
Real-Time UML State Machines: An Analysis Approach

J. Trowitzsch�, A. Zimmermann

Technical University Berlin
Real-Time Systems and Robotics
Performance Evaluation Group

[joni,azi]@cs.tu-berlin.de

Abstract. Since real-time systems have special characteristics the development
of such systems requires the observation of quantitative system aspects. Quan-
titative predictions are needed already during the modeling phase of the system
development process. Recently the Unified Modeling Language (UML) includ-
ing its Profile for Schedulability, Performance, and Time (SPT) gained increas-
ing acceptance as a specification language for modeling real-time systems. These
Real-Time UML models themself are not directly analyzable. This paper presents
steps towards the derivation of analyzable Stochastic Petri Nets (SPN) from Real-
Time UML state machines. The transformation of UML elements like for exam-
ple pseudostates into corresponding SPN representations is covered in addition
to prior work.

1 Introduction

Today’s systems tend to be very complex, distributed and often with special
performance requirements. Hence the design process of these complex systems
mostly involves a modeling phase. The system model is used for the analysis of
qualitative and quantitative properties. In the case of real-time systems special
quantitative requirements like for example a certain timeliness or dependabil-
ity have to be considered. Therefore it is especially important to ensure these
aspects and thus an appropriate analysis method for these models is needed.

The Unified Modeling Language (UML) [1] in combination with its accom-
panying UML Profile for Schedulability, Performance, and Time (SPT) [2] are
considered as a suitable specification language for the design of real-time sys-
tems. This combination is called Real-Time UML (RT UML) and allows the
detailed specification of quantitative system properties. RT UML can be used
for the consistent system design from the requirement specification towards im-
plementation details. It provides several diagrams for the modeling of structural
system properties as well as dynamic ones.

� The author’s research work is supported by a PhD scholarship from the German Research
Council (DFG) under grant GrK 621-2.



Since RT UML does not include a new analysis method the problem remains:
how to make quantitative predictions for the system design? However, perfor-
mance measures can not be obtained directly from UML models. For retrieving
performance measures from RT UML two different fundamental strategies exist.
The first strategy (direct) is the development and application of analysis meth-
ods that operates directly on the RT UML specification. The second strategy
(indirect) is based on a transformation of RT UML specifications into an estab-
lished performance model such as Stochastic Petri Nets [3] or Queuing Network
Models [4]. By this, quantitative measures can be obtained by applying known
analysis methods and tools for the chosen performance model. We consider the
indirect strategy in this paper as the prefered one, because in this case a reuse of
established knowledge for the analysis of the model is possible. Another aspect
is that there also exist quite powerful tools that support quantitative analysis of
established performance models, for example TimeNET (Timed Net Evaluation
Tool) [5] in the case of Stochastic Petri Nets.

RT UML comprises several diagram types. We think that it is recommended to
focus on certain diagram types. Behavioral diagrams are the interesting ones
when dealing with real-time systems. The focus within our work is on the RT
UML state machine diagrams because we consider these diagrams as the appro-
priate basis for modeling real-time systems. In this paper we explain the trans-
formation of RT UML state machine elements into corresponding Stochastic
Petri Net fragments.

The transformation of RT UML state machines into Stochastic Petri Nets re-
quires the preservation of the models semantics. The quantitative aspects like
timing annotations must be interpreted and included into the resulting Stochas-
tic Petri Net in such a way that the timing behavior is consistent.

Merseguer et al. present a similar indirect approach in [6]. The approach aims
at software performance evaluation. It is a systematic and compositional ap-
proach that uses labeled Generalized Stochastic Petri Nets (GSPN) for analy-
sis. Only exponentially distributed times are considered. Deterministic timing
is not taken into account, although this is compulsory when dealing with real-
time systems that include for example hard deadline requirements. Pooley and
King also worked on the integration of performance evaluation techniques into
the software design process using UML [7, 8]. An intuitive transformation from
UML into GSPNs is proposed. Lindemann et al. present a direct approach for
the quantitative analysis of UML in [9]. From extended state machine or activ-
ity diagrams a particular stochastic process is generated, the generalized semi-
markov process (GSMP). Both exponentially distributed and deterministic times
are covered by the approach.



