
Towards Correct Distributed Simulation of
High-Level Petri Nets with Fine-Grained

Partitioning

Michael Knoke, Felix Kühling, Armin Zimmermann, and Günter Hommel

Technische Universität Berlin
Real-Time Systems and Robotics

Einsteinufer 17, 10587 Berlin, Germany
knoke@cs.tu-berlin.de

Abstract. Powerful grid and cluster computers allow efficient distrib-
uted simulation. Optimistic simulation techniques have been developed
which allow for more parallelism in the local simulations than conserva-
tive methods. However, they may require costly rollbacks in simulation
time due to dependencies between model parts that cause violations of
global causality. Different notions of time have been proposed to detect
and remedy these situations. Logical time (or Lamport time) is used
in many present-day distributed simulation algorithms. However, high-
level colored Petri nets may contain global activity priorities, vanishing
states, and global state dependencies. Thus virtual time is not sufficient
to maintain the global chronological order of events for the optimistic
simulation of this model class. The paper presents a new approach that
guarantees a correct ordering of global states in a distributed Petri net
simulation. A priority-enhanced vector time algorithm is used to detect
causal dependencies.

1 Introduction

Stochastic Petri nets (PN) have been widely used for modeling the behavior
of systems where synchronization of processes is crucial [1]. They provide a
graphical representation and are able to represent discrete events as well as
(stochastic) timing. Our simulation framework uses a variant of colored Petri
nets (CPN) [2].

Real world systems consist of parts widely showing autonomous behavior but
cooperating or communicating occasionally. This inherent concurrency and re-
quired synchronization can be modeled adequately using PNs. Distributed Petri
net simulation (DPNS) can exploit this inherent parallelism efficiently using grid-
and cluster computers. Hence, a partitioning algorithm is required that decom-
poses the model such that heavily communicating elements are not split. Each
decomposed PN submodel is assigned to a logical process (LP) that is performing
the simulation on a physical processor. A logical clock that denotes how far the
simulation has progressed is assigned to a LP as well. LPs communicate using
timestamped messages [3].



There has been significant work in the area of distributed simulation of PNs
in the past few years. Almost all proposed algorithms assume a virtual time
with an arbitrary high resolution to eliminate isochronous events. Some model
specific activities can also cause events with the same virtual time, even for an
assumed infinite resolution of time. Some of the activities in high-level PNs are:

– immediate transitions resulting in state changes without simulation time
progress

– deterministic transitions that have a deterministic delay for state changes
– time guard functions which trigger state changes at a certain point in time

These properties of high-level PNs are either not allowed or adequately distrib-
uted to LPs, so that they are sequentially processed. Nicol and Mao [4] have
contributed one of the most complete publications on distributed simulation of
PNs, showing this limitation in each presented algorithm. It is obvious that in
these cases the event ordering is simple and most research is focused on prefer-
ably good partitioning algorithms and early rollback detection. PN models for
real world systems, such as detailed workflow modeling, may contain more than
50 percent timeless or deterministic activities.

A basic problem of distributed simulation is to avoid causality errors. Cor-
rectness of simulation can only be ensured if the (total) event ordering as pro-
duced by a sequential simulation is consistent with the (partial) event ordering
due to distributed execution. Indeed, Jefferson [5] recognized this problem to be
the inverse of Lamport’s logical clock problem [6], i.e. providing clock values for
events occurring in a distributed system such that all events appear ordered in
logical time.

Lamport’s algorithm allows to maintain time ordering among events [7]. How-
ever, a mapping from Lamport time to real time is not possible. Furthermore
it is not sufficient to characterize causal relationships between events. But the
detection of causal relationships between events is indispensable for transition
priorities. Otherwise it is not possible to sort concurrent and independently fired
events whose occurrence is based on a different priority. The Lamport time would
impose an artificial order independent of their priority.

