
Towards Quantitative Analysis of Real-Time UML Using Stochastic Petri Nets

J. Trowitzsch∗, A. Zimmermann, and G. Hommel
Technical University Berlin

Real-Time Systems and Robotics
Performance Evaluation Group

{joni, azi, hommel}@cs.tu-berlin.de

Abstract

In recent years the Unified Modeling Language (UML)
including its profiles gained increasing acceptance as a
specification language for modeling real-time systems. It
is crucial to enable early quantitative predictions during
the modeling phase of real-time systems development pro-
cesses. UML itself is not directly analyzable. Performance
evaluation techniques are thus necessary for these UML
models. The challenge within our research work is the
derivation of Stochastic Petri nets (SPNs) from UML mod-
els aimed at performance evaluation of real-time systems.

1. Introduction

Developing complex systems typically involves a mod-
eling phase. The resulting model of the system can be used
for qualitative analysis as well as for a quantitative analy-
sis in the early stages of the system development process.
Quantitative analysis is especially important when model-
ing real-time systems, because a certain timeliness and de-
pendability must be ensured. Because of its growing accep-
tance in industry we consider the Unified Modeling Lan-
guage [15] in combination with its UML Profile for Schedu-
lability, Performance, and Time (SPT) [14] as specification
language for the design of real-time systems.

However, performance measures can not be obtained di-
rectly from UML models. For retrieving performance mea-
sures from UML two different strategies exist. The first
strategy (direct) is to develop and apply an analysis method
that operates directly on the UML specification. The second
strategy (indirect) is to map the UML specifications into
an established performance model such as Stochastic Petri
Nets or Queuing Network Models [3]. By this, quantitative
measures can be obtained by applying the known analysis

∗ The authors research work is supported by a PhD scholarship from the
German Research Council (DFG) under grant: GrK 621-2.

methods and tools for the chosen performance model. We
consider the indirect strategy as the preferring one, because
in this case a reuse of established knowledge for the anal-
ysis of the model is possible. There also exist quite pow-
erful tools that support quantitative analysis of established
performance models, for example TimeNET (Timed Net
Evaluation Tool) [17] in the case of Stochastic Petri Nets.

Both strategies have in common, that quantitative sys-
tem aspects such as frequency, delay or service execution
time have to be specified in the UML model. The mapping
of UML into a performance model requires rules that spec-
ify how certain UML fragments have to be interpreted in the
performance model context. In the resulting performance
model the semantics of the model has to be preserved. It
has to be ensured, that the timing behavior from the UML
is transfered in an equivalent timing behavior in the perfor-
mance model.

There are several approaches dealing with quantitative
analysis of annotated UML diagrams. Mainly they are
aimed at software performance evaluation. Merseguer et al.
present in this context a systematic and compositional ap-
proach [12, 11, 10]. This evaluation process includes the
translation of extended UML diagrams into labeled Gen-
eralized Stochastic Petri Net (GSPN) modules and finally
the composition of the modules into a single model rep-
resenting the whole system behavior [10]. Only exponen-
tially distributed times are taken into account and the re-
sulting Petri Net is thus a labeled GSPN. King and Poo-
ley [7, 8, 16] are also working on the integration of perfor-
mance evaluation into the software design process based on
UML. Again GSPNs are used for the performance evalu-
ation. An intuitive way of mapping UML State Machines
(SM) into GSPNs is introduced. A state in the SM is rep-
resented as a place in the GSPN and state transitions in the
SM are represented as transitions in the GSPN. The result-
ing GSPNs are composed, based on the UML Collaboration
Diagrams (CD).

Lindemann et al. present in [9] an approach for the direct
generation of an particular stochastic process, the general-

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

ized semi-markov process (GSMP), from enhanced UML
state diagram or activity diagrams. The diagrams are en-
hanced by specifying deterministic and stochastic delays.
No intermediate model like Stochastic Petri Nets is used.

Due to the lack of standards researchers have been using
more or less their own UML annotation extensions to ex-
press quantitative system aspects. With the adoption of the
UPSPT in 2002 it is now desirable to make use of this stan-
dard. By this a better understanding and interoperability be-
tween people and tools is enabled. Deterministic times such
as constant action execution times are covered by Linde-
mann et al. but not by the presented GSPN-approaches.

