
Performance of a Distributed Simulation of Timed
Colored Petri Nets with Fine-Grained Partitioning

Michael Knoke, Felix Kühling, Armin Zimmermann, Günter Hommel
Technische Universität Berlin

Real–Time Systems and Robotics
Einsteinufer 17, D–10587 Berlin, Germany

{knoke, felixyz, azi, hommel}@cs.tu-berlin.de

Keywords: Distributed simulation, Petri nets, per-
formance

Abstract
Powerful grid and cluster computers allow efficient dis-
tributed simulation. Optimistic simulation techniques
have been developed which allow for more parallelism
in the local simulations than conservative methods.
However, they may require costly rollbacks in simu-
lation time due to dependencies between model parts
that cause violations of global causality. Different no-
tions of time have been proposed to detect and rem-
edy these situations. Logical time (or Lamport time)
is used in many present-day distributed simulation al-
gorithms. However, high-level colored Petri nets may
contain global activity priorities, vanishing states, and
global state dependencies. Thus virtual time is not
sufficient to maintain the global chronological order
of events for the optimistic simulation of this model
class. The paper presents a new approach that guar-
antees a correct ordering of global states in a distrib-
uted Petri net simulation. A priority-enhanced vector
time algorithm is used to detect causal dependencies.
This enables a fine-grained partitioning which is capa-
ble of performing precise rollbacks and helps to detect
global priority conflicts. Some Petri net examples are
used to present performance values. The influences of
structural model characteristics of these examples are
discussed in detail.

1 INTRODUCTION
Stochastic Petri nets (PN) have been widely used for
modeling the behavior of systems where synchroniza-
tion of processes is crucial [1]. They provide a graphi-
cal representation and are able to represent discrete
events as well as (stochastic) timing. Our simula-
tion framework uses a variant of colored Petri nets
(CPN) [2].

Real world systems consist of parts widely show-
ing autonomous behavior but cooperating or commu-
nicating occasionally. This inherent concurrency and

required synchronization can be modeled adequately
using PNs. Distributed Petri net simulation (DPNS)
can exploit this inherent parallelism efficiently using
grid- and cluster computers. Hence, a partitioning al-
gorithm is required that decomposes the model such
that heavily communicating elements are not sepa-
rated. Each decomposed PN submodel is assigned to
a logical process (LP) that performs the simulation on
a physical processor. A logical clock that denotes how
far the simulation has progressed is assigned to each
LP as well. LPs communicate using timestamped mes-
sages [3].

There has been significant work in the area of dis-
tributed simulation of PNs in the past few years. Al-
most all proposed algorithms assume a virtual time
with an arbitrary high resolution to eliminate isochro-
nous events. Some model specific activities can also
cause events with the same virtual time, even for an
assumed infinite resolution of time. Some of the activ-
ities in high-level PNs are:

• immediate transitions resulting in state changes
without virtual simulation time progress

• deterministic transitions that have a deterministic
delay for state changes

• time guard functions which trigger state changes
at a certain point in time

These properties of high-level PNs are either not al-
lowed or limit the distribution to LPs, so that they
must be sequentially processed. Nicol and Mao [4]
have contributed one of the most complete publica-
tions on distributed simulation of PNs, showing this
limitation in each presented algorithm. Today’s most
recent research results as reported by Furfaro et al [5]
or Ya-Li Wu et al [6] doesn’t deal with this problem but
introduce new consolidated findings for Time Warp
based DPNS. It is obvious that in these cases the event
ordering is simple and most research is focused on
preferably good partitioning algorithms, early rollback
detection, and agent based technologies. PN models

for real world systems, such as detailed workflow mod-
eling, may contain more than 50 percent timeless or
deterministic activities.

A basic problem of distributed simulation is to
avoid causality errors. Correctness of simulation can
only be ensured if the (total) event ordering as pro-
duced by a sequential simulation is consistent with the
(partial) event ordering due to distributed execution.
Indeed, Jefferson [7] recognized this problem to be the
inverse of Lamport’s logical clock problem [8], i.e. pro-
viding clock values for events occurring in a distributed
system such that all events appear ordered in logical
time.

Lamport’s algorithm allows to maintain time or-
dering among events [9]. However, a mapping from
Lamport time to real time is not possible. Further-
more it is not sufficient to characterize causal rela-
tionships between events. But the detection of causal
relationships between events is indispensable for tran-
sition priorities. Otherwise it is not possible to sort
concurrent and independently fired events whose oc-
currence is based on a different priority. The Lamport
time would impose an artificial order independent of
their priority.

