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Abstract. More and more companies use ”process aware” information
systems to make their business processes more efficient. To do this, work-
flow definitions must be formulated in a formal specification language,
as they represent executable derivates of business process descriptions.
Both for the less formal descriptions of business processes as well as
the workflow definitions, Petri-net based approaches are used success-
fully. In the literature the business process descriptions are required to
be well-structured, leading to a sound workflow definition. We argue
that in many cases well-structuredness is too restrictive for practition-
ers. Relaxed soundness has been introduced previously as a more suitable
requirement. The paper presents how methods from controller synthesis
for Petri nets can be used to automatically make this type of models
sound. For this reason we adopt the idea of controllability for Petri net
workflow models.

1 Introduction

Over the last decade more and more companies work with ”process aware” in-
formation systems. These systems are configured on the basis of explicit process
descriptions. Examples are dedicated Workflow Management systems (WfMS),
such as Staffware, but also normal ERP systems which became enhanced by a
workflow module. Prerequisite for their use is the specification of workflow, the
computer-supported parts of the company’s business processes.

Both for the descriptions of business processes as well as the workflow def-
initions, Petri-net based approaches are used successfully. For the definition of
workflow Petri nets are particularly suitable, as they have a formal syntax and an
unambiguous, operational semantics. The operational semantics offers the possi-
bility to use the process descriptions right away as input format for a WF-engine.
Examples of WEMS using Petri net based process descriptions are COSA (Soft-
ware Ley/COSA Solutions/Transflow [SL99]) and Income (Get Process AG).
Moreover, their formal foundation allows to validate the derived process de-
scription prior to their use within a WfMS. This helps to avoid faulty situations
at run-time and therefore saves costs and raises customer satisfaction. An impor-
tant property that every workflow definition should satisfy is soundness [Aal98].
Soundness guarantees that there are no faulty executions at run-time.



A workflow definition describes a business process in a machine readable
manner. As their modeling requires a deep inside into the application context,
domain experts are often put in charge of the modeling, although they do not
necessarily have high modeling expertise.

Well-structuredness has been proposed [Aal98 LSW98 MRO0] as a property
that assists non expert modelers in formalizing their business processes. It re-
quires a strict block structuring of the process descriptions. The restriction to
well-structuredness is also present in UML v1.4 activity diagrams [UMLO02].
Strict block structuring conditions are relaxed by allowing control-links (resp.
synchronization edges) to synchronize tasks belonging to different parallel con-
trol flow paths in BPEL4AWS [BEA03] and ADEPT [RD98].

The advantage of this structural property is purely technical and lies in its
close relationship to soundness. It has been shown that well-structured process
descriptions are sound, provided they are life.

Well-structuredness has its shortcomings. We will argue in the paper that
modeling in a well-structured manner requires: 1) to have a comprehensive in-
sight into the whole process, possibly spanning different organizational units,
2) to implement efficiency aspects via the ordering of tasks, and 3) to accept
redundancy.

This paper uses relaxed soundness [DvdA04] as a different property which
is better suited to assist the modeler. We show that relaxed soundness meets
the intuition of the modelers, not requiring expertise beyond their own organi-
zational unit. However, because relaxed soundness is weaker than soundness, an
additional step is required to achieve a sound WF-net. One contribution of the
paper is to show how methods from Petri net controller synthesis can be adopted
to automatically make this type of models sound. For this reason we apply the
idea of task controllability to Petri net workflow models.

The paper presents an algorithm for the generation of the robust subgraph,
i.e. the part of the behavior of a workflow model that can be controlled to
avoid faulty situations. This algorithm is a refined version of the one presented
in [Deh02].

An advantage of the approach proposed here is that the result of the auto-
matic transformation can be used to detect potential for a process optimization.
The separation between business process modeling and soundness transformation
enables the modeler to adapt the model easily if business process requirements
change.

