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Abstract

The design of real-time systems requires modeling and anal-
ysis techniques, to ensure their correct and timely opera-
tion. In many cases a realistic model should be able to cover
both fixed and stochastic times. Stochastic Petri nets are
a promising description technique in this field, but mixing
deterministic and randomly distributed times in one model
makes the analysis often impossible. This paper shows that
Petri net models with an underlying discrete time can be ad-
vantageous for the modeling and analysis of real-time sys-
tems. For a demonstration a simple application example is
modeled and its behavior computed using the software tool
TimeNET.

1. Introduction

One of the challenges in real-time systems today is the in-
creasing complexity of upcoming applications and the as-
sociated goals for their design. Standard methods are often
not capable of handling these new problems anymore. Ap-
propriate methods for the system specification and analy-
sis of quantitative and qualitative requirements are therefore
needed. These approaches should be applicable to real-time
systems which cannot be characterized accurately by a pri-
ori non-stochastic models.

One way to advance the analysis of complex real-time
systems is the development of mathematical modeling and
analysis frameworks for this application domain. Using ap-
propriate analysis techniques allows to prove logical and
temporal properties based on this model. Example mea-
sures could be the liveness and performance of the system,
or the timeliness of task execution [10]. All these measures
should take into account the effect of possible failures and
repairs of the system. An overview of the wide range of ex-

isting specification techniques of real-time systems can be
found in [2].

Delays in typical real-time computing models are usually
assumed to be fixed worst-case times. Several authors have
shown the drawbacks of this approach for certain systems.
Recent paradigms therefore aim at generalizing the execu-
tion time model in different ways. On the other hand, in the
field of modeling and analysis of non-Markovian stochastic
systems techniques have emerged, that might be success-
fully applied to real-time systems.

The authors claim that Petri nets [14] and their stochastic
timed extensions are a useful formalism for real-time sys-
tems. They are generally used for the modeling and anal-
ysis of discrete event systems because of their ability to
describe them in a concise and appropriate way. On the
other hand, there are a lot of different analysis and simu-
lation techniques as well as software tools available. Petri
nets have already been proposed in the context of real-time
systems, see e.g. [3, 9, 13, 15].

The remainder of the paper is organized as follows: Af-
ter a brief overview of the applicability of different Petri
net classes for real-time systems in Section 2, discrete time
deterministic and stochastic Petri nets (DDSPNs) and the
application example are introduced in Section 3. The fol-
lowing three sections describe the reachability graph gener-
ation of a DDSPN and the further numerical transient and
steady-state analysis, each using the example. Section 7
briefly describes the software tool TimeNET, in which the
described algorithms have been implemented.

2. Petri Nets for Real-Time Systems Modeling

The time behavior of many existing real-time applications
can only be described using both deterministic and stochas-
tic times. Markovian stochastic Petri nets, like generalized
stochastic Petri nets (GSPNs [4]), are not suitable to model

0-7695-0990-8/01/$10.00 (C) 2001 IEEE



this behavior. GSPNs only allow transition firing times to be
either immediate or exponentially distributed. In contrast to
this, non-Markovian SPNs offer deterministic or even more
general distributions in addition to that [8]. This makes
them suitable for real-time systems from the point of view
of necessary firing time distributions. One example is the
model class called deterministic and stochastic Petri nets
(DSPNs [1]).

However, it is well known that the numerical analysis of
non-Markovian SPNs is only efficiently possible if in ev-
ery system state there is at most one transition enabled with
non-exponentially distributed firing time [5, 8]. Different
approaches aim at relaxing this constraint, like

� approximation of deterministic transitions by substi-
tuting them with Erlang or generalized Cox distribu-
tions [6]

� utilizing special properties as e.g. in cascaded deter-
ministic and stochastic Petri nets [7]

� mapping DSPNs to general state space Markov
chains [11].

The reason for this problem is that for every non-
exponential transition the remaining firing time has to be
memorized during the state space analysis. The restriction
of exponentially timed transitions as in GSPNs leads to sim-
ple analysis algorithms, because well-known Markov chain
techniques can directly be applied based on the generation
of the reduced reachability graph.

