
Complete Event Ordering for Time-Warp Simulation
of Stochastic Discrete Event Systems

Armin Zimmermann Michael Knoke Günter Hommel
Technische Universität Berlin

Institute of Computer Engineering and Microelectronics
Einsteinufer 17, D-10587 Berlin, Germany

{azi, mknoke, hommel}@cs.tu-berlin.de
Phone: +49 (30) 314 73 112, Fax: +49 (30) 314 21 116

Keywords: Distributed simulation, logical time, event or-
dering, immediate events

Abstract
Distributed simulation of stochastic discrete event systems
is a well-known technique to speed up computationally ex-
pensive simulation runs. Synchronization between logical
processes requires a logical time. Such a time scheme
has been introduced recently to allow models to be de-
composed into almost arbitrary logical processes, even in
the presence of zero delays and global priorities. This pa-
per discusses the background of this compound simulation
time, and proves some important properties.

1 INTRODUCTION
A popular approach to speed up a simulation experiment
is the use of multiple processing nodes. One possible tech-
nique of distributed simulation divides the model into parts,
which are simulated by communicating logical processes���

. Just like in a standard sequential simulation, discrete
event occurrences are observed in each logical process over
a virtual simulation time scale. An event list is managed
with events scheduled in the future, ordered by their occur-
rence time.

A distributed simulation has no centralized control to
synchronize the different logical processes. Synchroniza-
tion is realized by exchanging messages between the nodes;
a fast communication subsystem is thus important for effi-
cient execution. The underlying idea is that enabling of
actions and event execution is often performed locally in
stochastic discrete-event system (SDES) models. Many
events occur thus at different points in time, but do not af-
fect each other.

Distribution at the event level divides a global simu-
lation task such that each logical process simulates a part
of the global model. The model (state variables and ac-

tions) is partitioned into a set of regions that are associ-
ated to each process. Internal events do not affect state
variables of other processes, while external events may do
so. Non-local dependencies and results of events need to
be propagated to the corresponding processes. Messages
for state variable changes (remote events) and other noti-
fications for management issues are exchanged via a com-
munication system in a distributed simulation. The main
problem to be solved is to guarantee causal correctness of
a distributed simulation run.

A distributed simulation is obviously said to be correct
w.r.t. the local event processing if the partial event order-
ing created by it is consistent with the total event order of a
sequential simulation. This leads to the question which no-
tion of time is necessary to achieve such an ordering. The
logical clock problem [1] aims at generating clock values in
a distributed system in a way that all events are ordered in
a logical time. It was shown in [2], that this is the inverse
of the problem in a distributed simulation run. Causality
errors are impossible if all

���
execute the events ordered

by their time stamps. This is called the local causality con-
straint [3], and has been shown in [4].

If a model has only a few events that require messages
to be exchanged between logical processes, it is safe in
most cases to proceed inside such a process. The idea of
optimistic logical process simulation or Time Warp [5, 2]
is to temporarily accept the possibility of local causality
violations. A violation occurs if a logical process

�����
re-

ceives a message from another one, notifying it about a past
remote event affecting the local state of the process. Such
a message is called a straggler message, and the causality
violation is overcome by a rollback of the logical process
to the time before the time stamp of the remote event, i.e. a
state which is consistent with the received message.

A distributed simulation of SDES models thus requires
time stamps for events that allow their unique and correct
ordering. With the existing approaches it is however im-

possible to order events that are due to immediate action
executions (with zero delay), or have priorities. Standard
distributed simulations therefore require a model to be de-
composed into regions of logical processes in a way that
there are no zero-delay events to be sent, i.e. only at timed
actions. It is then (practically) impossible that two events
are scheduled for the same point in time.

Global enabling functions (guards) and condition func-
tions (capacities) are impossible without global state ac-
cess, which in turn requires a complete ordering between
all event times in a distribute simulation as well. Standard
simulation times lack this feature and can thus not be used.

We proposed a new logical time scheme for stochastic
colored Petri net models recently [6, 7]. This compound
simulation time is applicable to SDES models including
immediate actions, priorities, and global functions. It al-
lows partitioning with less structural restrictions than e.g.
the approaches covered in [8]. The contribution of this pa-
per is a discussion of the proposed logical time, expecially
proving its soundness. Petri nets are used for examples;
the logical time is, however, usable for distributed SDES
simulation in general.

The remainder of the paper is organized as follows.
Fine-grained model partitioning for dynamic load balanc-
ing [6, 7] is briefly introduced in the following section.
Section 3 gives some background on logical time schemes.
Problems arising with zero delays and priorities as well as
a possible solution are shown in Section 4. The subsequent
section defines the proposed compound simulation time,
while Section 6 discusses and proves some of its proper-
ties. Global states and the use of the logical time scheme
for this issue are covered in Section 7.

2 FINE-GRAINED PARTITIONING FOR
DYNAMIC LOAD BALANCING

A fine-grained partitioning of an SDES model has the ad-
vantage of almost arbitrary associations of model parts to
computing nodes. It is thus a prerequisite for dynamic load
balancing. Different to standard time-warp simulations we
propose to run one logical process per host, which man-
ages several atomic units that are running quasi-parallel in
that machine. An atomic unit is responsible for the opti-
mistic simulation of a smallest possible model part. Each
atomic unit has its own local simulation time, event and
state list. This allows to migrate it during runtime without
affecting other atomic units. An atomic unit can restore its
local state accurately for a given simulation time and send
rollback messages to other atomic units that might be af-
fected. Rollbacks are thus more precise and unnecessary
ones are avoided or canceled whenever possible. The way
of scheduling the operations of atomic units inside a logical

process avoids causality violations between them, reducing
the number of rollbacks further.

