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Abstract – The Optimization of Manufacturing Sys-
tems is computationally expensive in most cases. A
meta-heuristic (Simulated Annealing) is considered here
to control the overall optimization process. Stochastic
Petri nets are used for the modelling and evaluation
part. The basic idea is to split the optimization in two
phases. In the first one a “near” optimal parameter
set is quickly computed, which is improved in a second
phase. This strategy has shown its ability to reduce the
computational effort substantially in some cases in pre-
vious papers [10, 11, 12]. Several additional heuristics
are developed in this work which aim at reducing the op-
timization effort even further. In a first improvement,
the results of the approximation phase are analyzed fur-
ther to gain deeper knowledge about the optimization
parameter space. This knowledge is then used to con-
trol the algorithm parameters of the second optimization
phase. The solutions obtained with these new techniques
are comparable to the ones obtained in the original two
phase optimization work, but the computational effort
is reduced by 50 percent on average. In a second ap-
proach a new optimization scheme is proposed, which
can be applied to models for which the fast approxima-
tion technique used in the two-phase approach cannot
be used. This scheme takes advantage of the possibility
of executing parameterized simulations of the Petri Net
models.

Keywords: Manufacturing systems, Modeling, Petri
Nets, Optimization.

1 Introduction
The optimization of Manufacturing Systems is a com-

plex problem to solve and only for a few simple examples
it is possible to obtain good solutions in a reasonable
amount of time. Namely, for realistic models of complex
manufacturing systems, well-known direct optimization
methods can not be used.

We use Petri nets (PNs) as the modeling paradigm
for manufacturing systems. The use of Petri nets allows
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to model systems with intricate interleaving of cooper-
ation and competition, thanks to the ability of nets to
model conflicts and synchronizations. Provided with ap-
propriately interpreted extensions, PNs lead to different
formalisms useful in the different phases of the life-cycle
of the system under design or operation (global mod-
eling, performance evaluation, correctness analysis, im-
plementation, scheduling, monitoring,...), constituting a
formal modeling paradigm [2, 5].

The optimization problems solved here are related to
the design variables of manufacturing systems. For ex-
ample, the number of buffer places or the speed of a cer-
tain machine/AGV are variables that can change dur-
ing the optimization process. These variables can be
real, integers and even logical. The optimization func-
tion typically contains several terms. Some terms are
related to the benefits that the production of a certain
finished product produces. In addition there are other
costs related for example, to the work in process or the
constant costs or the cost corresponding to the invest-
ment in new machines, space in buffers, etc.

The utilization of meta-heuristic optimization tech-
niques, like Genetic Algorithms [6], Simulated Anneal-
ing [1] or Tabu Search [8] for the derivation of solutions
is a promising approach, but requires an underlying
evaluation of performance measures for each considered
parameter set. The main problem of these techniques
appears when the system requires a computationally ex-
pensive evaluation in each optimization step. When the
size of the parameter space is large in addition, the over-
all effort becomes unacceptable.

Throughout this paper the ASA package [7] that
implements the Simulated Annealing method is used,
but the heuristics do not depend on the optimization
method and could easily be adopted for different ones.
The paradigm used for the modelling and evaluation
of the performance measures are stochastic Petri nets.
Evaluation of the different performance measures is
done with the Petri net tool TimeNET [9].

The application examples used here come from the
area of manufacturing systems, but the presented tech-
niques are well applicable to other domains in which
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Petri nets are used. The complexity of the two mod-
els presented in this paper forbids the evaluation with
direct numerical analysis due to the large size of the
state space. Simulation with explicit confidence control
is thus applied to compute the profit function values.