A logical time that characterizes causality and can
be used to remedy last named problems is the vector
time (VT) proposed by Mattern [10] and Fidge [11].
The causal relationships between events can be deter-
mined from their corresponding VT values. VT allows
to detect indirect dependencies, that means compar-
ing two VTs of different events provides information
on whether these events are causally dependent and if
so, which event depends on which one. This has the
following advantages in the context of DPNS:

• concurrent events can be identified and sorted by
their priorities

• a very fine-grained model partitioning allowing
deterministic and zero-firing times for output
transitions of LPs is possible

• precise recovery of local LP states based on exter-
nal events

• no need to solve equal Lamport time stamps

Many different high-level colored PN model classes,
our class as well, allow different priorities for immedi-
ate transitions. That means if two events could be
generated at the same simulation time, the higher pri-
oritized event is permitted first and may disable the
second event through its occurrence. An example of
a simple PN model is presented in Fig. 1. Transi-
tions Order and SendPart are concurrently enabled
and have different priorities, so that Order is processed
first because of its higher priority. A sequential sim-
ulation is simple but a distributed simulation where

both transitions fire optimistically, requires that the
events are subsequently ordered by their priorities.

Products Order OrderQueue

Delivery
[1]

<Parts> <Parts>

Prio=2

Prio=1

SpareParts DeliveredSendPart
<Parts>

<Parts>

<Parts>
#Products > 1

<Parts>

Figure 1. Example of a high-level colored Petri net
model

The main motivation for our work is to realize a
DPNS that is applicable for business process mod-
els. An arbitrarily low resolution of simulation time
and a high number of prioritized isochronous state
changes are typical characterizations of these mod-
els. Result measures are calculated by a subset of
the global state which can not be identified by cur-
rently available DPNS algorithms. Petri nets, allowing
transition priorities or dependencies on remote states
can not be simulated by Time Warp based mecha-
nisms. This paper presents a new logical time scheme
for high-level PNs which has significant advantages for
partitioning with less structural limitations than pre-
sented in [4]. Basic principles and a proof of correct-
ness for a definite ordering of isochronous events have
been proposed by Knoke et al. [12]. Our extensions
to the logical time fulfill today’s requirements for flex-
ibility and maximum scalability for typical real world
PN models. Some substantial performance measures
for different model characteristics will be shown in this
paper. These examples will not compare performance
measures with any of the numerous Time Warp vari-
ations for distributed simulation of PNs. Optimistic
simulation of high-level PNs is, in contrast to parallel
discrete event simulation (PDES), heavily dependent
on the abilities of the underlying net class. It is always
possible to design PN models perfectly fitting a given
distributed simulation algorithm. Our objective in this
paper is to show and evaluate new algorithms for par-
titioning and distributed event processing based on a
new logical time scheme that opens new possibilities
for DPNS performance optimization.

The paper first presents our new partitioning ap-
proach in Sect. 2. The subsequent Sect. 3 introduces
a logical time scheme for prioritized globally ordered
states. A performance analysis together with a discus-
sion about structural influences is presented in Sect. 4
and finally concluding remarks are given in Sect. 5.

2 A NEW FINE-GRAINED PARTI-
TIONING APPROACH

The simulation is composed of N sequential event
driven LPs that do not share memory and operate
asynchronously in parallel. Unlike in other optimistic
DPNS algorithms (e.g. introduced in [13]), an atomic
unit (AU) is defined as the smallest indivisible part of
the model, whereas a LP consists of one or more of
these AUs. The basic architecture and formalism of
the LPs and AUs used in this paper is:

• The smallest indivisible part of the model is an
atomic unit AU .

• A transition Ti is inseparably linked with all of its
input places •Ti and constitutes an atomic unit
AU . This can lead to situations where more than
one transition will be assigned to one AU , namely
if a place has several output transitions.

• Transitions without input places are constituting
an own AU .

• At least one AU is assigned to every LPi which is
running as a process on one physical node Ni.

• AUs containing a single transition without input
places are assigned to the LP that contains one
of its output places. Otherwise it could generate
events too far in the future and slow down the
simulation.

• A communication interface attached to the LPs is
responsible for the propagation of messages to the
remote LPs and to dispatch incoming messages
to local AUs. AUs on the same LP communicate
directly to avoid additional message overhead.