A quite different approach is to interprete the Petri net
model as having a discrete underlying time scale (as op-
posed to continuous time in GSPNs and in DSPNs). This
class called discrete time DSPNs [16, 17]. Instead of the
continuous exponential distribution, the discrete geometri-
cal distribution is used preserving the memoryless property.
Because in every time step the firing probabilities are given
by the geometrical distribution, and the remaining firing
times (having only some discrete values) can be stored to-
gether with the marking, the performance analysis does not
pose mathematical problems. Moreover, as immediate and
deterministic transitions are special cases of the geometric
distribution, there is no problem in having any number of
them enabled concurrently in a marking. This overcomes
the main principal problem of analyzing real-time systems
with continuous time stochastic Petri nets. Figure 1 shows a
short overview of some relationships between models with
underlying continuous and discrete time scale.

The analysis is then naturally based on a mapping of the
(reduced) reachability graph onto a discrete time Markov
chain. Unfortunately the reachability graph is larger with
respect to the continuous time case, because for all enabled
transitions the associated remaining firing times are part of

Continuous time Discrete time
Firing time distribution:

exponential geometric

Timed transitions:
Firing ratesQ ProbabilitiesP

State equation:
d

dt
�(t) = �(t)Q �(t+�t) = �(t)P

Steady-state solution:
0 = �Q,

P
�i = 1 � = �P,

P
�i = 1

Transient solution:

�(t) = �(0) eQt �(t) = �(0)Pb
t

�t
c

Figure 1. Time scale relation

the unique state description. Care has to be taken with tran-
sitions trying to fire at the same instant of time. Proper as-
sociation of priorities avoids the problem of confusions in
this case [16, 17].

3. Discrete Time Deterministic and Stochastic
Petri Nets

As the underlying time scale of the DDSPN model is dis-
crete, the system is only observed at equidistant times.
Enabled transitions fire with certain probabilities solely at
these points in time. The following transition firing time
distributions are allowed: Geometric distribution is the dis-
crete memoryless distribution, while deterministic transi-
tions fire after a fixed delay, with immediate transitions as
a special case. In general, any discrete time phase distri-
bution that can be described by a finite absorbing discrete
time Markov chain can be used. Please refer to [16, 17]
for a thorough description of the modeling formalism of
DDSPNs.

Figure 2 shows a simple totally deterministic model of
three periodic processes with the following parameters:

process # period comp. time RMA priority
1 4 1 1
2 5 2 2
3 10 3 3

Priorities are assigned using RMA [12]. The use of inhibitor
arcs (with a small circle at the inhibited transition) imple-
ments the priority of process 1 over 2 and 2 over 3. The
ready time of all processes is assumed to be zero, thus in
the initial marking (shown in figure 2) all places contain
one token. The marking of place P1 inhibits the execution
of process 2 and 3. More than one token in a place would
indicate that the deadline of the corresponding process has
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Figure 2. DDSPN model of three processes

not been met. One benefit of the shown model is that it is
trivial to modify the model such that it captures aperiodic
processes with arbitrary arrival time distributions and/or ar-
bitrary computation time distributions. The overall utiliza-
tion with the three processes is 95 percent.

The selection of the underlying time step �t is impor-
tant. If the real behavior of the modeled system only ex-
hibits discrete times, they can be directly used as the tran-
sition firing delays, and the time step �t should be chosen
as the GCD of the firing times. If there are actions in the
system with a continuous firing time distribution (e.g. ex-
ponential) in reality, they are modeled using a discrete dis-
tribution (e.g. geometrical), introducing a discretization er-
ror. This error decreases for smaller�t. However, a smaller
time step leads to a bigger state space and longer execution
time.

4. Reachability graph generation

The analysis of the stochastic process described by a
DDSPN model requires the generation of the reachability
graph first. This graph contains one node for each state of
the model that is reachable from its initial marking. Only
states in which the process spends some time (tangible) are
interesting for the later analysis. The remaining so-called
vanishing states are eliminated during the generation, re-
sulting in the reduced reachability graph. Figure 3 shows a
part of the reachability graph including vanishing markings
(denoted with round boxes).