2 Previous Approaches

In a previous work [10], the use of a cache in the
ASA algorithm decreased drastically (to some 15%) the
number of solutions evaluated by the Petri Net software
package. For an additional gain in the computational
effort without losing quality of the solutions, the op-
timization process was then divided in two phases (pre
and fine optimization) [11]. The pre-optimization phase
typically takes only a small portion of the overall compu-
tation time spent. The approximate computation of the
value of the cost (or profit) function for a certain param-
eter set was based on some performance bounds for the
Petri Net model obtained from a set of linear program-
ming problems [3, 4]. The use of the pre-optimization
technique has proven efficient to decrease the computa-
tional effort of the complete optimization process to the
fifth part in many cases [12]. However, there are more
complex examples for which the optimization computa-
tional time to achieve a good quality solution was still
too high. The heuristics presented in this paper try to
cope with some of the problems that remained open in
previous works. The two main issues tackled are:(1) to
reduce the computational effort of the second phase of
the optimization algorithm, and (2) to develop efficient
optimization techniques for models in which the perfor-
mance bounds technique is not applicable.

The two examples proposed here with their Petri Net
models and their respective optimization problems can
be checked in [12]. The first example is an assembly line
with five machines. Three different parts A, B and C
are assembled for one final product. Customer demands
and waiting times are also considered, and one of the
optimisation goals is to find the best production policy
out of three classical manufacturing control strategies
(“push”, “on demand” and “kanban”).

The second example is an FMS where two types of
products A and B have to be produced. Parts of type A
can first be processed by one of two machines. A man-
ual operation and an assembly of an additional part
have to follow, before the product is finished. B-type
parts are first processed by machine 1. Afterwards they
are tested at one manual work place. Parts that have
been correctly processed are transported to the assem-
bly station. After an assembly operation the product is
finished. However, statistically it is known that 5% of
the parts have to be reworked at machine 1, which is
detected at the manual work place.

3 First Approach
The development of alternative strategies for the sec-

ond phase of the optimization process is the key issue of
this section. The need for new reduction of efforts in the
optimization of manufacturing systems is discussed and
two heuristic strategies for this problem are explained.

In previous papers [11, 12], we have shown that using
a pre-optimization phase, the obtained results are good
while the computation time could be reduced substan-
tially. Most of the remaining time is spent in the fine
optimization phase. In the original two phase scheme
the only information transferred between the two phases
is the parameter set for which the best solution was ob-
tained in the pre-optimization phase. The heuristics
that are presented in this paper follow the idea of an-
alyzing the results of the first phase more thoroughly,
in order to adjust the parameters of the second phase
and thus make it faster. We try to reduce the number
of simulation runs necessary during the second phase,
because that is the most important influence. We pro-
pose two different strategies in order to decrease the ef-
fort spent in this fine optimization phase. Nevertheless
as examples show, one must be careful not to restrict
the second phase too much, because then the algorithm
might not be able to come close to the real optimum
(i.e. the quality of the solution will suffer).

The subsequent subsections explain the two strate-
gies for reducing the computational effort. They use a
reduction of the search space according to the quality
of the first-phase solutions as well as smaller temper-
ature parameters of the simulated annealing variables.
In that way information from the first phase is used to
decrease the remaining search space and to come to a
solution faster. The results in terms of the computation
effort and solution quality are given and compared for
all presented techniques in section 5.

3.1 Search Space Reduction Strategy

The method consists in analyzing the “most promis-
ing” solutions during the first optimization phase. Pa-
rameter sets are considered promising if their corre-
sponding profit value differs from the best one only by
a certain relative percentage that will vary from 5 to
50 percent. The algorithm starts after the first phase
has been finished and uses a constant AccPerc, which
defines the acceptance interval. Every solution visited
in the first phase is analyzed and if the value of the
profit is in the acceptance interval we consider this so-
lution as “accepted”. For every parameter the maxi-
mum and minimum values contained in the accepted
set are computed. The search space of the second opti-
mization phase is then reduced to parameter sets that
lie within this new maximum/minimum domain. This
search space is an n-dimensional parallelepiped.