We denote by ��� one atomic unit, and by
���

the set of
all of them.

�����	� ����
���������������������� �������
The mapping of atomic units to logical processes has

been covered in [6, 7] already, and is not required for the
presentation in this paper. Informally, an action together
with its input state variables (as well as other actions that
share them) forms one ��� . In the case of Petri nets, each ex-
tended conflict set of transitions [9] together with their in-
put places form an atomic unit. The discussion in this paper
can be easily transferred to standard time-warp simulations
by understanding an atomic unit as one logical process.

We require the simulated model to be confusion-free,
i.e. if the model evolution depends on the ordering of
events, this ordering must be specified by the model. The
compound simulation time presented in this paper actually
allows to detect confusions on-the-fly; this issue is however
not detailed here. If the SDES model to be simulated is
confusion-free as required, conflicts can always be solved
locally inside an extended conflict set, and thus inside one
atomic unit. Events of two or more actions belonging to
different atomic units and having the same priority may
then be executed in any order, without changing the behav-
ior of the stochastic process (compare e.g. [9]). The order
of execution of these events can then be fixed arbitrarily.
Different priority values must however be valid across the
borders of atomic units — the corresponding events need to
be ordered by the priority of the underlying action. We as-
sociate priorities to SDES model actions such that actions
in different atomic units never have equal values, without
disturbing the global priority ordering. This is possible
without changing the behavior of a model if there are no
confusions.

Another restriction is the absence of immediate or van-
ishing loops. We slightly restrict immediate paths requiring
that an extended conflict set containing only immediate ac-
tions must not be visited more than once in one immediate
path. This restriction is however of little practical signifi-
cance.

3 LOGICAL TIME
Causal correctness of a distributed simulation algorithm for
SDES models is guaranteed if the events are processed in
the same sequence that a sequential method would follow.
A sequential simulation processes events in the order given
by the simulation time � , remaining delays, and by taking
priorities of events into account which are scheduled for the
same time. Following [3, 4], every atomic unit must exe-

2

cute events in a non-decreasing time stamp order. However,
time stamps must allow a complete ordering.

A global simulation clock alone is not sufficient, be-
cause there are actions with zero delay to be executed at
the same simulation time, and there is a non-zero probabil-
ity that several timed actions are scheduled at the same time
as well. The priority ������� of an action � specifies the order
of execution. Events to be executed at the same simulation
time must be uniquely ordered at every place (atomic unit)
where their ordering matters. Priorities and causal relations
between these events must be taken into account for such a
decision.

Lamport’s algorithm [1] allows a time ordering among
events [10]. A single number is associated to every event
as its logical time, and increases with subsequent events.
However, a mapping from Lamport time to real (simula-
tion) time is not possible. This is no problem if the correct
ordering is sufficient; in a simulation we however do need
the actual simulation time � e.g. to compute performance
measures. Lamport time is furthermore not sufficient to de-
tect causal relationships between events, which is a prereq-
uisite for models with action priorities. It is impossible to
sort concurrent and independently executed events whose
occurrence is based on a different priority. Lamport time
would impose an artificial ordering and neglect the priori-
ties. Moreover, it is forbidden for neighboring regions of a
distributed model to exchange events that have a zero de-
lay. In a colored Petri net, this would prevent models to be
decomposed at immediate transitions, and thus restrict the
formation of atomic units significantly.

A logical time that characterizes causality and thus
overcomes some of the mentioned problems of Lamport
time is vector time (or vector clocks) proposed by Mat-
tern [11], Fidge [12] and others independently in different
contexts. In our proposed setting, a vector time � value is
a vector of natural numbers, which contains one entry for
every atomic unit ��� .

�	� ����
�
or �	� � � ��� �

Whenever an atomic unit executes an event or rollback, it
increases the vector time entry of itself by one when the
next logical simulation time is obtained from the current
simulation time. The local entry of the � entry thus al-
ways increases, even when a rollback is processed. The
element-wise maximum is taken for every non-local entry
of � to update the local time, whenever a remote event is
processed.

Vector time is a notion of causality, and can thus be
used to differ between events that depend on each other. If
event � � is causally dependent on �
 , it must naturally be

����������
T2 T4

�����

�����

T3 T5

2

3 1

1

P4P2

P3 P5T1

Figure 1. Simple Petri net example with immediate
transition priorities

scheduled after it. In that case we write �
������ .
�
 ��� � ��� ���!� ��� �"�
 � ���#�%$&� � � ���'�
�
 � � � ��� ���!� ��� �"�
 � ���#� � � � � ���'�

The case of all elements of two vector times being equal
occurs only if two events are compared that result from
actually conflicting actions in one atomic unit. Their ex-
ecution sequence is then decided based on a probabilistic
choice. This can however only happen inside one atomic
unit and for events that are in the future of the local simu-
lation time. It will never happen in a distributed simulation
that a remote event has the same vector time as any other lo-
cally known one, because the same event is only sent once
to another atomic unit. In algorithms where this cannot be
guaranteed, all equally timed events must be executed to-
gether in one step.