The remainder of the paper is organized as follows: In the next section an
application example is used to introduce the chosen modeling technique, namely
WPF-nets. The suitability of possible properties is compared in addition. In Sec-
tion 4 relevant methods from Petri net controller synthesis are briefly intro-
duced and their application to the area of workflow modeling is described. In
Section 4.2 we broaden the scope of the proposed methods to reactive work-
flow systems. This is done by representing the interaction with the environment
within the process descriptions. Section 5 focuses on process optimization based
on the prior computations. Finally, the results are summarized.



2 An application example

As modeling technique for the specification of workflow we use Petri nets. We
refer to the class of Place/Transition nets and more in particular to Workflow
nets (WF-nets). This net class was introduced in [Aal98,Aal00]. WF-nets were
tuned to fit the requirements within the domain of workflow management. Petri
net theory was exploited to develop adequate properties and efficient algorithms
for that Petri net class [Aal00,VBAO1].

A WF-net is a Petri net which has a unique source place (i) and a unique
sink place (0). This corresponds to the fact that any case handled by the process
description is created if it enters the WIMS and is deleted once it is completely
handled by the WIMS. In such a net, a task is modeled by a transition and
intermediate states are modeled by places. A token in the source place i corre-
sponds to a “fresh” case which needs to be handled, a token in the sink place o
corresponds to a case that has been handled. The process state is defined by the
marking. In addition, a WF-net requires all transitions and places to be on some
path from ¢ to o. This ensures that every task (transition) or condition (place)
contributes to the processing of cases.

Figure 1 shows two WF-nets modeling the process “Handling of incoming
order”. Both process descriptions cover the ordering of a product which involves
two departments: the accounting department handling the payment and the sales
department handling the distribution.

In Figure 1a) the distributed organizational assignment is visible. The process
starts by splitting the control-flow into two threads (AND_process_order), where
the right one models the tasks of the accountancy and the left one models the
tasks of the sales.

In accounting the customer’s credit-worthiness is checked first (c.f. transition
check_credit). The result of this task is either ok or not_ok. In case the result is
positive the payment is arranged (arrange_payment), otherwise the instance is
canceled and the customer is notified (notify_customer). On the sales side the
order is recorded (record-order) and then either assembled (pick), wrapped
(wrap), and delivered (deliver); or else canceled (cancel).

The threads of the two parallel departments are joined again in the transi-
tions AND_cancel and AND_accept. The process “Handling of incoming order” is
completed by archiving information on that instance (archive).

The WF-net in Figure 1b) describes the behavior of the same business process
in a slightly different manner. The assignment of tasks to organizational units is
neglected here. The tasks are ordered such that the net is well-structured instead
(details see below). The two model variants are used in the following to show the
differences and advantages between relaxed soundness and well-structuredness.
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Fig. 1. WF-nets for process “Handling of incoming order”

3 Basic properties of workflow models

This section recalls and compares some properties of process descriptions.

3.1 Soundness

In [Aal98] soundness was introduced as a correctness criterion for WF-nets. A
WPF-net is sound if all its firing sequences are sound. A firing sequence is sound if
it can terminate properly, which means that eventually there is a token in place
o and at that moment there are no other tokens left in the net. Soundness of a
WF-net excludes dead transitions, deadlocks and livelocks.



The WF-net in Figure 1b) is sound, while the one in Figure 1a) is not. This
is caused by firing sequences that do not terminate properly in the left model,

e.g.

— AND_process_order, record_order, pick, wrap, deliver,
check credit, not_ok, notify_customer.

In this firing sequence the case deadlocked having tokens in place p9 and p10.

It is clear that a WF-net which shall be used as input for a WIMS must
be sound. Serving as a scheduling basis, soundness of the workflow definition
is necessary to guarantee a smooth processing of the supported business pro-
cess at runtime. Things are different for the modeling phase of a workflow,
because it is not obvious for a modeler to see whether a complex workflow
model is sound or not. To support the domain experts in formalizing their busi-
ness processes, different properties are therefore required. In the literature well-
structuredness [Aal98, LSWI8 MROO0] and relazed soundness [DRO1] have been
considered helpful.

‘Well-structuredness

A WF-net is well-structured?, if every split is complemented by a corresponding
join. In terms of Petri-net theory this property is characterized by the absence of
handles* [ES90]. Note that the WF-net in Figure 1b) is well-structured, whereas
the other WF-net is not. An example for a handle is the place-transition pair
(AND_process_order, pl12).