The AccPerc values considered here for the two ex-
amples are 5, 10, 20, 30 and 50 percent. The method is
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Parameter 1 Parameter 2 Parameter 3 Parameter 4
Min Max Min Max Min Max Min Max

In. (100%) 1 10 1 10 1 9 1 3
50% 1 10 1 10 1 1 1 3
30% 1 9 1 10 1 1 1 3
20% 1 9 1 10 1 1 1 3
10% 1 9 1 10 1 1 1 2
5% 1 9 1 10 1 1 2 2            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 1: Search Space Reduction Strategy and Gain Percentage for the Assembly System – Example 1 in [12]

less restrictive for bigger values.
In Figure 1, the results obtained using the search

space reduction method for the assembly system exam-
ple [12] are shown. The upper table shows the maxi-
mum and minimum values of the parameters included
in the optimization problem. The graphic shown in the
second part of the figure demonstrates that this method
reduces the search space in the second phase by an order
of magnitude or even more. It is also observed that the
first two variables (buffer places in the Petri Net model)
are not so sensible to changes in the profit value while
the other two variables (machine and model change vari-
ables) undergo a greater change in the profit value with
their change.

Figure 2 shows similar results to the ones obtained
for the first example. This second one shows also that
the reduction has good behavior but not as good as in
the first one.

3.2 Parameter Temperature Reduction
Strategy

The idea behind the second scheme is based on the
search space regions that have been visited during the
first phase. It tries to extract information from the path
that the optimizer took during the first phase.

With this information, the second phase is acceler-
ated by reducing the temperature parameters of the op-
timizer. These temperatures are chosen in relation to
the coefficient of variation (CV) of every variable in-
cluded in the optimization problem. Because the coef-
ficient indicates how disperse the data are, a low CV
for a variable means that this variable can have a lower
temperature to concentrate more on smaller region in
the second phase. Due to this argument the CV is cho-

sen independently for every variable. The reduction is
in this case in the number of simulations computed due
to the acceleration in the ASA optimization process.

In a first heuristic a linear relation between the CV
and the temperature of the corresponding parameter is
considered. A second variant applies a quadratic func-
tion. In the two cases under study the first option results
in higher temperatures if the constant that multiplies
the CV is the same.

Finally, a combination of the two strategies (search
space and temperature reduction) is considered. The
results for the two considered manufacturing system ex-
amples show that while keeping the original solution
quality, the computational effort can be reduced by 50
percent in addition to the previously developed tech-
niques.

Figures 3 and 4 show the results obtained for the two
examples applying the new technique to the first phase
results to obtain the new temperature scheme for the
parameters in the second optimization phase. Later, we
present the results corresponding to the application of
this second phase and the time gain.

The results of Figures 3 and 4 have been obtained con-
sidering all the solutions of the first phase. It is however
possible to restrict that set by only selecting the better
points in a similar manner as previously done in the
search space reduction strategy (c.f. Section 3.1). The
reader can check that the original temperature values
are decreased from the default value, 1. This decreases
the possibility of jumping far from the actual region.
The lower the parameter temperature value is, the lower
the probability of jumping far from the original point
gets.
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Parameter 1 Parameter 2 Parameter 3 Parameter 4
Min Max Min Max Min Max Min Max

In. (100%) 1 4 2 30 0.20 4.00 0.20 4.00
50% 1 4 3 30 0.35 3.97 0.20 4.00
30% 1 4 4 30 0.57 3.97 0.20 4.00
20% 1 4 4 30 0.91 3.97 0.20 4.00
10% 1 4 5 30 1.90 3.95 0.20 0.92
5% 1 2 5 21 2.50 3.90 0.20 0.55            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 2: Search Space Reduction Strategy and Gain Percentage for the FMS in Example 2 in [12]

CVPar1 TempPar1 CVPar2 TempPar2 CVPar3 TempPar3 CVPar4 TempPar4

Initial — 1 — 1 — 1 — 1
Temp 0.81 0.2862 0.59 0.1953 1.07 0.3780 0.32 0.2253
TempQuad 0.81 0.0819 0.59 0.0382 1.07 0.1429 0.32 0.0507            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 3: Variation Coefficient and Temperature for Example 1

CVPar1 TempPar1 CVPar2 TempPar2 CVPar3 TempPar3 CVPar4 TempPar4

Initial — 1 — 1 — 1 — 1
Temp 0.45 0.26 0.66 0.24 0.19 0.03 1.09 0.11
TempQuad 0.45 0.0678 0.66 0.0619 0.19 0.0013 1.09 0.0126            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 4: Variation Coefficient and Temperature for Example 2