• Each LPi, AUj has access to a partitioned subset
of the state variables SP,i ⊂ S and SU,j ⊂ SP,i,
disjoint to state variables assigned to other LPs,
AUs. State variables of LPi are the set of state
variables of all local AUs SP,i =

⋃
SU,j(∀j).

• The simulation of local AUs is scheduled within
each LP in a way that avoids local rollbacks.

The three basic items for event-driven DPNS are
state variables which denote the state of the simula-
tion model, an event list that contains pending events,
and a simulation clock which keeps track of the simula-
tion’s progress. All of these parts have been integrated
into the AUs. Only two basic messages are required
for simulation progress of AUs: positive event mes-
sages for token transfers and negative event messages
to perform a rollback to an earlier simulation time.

A fine-grained partitioning and a discrete storage
of processed states have a number of advantages for

DPNS. First of all, in contrast to existing DPNS al-
gorithms, e.g. described by Chiola and Ferscha [14], a
rollback of complete LPs will not happen. Each AU
has it’s own virtual simulation time and stores its state
for each local event independently from other AUs.
This characteristic is essential for migration to other
LPs at runtime which is part of future work. AUs
can restore their state accurately for a given simula-
tion time and send rollback messages to other AUs if
they are affected by this rollback. Thus, rollbacks are
much more precise and unnecessary rollbacks are pre-
vented if independent AUs are simulated by a single
LP. Memory consumption is lower than the classical
LP approach because rarely executing AUs don’t need
to save their states until their own next activity.

Very important for collecting the result measures
is the storage of all processed states. This storage
mechanism allows to revert exactly to a given logical
time without needing to resimulate already simulated
sequences. In case of a rollback the last valid state
is found with absolut precision. The disadvantage of
a higher memory consumption is compensated by the
much smaller size of AUs.

The mapping of AUs to LPs is a key factor for the
performance of the new DPNS, but is part of our cur-
rent work and not shown here. There are much more
possibilities than in currently available Time Warp
partitioning algorithms. We assume a manually chosen
optimal mapping for the example models in Sect. 4.

The amount of storage used for state-saving grows
as the simulation progresses, also referred to as the
"The Limited Memory Dilemma" [13]. Jefferson [7]
observed that at any real time there exits a global vir-
tual time, GVT, such that all saved local states earlier
than GVT are confirmed and will never be annihilated
by a rollback. Thus, result measures can be collected
and written out. After this the storage used for saving
information with timestamps earlier than GVT can be
reclaimed. We are using a GVT algorithm based on
Samadi’s algorithm [15] to calculate the global virtual
time. A central GVT manager (in our case the first
assigned node of the cluster) requests the oldest unac-
knowledged message of each AU, calculates the GVT
and broadcasts the computed value to all AUs such
that they can purge their state queues.

For this fine-grained partitioning a correct imple-
mentation of causal dependencies is indispensable. A
new logical time scheme that fulfills these requirements
is presented in the next section.

3 A LOGICAL TIME SCHEME FOR
PRIORITIZED HIGH-LEVEL DIS-
TRIBUTED PN SIMULATION

In this section a new logical time scheme for DPNS is
presented and studied in detail. As per description in
Sect. 1 it is essential for a correct ordering of states

if model characteristics allows prioritized transitions
and isochronous concurrent states. A distributed sim-
ulation is correct if its simulation results match the
results of a traditional, single process simulator. Such
sequential simulations process events in the order that
takes the simulation time and the event priority into
account. As a consequence we can conclude that a
DPNS is correct if each AU processes events in the
traditional sequential manner and if incoming events
are sorted exactly as they would be generated by a sin-
gle process simulator. The following section presents
an extended logical time to fulfill these demands.

3.1 Event Priorities
For PN simulations on a single processor it is sufficient
to have one simulation clock time with an arbitrarily
low resolution. All activities are performed in succes-
sion and are responsible for the time increment. The
simulated order of events is identical to the order in
which they are simulated. Conflicts of concurrent ac-
tivities are resolved by priorities or by random selec-
tion. Concerning distributed PN simulation, the sim-
ulation clock time can be used to order events if they
are not isochronous. In other cases the VT is used.
If VT detects two concurrent events they are sorted
according to their firing priority.