Well-structuredness is a structural property, whose validity can be easily
reviewed. This and the close relationship to soundness® motivated its use as a
requirement during workflow modeling. There are however sound WF-nets which
are not well-structured. These WF-nets would be disregarded although suitable
for the use within WfMSs. This shortcoming of well-structuredness was also
addressed in [CWBHT'03]. Providing refinement rules for the generation of sound
WF-nets the authors propose some conditions under which well-structuredness
can be relaxed while keeping soundness.

There are other disadvantages imposed by well-structuredness. Modeling in
a well-structured manner requires a deep insight into the whole process. The
tasks of the process must all be organized in well-structured blocks which may
be combined again only in a well-structured manner. Such a hierarchical design
ignores the organizational assignment of tasks and therefore requires overview of
the whole process. This can hardly be assumed if the process to be described is
spanning different organizational units of the company, involving various mod-
elers. A further disadvantage is that the modeler might be forced to implement

3 In the context of Event-driven Process Chains the terms hierarchical modeling and
well-formedness [LSW98 MR00] were used synonymously.

4 A handle is a pair of two different nodes (a place and a transition) that are connected
via two elementary paths sharing only these two nodes.

® A well-structured net is structurally bound and structurally life [ES90]. Liveness and
boundedness of a WF-net imply soundness.



efficiency aspects at an early design state. The modeler might be restricted by
imposing well-structuredness in a way that induces him/her into coming up with
process descriptions such as the WF-net from Figure 1b). Determined through
the ordering, the tasks of the sales can only start after the customer check of
the accountancy was performed. Parallel execution of sales and accountancy
is then restricted. Last but not least, redundancy was introduced. Some tasks
(AND_process_order and record_order) had to be represented by multiple tran-
sitions.

Relaxed soundness

An alternative property was introduced with relaxed soundness [DRO1]. This
property has been adapted from soundness with the intention to represent a more
pragmatic view of correctness. It is weaker (in a formal sense) than soundness
and therefore easier to accomplish.

Modeling business processes domain experts record the tasks and their or-
der as they observe them to happen (or as they wish them to happen). This
means they gather the desired behavior. Domain experts are no Petri net spe-
cialists. It may therefore happen that they overlook side effects of their model,
i.e. firing sequences that do not express desired behavior. Relaxed soundness
reflects this process understanding as it requires only that all relevant behavior
is described correctly. It does neither forbid situations with residual tokens nor
livelocks/deadlocks. A relaxed sound WF-net should be interpreted as follows:
it specifies all business processes in terms of sequences of tasks for which a fir-
ing sequence from the initial state ¢ to the final state o exists such that the
transitions for these tasks occur in the order of a sound firing sequence.

Whereas in a sound WF-net all firing sequences are sound, relaxed soundness
only requires that there are so many sound firing sequences that each transition
is contained in one of them. A relaxed sound WF-net may have other firing
sequences which do not terminate properly, e.g. by a deadlock or with tokens
left in the net.

The process specification shown in Figure 1a) is relaxed sound. The following
sound firing sequences contain all transitions:

— AND_process_order, record_order, pick, wrap, check._credit, ok,
deliver, arrange_payment, AND_accept, archive,

— AND_process_order, check_credit, not_ok, notify_customer,
record_order, cancel, AND_cancel, archive,

This definition still leaves room for ambiguities since it does not demand the
precision of workflow definitions as they are required for their execution within
a WIMS. Compared to well-structuredness, relaxed soundness does not make
any assumptions on the structure of the WF-net. A relaxed sound WF-net may
contain cycles and/or choices that do not satisfy the free-choice property. In
contrast to soundness, it does not require all firing sequences to be sound, but
only requires all tasks to be covered by at least one sound firing sequence.