However, when modeling real-time systems it is required
to deal with deterministic and even more general behavior.
Therefore we develop a transformation method to retrieve
analyzable Stochastic Petri Net models from Real-Time
UML. This paper shows first results from the ongoing re-
search aimed on performance evaluation and prediction for
real-time systems. It seems to be a promising approach to
decompose single UML diagrams into basic scenarios and
to compose the obtained performance model fragments cor-
responding to the decomposition. We present our approach
for developing SPNs from annotated Real-Time UML mod-
els. Our focus is on the UML State Machine diagrams and
by giving an example we show the application of our ap-
proach.

The remainder of the paper is organized as follows: Sec-
tion 2 recalls basic aspects of UML and Stochastic Petri
Nets. Our approach is introduced subsequently and in Sec-
tion 4 a study for the European Train Control System com-
munication link is shown. A summary and an outlook is fi-
nally given in Section 5.

2. Modeling Methods

In the following we recall some basic features of Real-
Time UML and Stochastic Petri Nets. The term Real-Time
UML (RT UML) refers to the upcoming UML standard
2.0 [15] in combination with the SPT Profile [14].

2.1. Real-Time UML

UML is a semi-formal modeling language for specify-
ing, visualizing, constructing, and documenting models of
discrete event systems and of software systems. It provides
various diagram types allowing the description of different
system viewpoints. Static and behavioral aspects, interac-
tions among system components and implementation de-
tails are captured. UML is very flexible and customizable,
because of its extension mechanism.

UML defines thirteen types of diagrams, that are divided
into structural diagrams and behavioral diagrams [15, Ap-
pendix A]. Structural diagrams are used to model the log-

ical and architectural structure of the system. Behavioral
diagrams are used to describe system dynamics and thus
include timing information. Therefore they are the impor-
tant diagrams when dealing with quantitative analysis of RT
UML models.

Among the behavioral UML diagrams we consider the
UML State Machine (SM) diagram as the appropriate basis
for modeling real-time systems and their behavior. There-
fore we focus on this diagram type. UML SMs can be used
for specifying possible sequences of states which an indi-
vidual entity may proceed through its lifetime. This type
of UML SMs is called Behavioral State Machines [15, Sec
15.1] and they are a variant of Harels statecharts [4].

A

entry / ac1
do / ac2
exit / ac3

B

<<RTdelay>>
{RTduration = (10, 's')}

<<RTdelay>>
{RTduration = (8, 's')} <<RTdelay>>

{RTduration = ('exponential', 20, 's')}

<<RTdelay>>
{RTduration = ('exponential', 100, 's')}

stereotype
tagged value

Figure 1. An UML State Machine example

UML SM include states, different pseudo-states, and
transitions. A state models a situation during which some
invariant (usually implicit) condition holds. When a state is
entered as a result of a transition it becomes active. It be-
comes inactive if it is exited as a result of a transition. Ev-
ery state may optionally have one of each so called entry,
exit, and do activities, like for example state A in Figure 1.
Whenever a state is entered, it executes its entry activity be-
fore any other action is executed. A do activity represents
an activity that occurs while the SM is in the correspond-
ing state. Before the state is exited because of an outgoing
transition, the exit activity is executed [15].

Pseudo-states are annotations that are used to indicate
special semantics. Examples are join, fork, and history
pseudo-states. We abstain from introducing them at this
point in detail. A detailed description can be found in [15,
Sec 15.3].

A transition causes exiting of a source state and entering
of a target state. In Figure 1 one can see a transition lead-
ing from state A to state B . In the following we refer to the
transitions from the UML SMs as SM-transitions.

The extension mechanism of UML allows the definition
of so called profiles. A profile for a special application do-
main maps aspects from the domain to elements of the UML
metamodel. The UML Profile for Schedulability, Perfor-
mance, and Time is an example for such a profile. It enables
advanced annotation of timing and performance informa-

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

tion within the behavioral UML diagrams. It provides a set
of stereotypes and tagged values specializing UML without
violating its existing semantics. In Figure 1 <<RTdelay>>

is an example for a stereotype. This <<RTdelay>> stereo-
type is for example mapped to an activity or a SM-transition.
Its tagged value RTduration can be used to specify the du-
ration of such activity or SM-transition. A detailed descrip-
tion of the provided stereotypes and the associated tagged
values can be found in [14].

