystem by a new place. If
there 1s at least one path between two different tran-
sitions 1 € IT; and t; € OT;, delete the places and
transitions in the path(s) and add a new place s with
(t1,8) U F; and (s,t2) U F;. The initial marking of
the additional place 1s set to the sum of path’s places.
Figure 3 shows an example for the application of this
aggregation rule.

P1

Figure 3: General aggregation rule

In the special case where a transition ¢ 1s both
input and output transition of a subsystem S; (¢t €
(IT; N OT;)) a different aggregation rule is applied.

I Please note that IT; N OT; = § does not necessarily hold

Let b,b' € B be two buffers that are connected
with ¢ ((b,t) € F and (¢,b') € F) then add a
new transition t,., and a place ppew. The set of
arcs is adjusted as follows: Fpe, = F\ {(b,8)} U
{(b,thew), tnew, Prnew)s (Pnew,t)}. The initial marking
of the additional place pyq 15 again set to the sum of
path’s places. Figure 4 shows the application of this
special aggregation rule.
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Figure 4: Special case aggregation rule

Aggregation Rules for the Work Plan Models

After generating the low-level subsystems and the
basic skeleton for the structural model the same has
to be done for each work plan model. The aggrega-
tion rules for both model parts are the same. The
set of tokens removed (added) by firing one of the in-
put (output) transitions must not be changed by the
aggregation. The strong relationship between net el-
ements in the work plan models and the structural
model is kept after the aggregation.
Low-level Systems and Basic Skeleton

In the following step the aggregated subsystems are
derived. They are called low-level systems and de-
noted by LS; (i € {1,...,n}). Each LS; is obtained
from N by aggregating all subsystems in S except
for S;. The basic skeleton BS is obtained from N
by aggregating all subsystems in S. The aggregation
rules described in the previous section are applied dur-
ing this step. Figure 5 shows the low-level system
LSassembly of our manufacturing system example.

4 Iterative Throughput Approxima-
tion Algorithm

In this section the low-level systems and the basic
skeleton are used to iteratively compute an approxi-
mation of the model throughput. The applied tech-
nique is based on the response time approximation
method presented in [5, 6, 10].

The results of the iterative aproximation algorithm
are independent from the initial service rates of the
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Figure 5: Low-level system example

input and output transitions of the aggregated model
parts. In the non-aggregated parts the transitions
keep the initial service rate of the original model. For
each LS; the throughputs of the output transitions
t € OT,; for each workpiece (color) are computed.
Then the service rates of the corresponding transi-
tions of the basic skeleton are changed for each work-
piece, such that the throughput of both transitions is
the same. The service rates of the output transitions
t € O7; in all LS; with j # i is adjusted according
to the values in the basic skeleton. The procedure is
repeated until convergence is reached.

Algorithm
derive LS; (i € {1,...,n}) and BS
initiate all ¢ € (IT; UOT;) in LS; (j # 1)
and in BS with any service rate p
keep the original service rates for all
te (IT;, UOT;) in LS;
repeat
for k:=1ton do
compute throughput of all ¢ € OTj
by computing utilisation
repeat
change the service rates y; in BS

compute throughput of all t € OT} in BS
until throughputs are equal
change the new service rates for the corres-
ponding transitions ¢ in all LS; ¢ # k
end for
until convergence

In our example (Figure 1) the throughput of the
transition delivery_AB has to be computed. The un-
derlying CTMC of the original model has 47600 states
while the basic skeleton only has 12400 states. The
initial service rates of all input and output transi-
tions of the aggregated parts in the low-level systems
and the basic skeleton are 1. Convergence has been
reached after only four iterations. Table 1 shows the
approximately computed throughputs of output tran-
sitions. The throughput value of the delivery_AB
transition in the original model is 0.00975, computed
with TimeNET s [11]. The result of the approxi-
mation algorithm is 0.0093. Thus, the error of the
approximation result is less then 5%.

5 Conclusion

This paper presents the extension of a response
time approximation technique to colored stochastic
Petri nets. The application focuses on the planning
and design of manufacturing systems, where an esti-
mation of the throughput is often sufficient and the
systems are too large to be numerically analyzed. A
dedicated class of Petri nets for the modeling of man-
ufacturing systems 1s used. Their modular structure
can be exploited in order to find a partitioning of the
original model. The paper proposes to build one sub-
system for each page of the hierarchical model. More-
over, the paper presents simple aggregation rules that
are necessary to make the generated subsystems ana-
lyzeable. This technique makes use of the seperate
structure and work plan models. Finally it is shown
how to compute the throughput of an investigated sys-
tem. An iterative approximation algorithm [5] is ex-
tended to colored Petri nets.

The described techniques have been applied to an
example. The approximation error was acceptable. In
the future we will investigate if more complicated ag-
gregation rules can decrease the approximation error.
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