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Abstract Model�based optimisation can make the design of complex DEDS more
e�cient� The process of optimising a manufacturing system is consid�
ered in this paper as an application� where the main problem lies in the
computational e�ort required for a series of long simulation runs� We
propose a two�phase optimisation method starting with a fast preopti�
misation� This �rst step is done by computing rough approximations
based on interpolation of upper and lower bounds of the performance
indexes� instead of long run simulations �or analytical computations	�
Petri nets are used for the modelling of these systems� enabling the
application of linear programming techniques for the bounding analy�
sis in polynomial time on the size of the model� The second phase is
a post�optimisation� in which every evaluation is conducted by means
of simulations� A comparison of the achieved results and computation
times with the ones obtained by standard techniques shows the useful�
ness of the proposed approach�

�
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�� INTRODUCTION

The optimisation of Discrete Event Dynamic Systems �DEDS� is in
most of the cases NP�hard� In order to alleviate this computational
problem some authors ��� �	 have introduced meta heuristics to try to
solve it in a reasonable time and with reasonable accuracy�
Petri Nets �PN� are used as modelling paradigm for the dynamical

system� The tool used for modelling� analysis and simulation of our sys

tems is TimeNET ��	� In a previous paper ��	� the optimisation of Petri
Net Performance Models is done by combining TimeNET and a meta
heuristic optimiser� ASA �	� using a simulated annealing technique�
The aim of this paper is to reduce the computational cost of the op


timisation� The proposed method is divided in two phases� The �rst
one� Fast Preoptimisation� tries to get a �reasonable� initial solution�
at low computational cost� This phase is inspired by Ordinal Optimi�
sation ideas ��	� The main idea beyond this approach is to compute an
�initially good enough� solution� The �rst phase takes advantage of the
results by computing bounds that can be obtained in polynomial time
on the size of the Petri Net model� Some �roughly approximated� values
of performance measures� like throughput or mean number of tokens in
a place� can be obtained in a very e�cient way�
The second phase� Fine Grain Optimisation� is started once the

fast preoptimisation process has reached certain conditions� The aim
of this phase is to improve the best solution found in the �rst one us

ing a more accurate performance measure computation� Simulation will
be the chosen technique in most of the cases because� in complex sys

tems� analytical results are either impossible or the computational cost
is excessive�
The Optimisation technique used in both phases is called Adaptive

Simulated Annealing �ASA� �	� During the preoptimisation phase the
computation of bounds from a linear description of the net requires the
solution of several linear programming problems �LPP�� For this task an
interface to the program lp�solve has been implemented� Throughout
the �nal optimisation phase� TimeNET ��	 has been employed for the
simulations�

�� GETTING ROUGH APPROXIMATIONS

Stochastic PN are used as modelling formalism for the dynamic of the
system to be optimised� For the notation of these performance models
the reader is referred to the literature �e�g� ��� �	�� The computation
of approximated values can be done through several techniques �e�g�



A Two Phase Optimisation Strategy for DEDS �

Response Time Approximation� RTA ��	�� where �accurate� results have
been reported at the expense of relatively high computational cost�
Opposed to this� a rough computation of performance indexes is enough

for the approach presented here� A weighted sum of upper and lower
bounds for those measures is taken as an approximation� For certain
classes of Petri nets� e�cient algorithms based on linear programming
problems �LPP� exist for the bounds computation� In the following� we
will denote with ���ti	 ����ti	� the upper �lower� bound of the through

put of transition ti� and with M��pi	 �M��pi	� the upper �lower� bound
of the mean number of tokens in place pi in steady state�
For the details of this computation the reader is referred to the lit


erature ��	� The computational e�ort is linear in the size of the net
structure� and e�cient LPP solvers are freely available�
In order to compute an approximation of the throughput and mean

marking� the following weighted sums of upper and lower bounds are
computed�

���ti	 � � � ���ti	 � ��� �� � ���ti	 ���

Numerical experiences show that usually the throughput upper bound
is much better �nearer to the actual value�� This is however not surpris

ing from the �trivial� formula of the throughput lower bounds� The value
of � has therefore been set here to ��� for the examples presented later
on and often results in a reasonable approximation of the throughput�
An approximated value for the mean number of tokens in the places

can now be computed analogously�

M� � � �M� � ��� �� �M� ���

For the examples considered so far� the marking bounds where in gen

eral not very close to the actual values� No observation could be made
whether the upper or lower bound is systematically better� Here � has
been set to ����
The lower bounds for the transition throughputs are usually not very

accurate� The marking lower bounds are computed using them and the
marking upper bounds depend on the marking lower bounds� Here we
are interested in an approximation and not a true bound� Estimations
of the marking bounds can thus be computed by assuming that ��
�as computed in equation �� equals the correct throughput values� The
bounds on the throughput that are being used in the original formulas ��	
can then be substituted by ��� leading to some �approximated� values�
This leads to a better marking approximation in all cases considered so
far�
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�� APPLICATION EXAMPLE

In this section a manufacturing system model with its design problems
is presented� Figure � shows a sketch of the layout of the system� The
robot takes raw parts from the input bu�er and places them on pallets
at the loading station� Each part circulates through the cell mounted
on a pallet� From the loading station parts are taken to one of the two
machines by a transport system with automated guided vehicles� After
being processed in one of the machines� the work pieces are transported
to the manual workplace and later to the assembly station and the un

loading station by one of the subsequent conveyor belts�
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Figure 	 Flexible manufacturing cell Figure � GSPN model of the cell