Since the SPT profile has been adopted lately, it is preferable to use this standard
to specify dynamic system aspects within UML. Existing approaches mostly
use more or less their own extensions and annotations. We strictly follow the
SPT profile standard in our work. Extensions to the SPT profile are proposed
whenever necessary.

The remainder of the paper is organized as follows: In Section 2 we recall basic
features of RT UML and Stochastic Petri Nets. Our transformation approach is
explained in detail in Section 3. Section 4 finally gives a conclusion including
open issues.

2 Background

This section recalls fundamental features of Real-Time UML and Stochastic
Petri Nets. The term Real-Time UML (RT UML) refers to the UML standard [1]
in combination with the SPT Profile [2].

2.1 Real-Time UML

The Unified Modeling Language (UML) [1] is a semi-formal language that was
adopted by the Object Management Group (OMG) in 1997. It is a modeling
language for specifying, visualizing, constructing, and documenting models of
discrete event systems and models of software systems. It provides various di-
agram types and notations allowing the description of different system view-
points. UML can be used for describing problems as well as their solutions. It
especially achieved a wide acceptance in the field of object-oriented software
development. Static and behavioral system aspects, interactions among system
components and implementation details are captured. UML is quite flexible and
customizable because of its extension mechanism .

UML defines several different structural and behavioral diagram types [1, Ap-
pendix A]. For modeling real-time systems especially the behavioral diagrams
are important because they include the dynamic system properties and timing
information. We consider the RT UML state machine diagram as the appropri-
ate basis for modeling real-time systems and their behavior.

RT UML State Machines The RT UML state machine diagrams are a vari-
ant of Harel statecharts [10]. They can be used for modeling discrete behavior
through finite state-transitions systems [1, Sec 15.1]. UML makes a distinction
between Behavioral State Machines and Protocol State Machines. In the fol-
lowing we concentrate on Behavioral State Machines and refer to them when



speaking of state machines. These Behavioral State Machines are used to spec-
ify possible sequences of states which an individual entity may proceed through
its lifetime. Protocol State Machines are used to express usage protocols, the
legal transitions a classifier can trigger.

A

entry / ac1
do / ac2
exit / ac3

B

<<RTdelay>> 
{RTduration = (10, 's')}

<<RTdelay>> 
{RTduration = (8, 's')} <<RTdelay>> 

{RTduration = ('exponential', 20, 's')}

<<RTdelay>> 
{RTduration = ('exponential', 100, 's')}

stereotype

tagged value

Fig. 1. Example of an annotated UML State Machine

RT UML state machine diagrams contain different elements for modeling be-
havior through finite state-transition systems. In detail they comprise one or
more regions which include vertices (states) and transitions. An example of an
RT UML state machine is shown in Figure 1. The two states A and B are con-
nected via a state-to-state transition from A to B. Annotations from the SPT
profile are used to add timing information to the state machine which will be
explained later on.

Region A region is an orthogonal part of either a composite state or a state
machine. It contains vertices and transitions [1, Sec 15.3].

A vertex is an abstraction of a node in a state machine graph. It can be both
the source and the destination of any number of transitions [1, Sec 15.3]. Sub-
classes of vertices are states and pseudostates which both are introduced in the
following.

State A state models a situation during which some usually implicit invariant
condition holds. The invariant may represent a static situation such as an object
waiting for some external event to occur. It can also model dynamic conditions
such as the process of performing some activity [1, Sec 15.3]. When a state is
entered as a result of a transition it becomes active. It becomes inactive if it is



exited as a result of a transition. Every state may optionally have one of each
so-called entry, exit, and do activities (see state A in figure 1). Whenever a state
is entered, it executes its entry activity before any other action is executed. A
do activity represents an activity that occurs while the state machine is in the
corresponding state. Before the state is exited because of an outgoing transition,
the exit activity is executed [1]. Three kinds of states are distinguished:

– Simple State → is a state that does not have any substates [1, Sec 15.3].
– Composite State → either contains one region or is decomposed into two

or more orthogonal regions. Each region has a set of mutually exclusive
disjoint subvertices and a set of transitions [1, Sec 15.3].