2.2. Stochastic Petri Nets

Petri Nets [13] are a special kind of directed graph and
with the underlying mathematical model they are applica-
ble to many systems. They represent a model for describing
the aspects of concurrent, asynchronous, distributed, paral-
lel, nondeterministic, and/or stochastic systems. A Petri Net
contains two types of nodes: places and transitions. Arcs
connect either a place to a transition or a transition to a
place. Places are drawn as circles and transitions are drawn
as rectangles. Formally, following [13]:

Definition: A Petri Net is 5-tuple, N = (P, T, F, W, M0)
where:

• P = {p1, p2, . . . , pm} is a finite set of places.

• T = {t1, t2, . . . , tn} is a finite set of transitions, with
P ∩ T = ∅ and P ∪ T �= ∅.

• F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow rela-
tion).

• W : F → {1, 2, 3, . . .} is a weight function.

• M0 : P → {0, 1, 2, 3, . . .} is the initial marking.

We assume that basic concepts of Stochastic Petri Nets
(SPNs) as defined in [1] are known to the reader. Within
SPNs transitions can be associated with firing times. Tran-
sitions can be distinguished because of their firing times:
immediate, deterministic, and exponential transitions. If a
transition does not belong to any of these three types it is
a so called general transitions. For a detailed description of
more properties of Petri Nets we refer to Murata [13]. In the
case of soft real-time systems especially Deterministic and
Stochastic Petri Nets (DSPNs) are of interest. DSPNs have
been introduced in [1] and allow continuous-time model-
ing. Both constant timing and exponentially distributed tim-
ing are included.

t1

t2
t3

p1 p2

p3

Figure 2. Example for a stochastic Petri net

An example for a SPN can be seen in Figure 2. Imme-
diate transitions are drawn as small rectangles (see t1). A
big black rectangle represents a deterministic transition (see
t3). A big empty rectangle shows an exponential transition
(see t2) and a big gray rectangle represents a general tran-
sition. In the following we refer to the transitions from the
Petri Net domain as PN-transitions, in order to avoid con-
fusion with SM-transitions.

3. From RT UML SM to SPN

In the following we present the first results of how to
derive SPNs from RT UML State Machines using our ap-
proach. In this paper we focus on the formalisms and an-
notations needed to understand the following case study.
We are aware that UML SM may include different other
constructs, like composite states and history pseudo-states.
They successively will be subject of our future work.

We propose the decomposition of an UML SM into ba-
sic elements, like states and SM-transitions. These elements
are translated into the corresponding SPN representations.
Thereby we follow a certain naming convention for the
places and PN-transitions in the resulting SPN fragments.
By this a later composition of the fragments to a SPN rep-
resenting the whole UML SM is enabled.

Our approach basically works as follows:

Ensure: use naming conventions in the resulting SPN
identify elements in SM
for all states S : S ∈ SM do

for all optional activities A do
translate A

end for
translate S, by combining activities

end for
for all pseuo-states P : P ∈ SM do

translate P
end for
for all transitions T : T ∈ SM do

translate T
connect T to SPNs of input and output state(s)

end for
compose stand-alone SPN fragments

In the following the translation of states, transitions, and
the choice pseudo-state is explained in detail.

States. Within each state time may be consumed because
of the optional entry, do, and exit activities. The execution
of the activities may consume time. An example of how to
translate a state can be seen in Figure 3 for state A. The de-
terministic PN-transition t_ent_A represents the entry ac-
tivity ac1with the constant delay of 10 seconds. It connects
the place ent_A (entering state A) and place A (entered
state A). The do activity ac2 is represented by the expo-
nential PN-transition with the prefix t_do_: t_do_A. The

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

ex_AAent_A ent_Bout_A

A

entry / ac1
do / ac2
exit / ac3

B

t_ent_A t_trans_A_Bt_do_A t_ex_A

<<RTdelay>>
{RTduration = (10, 's')}

<<RTdelay>>
{RTduration = (8, 's')} <<RTdelay>>

{RTduration = ('exponential', 20, 's')}

<<RTdelay>>
{RTduration = ('exponential', 100, 's')}

= 1/20 = 1/10010 8

Figure 3. Basic state translation example

deterministic PN-transition t_ex_A represents the exit ac-
tivity ac3 with the constant delay of 8 seconds. The place
out_A in the SPN represents the point, when state A has
been left, thus the exit activity has been finished. The des-
tination state B has not been entered at this point via the
exponentially delayed SM-transition. In the SPN the PN-
transition t_trans_A_B represents this SM-transition from
state A to state B.