Tests checking relaxed soundness have been implemented within Petri net
tools such as LoLA [Sch99] (Low Level Petri Net Analyzer) and Woflan [VBAO1].
Both algorithms parse the reachability graph, to decide whether a given WF-
system is relaxed sound or not. To guarantee termination, the WF-systems must
have been checked for boundedness before. This is a drawback of the proposed
approach, as this requires the construction of the coverability graph, with a
theoretical worst-case complexity of non-primitive recursive space [EN94].

4 Synthesis of sound WF-nets

We already stated that a process description which will be used as input for a
WIMS must be sound. This corresponds to the requirement that supporting a
business process at run-time, any faulty execution should be precluded. We will
now describe how a relaxed sound WF-net can be made sound. The proposed
transformation is automated.

Making a relaxed sound WF-net sound means to restrict the set of all possible
firing sequences to a subset of sound ones. Looking at the reachability graph RG
of the relaxed sound WF-net, this comes down to finding a WF-net with a
behavior equal to a sound subgraph of RG. Naturally it would be nice not to
generate a new net, but to change the primary WF-net such that it implements
the restricted behavior. Both the generation of a new WF-net as well as the
change of the primary WF-net are feasible methods.

The first possible approach uses methods from Petri net synthesis [CKLY98].
Based on a subgraph of the reachability graph containing only sound firing se-
quences, a WF-net is synthesized. The behavior of the synthesized net is isomor-
phic to the sound subgraph. A disadvantage of this method is that the derived
WF-net does not necessarily look like the primary WF-net. As the net is gen-
erated on the basis of the reachability graph, information such as place names,
layout, and ordering of transitions are ignored. The new net therefore only co-
incides with the primary WF-net in the names of the transitions.

We therefore favor a different method, which applies methods from Petri
net controller synthesis. The idea is to compute and introduce places that su-
pervise or control the behavior of the Petri net. These places, called controller
places [YMLA96] or monitors [GDS92], avoid entering a set of forbidden states®.
The information needed for their computation can be gained in various ways, e.g.
from place invariants [YMLA96], general mutual exclusion conditions (GMECs)
[GDS92], or sets of forbidden markings [GRX03]. Because the original net is
kept and enhanced with additional elements, the resulting net will be easily
recognized by the modelers.

6 An additional place can only restrict the behavior because the place can block tran-
sitions but it cannot enable transitions which are not enabled in the net without the
place.



4.1 Applying Petri net controller synthesis for workflow modeling

We favor the computation of the controller places based on a set of forbidden
markings [GRXO03], because the prerequisites (set of forbidden markings, state
transitions to be prevented) can be directly mapped to our approach. Starting
from a sound subgraph, the forbidden markings correspond to all states that
are beyond the sound subgraph. State transitions to be prevented correspond to
state transitions leaving the sound subgraph. For every one of these instances
an equation system is established which is used to compute a controller place
inhibiting this forbidden state transition. The equation system consists of three
equations: 1) the event separation condition — an equation which in terms of the
incidence matrix describes the interdiction of the corresponding state transition
— 2) the marking equation lemma, and 3) the general property of T-invariants”.
All three equations should hold in the resulting net. The first represents the new
requirements: state transitions leaving the subgraph become disabled. The latter
two represent the behavior described by the sound subgraph, which should be
maintained independently from the introduction of new places.

The equation systems of different instances may have common solutions. As
a result, the number of needed controller places is generally much smaller than
the number of forbidden state transitions. The set of controller places together
with the associated arcs determine, what was called the synchronization pattern.
Adding the pattern to the primary WF-net a new WF-net is generated, that
supports a subset of the primary behavior.

i WF-system: (PN,i)

O O
m—

WF-system: (PN,i)

O

(a) Relaxed sound

process description (d) Computed (e) Sound

- f synchronization process description
A pattern

(b) Reachability

graph RG(py,) (c) Subgraph SG C RG(PN,i)

and set of forbidden
state transitions

Fig. 2. Applying controller synthesis for workflow modeling.

Figure 2 illustrates the application of controller synthesis to workflow mod-
eling.

Applying either one of the synthesis methods, all firing sequences supported
by the resulting net are sound, as they are covered by a sound subgraph. More-
over, the calculated net again satisfies the properties of a WF-net: from the
construction it can be concluded that it is strongly connected, having one source
and one sink place [DvdA04].