Two events �
 and � � are said to be concurrent with re-
spect to their vector times, if there is no causal dependency
found. This case is denoted by �
)(� � .

�
 (��� ��� �*�
�+������-,.�*���/+0�
1�
Vector time is however still not sufficient for models

with priorities and immediate delays. Two or more events
can be scheduled for execution at the same (simulation)
time in a SDES model with priorities, but the one with a
higher priority must always be executed first. It may dis-
able events with lower priorities by doing so.

A small Petri net example is shown in Figure 1. Priori-
ties of transitions are annotated in italics; timed transitions
(empty boxes) always have a priority of zero. The correct
sequence of events would be the firing of transitions T1,
T3, T2, and then T4 or T5, depending on the probabilistic
solution of the conflict between them.

In a distributed simulation of the model, transitions and
places are associated to atomic units ���
 ���������2 as shown.
It might happen during distributed simulation that T2 fires
after T1, and the associated event is received and processed
in ����2 . T4 then fires locally, which is not correct. This is

3

detected later on, when T3 has fired and the corresponding
event is received in ���'2 . The events of firing transitions
T2 and T3 must be ordered correctly in ��� 2 . Otherwise it
cannot be detected that T3 had to fire before T2, and that
the previous local firing of T4 must be rolled back.

An ordering of events T2 and T3 in ��� 2 is however im-
possible based on the simulation times � T2 and � T3 (which
are equal) or the vector times of the events, which are con-
current.

The simulation clock, (measured in model time units),
has to be incorporated in a time scheme for SDES to make
it applicable for performance evaluation. Vector time is
added to the simulation time to cover causal dependencies
between events at the same time, and extended by a priority
vector as described below.

4 IMMEDIATE EXECUTION PATHS AND
THE PRIORITY VECTOR

Priorities (especially of actions with a zero delay) play a
significant role in many subclasses of SDES. Event serial-
ization may only take place when different events are sorted
w.r.t. their logical times in atomic units that process them.
Thus the decision about which event has (or had) to be ex-
ecuted first must be taken in a distributed way, i.e. in each
atomic unit that receives and sorts events by their time.

We introduce a priority vector as a supplement to the
logical vector time in order to sort events correctly. A pri-
ority vector

�
maps each atomic unit ��� to a natural num-

ber.
� � ����
�

or
� � � � � ���

This number stores the minimum priority of any event be-
longing to ��� , which has been executed in the current path
of events that immediately followed each other. It should
be noted that only paths of event executions between two
tangible states are significant in this case, because other-
wise the simple simulation time � is sufficient for the or-
dering. Such a path of immediate state transitions starts
with the execution of an action with non-zero delay (like
transition T1 in Figure 1), and ends again in a state in which
some simulation time passes.

All event executions of one path must be considered in
the priority vector, because every single one can influence
the correct sequence. If two events are compared, the one
with the smaller minimum priority entry must be ordered
last. This is because the event with the lowest priority de-
lays the propagation of an event until no other action with a
higher priority on other paths can be executed. Entries are
initialized with infinity as a neutral value of the minimum,
and are again set to infinity when some simulation time �
passes (i.e. in a tangible state).

When an immediate action becomes executable in a lo-

cal state, it is scheduled with a logical time in which vector
time and priority vector are copied from the current local
logical time. The priority vector entry corresponding to the
local atomic unit is set to the event priority of the scheduled
action. This scheduled time is used to sort a new event into
the local event list.

When an event is executed in an atomic unit, the lo-
cal simulation time is advanced to a new value. The local
priority vector of the atomic unit is then updated such that
the entry related to the atomic unit of the event (it could
be a remote or local action) becomes the minimum of the
previous value and the entry in the event’s priority. The re-
maining entries are not changed. All entries are set to the
default value infinity if some time passed between the pre-
vious simulation time and the event execution. The only
exception is the entry corresponding to the executed timed
event, which is set to its priority.

The priority vectors are used to compare event times.
However, it is obviously not adequate to compare the min-
imal priority vector entry. Priorities of actions that were
visited in both paths have to be ignored, based on the vec-
tor time of the events. Equal entries in the two vector times
denote identical dependencies.

We thus define a minimal path priority of a priority vec-
tor

� � to which a vector time � � belongs, with respect to
another vector time ��� as

� ��� ���� 	 �

� ������ ������� � ������ � ��� !#"$ ��%&� ��� ! � � ���'� if � �('� � �) otherwise

(1)

Note that we define this path priority to be infinity for com-
pleteness in the case of identical vector times; this case
is however only of theoretical interest. For the example
shown in Figure 1, it is then possible to order incoming
events at ���'2 correctly:

�+* � � *-,��� 	 �/. � �0*-, � * ���� 	 �21
, and

thus the event corresponding to the firing of transition T3
is executed first.

One special case remains. It is possible that the min-
imal path priorities of two events � and 3 are equal with
the formula introduced above, i.e.