A logical time that characterizes causality and can be used to remedy last
named problems is the vector time (VT) proposed by Mattern [8] and Fidge [9].
The causal relationships between events can be determined from their corre-
sponding VT values. VT allows to detect indirect dependencies, that means
comparing two VTs of different events provides information whether these events
are causally dependent and if so, which event depends on which one. This has
the following advantages in the context of DPNS:

– concurrent events can be identified and sorted by their priorities
– a very fine-grained model partitioning allowing deterministic and zero-firing

times for output transitions of LPs is possible
– precise recovery of local LP states based on external events
– no need to solve equal Lamport time stamps



Many different high-level colored PN model classes, our class as well, allow
different priorities for immediate transitions. That means if two events could be
created at the same simulation time, the higher prioritized event is permitted
first and may disable the second event through its occurrence. An example of
a simple PN model is presented in Fig. 1. Transitions Order and SendPart are
concurrently enabled and have different priorities, so that Order is processed
first because of its higher priority. A sequential simulation is simple but a dis-
tributed simulation where both transitions fire optimistically, requires an order
of execution.

Products Order OrderQueue

Delivery
[1]

<Parts> <Parts>

Prio=2

Prio=1

SpareParts DeliveredSendPart
<Parts>

<Parts>

<Parts>
#Products > 1

<Parts>

Fig. 1. Example of a high-level colored Petri net model

To the best of the authors knowledge this paper presents the first time a
new logical time scheme for high-level PNs which has significant advantages for
partitioning without any structural limitations. It offers correctness for isochro-
nous events and is applicable for all types of PNs, even for timeless PNs. Our
extensions to the logical time fulfil today’s requirements for flexibility and max-
imum scalability for typical real world PN models. It is not the intention of this
paper to compare performance measures with any of the numerous Time Warp
variations for distributed simulation of PNs. Optimistic simulation of high-level
PNs is, in contrast to PDES, heavily dependent on the abilities of the underlying
net class. It’s always possible to design PN models perfectly fitting to a given
distributed simulation algorithm. Our objective in this paper is to show new al-
gorithms for partitioning and distributed event processing based on a new logical
time scheme that opens new possibilities for DPNS performance optimization.

The paper first presents our new partitioning approach in Sect. 2. The sub-
sequent Sect. 3 introduces a logical time scheme for prioritized globally ordered
states. Some information about successfully completed test scenarios are shortly
presented in Sect. 4 and finally concluding remarks are given in Sect. 5.

2 A New Partitioning Approach

Based on the correct implementation of causal dependencies that is described
later in Sect. 3, the following scheme of an event-driven distributed simulation



for high-level colored PNs was developed. Rollbacks can be performed more
precisely and the flexibility of the partitioning is higher in particular if prioritized
transitions and isochronous states are used in the model.

The simulation is composed of N sequential event driven LPs that do not
share memory and operate asynchronously in parallel. Unlike in other optimistic
DPNS algorithms (e.g. introduced in [10]), an atomic unit (AU) is defined as
the smallest indivisible part of the model, whereas a LP consists of one or more
of these AUs. The basic architecture and formalism of the LPs and AUs used in
this paper is:

– The smallest indivisible part of the model is an atomic unit AU .
– A transition Ti is inseparably linked with all of its input places •Ti and

constitutes an atomic unit AU . This can lead to situations where more than
one transition will be assigned to one AU , namely if a place has several
output transitions.

– At least one AU is assigned to every LPi which is running as a process on
one physical node Ni.

– A communication interface attached to the LPs is responsible for the prop-
agation of messages to the remote LPs and to dispatch incoming messages
to local AUs. AUs on the same LP are communicating directly to avoid
additional message overhead.

– Each LPi, AUj has access only to a partitioned subset of the state variables
SP,i ⊂ S and SU,j ⊂ SP,i, disjoint to state variables assigned to other LPs,
AUs. State variables of LPi are the set of state variables of all local AUs
SP,i =

⋃
SU,j(∀j).

– The simulation of local AUs scheduled within each LP in a way that avoids
local rollbacks.

The three basic items for event-driven DPNS are state variables which denote
the state of the simulation model, an event list that contains pending events, and
a simulation clock which keeps track of the simulation’s progress. All of these
parts have been integrated into the AUs. Only two basic messages are required
for simulation progress of AUs: positive event messages for token transfers and
negative event messages to perform a rollback to an earlier simulation time.