– Submachine State → specifies the insertion of the specification of a subma-
chine state machine [1, Sec 15.3].

Pseudostates A pseudostate is an abstraction that encompasses different types
of transient vertices in the SM graph. It is used to connect multiple transitions
into more complex state transitions paths and can be one of the following types:

– inital → represents a default vertex that is the source for a single transition
to the default state of a composite state. Only one initial vertex can be in a
region.

– deepHistory → represents the most recent active configuration of the com-
posite state that directly contains this pseudostate.

– shallowHistory → represents the most recent active substate of its contain-
ing state.

– join → merges several transitions originating from source vertices in differ-
ent orthogonal regions. Transitions entering a join vertex cannot have guards
or triggers.

– fork → splits an incoming transition into two or more transitions terminating
on orthogonal target vertices.

– junction → are semantic-free vertices that are used to chain together multi-
ple transitions.

– choice → results in the dynamic evaluation of the guards of the triggers of
its outgoing transitions.

– entry point → specifies an entry point of a state machine.
– exit point → specifies an exit point of a state machine.
– terminate → implies, when reached, that the execution of this state machine

by means of its context object is terminated.

Transitions A transition is a directed relationship between a source vertex and
a target vertex. It may be part of a compound transition, which takes the state



machine from one state configuration to another, representing the complete re-
sponse of the state machine to a particular event [1, Sec 15.3]. In order to avoid
confusion with the transitions from the Petri Net domain we refer to the transi-
tions from the RT UML state machines as SM-transitions later on.

UML Profile for Schedulability, Performance, and Time The OMG adopted
the UML profile for schedulability, performance, and time (SPT) [2] in order to
eliminate UMLs lack of performance annotations and among other things to en-
able the advanced modeling of real-time systems. It extends UML by providing
stereotypes and tagged values to represent resources used by the system, perfor-
mance requirements and quantitative parameters including timing information.
For example in Figure 1 the stereotype RTdelay with its tag RTduration
is used for the state-to-state SM-transition and the optional internal activities
of state A. The existence of this standard improves the interoperability between
different existing UML tools. A better foundation for understanding between
people is enabled. Misinterpretations are less likely to happen.

2.2 Stochastic Petri Nets

Petri Nets are based on the doctoral thesis of Carl Adam Petri [11]. They are
a special kind of directed graph and have an underlying mathematical model
which makes them analyzable. Petri Nets represent a model for describing
the aspects of concurrent, asynchronous, distributed, parallel, nondeterministic,
and/or stochastic systems [3]. Thus they are applicable to many systems. Two
types of nodes can be found in Petri Nets: places and transitions. Arcs connect
either a place to a transition or a transition to a place. Places are drawn as cir-
cles and transitions are drawn as rectangles (see example in Figure 2). Formally,
following [3]:

Definition: A Petri Net is 5-tuple, N = (P, T, F,W,M0) where:

– P = {p1, p2, . . . , pm} is a finite set of places.
– T = {t1, t2, . . . , tn} is a finite set of transitions, with P ∩ T = ∅ and

P ∪ T �= ∅.
– F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow relation).
– W : F → N

+ is a weight function.
– M0 : P → N is the initial marking.

The basic concepts of Stochastic Petri Nets (SPNs) are reviewed in [12, 13]. In
the following we assume that they are known to the reader. Transitions in the
SPNs are associated with firing times. Based on their firing times transitions can
be distinguished into immediate, deterministic, and exponential transitions. If a



p1 p2 p3t1 t3

t2

t4

2

2

Fig. 2. Example for a Stochastic Petri Net

transition does not belong to any of these three types it is a so called general
transitions. For a detailed description of properties of Petri Nets we refer to Mu-
rata [3]. In the case of real-time systems especially Deterministic and Stochastic
Petri Nets (DSPNs) are of interest. DSPNs have been introduced in [14] and
allow continuous-time modeling. Both constant timing and exponentially dis-
tributed timing are included.