In a high-level PN, immediate transitions have a
priority greater than 0 and timed transitions have an
implicit priority of 0. These priority values must be
valid across AU borders, that means if transitions on
different AUs are concurrently firing isochronously, the
corresponding events must be ordered by their priority.
Among identically enabled transitions one is chosen to
fire first non-deterministically. For distributed simula-
tion this approach is not applicable because of consis-
tency reasons. Independent random generators on the
AUs cannot guarantee the same ordering. Therefore
we have decided to define a new global event priority
(GEP) that includes the AU number into the priority
value to determine an explicit relation for two equal
event priorities. GEP forces the same global event or-
dering for concurrent events with different event pri-
orities as a sequential simulation, but events with the
same priority are ordered by the AU number in which
they are created. It is calculated as follows:

GEP := PE ∗NAU + iAU PE : event priority

NAU : AU count

iAU : current AU no.
(1)

Calculating the event priority PE from the transi-
tion priority is nontrivial. The following order would
be achieved by a sequential simulation of the model
in Fig. 2: T2 → T4 → T1 → T3. T0 is firing first and

afterwards T1 and T2 are simultaneously enabled but
T2 fires because of its higher priority. Now, without
any simulation time elapsed, T1 and T4 are enabled
and T4 fires. Subsequently T1 and T3 fire in succes-
sion without taking the priority values into account.
This example looks simple but it is observable that
in case of a distributed simulation the firing order re-
quires global knowledge.

T3

T4

T5T0

T2P2

P1 P3

P4

P5

T1

AU0
AU2

AU1

AU4

AU3

AU5

1

2 3

4

Figure 2. An example for transition priorities

An optimistic distributed simulation doesn’t need
to resolve this priority problem when it appears but at
the time when affected tokens are inserted into a place.
This happens if at least two concurrent isochronous
tokens must be ordered according to their priority. In
the example above it is AU5 which has to sort the con-
current events from AU3 and AU4. If the priority of
the last fired transition was directly used to calculate
the GEP it would give the token from path T1 → T3 a
higher order of precedence in the event queue because
it was last fired from T3 which has a higher priority
than T4.

To get the correct result for two concurrent events
it is important to create a priority path (herein after
called critical path) for each event. This path starts
at the AU where both events must be sorted, AU5
in the example. All preceding immediate transitions
which have triggered this event must be on this path,
because their priority has an impact on the event or-
der. It can be shown that the path contains all pre-
ceding transitions up to the last immediate transi-
tion without input places or the last timed transition,
which is AU0 in the example. All priorities on each
path must be considered for later event ordering. For
two concurrent events the minimum priority Pmin of
each priority path is decisive because the transition
with the lowest priority delays the propagation of an
event until no other transition with a higher prior-
ity on other paths can fire. Using the minimum pri-
ority on both paths would deliver the correct result
(PminT1,T3 = 1, PminT2,T4 = 2).

It is possible that both minimum priorities are
equal if the paths share a common AU where no com-
mon predecessor event has taken place. In that case
this AU has randomly defined the order. Figure 3
is one example. For n AUs it had to be AU i with
i = pmin mod n, as derivable through (1). The order
is then explicitly observable by the corresponding VT

1
2

3

2

3

2
1

e1

e2

T1

T5

T4T2

T3 T7

T6

Figure 3. An example for equal minimal path
priorities

component. In a sequential simulation transition T1
fires at first followed by transitions T3 and T2. T4
and T5 have the same priority, so that one of them is
randomly selected. Afterwards either T6 or T7 fires.
Regardless of which is selected, the order of events e1

and e2 has been determined by the gray marked AU.
Note that the priority of one event depends on the

event it is compared to because the common predeces-
sor event depends on both events. Therefore we also
call it relative event priority.

Computationally, an AU-sized vector of the last fir-
ing priority of each AU is needed for calculating the
minimum priority on the critical path. Events within
an AU are always ordered sequentially, so it is not re-
quired to store the priorities of all transitions. This
priority vector p(e) has to be assigned to each event e.
It is defined as follows:

p(e)i =





∞ in case that AU i is not on the
critical path

else
the minimum priority of all pre-
ceding events on the critical path
of e in AU i

(2)
To follow the path of AUs that a token has taken

and to compute the minimum priority of this path,
it is merely required to compute the minimum value
of the priority vector. For this, only components of
this vector should be used which belongs to events af-
ter the last common predecessor event, if this exists.
It is a precondition that all components of this vec-
tor are set to the infinite value on initialization and
if a timed transition fires. A mechanism to find the
AUs on the critical path, on which a common event
occurred, is required. These AUs can be obtained by
comparing the VT components. Same VT components
of both events (V T (E1)i = V T (E2)i) indicate a com-
mon event on AUi. Components not corresponding to
AUs on the critical path have no effect for comput-
ing the minimum priority because their priorities are
infinite.