" A (short-circuited) relaxed sound WF-net is covered with T-invariants [Deh03].



Still, the subgraph given by assembling all sound sequences does not nec-
essarily provide a reasonable base for the computation of the sound WF-net.
Remember that the resulting WF-net does not support state transitions leaving
the sound subgraph. Corresponding transitions of the resulting WF-net become
disabled in markings, where they could fire in the primary net. In the following
we will argue that prevention from firing is only reasonable if the task, modeled
by the affected transition, represents controllable behavior.

4.2 WPF-systems are reactive systems

We consider a WF-system to be a reactive system [Deh02]. They run in parallel
with their environment, respond to inputs from the environment and produce
output events which in turn influence the environment.

The interaction with the environment takes place via incoming external
events or via the evaluation of external information. The reactive system has
to respond to external events and to incorporate the possible outcomes of the
information evaluation.

An external event could be an incoming query, an acknowledgment from a
customer, a message from another company, information from a business partner,
or just a timeout. Examples for the evaluation of external information are ques-
tions about available capacities, the check for credit-worthiness of a customer,
and the identity check of a co-operating partner.

Reflecting the interaction with the environment, we distinguish controllable
and non-controllable tasks. In the process description this is reflected in a cor-
responding classification of the transitions. Controllable transitions model inter-
nal tasks, i.e. tasks whose execution is covered by the local workflow control. In
contrast to that, non-controllable transitions represent the behavior of the envi-
ronment. Their firing cannot be forced by the local workflow control but depend
either on the evaluation of external data or on an incoming external event.

Throughout this paper we represent non-controllable transitions by gray
boxes. We assume that non-controllable transitions are free-choice and do not
conflict with controllable transitions. This reflects the fact that the behavior
of the environment cannot become disabled through the local control. In the
remainder we will consider only WF-nets which satisfy these restrictions.

4.3 Impact of controllability upon the generation of sound WF-nets

Applying methods from Petri net (Controller) Synthesis, the resulting WF-net
does not support state transitions leaving the sound subgraph. Corresponding
transitions of the resulting WF-net become disabled in markings, where they
could fire in the original net. It is obvious that the state transitions to be pre-
vented must not reflect uncontrollable behavior, as this would exceed the capa-
bilities of the local workflow control.

Consider the sound subgraph in Figure 3a). It contains all sound firing se-
quences of the WF-net “Handling an incoming order”, which are highlighted
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Fig. 3. Reachability graph with highlighted sound subgraph a) robust subgraph b)

in the figure. Enforcement of this desired behavior is not possible, as there are
non-controllable state transitions (depicted by a bow) leaving the subgraph.
The corresponding transitions (ok and not_ok) reflect the outcome of a decision
based on an evaluation of external data, and is not left to the discretion of a
local workflow control.

Consequently, the subgraph must be restricted furthermore until all state
transitions leaving the subgraph reflect controllable, and therefore preventable,
behavior.

Such a subgraph exists if the WF-net is not only relaxed sound but also
non-controllable choice robust (short: robust). This criterion provides a means
to describe robustness of a WF-system against all possible requests from the
environment. A WF-system is robust if 1) there is a sound subgraph of the
reachability graph which starting in ¢ ends in o, 2) contains at least one t-labeled
state transition for any non-controllable transitions, and 3) has only controllable
state transitions leading out of the subgraph.

Assuming progress for non-controllable transitions, the existence of such a
subgraph guarantees that it is possible to terminate properly independent from
the influence of the environment. While all non-controllable transitions are cov-
ered by the subgraph, there is always a way to react and to terminate properly.
Hence, if a WF-system is robust, the workflow controller can guarantee proper
termination independently from all possible influences of the environment.

The robustness criterion together with an algorithm constructing the maxi-
mal robust fragment were introduced in [Deh02]. The algorithm decides whether
a given bounded WF-system is robust, and if so, returns the maximum robust
subgraph SG = (SG_Nodes, SG_Edges) of the system’s reachability graph RG.