It should be noted that in contrast to other Petri net
classes, a DDSPN state contains – in addition to the stan-
dard vector of tokens in places – a vector that holds the
remaining firing times of enabled timed transitions. The
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Figure 3. Partial reachability graph

first three digits show the number of tokens in places P1,
P2 and P3. The remaining numbers correspond to the re-
maining firing times of the transitions in the sequence T1,
C1, T2, C2, T3 and C3. A � denotes a disabled transition.
The graph starts with the initial marking at time zero. Arcs
are inscribed with either the time step �t for state changes
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from tangible states, or the probabilities for immediate state
changes.

Simplified, the algorithm works as follows: As long as
there are states that have not been examined, one of them
is taken and the firing times of all enabled timed transi-
tions are decreased by �t. If this yields zero for the re-
maining firing time equal to zero for at least one of these
transitions, the new marking is vanishing and all possible
firing sequences of transitions during the same time instant,
leading to tangible states, are explored. Those states are
stored in the reachability graph, together with the computed
overall probability for traversing through any path from the
previous tangible state to this one. Repeating the described
steps until all states have been examined, results in the ma-
trix P that contains the state change probabilities for each
tangible state.

If no remaining firing time reaches zero after subtract-
ing �t, the new state is also tangible and the state change
probability is one. An example for this case is shown in
figure 3, where at time point 1 the remaining firing times
of all enabled timed transitions is greater or equal 2. Time
can then be advanced by �t = 2 or the minimum of the re-
maining firing times of all enabled timed transitions in the
general case. This technique is called embedding and avoids
the generation of unnecessary intermediate states. The time
spent in this state is then different from 1 and has to be
stored for a later conversion step.

In the continuous time domain the probability of firing
several timed transitions at the same instant of time is zero.
This is not the case for DDSPNs due to their underlying
discrete time scale. Moreover there is a (model dependent)
very high probability of having to fire two timed transitions
at the same time instant. If there are conflicting transitions
trying to fire at the same time, the further evolution of the
stochastic process depends on which one is fired first. This
contradicts the notion of firing at the same time. This prob-
lem is well-known for the firing of immediate transitions in
continuous-time nets as confusion [4].

The used analysis techniques [16, 17] detect confusions
during the generation of the reduced reachability graph. The
modeler can change the firing priorities of transitions to
solve conflicts, thus avoiding confusions. Figure 3 shows a
first part of the reachability graph without different priority
associations to transitions. At time t = 5 there are transi-
tions C1 and T2 fireable, and both possible firing sequences
are traversed with probability 1=2. As both lead to the same
tangible state, no problem occurs. The lower part of fig-
ure 3 serves as an example for a confusion that is related to
incorrect modeling. At time t = 10, there are three tran-
sitions fireable, namely T2, T3 and C3. After all possible
firing sequences have been executed, two different tangible
states are reached. Some of the state changes and the left
state are wrong in the sense of the model. They occur be-

cause if there is a process termination and invocation at the
same time, in the model there is no specification which hap-
pens first. In a correct model the termination should happen
first. This is achieved by increasing the priority of all C
transitions over all T transitions. After this change, only
the right one of the two possible tangible states is reached.
Giving different priorities to transitions as much as possi-
ble decreases the number of firing paths, and can therefore
speed up the analysis process.

The reachability graph can already be analyzed to check
for certain model properties like deadlocks. For the exam-
ple the check of the reachability graphs shows that after the
priority adjustment there is no state in which there is more
than one token in each of the places. This means that the
three processes are schedulable.