Assuming that two concurrently fired isochronous

events arrived at AU5 in Fig. 2 with (V T), [PE]:

E1 := (1, 1, 0, 1, 0, 0), [∞, 1,∞, 4,∞,∞]
E2 := (1, 0, 1, 0, 1, 0), [∞,∞, 2,∞, 3,∞]

The VT indicates that both tokens are concurrent, but
the minimum priority of E1 is lower than the priority
of E2. As a result E1 must be sorted after E2.

3.2 Compound Simulation Time for
Globally Ordered States

A limited resolution of the simulation clock time and
the occurrence of prioritized isochronous events make
demand for a sufficient logical time scheme. It must be
composed of the simulation clock time, a logical time,
namely the VT, and the GEP introduced in Sect. 3.1.
This compound simulation time (ST) (3) can be used
then to guarantee a correct ordering of global states.
An appropriate ordering relation has been defined (4).
We have proven the transitivity of the relation, which
is not obvious due to the relative GEP values.

ST =(T, V, G)
T : Simulation clock time
V : Vector time
G : Global event priority

(3)

u ≤ v ⇔ (Tu < Tv)∨
((Tu = Tv) ∧ ((Vu < Vv)∨
(Vu ‖ Vv ∧Gu ≥ Gv)))

(4)

Figure 4. Compound simulation time

A common problem to all distributed simulations
is to determine a global state out of the numerous lo-
cal states of each LP. In the context of DPNS these
global states are required twice. Global guards and
place capacities pose a condition related to the global
state as visible by transitions Delivery and Order in
Fig. 1. Transition Delivery has a global guard count-
ing the number of tokens in place Products. Further-
more the firing of transition Order is limited by the
number of tokens in place OrderQueue. Obviously, in
an optimistic distributed simulation these conditions
can not be verified immediately. This has to be done
when the corresponding events are merged into the
event list of the depending place. The second reason
for the importance of global states are global result
measures which may depend on several places of inde-
pendently processing AUs or LPs. In [10] the concept
of causally consistent cuts for time diagrams is pro-
posed. A global state is composed of the local states
of all processes at the time of the "cut events". This

implies that global predicates don’t change over time.
But the order of concurrent events is undetermined by
causality, so that this concept can not be applied for
DPNS.

3.3 Optimized Cancelation mechanism
Chetlur and Wilsey (2001) have proposed a causality
representation and cancelation mechanism for Time
Warp simulations [16]. Conventionally, rollbacks are
informed through anti-messages with the timestamps
specifying the rollback time of the LPs. Rollbacks
can occur frequently and may be cascaded and inter-
related. In contemporary Time Warp simulators, time
representations generally maintain only the local simu-
lation time and do not usually carry information about
causal relations between rollbacks and the associated
events. The cause for such cascading and inter-related
rollbacks is due to the fact that the events that are
causally dependant on the events rolled-back are not
identified at the time of a causality error. However,
our logical time representation is designed to carry
causal information that can be exploited during roll-
back to accelerate the cancelation process. It can save
a huge amount of computation and communication
time by ignoring events that will be rolled-back even-
tually. Furthermore it guarantees a lifelock free simu-
lation progress, provided that in case of a rollback the
simulation is rolling back to the precise point in time.

Chetlur and Wilsey introduced Total Clocks con-
taining a virtual time component (as a global one di-
mensional temporal coordinate system) and a vector
counter component (similar to VT). Using these clocks
as additional logical time mechanism in Time Warp
simulations permits an accurate detection of cascaded
and inter-related rollbacks. But it can be seen as a
big drawback that the additional costs of this logical
time are not used to enhance rollback accuracy nor
correct distributed simulation of priorities or handling
of distributed measures.

The new logical time scheme presented in this pa-
per already provides a causality representation for an
optimized cancelation mechanism. Cascading events
are prevented by removing events which are causally
related to the events which are rolled-back due to a
rollback (also called cancelation) message. This is due
to the fact that, assuming aggressive cancelation strat-
egy, the events causally dependant on the rolled-back
event will eventually be rolled-back. In addition, early
recovery operations such as restoring state and ignor-
ing events that will be rolled-back can be performed
for rollbacks that are inter-related. A signature is at-
tached to each cancelation message containing the AU
number and the current VT of the AU which has trig-
gered the rollback. This helps to identify related can-
celation messages and hence inter-related and cascad-
ing rollbacks if the same signature is used during roll-

back propagation. An example that shows how many
rollbacks are prevented by this algorithm is presented
as "canceled messages" in Fig. 6.