We assume that the structure of the manufacturing cell is �xed� Two
products �A and B� have to be produced using it� following di�erent
production sequences�
A Petri net model for the example is shown in Figure �� The di�erent

processing tasks �modelled by transitions� and parts in bu�ers �modelled
by tokens and places� had to be unfolded due to the use of uncoloured
nets� Transitions InA� InB� InC� OutA� and OutB model the cells input
and output of parts� The production mix �percentage of parts of both
types� is speci�ed by the �ring probabilities associated with the imme

diate transitions pA and pB� The robot at the loading and unloading
station is described with the transitions RAi� RBi� RAo� and RBo as well
as the surrounding places and immediate transitions�
Places whose names end with C ensure that the capacity of bu�ers

and machines is not exceeded� The four conveyors act as intermediate
bu�ers between their connected stations� Their names therefore begin



A Two Phase Optimisation Strategy for DEDS 	

with a B followed by the number� The number of AGV vehicles is set by
the model parameter A� and P de�nes the number of pallets� In general�
model elements with trailing A �B� refer to parts of type A �B��
The design decisions are the following� the number of pallets P avail


able in the system� the number of vehicles of the AGV transport system
A �in the range from one to four�� the probability for a part of type A
to be transported to machine � by the AGV �as opposed to transporting
it to the alternative machine ��� and the production mix�
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Figure � Quality of marking approxi�
mation

Figure � shows a plot of the throughput comparing the di�erent tech

niques considered in this paper� The approximation used in this ap

proach is near from the throughput real results� For an evaluation of
the approximated values for average markings� Figure � contains plots
of the values computed by simulation and approximation� The approx

imated values are not very close to the simulated ones� However� the
similarity of the functions shows that the approximated values depend
in the same way on the changing parameters as the simulated ones�

�� TWO�PHASE OPTIMISATION METHOD

The main idea is to compute an initial parameter set for the problem
during a fast preoptimisation phase� Later� it is used as the starting
point of the second ��ne
grain� optimisation phase� The implementation
uses the ASA �Adaptive Simulated Annealing� tool �	� a freely available
simulated annealing program�
An important question is when to change from the preoptimisation

phase to the second one� As each calculation in the preoptimisation
phase only takes some seconds� the number of annealing iterations during
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this phase does not play such a big role� Therefore the original ASA
parameters have been used� When the annealing algorithm has reached
its end� the second step is started with some adjusted parameters and
temperatures� It should be noted that for the annealing algorithm the
duration can be more or less arbitrarily changed by choosing di�erent
temperature schemes� However� the question is then how good the found
solution will be�
The second phase is a normal ASA optimisation based on the simula


tion optimisation� as it has been employed previously ��	� The speed of
the ASA algorithm �leading to the number of parameter sets for which
the model has to be analysed� depends essentially on the temperature
scheme� For an acceleration of the second phase the following �heuristic�
changes have been made�

The initial cost temperature T cost
� is decreased from � to ���� thus

reducing the acceptance probability of worse solutions�

The cooling speed control constant c is made smaller� reducing
the value of TAnnealScale from ��� to other values ���� ��� �� ���
resulting in a faster temperature reduction process�
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Figure � Interaction of ASA� bounds computation and TimeNET
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Figure � sketches the interaction of the di�erent program parts� To
avoid re
computations� every result is stored in a cache
like table �called
queue� together with its corresponding parameter set
Before an optimisation can be started� the original model and a con�

�guration �le have to be speci�ed� The con�guration �le contains the
objective function and the parameters to consider in the optimisation�
ASA calls its user
de�ned cost function� which is now the interface pro

cedure to the bounds approximation or TimeNET� with a parameter
set� The parameters given to the interface procedure are �rst checked
whether they have already been computed�
If not� the interface procedure prepares a parameterised model from

the original Petri net model� Depending on the optimisation phase�
either the approximation component or the TimeNET simulator is called
afterwards� The resulting value of the pro�t function is stored in the
queue together with the parameter set and afterwards returned to the
ASA optimiser� In the next step ASA tests whether convergence is
reached and� if so� exits with the �nal optimisation result�

�� APPLICATION EXAMPLE

The application example is now optimised with the proposed two

phase algorithm� and the results are compared with those obtained in ��	�
The pro�t function per day includes the pro�t from selling parts� work

in process� and constant costs� The complete pro�t function is de�ned
as Pro�t � �����TOutA�������TOutB���MPwip���������A���P �

Table 	 Tradeo� between speedup and result quality

Standard Phase I Phase II
TAnnealScale ��� ��� �� �� � �
AGV vehicles � � � � � �
Pallets �� � � � �� �
Part B prod� mix �� �� �� �� �� ��
Part A to M� ��� ��� ��� ��� ��� ���
Pro�t ���� ���� ��� ���� ��� ����
Time �minutes� ��� � ��� �� �� ��
Speedup �Ph� I�II� ��� ��� ���� ����

Table � shows results and computation times for the original algo

rithm� and the two phases with di�erent selections of TAnnealScale�
Without loosing too much accuracy� the two phase method �nds very
good results with a speedup of about nine� About the same speedups
have been achieved for other examples� For a TAnnealScale values of �
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and �� the �ne
grain optimisation was not able to �nd the solution with
AGV vehicles equal to two� This shows that a signi�cant speedup can
be achieved� but the heuristic choice of the faster temperature scheme
is important�

�� CONCLUDING REMARKS

Iterative meta heuristics optimisation procedures �as Simulated An

nealing� su�er when the cost evaluation of the model for a parameter set
is expensive� In ��	 we introduce a �queue� in order to avoid recompu

tation for a pattern of parameters� allowing frequently a computational
speed
up around �
 �order of the hit rate in the queue ����� Here�
a two phase optimisation� where an interpolation of upper and lower
bounds are taken as rough approximation in the �rst phase� allows to
make a new speed
up around � for similar quality in the optimal solution
in the considered manufacturing system�
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