5. Transient analysis

A transient analysis shows the behavior of the model from
a starting point in time (usually zero) to a predefined time.
The basic iterative approach [16] to the transient analysis
is to start with the initial probability distribution over all
reachable states �(0). To analyze the behavior until time
t,
�

t

�t

�
matrix-vector multiplications have to be performed

iteratively using �(t+�t) = �(t)P. From each probability
distribution vector the particular performance measures can
be computed and plotted over time. If only the probability
vector at a time t is needed, the power method can be used

alternatively: �(t) = �(0)Pb
t

�t
c

process 1

process 3

process 2

0 5 10 15 20

Figure 4. Transient behavior of the example

Figure 4 shows a transient plot of the number of tokens in
places P1, P2 and P3 until time 20 (the superperiod). Ar-
rows depict starting times of processes, and dashed lines
mean that the process is waiting for the processor due to a
higher prioritized process running. This analysis technique
can be used for a graphical overview of the system behavior
like a Gantt chart.
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6. Steady-state analysis

Analyzing the quantitative steady-state behavior of a model
answers questions about performance and dependability
measures in equilibrium. Based on the P matrix that has
been computed during the reachability graph generation, the
stationary probability distribution vector � can be obtained
by solving the following system of linear equations [16]
with a standard solver:

� = �P;
X

�i = 1

In case of embedding, the result has to be rescaled by a
multiplication with the holding times, and finally again nor-
malized to ensure a total sum of probabilities equal to one.
From the vector � the values of performance measures can
be calculated.

The application model in figure 2 is purely deterministic,
whose steady-state behavior is not very interesting due to its
periodic evolution. In the case of aperiodic processes this is
relevant, however.

In the following example it is assumed that the second
process is aperiodic and the interarrival time is geometri-
cally distributed and varied from 5 to 50. In the model this
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Figure 5. Analysis of real-time behavior

requires only a change of transition T2 from type determin-
istic to exponential. Figure 5 shows the probability that a
process misses its deadline versus the overall system uti-
lization, which simply can be determined by the probability
that there are tokens in P1, P2 or P3. A utilization of 95% is
reached with a mean interarrival time of 5. This is not sur-
prisingly the same result as in the previous example where
the period of this process was 5. The line named “P2” shows
the probability of missing the deadline for the second pro-
cess, and the line named “P3 det” the same for process 3.
It is interesting to see that below an overall utilization of 85
percent the probability of P3 is less than that of P2, although

the latter has priority over P3. This can easily be explained
as the load due to process 2 equals the load due to process
3 at a total utilization of 85%.

A second experiment was conducted to further explore
the effect of stochastics to the real-time behavior. Now both
interarrival times of processes 2 and 3 are set to stochastic,
resulting in the plot named “P3 geo” showing the proba-
bility of process 3 missing its deadline. The curve for P2
is the same as before, because the lower priority process 3
does not change its behavior. Although the overall system
utilization is the same as before, the real-time behavior of
process 3 is much worse than in the first deterministic case.

7. Software tool support

Modeling and evaluation of complex systems is only feasi-
ble with the support of appropriate software tools. Since the
modeling framework of stochastic Petri nets has been pro-
posed, many algorithms and their implementations as soft-
ware tools have been developed. A powerful and easy to use
graphical interface is important in addition. The techniques
described in this paper have been implemented in the tool
TimeNET (Timed Net Evaluation Tool, [18]). It offers non-
Markovian uncolored and colored Petri net modeling and
numerical analysis as well as simulation algorithms. For
DDSPN models modules for the steady-state and transient
numerical analysis as well as efficient parallel simulation
are available [16].

For the current version 3.0 of TimeNET a new generic
graphical user interface has been developed. Figure 6 shows
a sample screen shot of the interface during a modeling ses-
sion. The interface can be used for graph-like models with
different types of nodes and arcs. Nodes can be hierar-
chically refined by corresponding submodels. It is imple-
mented in C++ and uses the Motif toolkit.

TimeNET is available free of charge for non-commercial
use under Solaris and Linux. For further informa-
tion please refer to the web information at the URL
http://pdv.cs.tu-berlin.de/˜timenet.

8. Conclusion

Model based analysis is helpful in the design of real-time
systems. Stochastic Petri nets with discrete timing (namely
DDSPNs) can be used to describe and analyze real-time
systems. It is possible to mix deterministic and stochas-
tic times, which is a major advantage over standard analysis
techniques for continuous-time stochastic Petri nets. In the
paper the background and use of DDSPNs for a simple ap-
plication example has been explained briefly. The described
algorithms are implemented in a freely available software
tool. An open problem is – like for other Petri net analysis
techniques – the state space explosion problem.
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Figure 6. Screen shot of TimeNET
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