� ��� ���� 	 � � � � ���� 	 . This may
happen if the paths share a common atomic unit where con-
flicting immediate actions were executed, which by chance
have the smallest priority on the path. The reason is that the
events have the same atomic unit as their common prede-
cessor, in which two conflicting transitions with the small-
est priority initiated them. We only need to use the vector
time entries that correspond to the atomic unit in which the
minimal path priorities were set to detect the causal order-
ing (see Equation 2 below).

Example models covering the elements of the com-
pound simulation time have been given in previous pa-
pers [6, 7], and are omitted due to space limitations.

4

5 COMPOUND SIMULATION TIME
We define a compound simulation time � � containing the
actual simulation time � , vector time � , and priority vec-
tor

�
of an event or any other specific point in time. The

set of all possible compound simulation times is denoted
by � � .

� � ��� �� ��� � � ��� �����
	�� ��� � � ����� � � � � � � � � ��
Events � mark state changes that are either executed or

are scheduled in the future of an atomic unit. Furthermore
they are exchanged in messages. An event � � ��� � � ��� com-
prises the executed action � and the corresponding com-
pound simulation time � � . The set of all possible events is
denoted by � .

The compound simulation time is intended for an or-
dering between different events. For any two events �
 and
�� it must be clear which one has to be scheduled first. An-
other application is the comparison of a remote event time
with the local simulation time, which is important to decide
whether an event is scheduled for the future or past of the
local time of an atomic unit.

The comparison is performed using the compound sim-
ulation times � �
 and � � � . While the comparison of the
actual simulation times is obvious, things are more com-
plicated when vector times and priority vectors are taken
into account. This has been informally explained already
above, and is now defined formally. Elements of com-
pound simulation times are denoted by assuming that � � � �
�� � ��� � � � � � .
 � �
 ��� � � ��� ����� �
 ��� � � ��� ��
 � � � ���
� ��
 � ��� � ,���� �
��&�������
�*�
 (��� �-,�� � �
 � ���� 	�� � � �
��� 	 ���� ���!� ��� ��� �
 � ���� 	 � � � �
��� 	 � �
*� ���'��� ,

� �
 � ��� �%����� � ���'� �! #"
(2)

There are four cases: If simulation time or vector time al-
low a decision about which time is smaller, it is taken ac-
cordingly (cases one and two). If �
 (��� , the minimal
path priorities are compared. The time with the greater
value is then smaller (case three). If they are equal as well,
the decision is based on the vector time entry of the sig-
nificant atomic unit (i.e. the one in which the minimal path
priority occurred). The fourth case covers equal minimal
path priorities.

Formally is is also possible that two compound simu-
lation times are equal, meaning that all elements are com-
pletely identical. This is however only possible in the case
of two events that belong to the same atomic unit, have zero

delay and equal priority, and are being scheduled for exe-
cution in a given local state. This means that they are in
conflict, and the order of execution will be decided locally
in the atomic unit by a probabilistic choice. A compari-
son between such events is thus never necessary to decide
the correct order. If it is technically possible that the results
of one event are propagated to other logical units seperately
in an actual implementation, they can be identified by equal
compound simulation times and must be executed together.

Another issue is the selection of the compound simu-
lation time � �%$ for an event that is newly scheduled and
inserted into a local event list. The event is scheduled for
the actual simulation time plus a randomly drawn delay,
corresponding to the probability distribution of the action’s
delay. If it is different from zero, all priority vector entries
are reset to infinity except for the local value, which is set
to the priority of the scheduled action. It would be possible
to reset the entries of the � vector every time a non-zero
delay passes, just as it is done for the priority vector

�
.

This is however avoided to keep the full causal information
for all messages, including rollbacks, for an improved mes-
sage cancellation mechanism. The other entries are copied.
The vector time is not changed at this point; it is updated
upon actual execution of the event.

The scheduled compound simulation time of future lo-
cal events always has to correspond to the current local
compound simulation time. This means that if a future
event in the local event list stays executable after an event
execution, its compound simulation time has to be updated,
while the scheduled simulation time � is kept. This can
be efficiently implemented without recalculation by trans-
parently mapping the current local vector time and priority
vector to local future events.

When an event � , which is caused in an atomic unit ���'& ,
is executed in the atomic unit ��� , the local compound simu-
lation time � � ��� is updated as follows. The new simulation
time is set to the time of the event first. The local vector
time entry is incremented by one, and the maximum of cur-
rent and event vector time entries is taken for all “remote”
entries.

� � ��� & � is set to the priority of the executed local
action, while the other entries of

�
assume the minimum

of the previous value and the entry of � . A more detailed
description is contained in in [6, 7].

6 DISCUSSION OF COMPOUND SIMU-
LATION TIME

In our attempt to simulate a timed synchronous system on
distributed computing hardware, a compound simulation
time has been introduced for event ordering. The goal of
this section is to show that (1) our time scheme associates a
reasonable compound simulation time to each event, (2) the

5

introduced time scheme complies to the nature of time, and
(3) that it is possible to derive global state information ef-
fectively using it.

6.1 Relation of Events and Clock Values
Do the algorithms associate a “meaningful” compound
simulation time � � � � � � to every event � � ? This issue is con-
sidered as clock condition in literature (see e.g. [1, 11, 13]).
If an event ��
 may affect � � (which is denoted by ��

 ��),
it is mapped to an “earlier” logical time similar to the “hap-
pens before” relation in [1]. This ensures that the future
can not influence the past in the logical time scheme, as it
is natural in our understanding of the passage of time.