Figure 2 shows an example of a SPN. It describes a two-component redundant
system. Each component may fail (see t1) and be repaired (see t2). If both
components fail, t3 fires immediately, and a complete system repair is done (see
t4). Immediate transitions are drawn as small rectangles (see t3). A big black
rectangle represents a deterministic transition (see t2). A big empty rectangle
shows an exponential transition (see t1) and a big gray rectangle represents
a general transition (see t4). In the following we refer to the transitions from
the Petri Net domain as PN-transitions, in order to avoid confusion with SM-
transitions.

3 Transformation

In the following we explain our approach for transforming RT UML state ma-
chines into Stochastic Petri Nets aimed at quantitative analysis. In this context
we presented first results and transformation rules in [15]. We recall the basic
rules and present improved and extended ones for the basic state transformation
as well as for the transformation of several pseudostates and the annotations
from the SPT profile.

The approach is based on the decomposition of RT UML state machines into
basic elements, like states, pseudostates, and SM-transitions. Transformation
rules from RT UML to SPN fragments are specified for each element. These
rules take into account, that certain annotations from the SPT profile might be
associated to the RT UML elements. We focus in this context on the timing



annotations like the <<RTdelay>> stereotype. The resulting SPN fragments
are finally composed following the decomposition. This is ensured because a
fixed naming convention as explained in [15] is used.

3.1 Basic State Transformation

The basic state transformation as we propose it is shown in Figure 3. Each state
may have optional internal entry, do, and exit activities. In the corresponding
SPN fragment they are represented by general transitions, like for the entry ac-
tion the PN-transition t_ent_A.

ex_AAent_A out_A

t_ent_A t_do_A t_ex_A

A

entry / ac1
do / ac2
exit / ac3

Fig. 3. Basic state transformation

Depending on the annotated timing information like in the state machine ex-
ample in Figure 1 the general timing of the PN-transitions is refined. Constant
delays result in deterministic PN-transitions. Exponentially distributed timing
results in exponential PN-transitions. If no timing information is given or if an
internal action is not specified, the resulting PN-transition is an immediate PN-
transition. An example is shown in Figure 4. The missing do action in state A re-
sults in the immediate PN-transition t_do_A. The fixed delays for the entry and
exit activities result in the deterministic PN-transition t_ent_A and t_ex_A,
respectively. The SM-transition with an exponentially distributed delay with the
mean value of 100 seconds results in the PN-transition t_trans_ABwith the
rate λ = 1/100.



ex_AAent_A ent_Bout_A

A

entry / ac1
exit / ac3

B

t_ent_A t_trans_A_Bt_do_A t_ex_A

<<RTdelay>> 
{RTduration = (7, 's')}

<<RTdelay>> 
{RTduration = (2, 's')}

<<RTdelay>> 
{RTduration = ('exponential', 100, 's')}

= 1/1007 2

...

Fig. 4. Transformation of a simple state machine

3.2 Pseudostates Transformation

Pseudostates are abstractions of transient vertices in the RT UML state ma-
chines. They have special semantics that has to be considered during transfor-
mation.

init_A ent_A

A

(a) Simple initial

A1

A2

...

...

B

init_S1 init_A1

S1

init_A2

ent_A1

ent_A2

(b) Advanced initial

Fig. 5. Initial pseudostate transformation

Initial The simple initial pseudostate is transformed like shown in Figure 5(a).
The state init_A gets the initial marking of one token. If the initial pseudostate
leads to two different orthogonal regions of a state machine each with its own



initial pseudostate, then the initial marking is split via immediate PN-transitions
to the corresponding init places in the SPN. This can be seen for the composite
state S1 in Figure 5(b).

out_A

ent_B

ent_C

fork_A_B

A

B

C

fork_A_C

(a) fork

A

B

C

out_A

out_B

ent_Cjoin_AB

(b) join

Fig. 6. Fork and Join pseudostate transformations

Fork and Join The fork and join pseudostates are used to split a transition
into several orthogonal regions or to merge transitions from several orthogo-
nal regions. Figure 6(a) shows the transformation of the fork pseudostate. The
outgoing SM-transition of state A is split into two SM-transitions leading to
the orthogonal states B and C respectively. This results in a branching of the
corresponding SPN fragment. From the out_A place we end up in the places
fork_A_B and fork_A_C as the starting points for the branches. The trans-
formation of the join pseudostate is shown in Figure 6(b). State C can only be
entered if both state A and state B are left and thus the related exit activities
are completed. In the SPN domain this results in an immediate PN-transition
that is activated if both places out_A and out_B contain a token. The place
join_ABmarks the point when A and B are joined and C is going to be entered.