4 TESTS
In the course of our study we have designed numerous
models to verify our implementation of the new logical
time scheme and to compare performance with a se-
quential simulation. The AU approach allows a truly
distributed simulation of simple models to exploit par-
allelism. All experiments have been conducted on a 16
node, dual Intel Xeon 1.7 GHz processor, Linux clus-
ter with 1 GB memory on each node. SCI has been
used as a high-speed network connected as a 2D-Torus.
Only one processor on each cluster node has been used
for all experiments to simplify comparison of the re-
sults. To discuss the performance of the new mecha-
nism we abandon a demonstration of best performing
models. It is obvious that complex models with nu-
merous places and transitions and with less synchro-
nization between model parts will achieve the highest
speedup in a distributed environment. But because of
their complexity these models are not qualified to dis-
cuss here. Otherwise, a distributed simulation of sim-
ple models on fast processors will never achieve good
overall performance. As a consequence we discuss very
small models but we simulate complexity through an
additional delay which is presented later. This helps to
demonstrate performance potentials and limitations.

P1

T1
P2

T2

a a

a a

Prio=2

Prio=1
AU0

AU1

Figure 5. Example petri net for testing rollback
performance

Figure 5 shows a very simple Petri net model which
is absolutely not qualified for a distributed simulation.
However it provides useful information about the worst
case performance. If this model is divided into two
parts (LPs), each part is likewise input and output of
the other part and thus, each firing event must be sent
to the other LP. In consequence of the network latency
each LP is processing all local events prior to receive a
response regarding the first message sent. The higher
priority of transition T2 causes a rollback of AU0 in
most cases. Numerous cascading rollback events can
occur, because if AU0 detects the priority conflict after
receiving the first token from AU1, it sends a negative
message to AU1 but this AU has already fired the sec-

ond token in the majority of cases. This could end up
in infinite rollbacks, but will be immediately detected
by the algorithm described in Sect. 3.3. All of this
leads to a poor absolute performance as seen in Fig. 6.
The first line of both tables contains the transition fir-
ing count. Rollback attempts are counted in line two,
whereas some of these rollbacks have been canceled
(as observable in line three) because of cascading or
inter-related rollback events. Line four contains the
maximum size of the AU state history over time. This
history is cleared frequently up to the GVT. Both,
the simulation time of a sequential run or rather the
speedup is displayed in the last line of this table. The
model has been simulated using three different config-
urations: containing two tokens as depicted in Fig. 5,
containing 16 tokens, and containing two tokens but
with an additional firing computation delay. It is obvi-
ous that this delay (1, 000, 000 iterations of an empty
loop) feigns more activity inside one LP before the
token is moved to the next LP. It may be seen as if
each token has to be fired by some more transitions
(nearly 3 transitions for the currently used delay) in-
side the LP or alternatively the output inscriptions re-
quire more computational time for processing complex
token attributes. Hence, the speedup using this delay
is much more meaningful if simple models are being
simulated as done here. Otherwise the message over-
head is the limiting factor. Without delay it is observ-
able that a distributed simulation on two cluster nodes
needs about twice the time due to the above named
characteristics. The delay eliminates rollbacks nearly
completely for this model and leads to a speedup of
1.7 compared to the sequential simulation. The target
LP is always capable of processing the first token, so
that the source LP detects the priority conflict before
sending the second token.

The next performance analysis is illustrated by the
distributed simulation of a Kanban system consisting
of five machines in line [17]. Figure 7 shows the respec-
tive Petri net model along with the AU partitioning.
It has three dependent loops. The rollback frequency
varies depending on the used AU to LP association.
For these experiments the best association was chosen
manually.