 �
 � � � � � � � �

 � � � �

 � � � ���
 �%��� � ��� � � � (3)

We consider events � � of the distributed simulation here;
they are related to the simulated SDES model thus, and not
to the distributed way of computation as usually understood
in the literature about distributed systems. An alternative
interpretation of ��

 � � is thus that ��
 is executed before
�� in a sequential simulation.

We examine the conditions under which �
 affects (or
is executed before) � � in a sequential simulation. The
following cases are distinguished for a complete proof of
the proposition in Equation 3. Here and in all follow-
ing proofs we denote the compound simulation time as-
sociated to an event � � by � � � , and its elements simply as� � � � �� � ��� � � � � � for notational convenience.

If an event � � is executed later in the actual simulation
(model) time � , it may be affected by an earlier event �
 .

 ��
� � �)� � ������
)� ����� �

 � ��

 ����

Then obviously also � � ���
 �%��� � ��� � � because of the defini-
tion of ’ � ’ for compound simulation times in Equation 2.

If an event has to be executed at the same simulation
time, but is causally dependent on another event, it should
be executed later. Causal dependency is fully captured by
vector time [11]. Thus

 �
 � � � � � � � ��
 � � � �-, �*�
 ��� � � � �

 � �

 � � �

which obviously leads to � � ����
 �%� � � � �� � due to the second
case in Equation 2.

There are cases in which two events are executed at the
same simulation time, but are not directly causally depen-
dent. Both belong to individual paths of immediate exe-
cutions then, which started at the same tangible state. The
two paths may share some prior immediate event execu-
tions, which can be obtained from the entries of the vector
time that are equal and have an associated priority vector
entry smaller than infinity. The decision on which event

has to be executed first must be based then on the minimal
priorities of action executions that have taken place since
the paths split up.

 ��
�� � � � � �
� ��
 � � � �-,.�*�
/(� � � ,.� �
 � ���� 	�� � � �
��� 	 � �

�

 � ��

 ����

This is captured exactly in the computation of the minimal
path priority: the event that took the path with a smaller
lowest priority will always be ordered after another event.
The ’ � ’ relation for compound simulation times covers this
case accordingly, leading to � � � �
 �%� � � ��� � � .

The final case occurs, if in a setting as described above
the smallest priorities of the paths occurred in their last
common atomic unit. The two event executions in this
common atomic unit are different ones for the two paths,
because their vector times would otherwise be equal, and
thus their priority would not have been taken into account
for the minimal path priority. Obviously there must have
been a unique ordering of these two previous events, that
started the different paths. This ordering is simply given
by the sequence of executions in the common atomic unit,
which can be directly deduced from the corresponding en-
try in the vector time.

 �
 � � � � � � � � �
 � � � �-, �*�
)(� � � ,
� � ���!� ��� � �
 � ���� 	 � � � �
��� 	 � � � ���#� ,
�1�
 � ���#� �0� � � ���#� � �

 � �

 � ���
This case is covered in the bottom part of Equation 2, and
ensures that � � ����
 �%��� � � � ��� .

There are no other cases in which two events of a
confusion-free model can be in the ’

’ relation of a se-

quential simulation.
With our choice of compound simulation time even the
converse condition of Equation 3 is true:

 �
 � � � � � � � � � � �
 �%��� � � � � � � �

 � �

 � � � (4)

Indirect proof: Assume we find ��
 � ���� � such that� � � ��
 � � � � � � ��� and not ��

 � � . With our assumption
of unique event priorities for different atomic units, it is al-
ways clear which event has to be executed first in a sequen-
tial simulation. Relation ’

’ over events is thus trichoto-

mous, and thus � ���

 � � � �

 � ��� �
 �
 � � ���
 � � � ��� .

Obviously � � ���
 � � � � ��� � � if �
 � � � , which contra-
dicts our assumption and leaves the case � �
 �
 . From
the clock condition in Equation 3 it follows that � � � � � � �� � � �
 � , which contradicts the assumption as well (asymme-
try of ’ � ’ is shown in Section 6.2 below).

�

6

Ordering based on compound simulation times of our
distributed algorithm thus ensures that events are processed
in exactly the same way as in a sequential simulation.

The mapping of events to compound simulation times
is obviously a function: Every individual event is generated
at an atomic unit, which increases its local vector time (and
possibly the simulation time) during the process. The local
entry thus reaches a new maximum value, which becomes a
part of the new event’s time stamp. There are no two events
with the same vector time for the same reason. It follows
that the mapping of events to compound simulation times
is bijective, i.e.

 ��
� � �)� � � � ��
 � � � � ��� ��� � ����
1� � � � ��� �����
From the bijectivity and the corollaries given with

Equations 3 and 4 it follows that the event set � with
the ’

’ relation is isomorphic to the compound simulation

times � � with the ’ � ’ relation, and

 �
 � � � � � � � �

 � � � ��� � � � ���
 � � � � ��� � � � (5)

The compound simulation times can thus be used for a cor-
rect and unique decision about the ordering of events.

6.2 Compound Simulation Time Properties
There are some conditions that any model of time should
adhere to (compare e.g. [11]), which we will check in the
following for the compound simulation time. We will thus
show that the ’ � ’ relation defined in Equation 2 satisfies ir-
reflexivity, asymmetry, transitivity, linearity (more exactly
trichotomy), eternity, and density.