Initialization:
SG_Nodes := Pred(o, RG);
SG_Edges := all edges of RG that connect nodes in SG_nodes;
Illegal_states:= nodes in SG_Nodes from where
non-controllable state transitions leave the subgraph SG;

Body:
while Illegal states # 0 do
SG_Nodes:= SG_Nodes \ Illegal_states;
SG_Edges:= edges of RG that connect nodes in SG_nodes;
(* cut illegal states and state transitions *)
SG_Nodes:= Succ(z, SG) N Pred(o, SG);
SG_Edges:= edges of RG that connect nodes in SG_nodes;
(* recompute strongly connected component *)
Illegal_states:= nodes in SG_Nodes from where
non-controllable state transitions leave the subgraph SG;
(* recompute current set of illegal states *)
od

Test and output
if all non-controllable transitions are represented in the robust subgraph
then print (The WF-system is robust); return SG:=(SG_Nodes,SG_Edges);
else print (The WF-system is not robust);
return not covered non-controllable transitions;

fi

Fig. 4. Robustness algorithm

The algorithm otherwise aborts with the result "not robust”, displaying the set
of non-controllable transitions which may inhibit proper termination. Figure 4
shows an improved variant of the algorithm using an informal notation. Sets fre-
quently used in the algorithm are the sets of all direct and indirect predecessors
Pred(n,G) (successors Succ(n,G)) of a node n within a graph G. These sets
contain all nodes that lie on any path that lead to (start at) this node.

The algorithm mainly works as follows. It initially marks all states that po-
tentially belong to the desired fragment and then progressively removes mistaken
candidates. Potential states are all lying on a path from state ¢ to state o. Illegal
states are states from where non-controllable state transitions leave the frag-
ment. The algorithm stops if the iteration of this procedure does not identify
any more illegal states.

An algorithm similar to the presented one has been introduced in the context
of manufacturing systems recently [GRX03]. This algorithm computes a max-
imally permissive behavior, starting from a reachability graph and avoiding a
set of forbidden states. Our algorithm differs in the computation of the strongly
connected component, because the existence of ¢ and o states in a WF-net can be



exploited. In our algorithm an additional robustness check is performed on the
resulting subnet, requiring that all non-controllable transitions are covered. This
guarantees that none of the possible behavior of the environment is neglected.
In [GRX03] it is proved that the algorithm is of polynomial complexity in the
number of states of the reachability graph. The complexity of our algorithm
is the same because the additional robustness check is only polynomial in the
number of transitions.

The application of the algorithm shows that the example WF-net “Handling
an incoming order” is robust. The resulting subgraph is shown in Figure 3b).
Thereby the WF-net reflects a set of accepted (sound) executions which can be
enforced independently from the moves of the environment. Applying the Petri
net controller synthesis algorithm to the robust subgraph, two controller places
Pcl and Pc2 are computed. Adding the places and corresponding arcs to the
original WF-net, the process description shown in Figure 5 is derived.

AND_
process_

Fig.5. Sound WF-net “Handling an incoming order” with controller places



The resulting WF-net is per construction sound. Using the enhanced process
description as a workflow specification, i.e. as input for a WIMS, it can now be
guaranteed that only sound executions will occur.

5 Interactive process improvement

Implementing the robust subgraph, the set of sound firing sequences has been
restricted. This is done to avoid executions which are not sound, but could
otherwise not be prevented due to the behavior of the environment.

Consider again the relaxed sound process description of the example “Han-
dling of incoming order” (Figure 1a)). The firing sequence

— AND_process_order, record_order, pick, wrap, check._credit, ok,
deliver, arrange payment, AND_accept, archive.

is sound but became forbidden in the enhanced process description. The reason
can be found in the non-controllable outcome of the check for credit-worthiness,
which represents a choice of the environment.

Before using the enhanced process description as input for a WfMS, the
restrictions with respect to the original specification should be communicated to
the modeler. As the whole set of sound firing sequences were specified, she should
approve the reduced set of accepted executions. The evaluation could either be
done based on the revised, sound WF-net or on the reachability graph.