Regardless if there are no optional activities specified for
a state, we always follow the logical and temporal order of
the optional activities. If an optional activity is not specified
for a state, the corresponding PN-transition is an immediate
transition.

Thus the translation of a state X always results in a SPN
fragment containing places and PN-transition in the follow-
ing order: place ent_X → PN-transition t_ent_X (entry
activity) → place X → PN-transition t_do_X (do activity)
→ place ex_X → PN-transition t_ex_X (exit activity) →
place out_X, as shown for state A in Figure 3.

SM-transitions. The SM-transitions within UML SMs may
consume time and are translated into corresponding PN-
transitions. The naming convention for the resulting PN-
transitions is as follows: For a SM-transition from state A to
state B the resulting PN-transition is named t_trans_A_B.
It connects the places out_A and ent_B (see state trans-
lation). SM-transitions without any timing annotation are
considered not to consume any time. They are translated
into immediate PN-transitions in the SPN model. For ex-
pressing pure delays UPSPT provides the <<RTdelay>>

stereotype with its tag RTduration [14, Sec 5]. The tag
is of type RTtimeValue. A SM-transition with a constant
delay such as in Figure 4(a) is mapped into a determinis-
tic PN-transition with an equal delay.

SM-transition can have an exponential delay like in Fig-
ure 4(b). We translate such a SM-transition into an expo-
nential PN-transition in the SPN. We can calculate the rate
λ, with the mean value being equal to 1/λ. In the exam-
ple we get: λ = 1/20 = 0.05.

In order to be able to express percentiles for

A B

<<RTdelay>>
{RTduration = (0.5, 's')}

out_A ent_B

0.5

t_trans_A_B

(a) deterministic

A B

<<RTdelay>>
{RTduration = ('exponential', 20, 's')}

out_A ent_B

= 1/20 = 0.05

t_trans_A_B

(b) exponential

A B

<<RTdelay>>
{RTduration = ('percentile', 75, (5, 's'))}

out_A ent_B

= 0.2773

t_trans_A_B

(c) percentile

Figure 4. Translation of SM-transitions into
PN-transitions

delay functions we propose an extension of the
RTtimeValue syntax. Similar to the PAperfValue [14,
Sec 8] a percentile construct is introduced
(’percentile’, <Real>"," <timeValStr>). This
enables for example the specification of a SM-transition
with a delay of 5 seconds at most in 75% of all cases:
{RTduration = (’percentile’, 75, (5, ’s’))},
see Figure 4(c). We assume that in these cases the
time is exponentialy distributed. By this it is possi-
ble to calculate the rates for the corresponding exponential
PN-transitions in the SPN via the density and distribu-
tion function of the exponential distribution: f(x) = λe−λx

and F (x) = 1 − e−λx. For the example in Figure 4(c)
this results in an exponential PN-transition with rate
λ = − ln0.25

5 ≈ 0.2773
(
F (5) = 1 − e−5λ = 0.75

)
.

B

<<PAstep>>
{PAprob = 0.6}

A

<<PAstep>>
{PAprob = 0.4}

C

out_B

ent_C

0.4 ent_A

0.6

t_trans_B_C

t_trans_B_A

Figure 5. Usage of choice pseudo-state

Probabilistic choice. For real-time systems it is important
to express probabilistic choice in the model. In contrast to
the probabilistic UML-statecharts as proposed by Jansen et
al. [6] we propose the usage of the choice pseudostate for
describing probabilistic path decisions within UML SMs.
In this context we follow the proposal by Merseguer to con-
sider a SM-transition as special kind of <<PAstep>> [11].
By using the tag PAprob it is possible to express probabilis-
tic choice. In this context we consider an UML SM as well-
formed, if the sum of the probabilities attached to all out-
going SM-transitions of every choice pseudostate is 1. Oth-
erwise the model might be inconsistent. An usage exam-
ple and its translation is shown in Figure 5. The weight of

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

the resulting conflicting immediate PN-transitions is set ac-
cording to the specified probabilities, which can be seen in
the translation of the example.