It should be noted that it makes no sense to analyze
compound simulation time entities with arbitrarily set val-
ues; we restrict ourselves to time stamps of events that
could possibly be obtained during a distributed simulation
of a real SDES model as described above.
Irreflexivity of the ’ � ’ relation:

 � �
 � � ��� � ��� �
 � � �
 �
Assume that � �
 � � � can be found such that � �
 � � �

for an indirect proof. The elements of identical compound
simulation times are of course equal; thus neither �
)� �

nor �
)�&�
 will ever be true. In addition to that,

�
 �
��� 	 �
�
 �
��� 	 �) because �
 � �
 . It is thus impossible to find
an atomic unit satisfying the two final lines of Equation 2,
which is a contradiction to the assumption.

�

Asymmetry of ’ � ’.

 � �
 � � � � ��� ������� �
 ��� � � � �

� ��� � � � � �
 �
Indirect proof: assume we find � �
 � � � � � � � satisfying
��� �
 � � � � �',!��� � � � � �
 � . If �
 '� � � , the decision about

which time is smaller would be based on the simulation
times and unique (asymmetry of ’ � ’ for real numbers), thus
�
 � ��� . With similar arguments it follows that �
 (��� ,
and �
 '� ��� because otherwise � �
 � � � � and neither one
would be smaller.

Due to the differing vector times it is always possible to
obtain unique minimal path priorities for � �
 and � � � . If we
would have

�
 � ���� 	 '� �
 � ���� 	 , the ’ � ’-relation would be true
only for one comparison. It thus follows that

�
 � ���� 	 � �
 � ���� 	 .
Because we adopted unique event priorities, there is exactly
one atomic unit ��� for which

�
 � ���� 	 � �
 � ���� 	 � �
 � ���#� �� � � ��� � holds. However, we know that �
 � ���'� '� � � � ���#� ,
because this entry would otherwise have been ignored for
the derivation of the minimal path priority. Thus either
�
 � ���#� � � � � ���'� or � � � ���'� � �
 � ���'� . This means that
only one of the ’ � ’-relations between � �
 and � � � is true,
leading to a contradiction to our assumption.

�

Trichotomy of ’ � ’ for compound simulation times of
events: two values are either equal, or exactly one is
smaller than the other (� denotes “exclusive-or”).

 � �
 � � � �/��� ������� �
 � � � � ��� ��� �
 � � � �����!��� � �)� � �
1�
Let us consider the case � �
 � � � � first. The equation

is fulfilled because neither � �
�� � � � nor � � �/� � �
 , which
follows directly from irreflexivity.

It remains to prove that if � �
 '� � � � , either � �
�� � � �
or � � � � � �
 holds. There are two parts to this proof: first,
we must show that never � �
 � � � � and � � � � � �
 , which
we have already shown (asymmetry). We thus only have to
show that the ’ � ’-relation is linear (in the restricted sense
of an irreflexive relation):

 � �
 � � � �)��� ���
��� �
 '� � � � � �

 � ��� �
 � � � � � � ��� � � ��� �
 ���
The proof is similar to the one for asymmetry. Assume

�
 '� � � : then either � �
 � � � � or � � � � � �
 (trichotomy
of ’ � ’ for real numbers). We thus only need to consider the
case �
 � � � . We know that �
 '� � � because � �
 '� � � � .
Assume now further that �
 � � � or � � � �
 : then
obviously � �
 � � � � or � � � � � �
 , and the proposition
holds. It thus remains to show that it is also true in the case
�
 (��� .

The minimal path priorities are now inspected: if�
 � ���� 	 '� � � �
��� 	 , the proposition becomes true. What hap-
pens if

�
 � ���� 	 � � � �
��� 	 ? There is exactly one atomic unit ���
for which the minimal path priority is achieved (

�
 � ���� 	 �
�
 � ���� 	 � �
 � ���'� � � � � ���'�), because of the use of globally
unique priorities. However,

�
 � ���#� has been considered in
the computation of the minimal path priority, which means
that �
 � ���#� '� � � � ���#� . Thus one of the entries is less than

7

the other (trichotomy of ’ � ’ for naturally numbered prior-
ities), and the proposition is thus true in this final case as
well.

�

Transitivity of ’ � ’ for compound simulation times, i.e.

 � �
 � � � � ��� � , ��� � �
� ��� �
���� � � �-,.��� � �/� � � , ��� �

 ��� �
 � � � , �
Application of Equation 4 to the two conditions leads to
���

 � � � ,�� � �
 � , � . The relation ’

’ on events � � � �

is obviously transitive: if an event �
 has to be executed
before � � , and � � before � , in a sequential simulation, �

needs to be executed before � , as well. Thus we conclude
that ���

 � , � , from which � �
 ��� � , follows with Equa-
tion 3.

�

Eternity of a time scheme means that there is always a
smaller and a greater time point for any given value.

 � �
 ��� � � � � ����� � , ��� ����� �
 � � � �", � �
���� � ,
This is obviously true because already for the simulation
time part � , which is a real number, there is always a
smaller and a greater value.

�

Density is a similar case: there is always a compound sim-
ulation time between any pair of different times, because
the real-valued simulation time entries are dense as well.