Approval based on the revised WF-net This method could be used if the
sound WF-net was computed applying the Petri net controller synthesis
method. Only then it can be assumed that there is a high similarity between
the primary and the resulting process description. Looking at the introduced
places the modeler has to evaluate whether the thereby introduced synchro-
nization is acceptable to be supported at run-time.

Approval based on the reachability graph Looking at the difference be-

tween the relaxed sound subgraph and the robust subgraph, all those firing
sequences are described which have been specified in the primary relaxed
sound WF-net, but will not be supported in the resulting sound WF-net.
The domain expert should decide whether it is acceptable to disregard these
executions at run-time.
The idea to use the reachability graph as supplementary interface to the
domain experts was introduced in [AdMO00] first. The authors propose to
use both the Petri net and the corresponding reachability graph as interface
to the modeler and to use the basic synthesis algorithm [NRT92] to transfer
between both descriptions. Adequate for their modeling approach is the Petri
net class of Elementary Net Systems. In contrast to our approach all process
models are assumed to be acyclic, free-choice and sound. Interaction with
the environment is not considered.

Both methods point at executions which might have been considered useful
originally, but were eliminated to make the model sound. However, these disre-
garded executions might express desirable behavior. If so, the process description
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Fig. 6. Optimized sound WF-net “Handling of incoming order” with controller places

must be revised. The sound but prevented firing sequences can be enabled, if
some recovery behavior is added. This is necessary if the behavior of the envi-
ronment would lead to deadlocks otherwise. Recovery behavior can be added by
integrating new transitions into the WF-net. By firing of one of these transi-
tions it is possible to escape a former deadlock state — leading to a state where
proper termination is again possible. Clearly, these transitions should only then
be implemented if the corresponding tasks are reversible in reality.

We will consider again our running example. Applying the synthesis method
to the robust fragment from Figure 3b), a pessimistic strategy was implemented.
In favor of avoiding deadlocks only sequentialized executions are supported. In
the derived WF-net (c.f. Figure 5) the customer check is always executed be-
fore the sales department may start the delivery process. All sound executions
covering parallel execution of sales and accountancy have been precluded.

The domain experts may reject this process description. They know that the
customer check and the delivery process both take a long time. Furthermore,
the probability that the customer check is not ok, is very small. Therefore they
want to support the parallel execution of sales department and accountancy. A
more optimistic approach should thus be implemented. The delivery of the order
to the customer should be started already, hoping that the customer check will
be ok. Only in the rare case that the decision not_ok was taken, the order should
be returned to stock and canceled finally.

For the specification of the necessary recovery behavior, we assume that all
tasks within the sales department that occur before the delivery can be reset
without extraordinary charges. This affects tasks pick and wrap. Corresponding
recovery tasks are return and unwrap. After the item has been returned to stock,



the instance should be canceled. Task deliver is considered to be non-reversible.
The revised WF-net is shown in Figure 6 a). Notice that the integrated tasks
only show one possible way of modeling the recovery behavior.

The resulting WF-net is again relaxed sound and robust. The robust sub-
graph is shown in Figure 6b). All sound firing sequences of the initial, relaxed
sound WF-system (c.f. Figure 1a)) are maintained. Some additional, but less ef-
ficient executions are accepted too. Implementing the computed synchronization
pattern results in the sound WF-system shown in Figure 6c).

6 Summary

This paper showed that relaxed soundness as a property for workflow modeling
is better suited than well-structuredness. The gap between the resulting process
description and a sound workflow definition is bridged by an automatic transfor-
mation. Methods from Petri net controller synthesis are adopted for this task.
Thereby, a synchronization pattern is added to the original WF-net, installing
a certain task ordering. Thus only in this second step efficiency aspects become
determined. We showed that the results of the computation point out optimiza-
tion potential. The advantages of the proposed approach are obvious. Modelers,
normally domain experts, are not required to possess highly developed modeling
skills and are relieved of thinking about efficiency aspects during the modeling.
Moreover, the concept of task controllability is transferred to the domain of
workflow modeling. This is a necessary prerequisite for the application of con-
troller synthesis, and enables the description and analysis of workflow systems
as reactive systems.
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