Choice The choice pseudostate is a special kind of junction. It can be used to ex-
press for example probabilistic path decisions in RT UML state machines. This
is for example shown in Figure 7. In difference to the presented transformation
in [15] we introduced an additional state choice_B in order to represent the
pseudostate semantic more precisely. The outgoing SM-transitions of a choice
pseudostate may include a PAprob and a RTduration tag at the same time.
In the SPN fragment this means that the probabilistic branching is done before



B

<<PAstep>>
{PAprob = 0.6}

<<RTdelay>>
{RTduration = ('exponential', 4,'s')}

A <<PAstep>>
{PAprob = 0.4}

<<RTdelay>>
{RTduration = (1,'s')}

C

out_B

ent_C

0.4

ent_A

0.6

t_choice_B_C

t_choice_B_A

choice_B
...

...

...

t_trans_BA

1

t_trans_BC

= 1/4

choice_B_A

choice_B_C

Fig. 7. Choice pseudostate transformation

the timed PN-transitions are enabled. For example in Figure 7 the immediate
transition t_choice_B_Awith the weight 0.4 appears before the determinis-
tic PN-transition t_trans_BA.

Junction The junction pseudostate is a semantic free pseudostate. Figure 8
shows an example for the usage and the transformation of a junction. The SM-
transitions from the states A and B end in a junction. Depending on the result
of the evaluation of the guards g1 and g2 the junction leads either to state C
or to state D. For this the corresponding guards must evaluate to true. If both
guards evaluate to false no state-to-state transition is taken. For the case that
both guards evaluate to true, no clear semantics is given by the UML specifi-
cation. Therefore the guarded immediate PN-transitions have the same weight,
letting the junction end either in state C or in state D depending on which PN-
transition fires first.

3.3 Timing Annotations

The SPT profile provides several stereotypes for the specification of timing as-
pects within RT UML state machines. The <<RTdelay>> stereotype can be
used to add durations to actions and SM-transitions. These timing information



C

D

A

B

g1

g2

out_A

ent_D

junc_A_CD

out_B junc_B_CD

ent_C[g1]

[g1]

[g2]

[g2]

Fig. 8. Junction pseudostate transformation

is transformed into corresponding PN-transitions with an equivalent timing be-
havior. The proposed transformation of the currently considered RTduration
values into resulting PN-transitions is summarized in Table 1.

Tagged Value PN-transition

(8,’s’) deterministic - delay 8 sec
(’exponential’, 32,’s’) exponential - rate λ = 1/mean
(’percentile’, 80, (5, ’s’), ’exponential’) exponential - rate via F (x) = 1 − e−λx

Table 1. Stereotype <<RTdelay>> - tagged value RTduration transformation

For the usage of the percentile construct we propose (in addi-
tion to the approach in [15]) that the type of the timing distribution
must be specified in RT UML. This leads to a more precise specifi-
cation and avoids confusions. An example can be found in Table 1:
(’percentile’, 80, (5, ’s’), ’exponential’). This means
that for at least 80% of all cases the duration is less than 5 seconds while the
time is exponentially distributed. By using the distribution function of the expo-
nential distribution F (x) = 1− e−λx it is possible to calculate the rate λ. In the
example this means λ = −ln0.20

5 ≈ 0.3219
(
F (5) = 1 − e−5λ = 0.80

)
.

For a detailed list and description of allowed distributions we refer to the SPT
specification [2, Sec 5.2]. The non-exponential distributions currently all lead



to general PN-transitions with the corresponding firing time distributions. In
these cases the resulting SPN is not numerically analyzable but simulation is
still possible using for example TimeNET.