5 5 5

T1 P2 T2 P4 T3 P5 T4 P7 T5

P6P3P1

<a> <a>

<a> <a>

<c> <c>

<c> <c>

AU0 AU1

AU2

AU3 AU4

Figure 7. Kanban Petri net model

Some performance values for a distributed simula-
tion of this model running on a different number of
cluster nodes are diagramed in Fig. 8. This diagram

1 Cluster node 2 tokens 16 tokens 2 tokens
no delay no delay delay

Firing count 120961 120961 120961
Rollback count 0 0 0
Canceled messages 0 0 0
Stored AU states 2665 2665 1462
Simulation time (s) 99 73 167

2 Cluster nodes 2 tokens 16 tokens 2 tokens
no delay no delay delay

Firing count 241896 241896 122087
Rollback count 120958 120958 1232
Canceled messages 60454 60454 371
Stored AU states 2748 2748 4853
Speedup 0.49 0.45 1.70

Figure 6. Performance measures

shows the speedup of a distributed simulation on sev-
eral LPs compared to a sequential simulation. A small
speed improvement can be observed on two or three
LPs. These cases benefit from a suitable partitioning
with some sporadic rollbacks only, but the speedup
is limited by the fast processor speed. On four LPs
the partitioning requires costly rollbacks. 75, 000 roll-
backs occurred during 180, 000 transition firing events.
An additional firing computation delay as mentioned
above feigns a more complex model and is equivalent
to a Kanban system consisting of about 15 machines.
The speedup then improves considerably up to 2.

1
1,10 1,09

0,51

1

1,29 1,31

1,89

0

0,5

1

1,5

2

2,5

1 2 3 4

cluster nodes

sp
ee

d
u

p

no delay delay

Figure 8. Performance measures of the Kanban
model

The next model in Fig. 9 is a modified Kanban
model and shows the impact of depending loops for
a distributed simulation of small models. Compared
to the model in Fig. 7 each loop is replaced by a new
transition that generates new tokens. The firing delay

of these transitions defines the possible speed of the
associated machines (transitions). There is no longer
a backward synchronization between machines.

T1 P2 T2 P4 T3 P5 T4 P7 T5

P6P3P1

<a> <a>

<a>

<c> <c>

<c>

AU0 AU1

AU2

AU3 AU4

NEW NEW NEW

T6 T7 T8AU7AU6AU5

Figure 9. Kanban Petri net model without loops

A distributed simulation of this model gains speed
through the decoupled model parts. Tokens have to
be processed further on in succession. That means,
the second LP can simulate a token not until the first
LP has sent this token. In spite of a furthermore un-
fair arrangement between computing time and network
load, the model performs better as visible in Fig. 10. A
simulation on four cluster nodes at full speed is about
two times faster than on a single node. 484, 062 tran-
sitions have fired in 2, 425 seconds while 2, 862 roll-
backs took place. The additional delay (equivalent to
a Kanban models consisting of 15 machines) results in
a much better speedup of 3 on four LPs.

1

1,49
1,65

2,04

1

1,77

2,18

2,93

0

0,5

1

1,5

2

2,5

3

3,5

4

1 2 3 4

cluster nodes

sp
ee

d
u

p

no delay delay

Figure 10. Performance measures of the modified
Kanban model

Three examples introduced in this chapter have
shown partially significant speedup for a distributed
simulation of high-level Petri net models. The new log-
ical time mechanism qualifies for a fine-grained parti-
tioning and can be applied even to simple models. We
verified that the result measures are correct and the
order of processing is exactly the same as performed
by a sequential simulation. More complicated mod-
els, which have been developed for different research
projects for global operative business companies, are

already successfully tested with good speedup results
but not shown here because of their complexity.

5 CONCLUSIONS AND FUTURE
WORK

This paper presented a new mechanism for distrib-
uted simulation of high-level Petri Nets. The Petri
net model is decomposed into atomic units which have
their own virtual time and state history. Many po-
tential advantages for the distributed simulation arise
from this approach: a better partitioning flexibility
and efficient rollbacks.

In addition we introduced the notion of prioritized
logical time which allows for a mapping between sim-
ulation clock and logical time. Applied to high-level
PNs, this logical time is sufficient to allow a fine-
grained partitioning not possible with Lamport’s log-
ical time. We succeeded in defining a total ordering
relation which allows global ordering of events and the
identification of global states of the distributed simu-
lation.

The performance of this new mechanism has been
shown on different Petri net models. In the majority
of cases the speedup was very good considering the
low model complexity. Structural model characteris-
tics which have a bearing on distributed performance
have been discussed in detail.

Compared to the well known Time Warp mech-
anism it is obvious that the operational overhead is
slightly higher. This is compensated by an optimized
cancelation mechanism, more precise rollbacks and a
lower state history overhead. The biggest advantages
over the Time Warp mechanism are the ability to cor-
rectly simulate prioritized immediate transitions with-
out limiting partitioning flexibility and the possibility
to evaluate conditions based on the global state of the
model, such as global guards, place capacities and re-
sult measures.