4. Case Study

In this section we show the application of our approach
to the future European Train Control System (ETCS) as an
example. Similar models for ETCS have been considered
in [5] and [18].

ETCS will be based on radio communication without us-
ing fixed track blocks. It is meant to enable fast, dense, and
cross-border train traffic across Europe. One of the crucial
factors for the safe and efficient operation of ETCS is the
radio communication link between the on-board equipment
and the radio block centers (RBC).

<<RTdelay>>
{RTduration = ('percentile', 5, (7, 's')}

<<RTdelay>>
{RTduration = ('percentile', 95, (1, 's')}

<<RTdelay>>
{RTduration = ('exponentiell', 50.4, 's')}

<<RTdelay>>
{RTduration = (0.3, 's')}

<<RTdelay>>
{RTduration = ('exponentiell', 3600000, 's')}<<RTdelay>>

{RTduration = ('percentile', 95, (5, 's'))}

<<PAstep>>
{PAprob = 0.001}

<<PAstep>>
{PAprob = 0.999}

<<RTdelay>>
{RTduration = (1, 's')}

<<RTdelay>>
{RTduration = (7.5, 's') }

Figure 6. UML SM for ETCS radio link opera-
tional mode

The communication link between trains and RBCs is
usually connected in normal operation mode. At this point
three types of failures may occur: transmission errors, han-
dovers, and connection losses. Transmission errors occur
from time to time, possibly because of bad radio signal con-
ditions. Handovers take place every time the train crosses
the border between two neighboring base transceiver sta-
tion (BTS) areas. Connecting to the next BTS happens au-
tomatically, but takes some time. If there are radio signal
problems for a longer period of time a total connection loss
may occur. Such a loss is detected by the train hardware af-
ter a certain timeout and an immediate attempt to reestablish
the connection is started. This reconnection attempt may fail

and in this case the reconnection procedure starts over again
after a certain timeout.

Figure 6 shows the UML SM describing the ETCS ra-
dio communication link operation mode. We use the
same values from the ETCS specifications as were used
in [18] for modeling. Initially the radio link operates in
Normal Mode. In this case it takes at least 7 seconds for a
new transmission error to occur in 95% of all cases. This is
modeled by the SM-transition from state Normal Mode to
state Transmission Error with an <<RTdelay>> of:
{RTduration = (’percentile’, 5, (7, ’s’))}

(less than 7 seconds in 5% of all cases). It takes the ra-
dio link less than one second in 95% of all cases
to operate in Normal Mode again, which is mod-
eled by the SM-transition with an <<RTdelay>> of:
{RTduration = (’percentile’, 95, (1,’s’))}.

The mean distance between two neighboring BTS is
7 km. ETCS is required to work for speeds up to 500
km per hour (139 meter per second). Due to the speed
of the train handovers occur quite often. The resulting
worst-case mean time between two handovers is 50.4 sec-
onds. So the transition duration is exponentially distributed
with a mean value of 50.4 seconds, modeled in the UML
SM with the SM-transition from state Normal Mode
to state Handover with an <<RTdelay>> of:
{RTduration = (’exponential’,50.4, ’s’)}.
Following the specification, the connection to the next
BTS is required to take at most 300 msec. This is mod-
eled by a SM-transition with a fixed delay of 0.3 seconds:
<<RTdelay>> {RTduration = (0.3,’s’)}.