A fine-grained partitioning and a discrete storage of processed states have
a bunch of advantages for DPNS. First of all, in contrast to existing DPNS
algorithms, e.g. described by Chiola and Ferscha [11], a rollback of complete
LPs will not happen. Each AU has it’s own virtual simulation time and stores
its state for each local event independently from other AUs. This characteristic
is essential for migration to other LPs at runtime. AUs can restore their state
accurately for a given simulation time and send rollback messages to other AUs
if they are affected by this rollback. Thus, rollbacks are much more precise and
unnecessary rollbacks are prevented if independent AUs are simulated by a single
LP. Memory consumption is lower than the classical LP approach because rarely
executing AUs don’t need to save their states until their own net activity.

Very important for collecting the result measures is the discrete storage of
processed states. This storage mechanism allows to revert exactly to a given



logical time without needing to resimulate already simulated sequences. In case
of a rollback the last valid state is found with absolut precision. The disadvantage
of a higher memory consumption is compensated by the much smaller size of
AUs.

3 A Logical Time Scheme for Prioritized High-Level
Distributed PN Simulation

In this section a logical time scheme for DPNS is presented and studied in detail.
As per description in Sect. 1 it is essential for a correct ordering of states if model
characteristics allows prioritized transitions and isochronous concurrent states.
A distributed simulation is correct if its simulation results match the results of a
traditional, single process simulator. Such sequential simulations are processing
events in the order that takes the simulation time and the event priority into
account. As a consequence we can conclude that a DPNS is correct if each AU
is processing events in the traditional sequential manner and if incoming events
are sorted exactly as they would be generated by a single process simulator. The
following section presents an expanded logical time to fulfill these demands.

3.1 Event Priorities

For PN simulations on a single processor it is sufficient to have one global sim-
ulation time with an arbitrarily low resolution. All activities are running in
succession and are responsible for the time increment. The simulated order of
events is identical to the order in which they are simulated. Conflicts of concur-
rent activities are resolved by priorities or by random selection.

Immediate transitions have a priority greater than 0 and timed transitions
have an implicit priority of 0. These priority values must be valid across AU bor-
ders, that means if transitions on different AUs are concurrently firing isochro-
nously, the corresponding events must be ordered by their priority. Among iden-
tically enabled transitions one is chosen to fire first non-deterministically. For
distributed simulation this approach is nonapplicable because of consistency rea-
sons. Independent random generators on the AUs cannot guarantee the same
ordering. Therefore we have decided to define a new global event priority (GEP)
that includes the AU number into the priority value to determine an explicit
relation for two equal event priorities. GEP is calculated as follows:

GEP = PE ∗NAU + iAU PE : event priority
NAU : AU count
iAU : current AU no.

(1)

GEP forces the same global event ordering for concurrent events with differ-
ent event priorities as a sequential simulation, but events with the same priority
are ordered by the AU number in which they are created. A random selection of



equal prioritized concurrently enabled transitions is non-applicable for DPNS.
It forces a synchronization of model parts which acting completely autonomous.
We have decided to accept this limitation because some people identify this
problem as a modeling mistake.

Calculating the event priority PE from the transition priority is nontrivial.
The following order would be achieved by a sequential simulation of the model
in Fig. 2: T2 → T4 → T1 → T3. T0 is firing first and afterwards T1 and T2 are
simultaneously enabled but T2 fires because of its higher priority. Now, without
any simulation time elapsed, T1 and T4 are in conflict and T4 fires. Subsequently
T1 and T3 fire in succession without taking the priority values into account. This
example looks simple but it is observable that in case of a distributed simulation
the firing order requires global knowledge.