Future work will focus on runtime load balancing
with respect to the capabilities of a fine-grained par-
titioning. The free association of AUs to LPs allows a
more flexible partitioning than currently available for
high-level PNs. A dynamic migration of AUs to other
LPs will require low operational expense because of
the autonomous AU structure.

REFERENCES
[1] Zimmermann, A.; Freiheit, J.; Huck, A. 2001, “A

Petri net based design engine for manufacturing
systems.” International Journal of Production Re-
search, 39, no. 2: 225–253.

[2] Jensen, K. 1997, Coloured Petri Nets. Basic Con-
cepts, Analysis Methods and Practical Use. Vol-
ume 1 : Basic Concepts (2nd Edition). EATCS
Monographs on Theoretical Computer Science,

Springer-Verlag.

[3] Fujimoto, R. 1993, “Parallel and distributed dis-
crete event simulation: algorithms and applica-
tions.” In WSC ’93: Proceedings of the 25th con-
ference on Winter simulation, ACM Press, Los
Angeles, CA, USA, 106–114.

[4] Nicol, D.; Mao, W. 1995, “Automated paralleliza-
tion of timed Petri-net simulations.” Journal of
Parallel and Distributed Computing, 29, no. 1:
60–74.

[5] Furfaro, A.; Nigro, L.; Pupo, F. 2002, “Distrib-
uted simulation of timed coloured Petri nets.”
In Proceedings. Sixth IEEE International Work-
shop on Distributed Simulation and Real-Time
Applications (DS-RT’02), IEEE Computer Soci-
ety, 159–166.

[6] Wu, Y.; Zeng, J.; Sun, G. 2002, “Distributed sim-
ulation algorithms of generalized differential Petri
nets.” In Proceedings of the 2002 International
Conference on Machine Learning and Cybernet-
ics (ICMLC02), IEEE Computer Society, Beijing,
China, 1013–1017.

[7] Jefferson, D. 1985, “Virtual time.” ACM Trans-
actions on Programming Languages and Systems
(TOPLAS), 7, no. 3: 405–425.

[8] Lamport, L. 1978, “Time, clocks, and the order-
ing of events in a distributed system.” Communi-
cations of the ACM, 21, no. 7: 558–565.

[9] Zeng, Y.; Cai, W.; Turner, S. 2003, “Causal Order
Based Time Warp: A Tradeoff of Optimism.” In
Proceedings of the 2003 Winter Simulation Con-
ference, New Orleans, LA, USA.

[10] Mattern, F. 1989, “Virtual Time and Global
States of Distributed Systems.” In M. et. al., ed.,
Parallel and Distributed Algorithms: Proceedings
of the Workshop on Parallel and Distributed Al-
gorithm, Elsevier Science Publishers B.V.(North-
Holland), 215–226.

[11] Fidge, C. 1991, “Logical Time in Distributed
Computing Systems.” Computer, 24, no. 8: 28–
33.

[12] Knoke, M.; Kuehling, F.; Zimmermann, A.; Hom-
mel, G. 2004, “Towards Correct Distributed Simu-
lation of High-Level Petri Nets with Fine-Grained
Partitioning.” In J. C. et. al., ed., 2nd Int. Sympo-
sium on Parallel and Distributed Processing and
Applications (ISPA’04), IEEE, Springer LNCS
3358, Hongkong, China, 64–74.

[13] Ferscha, A.; Tripathi, S. K. 1994, “Parallel and
Distributed Simulation of Discrete Event Sys-
tems.” Tech. rep., University of Maryland, College
Park, MD, USA.

[14] Chiola, G.; Ferscha, A. 1993, “Distributed Simu-
lation of Petri Nets.” IEEE Parallel & Distributed
Technology: Systems & Technology, 1, no. 3: 33–
50.

[15] Samadi, B. 1985, “Distributed Simulation, Al-
gorithms and Performance Analysis.” Tech. rep.,
University of California.

[16] Chetlur, M.; Wilsey, P. 2001, “Causality represen-
tation and cancellation mechanism in time warp
simulations.” In PADS ’01: Proceedings of the fif-
teenth workshop on Parallel and distributed simu-
lation, IEEE Computer Society, Lake Arrowhead,
CA, USA, 165–172.

[17] Singh, N. 1995, Systems Approach to Computer-
Integrated Design and Manufacturing. JohnWiley
& Sons Inc., pages 630–631.