A total connection loss takes place only rarely, namely
10−4 times per hour, every 3.6 ∗ 106 seconds once. This re-
sults in a SM-transition from state Normal Mode to
state Total Connection Loss with an exponen-
tially distributed delay with a mean value of 3.6 ∗ 106

seconds, which is modelled by an <<RTdelay>> of:
{RTduration = (’exponential’, 3600000, ’s’)}.
The time needed to detect the connection loss is re-
quired to be one second at most. This is modeled by
a SM-transition with a fixed delay of one second:
<<RTdelay>> {RTduration = (1,’s’)}. The recon-
nection attempt is required to be successful with a proba-
bility of 99.9%. In the remaining cases the attempt is can-
celed after 7.5 seconds and started over again. This is
modeled in the SM using a choice state with two out-
going SM-transitions. One with a probability of 99.9%
(<<PAstep>> {PAprob = 0.999}) and the other with a
probability of 0.1% (<<PAstep>> {PAprob = 0.001}).
The cancelation after 7.5 seconds is represented by
a SM-transition with the fixed delay of 7.5 sec-
onds: <<RTdelay>> {RTduration = (7.5,’s’)}.
In the case of a successful immediate reconnec-
tion it takes not more than 5 seconds in 95% of all

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

cases until the radio link operates in Normal Mode
again. This is modeled by the SM-transition from
state Reconnecting to state Nomal Mode
with the following <<RTdelay>> annotation:
{RTduration = (’percentile’, 95,(5, ’s’))}.

init

ent_NM

NM

ex_NM

ent_HO

ent_TCL

ent_TE

= 0.0198

= 1/3600000

 = 0.00733

TCL

ex_TCL

1

ent_RL

0.001

0.999

ent_RC

ent_NRC

RC

NRC

ex_RC

= 0.6

ex_NRC

7.5

TE

ex_TE
= 30.3

HO

ex_HO

ex_RL RL

t_ex_HO

t_ent_NM

t_trans_HO_NM t_trans_TE_NM

t_ent_HO

t_trans_NM_HO

t_in_NM

t_do_NM

t_trans_NM_TCL

t_trans_NM_TE

t_do_TE

t_ent_TE

t_ent_TCL

t_do_TCL

t_trans_TCL_RL

t_ent_RLt_do_RL

t_trans_RL_RC

t_ent_NRC

t_trans_RL_NRC

t_do_NRC

t_trans_NRC_RL

t_ent_RC
t_do_RC

t_trans_RC_NM

t_ex_NM

out_NM

out_TE t_ex_TE

t_do_HO

out_HO

t_ex_TCL

out_TCL

out_NRC

t_ex_NRC

out_RL

t_ex_RL

t_ex_RC

out_RC

Figure 7. The resulting DSPN

The resulting SPN according to our translation approach
is shown in Figure 7. For clarity reasons the following ab-
breviations are used: NM for Normal Mode, HO for Han-
dover, TE for Transmission Error, TCL for Total Connec-
tion Loss, RL for Realized Loss, RC for Reconnecting, and
NRC for Not Reconnecting. The SPN is a DSPN which is
strongly-connected and safe (1-bounded). One can see un-
necessary sequences of immediate PN-transitions, like in
the handover part of the net. This is due to the fact, that
in the states of the ETCS SM no entry or exit activities
are specified, while the translation considers the order of
all possible internal activities. In this case a trivial aggrega-
tion of these structures is feasible like shown in Figure 8.

The ETCS specification [2] requires an availability for
the communication link of 99.95%. In our SM this means,
that the probability of being in state Normal Mode has to
be at least 99.95%. The resulting SPN (see Figure 7) is ana-
lyzable. The result of the numerical analysis of the SPN us-
ing TimeNET shows that the communication link is work-

ent_HO

= 0.0198

0.3

HO

ex_HO

t_ex_HO t_trans_HO_NM

t_ent_HO

t_trans_NM_HO

t_do_HO

out_HO

= 0.0198

0.3
c_HO

t_trans_HO_NM

t_trans_NM_HO

Figure 8. Trivial net size minimization

ing in Normal Mode with a probability of 99.166% only.
This result shows that the required availability for the com-
munication link is not met.

5. Conclusion

Because Real-Time UML becomes more and more es-
tablished for modeling real-time systems it is useful to ap-
ply performance analysis methods on the resulting models.
Our focus is on modeling using UML State Machine dia-
grams and the UML Profile for Schedulability, Performance,
and Time (SPT). A model translation from Real-Time UML
to Stochastic Petri Nets is proposed. Established methods
from the Petri Net domain can be used for quantitative anal-
ysis. With the European Train Control System example the
applicability of our model translation approach is shown.