T3

T4

T5T0

T2P2

P1 P3

P4

P5

T1

AU0
AU2

AU1

AU4

AU3

AU5

1

2 3

4

Fig. 2. An example for transition priorities

An optimistic distributed simulation doesn’t need to resolve this priority
problem when it appears but at the time when affected tokens are inserted into
a place. This happens if at least two concurrent isochronous tokens must be
ordered according to their priority. If the priority of the last fired transition was
directly used to calculate the GEP it would give the token from path T1 → T3
a higher order of precedence in the event queue because it was last fired from
T3 which has a higher priority than T4.

To get the correct result it is important to create a priority path (herein
after called critical path) from the last common transition or from the last timed
transition. All priorities on each path must be considered for later event or-
dering. It can be shown that the minimum priority Pmin of each path is deci-
sive because the transition with the lowest priority delays the propagation of
an event until no other transition with a higher priority on other paths can
fire. Using the minimum priority on both paths would deliver the correct result
(PminT1,T3 = 1, PminT2,T4 = 2).

An AU-sized vector of the last firing priority of each AU would be needed
for calculating the minimum priority on the critical path. Events within an AU
are always sequentially ordered, so it is not required to store the priorities of all
transitions. This priority vector p(e) has to be assigned to each event e. It is



defined as follows:

p(e)i =





∞ in case that AU i is not on the critical path

otherwise the minimum priority of all preceding events on the
critical path of e in AU i

(2)
To follow the path of AUs that a token has entered and to compute the

minimum priority of this path, it is just required to compute the minimum value
of the priority vector. It is a precondition that all components of this vector
are set to the infinite value on initialization and if a timed transition fires. On
equality of two calculated minimum priorities it is obvious that a specific AU
which is on both paths has randomly defined the order. For n AUs it must been
AU i with i = pmin mod n, as derivable through (1). The order is then explicitly
observable by the corresponding VT component.

Assuming that two concurrently fired isochronous events arrived at AU5 with
(V T ), [PE ]:

E1 := (1, 1, 0, 1, 0, 0), [−, 1,−, 4,−,−]
E2 := (1, 0, 1, 0, 1, 0), [−,−, 2,−, 3,−]

The VT indicates that both tokens are concurrent, but the minimum priority of
E1 is lower than the priority of E2. As a result E1 must be sorted after E2.

3.2 Compound Simulation Time

Distributed PN simulations running on several processors in parallel, require
a logical time to detect causal dependencies and to achieve a global order of
events. Certainly, the simulation progress of the distributed simulation is further
on driven by the simulation clock time which progresses independently on each
AU. PN model specific characteristics and a limited resolution of this time permit
the occurrence of isochronous events. To operate with these events this time is
extended by a sufficient logical time, namely the VT and the GEP introduced in
Sect. 3.1. The compound time is capable of processing these isochronous events
and can detect all causal dependencies. The new logical time is the simulation
time (ST) as defined in (3), with the corresponding ordering relation (4).

ST = (T, V, G)

T : Simulation clock time

V : Vector time

G : Global event priority

(3)

u ≤ v ⇔
(Tu < Tv)∨
((Tu = Tv) ∧ ((Vu < Vv)∨
(Vu ‖ Vv ∧Gu ≥ Gv)))

(4)

Fig. 3. Compound simulation time



3.3 Transitivity of the Relation

A global ordering relation requires transitivity to offer explicit sorting of events.
Relation (4) proposed in the last section is not transitive if it is not using the
priority path for the GEP. An example of a simple Petri net that creates non-
transitive events is shown in Fig. 4. Transitions T1, T2, and T3 create isochro-
nous concurrent events which have to be sorted before merging the corresponding
tokens at place P4.

3

2

1

P4

T1

T2

T3

Fig. 4. Example petri net that can create non-transitive events

Assuming that the following three simulation times S1, S2 and S3 have to be
compared using (4):

S1 = (2004-01-01 00:00:00, [1, 0, 0], 1)
S2 = (2004-01-01 00:00:00, [1, 1, 0], 3) (5)
S3 = (2004-01-01 00:00:00, [0, 0, 1], 2)

All events have the same simulation clock time which is 2004-01-01 00:00:00.
By comparing the VT values it can be observed that S2 is causally dependent
on S1 but S3 is concurrent to S1 and S2. S3 has to be sorted with its priority
value which is 2. The result is S1 ≤ S2 ≤ S3 and due to the transitivity theorem
should follow:

S1 ≤ S2 ≤ S3 ⇒ S1 ≤ S3

In fact it is:
S3 ≤ S1

Events corresponding to the simulation times S1 and S3 are concurrent and
originated from simultaneous and independently activated transitions. The event
with timestamp S3 must be fired first because of the higher priority. S2 is causally
dependent on S1 and must be sorted behind S1 and as a result behind S3 even
though S2 ≤ S3.