3.4 Timed Events

Events may trigger state-to-state transitions in the RT UML state machines.
These events can be associated with timing information. The transformation of
such construct is shown in Figure 9. Event ev1 triggers the SM-transition from
state A to state B. The event occurs after two seconds.

A B

<<RTevent>>
{RTat=(2,'s')}

ev1

...

out_A

t_ex_A

t_gen_ev1 ev1 ent_B

...

t_trans_AB

Fig. 9. Timed events transformation

4 Conclusion

The presented paper explains an approach that allows the quantitative analysis of
RT UML state machine models by means of Stochastic Petri Nets. The presented
approach is a compositional one. A transformation of RT UML state machine
elements like states and different pseudostates into corresponding Stochastic
Petri Net fragments is proposed. Quantitative annotations from the SPT pro-
file are taken into account and included into PN-transition with equivalent tim-
ing behavior. Thus performance predictions are enabled by applying the known
analysis techniques for Stochastic Petri Nets.



Not all elements from the RT UML state machines are covered in this paper.
For example the deepHistory and shallowHistory pseudostates have not been
studied yet. They have a complex semantic and will be investigated in the next
steps.

Since the SPT profile includes more annotations than are presented here a fur-
ther evaluation of our approach considering these stereotypes is needed. Another
aspect is that RT UML offers different behavioral diagrams that should be part
of future investigations.

References

1. Object Management Group: Unified Modeling Language Specification v.2.0. www.uml.org
(2003)

2. Object Management Group: UML profile for schedulability, performance, and time.
www.uml.org (2002)

3. Murata, T.: Petri Nets: Properties, Analysis and Applications. In: Proceedings of the IEEE.
Volume 77(4). (1989) 541–580

4. Gross, D., Harris, C.: Fundamentals of Queueing Theory. 3rd edn. Wiley (1998)
5. Zimmermann, A., Freiheit, J., German, R., Hommel, G.: Petri net modeling and performa-

bility evaluation with TimeNET 3.0. In: Proceedings of the 11th Int. Conf. on Tools and
Techniques for Computer Performance Evaluation, Schaumburg, Illinois, USA (2000) 188–
202

6. Merseguer, J., Bernardi, S., Campos, J., Donatelli, S.: A Compositional Semantics for UML
State Machines Aimed at Performance Evaluation. In: Proceedings of the 6th International
Workshop on Discrete Event Systems (WODES), IEEE Computer Society Press (2002) 295–
302

7. Pooley, R., King, P.: The Unified Modeling Language and Performance Engineering. In:
IEE Proceedings - Software. Volume 146(2). (1999)

8. King, P., Pooley, R.: Using UML to derive stochastic Petri net models. In: Proceedings of
the 15th UK Performance Engineering Workshop, Bristol, UK (1999) 45–56

9. Lindemann, C., Thümmler, A., Klemm, A., Lohmann, M., Waldhorst, O.: Performance Anal-
ysis of Time-enhanced UML Diagrams Based on Stochastic Processes. In: Proc. of the 3rd
Workshop on Software and Performance (WOSP), Rome, Italy (2002) 25–34

10. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming 8 (1987) 231–274

11. Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Bonn: Institut für Instrumentelle
Mathematik, Schriften des IIM Nr. 2 (1962) Second Edition:, New York: Griffiss Air Force
Base, Technical Report RADC-TR-65–377, Vol.1, 1966, Pages: Suppl. 1, English transla-
tion.

12. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with
Generalized Stochastic Petri Nets. Series in parallel computing. John Wiley and Sons (1995)

13. German, R.: Performance Analysis of Communication Systems, Modeling with Non-
Markovian Stochastic Petri Nets. John Wiley and Sons (2000)

14. Ajmone Marsan, M., Chiola, G.: On Petri Nets with Deterministic and Exponentially Dis-
tributed Firing Times. LNCS 266 (1987) 132–145

15. Trowitzsch, J., Zimmermann, A., Hommel, G.: Towards Quantitative Analysis of Real-Time
UML Using Stochastic Petri Nets. In: 13th Int. Workshop on Parallel and Distributed Real-
Time Systems. (2005)