Deterministic and exponentialy distributed timing are al-
ready covered by our SPN approach. Because the SPT Pro-
file allows the use of several different non-exponential dis-
tributions translation into general PN-transitions might be
necessary. Also the different pseudo-states and aspects like
triggered transitions have to be studied in detail. Currently
the resulting Stochastic Petri Net contains unnecessary se-
quences of immediate transitions. Thus a refinement of our
approach considering a special treatment of states without
internal activities is intended.

The model translation is currently performed by hand.
An implementation of our approach in the framework of
TimeNET [17] has already been started.

References

[1] M. Ajmone Marsan and G. Chiola. On Petri Nets with Deter-
ministic and Exponentially Distributed Firing Times. LNCS,
266:132–145, 1987.

[2] EEIG ERTMS User Group. Euroradio FFFIS. UIC, Brus-
sels, 2000.

[3] D. Gross and C. Harris. Fundamentals of Queueing Theory.
Wiley, 3rd edition, 1998.

[4] D. Harel. Statecharts: A Visual Formalism for Complex Sys-
tems. Science of Computer Programming, 8(3):231–274,
June 1987.

[5] D. Jansen and H. Hermanns. Dependability Checking with
StoCharts: Is Train Radio Reliable Enough for Trains? In

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

Proc. of the 1st Int. Conf. on the Quantitative Evaluation
of Systems (QEST), pages 250–259, Enschede, Netherlands,
2004.

[6] D. Jansen, H. Hermanns, and J.-P. Katoen. A Probabilis-
tic Extension of UML Statecharts: Specification and Verifi-
cation. LNCS, 2469:355–374, 2002.

[7] P. King and R. Pooley. Using UML to derive stochastic Petri
net models. In Proceedings of the 15th UK Performance En-
gineering Workshop, pages 45–56, Bristol, UK, July 1999.

[8] P. King and R. Pooley. Derivation of Petri Net Performance
Models from UML Specifications of Communications Soft-
ware. In Proceedings of the 11th Int. Conf. on Tools and
Techniques for Computer Performance Evaluation, pages
262–276, Schaumburg, Illinois, USA, 2000.

[9] C. Lindemann, A. Thümmler, A. Klemm, M. Lohmann, and
O. Waldhorst. Performance Analysis of Time-enhanced
UML Diagrams Based on Stochastic Processes. In Proc.
of the 3rd Workshop on Software and Performance (WOSP),
pages 25–34, Rome, Italy, 2002.

[10] J. López-Grao, J. Merseguer, and J. Campos. Performance
Engineering Based on UML and SPNs: A Software Perfor-
mance Tool. In Proceedings of the Seventeenth Interna-
tional Symposium On Computer and Information Sciences
(ISCIS XVII), pages 405–409, Orlando, Florida, USA, Octo-
ber 2002. CRC Press.

[11] J. Merseguer. On the use of UML State Machines for Soft-
ware Performance Evaluation. In Proc. of the 10th IEEE
Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), 2004.

[12] J. Merseguer, S. Bernardi, J. Campos, and S. Donatelli. A
Compositional Semantics for UML State Machines Aimed at
Performance Evaluation. In Proceedings of the 6th Interna-
tional Workshop on Discrete Event Systems (WODES), pages
295–302. IEEE Computer Society Press, October 2002.

[13] T. Murata. Petri Nets: Properties, Analysis and Applications.
In Proceedings of the IEEE, volume 77(4), pages 541–580,
April 1989.

[14] Object Management Group. UML profile for schedulability,
performance, and time. www.uml.org, March 2002.

[15] Object Management Group. Unified Modeling Language
Specification v.2.0. www.uml.org, September 2003.

[16] R. Pooley and P. King. The Unified Modeling Language and
Performance Engineering. In IEE Proceedings - Software,
volume 146(2), March 1999.

[17] A. Zimmermann, J. Freiheit, R. German, and G. Hom-
mel. Petri net modeling and performability evaluation with
TimeNET 3.0. In Proceedings of the 11th Int. Conf. on
Tools and Techniques for Computer Performance Evalua-
tion, pages 188–202, Schaumburg, Illinois, USA, 2000.

[18] A. Zimmermann and G. Hommel. Towards Modelling and
Evaluation of ETCS Real-Time Communication and Opera-
tion. Journal of Systems and Software, 2004 (in press).

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