Theorem 1. If the correct global event priority (as depicted in Sect. 3.1) is used
then (4) is transitive.



Proof. Consider three events ei with 1 ≤ i ≤ 3 and the corresponding priorities
pi as well as the simulation time stamps Si. We assume that all Si have the
same simulation clock time. Then it is obvious that we have to account for the
causal dependencies, namely the vector times and the priorities. The following
notation is used for the causal dependency:

ei → ej ⇔ ej causally depends on ei

ei ‖ ej ⇔ ei and ej are concurrent.

Only if two events are concurrent their priorities have to be used for sorting.
With this notation and on that condition (4) can be written as follows:

Si ≤ Sj ⇔ ei → ej ∨ (ei ‖ ej ∧ pi ≥ pj) (6)

It is necessary to show that this relation is transitive:

S1 ≤ S2 ∧ S2 ≤ S3 ⇒ S1 ≤ S3 (7)

If the correct GEP is used then it is clear that an event cannot have a higher
priority than the event that it depends on. This constraint can be written as:

ei → ej ⇒ pi ≥ pj (8)

Other helpful relationships directly deduced from (6) are:

ei → ej ⇒ Si ≤ Sj (9)
ei ‖ ej ∧ pi ≥ pj ⇒ Si ≤ Sj (10)
ei ‖ ej ∧ Si ≤ Sj ⇒ pi ≥ pj (11)

Furthermore the transitivity of the causal relationship→ and the sorting relation
for priorities ≤ is assumed.

In order to prove the transitivity it is essential to consider all possibilities to
combine causal relationships and priorities of the three events. Implication (7)
must be valid in all cases. First of all let’s focus on the causal dependencies. The
implication is fulfilled if the right side of the implication is true (e1 → e3) or the
left side is false (e1 ← e2 ∨ e2 ← e3). The following eight cases remain:

1. e1 → e2 ∧ e2 → e3 ∧ e1 ← e3

2. e1 → e2 ∧ e2 → e3 ∧ e1 ‖ e3

3. e1 → e2 ∧ e2 ‖ e3 ∧ e1 ← e3

4. e1 → e2 ∧ e2 ‖ e3 ∧ e1 ‖ e3

5. e1 ‖ e2 ∧ e2 → e3 ∧ e1 ← e3

6. e1 ‖ e2 ∧ e2 → e3 ∧ e1 ‖ e3

7. e1 ‖ e2 ∧ e2 ‖ e3 ∧ e1 ← e3

8. e1 ‖ e2 ∧ e2 ‖ e3 ∧ e1 ‖ e3

The cases 1, 2, 3, and 5 contradict the transitivity of the causality relation
and need not be considered further. In case 8 the events are sorted exclusively
by their priorities whose ordering relation is assumed to be transitive. Only the
cases 4, 6, and 7 remain and needs to be analyzed.

Case 4. We show that the right side of (7) must be true if the left side is true.

e1 → e2 ⇒ p1 ≥ p2

e2 ‖ e3 ∧ S2 ≤ S3 ⇒ p2 ≥ p3

}
⇒ p1 ≥ p3

e1 ‖ e3 ∧ p1 ≥ p3 ⇒ S1 ≤ S3



Case 6. Analogous to case 4.

e1 ‖ e2 ∧ S1 ≤ S2 ⇒ p1 ≥ p2

e2 → e3 ⇒ p2 ≥ p3

}
⇒ p1 ≥ p3

e1 ‖ e3 ∧ p1 ≥ p3 ⇒ S1 ≤ S3

Case 7. The right side of the implication is false. Assuming that the left side is
true the transitivity would be violated. We show that this assumption is incor-
rect.