4 Second Approach
The second approach presented uses a parameterized

simulation process to decrease the computational effort

of the optimization of any stochastic Petri net. The
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simulation parameter that is controlled for this variable
simulation scheme is the relative error percentage of the
simulation process. The stopping condition of each sim-
ulation run depends on the percentage of error. The
error percentage parameter is changed according to the
optimization algorithm process. The optimization pa-
rameter that guides this simulation parameter change is
the temperature of the Simulated Annealing algorithm.
The idea behind that approach is that during an early
stage of the optimization the profit function value is still
changing a lot, and the exact value of it is much less im-
portant than during the final phase. In the simulated
annealing algorithm, the decreasing temperature is re-
lated to how close to the final area the current param-
eter already is. Different possible equations that relate
the simulation parameter and the temperature of the
simulated annealing algorithm have been considered.

In order to check the possible gain obtained in
the optimization process using this variable simulation
method, different values for the simulation parameters
are considered and applied to the two application exam-
ples. Simulations for these values are run to check the
possible efficiency of this method.

Figure 5 presents results for the two examples and
the values of the relative error ranging between 30 and
1 percent. The first three columns of the table corre-
sponds to the three different models that can be chosen
for Example 1 (one of the optimization variables is the
policy/model applied) while the fourth column corre-
spond to the second example results. The first two rows
include values ranging between 30-10 and 9-5 because
the computational time results were similar for this in-
terval of relative error values. This table shows the gain
in computational time using this new technique. The
reader can observe that the more accurate (lower values
of the relative error) we are the more time consuming
the tasks are. As expected, the simulation time com-
puted in this case is clearly increasing as we decrease
the relative error values, in some cases even by two or-
ders of magnitude. These results also show that due to
the relation established between the simulation parame-
ter and the temperature parameter, in the beginning of
the optimization process the simulations are really fast
and not completely accurate while in the final part of
the optimization process the simulations are slower and
more accurate as it was intended.

5 Results
Now some computational results and profit quality

values are presented to compare previous works with
the heuristics explained in this paper.

Table 1 presents the results for all the experiments
considered here. Columns 2 and 6 (Comp. Time) show
the time gain compared with the basic (two phases ap-
proach, in second row). Positive values of these columns
mean time gain percentage (with respect to the old

values) while negative values mean worse time. Also
columns 3 and 7 show the time effort expressed in hours,
minutes and seconds. Columns 5 and 9 (Profit Value)
show the best profit obtained with the different experi-
ments, while columns 4 and 8 (Result Error) show the
profit loss compared with the old previous approaches.
Positive values of this column mean loss in the quality
of the solution while negative values mean a gain in the
quality of the solution.

The computational effort gain results show the gener-
alized decrease in the computational effort except in the
case of search space reduction strategy method for the
first example, where the time spent during the optimiza-
tion process increases. For the rest of the experiments
the computational gain is substantial. The quality in
the solutions obtained is, in most of the experiments,
good enough to show the advantages of the methods
proposed here. There are only two experiments where
the solution is extremely worse than the best solution
obtained.

The results for the second example are clearly better
than for the first one. Here, 13 of the experiments are
good while the remaining three are reasonably good. In
this example no experiment is having a higher compu-
tational effort than the original two phase method.

6 Conclusions
The use of a combined two phase strategy has been

proven as a good computational improvement for the op-
timization. The effort can be reduced using more infor-
mation from the first phase. The Space Reduction and
Temperature Reduction Strategy reduce this computa-
tional effort while keeping quality of results. Another
method, based on variable simulation runs, is presented
for Petri Net models that do not fulfill the conditions
for the two phase optimization method.

We have checked the validity of the new methods with
two examples from the area of manufacturing systems.
The main advantage of these methods is that most of
the experiments checked have reduced the time effort.
The search space reduction strategy has improved the
quality of the solution except in one case while the Tem-
perature reduction strategy improves the effort always
and the variable simulation approach improves drasti-
cally also the effort without loosing excessively quality.
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