 � �
 � � � , � � � � � � � � � � �
��� �
���� � , � �

 � ��� �
���� � ���-,.��� � �/� � � , ���
As a conclusion, the relation ’ � ’ on � � is a strict total

order, because it has been shown to be irreflexive, trichoto-
mous, and transitive. Moreover it is a well-founded rela-
tion, thus ensuring that for any non-empty subset of � �
there is a unique ’ � ’-minimal element. This property is
necessary for each atomic unit when the future event with
the smallest associated time has to be selected for execution
from the event list.

7 GLOBAL STATES
A common problem in distributed algorithms (and thus
simulations) is to determine a global state over the numer-
ous local states of each process. Access to global state in-
formation is necessary in a SDES model at several places.
Guard functions of colored Petri nets are an example for
a state-dependent enabling of actions. Issues like a max-
imum capacity lead to a specification of a state condition
for a state variable. Finally, the derivation of performance
measures requires to obtain state variable values at certain
time points as well as the execution times of actions.

An evaluation of any expression with parameters that
depend on remote state variables requires a correct com-
putation of a global state for the exact point in time it is
requested for. This leads to an additional problem: the
atomic unit in which the state variable is maintained might
not have reached the simulation time for which the state
is requested. In that case we follow the idea of optimistic
simulation by assuming that the state will not change until
the requested time. If it does so later, the affected atomic
unit is notified and rolls back accordingly.

State variable access is however only locally possible
in a distributed simulation. The issue of deriving informa-
tion about remote states at a given point in time is known
as a global predicate evaluation problem [13]. Due to the
possibly different speed and numbers of events to be pro-
cessed at each atomic unit, the local simulation times may
significantly vary. Information about remote states can thus
be obsolete, incomplete, or inconsistent. In the general
setting of distributed algorithms this lead to the develop-
ment of methods to obtain a global state, which use only
the causality relation between message sending and recep-
tion as well as the sequence of event executions of local
processes [14, 11, 13].

A global state of a distributed simulation consists of a
set of local states, one for each logical process (i.e. atomic
unit in our approach). Every local state associates a value
to each locally maintained state variable. A state is valid
between two event executions at the atomic unit due to the
nature of discrete-event systems. It is thus possible to talk
about events or states when analyzing the correctness of a
global state.

Events in a distributed system are often visualized in
a space-time diagram (see e.g. [1, 13]), in which the event
and state sequences of each atomic unit are sketched in hor-
izontal time-lines. The different lines model the spatial dis-
tribution of the processes, and messages between the pro-
cesses and thus causal relationships can be drawn as arrows
between the horizontal lines. If we select a local state for
each atomic unit in the graph and connect all these points
by a zigzag line, we have a graphical representation of a
global state. Every global state that an observer may obtain
can obviously be depicted in that way. The strong rela-
tionship between events and states in that aspect is clear
because every state can be uniquely identified by its right-
most predecessor event.

Such a state-connecting line cuts the sets of events at
each atomic unit into a past and a future set. It is thus
called a cut � and defined as a finite subset of an event
set � such that for every event � in it, all events are also in-
cluded which were executed before � locally in the atomic
unit producing � [11]. ��� ���#� denotes the set of events be-

8

longing to atomic unit ��� .

��� � subject to ���!� ��� � � � ��� ��� �%� � �
��� $
 � � �

 � � $ � �/�
A cut thus respects local causality: all events left of the
cut in the space-time diagram are included. However, not
every one of these possible observations corresponds to a
consistent state.

A cut � is consistent if it respects global causality as
well: for every event � in the cut, all events that causally
precede it are included in � [11].

 �)� � ����� $
 � � �

 ��� $ � �/� (6)

In a distributed algorithm, causality is related to local event
execution and message sending and reception. It is thus
required that if the receive event of a message has been
recorded in the state of a process, then its send event is also
recorded in the state of the sender [1]. This property can be
checked graphically in the time-space diagram: if there is
an arrow (modeling a message transfer) which crosses the
cut line backwards, the cut is not consistent.

A global state in a distributed computation is consis-
tent, if it belongs to a consistent cut. A consistent cut
corresponds to a state that is possibly observed in a run
of the algorithm, but not necessarily reached. Consistent
cuts and thus states are not unique: it is possible to add
or delete events that are concurrent to all other events in
remote atomic units, without interfering with consistency.

This is not acceptable in our environment for SDES per-
formance evaluation, where the causal, timing and prior-
ity relations between events must be obeyed correctly. We
have already shown above that the introduced compound
simulation time � � allows to order events exactly. It is
verified in the following that our use of � � leads to con-
sistent global states.

Every inquiry about remote states corresponds to a
compound simulation time � � , for instance resulting from
the enabling-check of an action at a certain local simulation
time of its atomic unit. Depending on the result, an event
� � ��� � ��� � might be executed at time � � . The remote states
that are valid at this time point correspond to a cut � & . Ev-
ery atomic unit can easily decide which of its own events
belongs to � & based on the compound simulation times.

 ��� � ��� � � � � � ��� �%�
� � � � & � ��� � �/� � ��� ���	��
���������� � �

In the equation,
� ��� � ����
����������� � denotes the part of the local

event list ��� ��� � � ��� of atomic unit ��� that lies in the past of� � .