e1 ‖ e2 ∧ S1 ≤ S2 ⇒ p1 ≥ p2

e2 ‖ e3 ∧ S2 ≤ S3 ⇒ p2 ≥ p3

}
⇒ p1 ≥ p3

e1 ← e3 ⇒ p1 ≤ p3

The outcome of this is p1 = p3. But concurrent events cannot have the same pri-
ority if unambiguous global priorities are used as depicted in Sect. 3.1. From this
it follows that the left side of the implication must not be true. The transitivity
is not violated.

So we can conclude that it is proven that (6) and as a result (4) are transitive.

4 Tests

In the course of our research and development we have designed a lot of models to
verify our implementation of the new logical time scheme. The AU approach al-
lows a truly distributed simulation of simple models to exploit parallelism. These
simple models are not adequate for performance measurements but demonstrate
the correctness of our approach. All experiments have been conducted on a 16
node, dual Intel Xeon processor, Linux cluster with 1 GB memory for each node.
SCI has been used as a high-speed ring-topology-based networking.

T1

P4

P5

P6

P3

P1

P2

P7

T3

T4

1

2 2

1

T2 T5

T6

3

Fig. 5. Example petri net for testing transitivity



Figure 5 shows a modified version of the model in Fig. 4 to test transitivity.
Transition T5 may not fire if correct event ordering is used. Running this model
over a long simulation time with several million events shows that T1 and T6
fire equal times, but never T5.

More complicated models, which have been accrued for different research
projects for global operative business companies, are already successfully tested
but not shown here because of lack of space. Such models are mostly not qualified
for verifying substantial characteristics of the newly developed mechanisms.

5 Conclusion

This paper presented a new mechanism for distributed simulation of high-level
Petri Nets. We introduced the notion of prioritized logical time which allows for
a mapping between simulation clock and logical time. Applied to high-level PNs,
this logical time is sufficient to allow a fine-grained partitioning not possible with
Lamports logical time. It can be viewed as a total ordering scheme for high-level
PN events. The Petri net model is decomposed into atomic units which have
an own virtual time. Plenty of advantages for the distributed simulation arise
from this approach: a better partitioning flexibility, dynamic migration with low
operational expense, and efficient rollbacks.

References

1. Zimmermann, A., Freiheit, J., Huck, A.: A Petri net based design engine for manu-
facturing systems. Int. Journal of Production Research, special issue on Modeling,
Specification and Analysis of Manufacturing Systems 39 (2001) 225–253

2. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1 : Basic Concepts. EATCS Monographs on Theoretical Computer
Science, Springer-Verlag, Germany (1992)

3. Fujimoto, R.: Parallel and distributed discrete event simulation: algorithms and
applications. In: Proceedings of the 1993 Winter Simulation Conference, Los An-
geles, CA, Eds. ACM, New York, 1993 (1993) 106–114

4. Nicol, D.M., Mao, W.: Automated parallelization of timed petri-net simulations.
Journal of Parallel and Distributed Computing 1 (1995)

5. Jefferson, D.: Virtual time. ACM Transactions on Programming Languages and
Systems 7 (1985) 405–425

6. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM 21 (1978) 558–565

7. Zeng, Y., Cai, W., Turner, S.: Causal Order Based Time Warp: A Tradeoff of
Optimism. Proceedings of the 2003 Winter Simulation Conference (2003)

8. Mattern, F.: Virtual Time and Global States of Distributed Systems. Proceedings
Parallel and Distributed Algorithms Conference (1988) 215–226

9. Fidge, C.: Logical Time in Distributed Computing Systems. Computer 24 (1991)
28–33

10. Ferscha, A.: Parallel and Distributed Simulation of Discrete Event Systems.
McGraw-Hill (1995)

11. Chiola, G., Ferscha, A.: Distributed simulation of Petri Nets. IEEE Parallel and
Distributed Technology 1 (1993) 33–50