The past of the event lists contains all events with a
compound simulation time before � � , and the cut � & is de-
rived as the union of the local event sets.

� & � ���� � � � � ��� � ����
�� �������� �

Such a cut is obviously unique by construction, because the
membership of events to

� �!� � ����
����������� � is well-defined due
to the trichotomy of ’ � ’ for compound simulation times.
We can thus deduct that an event is in the cut iff it was
executed before � � .

 � $ � � ����� � � � $ � � � � � � ��� ��� � � $ � � &#�
With the isomorphism between ’ � ’ for compound simula-
tion times and ’

’ for events (Equation 5) it follows di-

rectly that

 � $ � � � � � $
 � � ��� � � $ � � & �
To check if a cut ��& is consistent (Equation 6), we assume
that it is possible to find events � $ � � $ $ � � subject to

� � $ $ � � &#� , � � $
 � $ $ � , � � $�"� � &#�
From � $ $ � � & we know that � $ $
 � , which leads to� � � � $ $ � � � � ��� � . Moreover � � � � $ � � � � � � $ $ � because of
� $
 � $ $. Thus also � � ��� $ �%��� � ��� � because of the transitiv-
ity of ’ � ’, and therefore � $ � � & contradicting the assump-
tion.

�

Every global state that is constructed for a certain com-
pound simulation time is thus consistent. It should however
be noted that this discussion assumes a “correct” simula-
tion that does not violate the local causality constraints; the
rollback mechanism ensures that other runs are taken back.

8 CONCLUSIONS
We have discussed the properties of compound simulation
time in the paper, which has been proposed as a logical
time for distributed simulation recently. It allows the cor-
rect ordering of events in the presence of zero delays and
global event priorities, and can thus be used for a fine-
grained model partitioning of stochastic discrete event sys-
tems. The paper shows that the proposed logical time ad-
heres to common models of time, that it imposes a strict
total order on time-stamped events, and that correct global
states can be obtained using it.

REFERENCES
[1] Lamport, L. 1978, “Time, clocks, and the ordering of

events in a distributed system.” Communications of
the ACM, 21, no. 7: 558–565.

9

[2] Jefferson, D. 1985, “Virtual time.” ACM Transactions
on Programming Languages and Systems (TOPLAS),
7, no. 3: 405–425.

[3] Fujimoto, R. M. 1990, “Parallel Discrete Event Sim-
ulation.” Communications of the ACM, 33, no. 10:
30–53.

[4] Misra, J. 1986, “Distributed Discrete-Event Simula-
tion.” ACM Computing Surveys, 18, no. 1: 39–65.

[5] Jefferson, D.; Sowizral, H. 1985, “Fast Concurrent
Simulation Using the Time Warp Mechanism.” In
P. Reynolds, ed., Distributed Simulation ’85, SCS, La
Jolla, California, 63–69.

[6] Knoke, M.; Kühling, F.; Zimmermann, A.; Hom-
mel, G. 2004, “Towards Correct Distributed Simu-
lation of High-Level Petri Nets With Fine-Grained
Partitioning.” In J. Cao, ed., 2nd Int. Symposium on
Parallel and Distributed Processing and Applications
(ISPA’04), Springer Verlag, Hong Kong, China, vol.
3358 of Lecture Notes in Computer Science, 64–74.

[7] Knoke, M.; Kühling, F.; Zimmermann, A.; Hom-
mel, G. 2005, “Performance of a Distributed Simu-
lation of Timed Colored Petri Nets with Fine-Grained
Partitioning.” In Design, Analysis, and Simulation of
Distributed Systems Symposium, (DASD 2005), San
Diego, USA.

[8] Nicol, D. M.; Mao, W. 1995, “Automated paralleliza-
tion of timed Petri-net simulations.” Journal of Paral-
lel and Distributed Computing, 29, no. 1: 60–74.

[9] Chiola, G.; Ajmone Marsan, M.; Balbo, G.; Conte,
G. 1993, “Generalized Stochastic Petri Nets: A Def-
inition at the Net Level and Its Implications.” IEEE
Transactions on Software Engineering, 19, no. 2: 89–
107.

[10] Zeng, Y.; Cai, W. T.; Turner, S. J. 2003, “Causal Or-
der Based Time Warp: A Tradeoff of Optimism.” In
D. M. Ferrin; D. J. Morrice, eds., Proceedings of the
35th Winter Simulation Conference (WSC’03), ACM,
New Orleans, LA, USA.

[11] Mattern, F. 1989, “Virtual Time and Global States
of Distributed Systems.” In M. Cosnard, ed., Proc.
Workshop on Parallel and Distributed Algorithms, El-
sevier Science Publishers, 215–226.

[12] Fidge, C. 1991, “Logical Time in Distributed Com-
puting Systems.” Computer, 24, no. 8: 28–33.

[13] Babaoğlu, O.; Marzullo, K. 1993, “Consistent Global
States of Distributed Systems: Fundamental Concepts
and Mechanisms.” In S. Mullender, ed., Distributed
systems (2nd Ed.), Addison-Wesley, New York, NY,
USA, 55–96.

[14] Chandy, K. M.; Lamport, L. 1985, “Distributed Snap-
shots: Determining Global States of Distributed Sys-
tems.” ACM Transactions on Computer Systems, 3,
no. 1: 63–75.

10

