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Abstract

The RESTART method is a robust and efficient technique for the simulation of systems
which are subject to significant rare events. Just like other rare-event simulation techniques,
it estimates the probability of reaching a certain event or of being in a specific state set.
Quantitative evaluation of discrete-event systems however requires a much broader type
of performance measures, usually specified in terms of rate and impulse rewards on the
stochastic process. This paper presents an extension of RESTART allowing this type of
general reward measures. A hypothetical revenue-optimal setup of the future ETCS train
control system is computed with the method as an example, based on a stochastic Petri net
model and a prototype implementation.
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1 Introduction

Model-based evaluation of safety-critical embedded systems is an important aid in their de-
sign. This is especially true for non-functional properties; examples are real-time capabilities,
fault-tolerance, and performance while taking failures as well as heavy load situations into
consideration.

Their computer-based evaluation requires a model with performance measures and an
evaluation technique implemented in some software tool. In the following we adopt stochastic
Petri nets, which have proved to be applicable to a wide area of technical systems. They
are considered to describe discrete event systems in a concise and appropriate way. An
additional advantage is the availability of many different analysis and simulation techniques
as well as software tools. The method demonstrated here is however not restricted to Petri
nets as the underlying model.

Rare-event simulation is the only tractable method to evaluate such models if they are
subject to multiple non-Markovian activity delays and low probabilities of the states under
inspection. Several approaches have been investigated in the literature to overcome this
problem; overviews are e.g. given in [2, 3, 4]. They have the common goal to make the
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rare event happen more frequently in order to gain more significant samples out of the same
number of generated events. We consider the RESTART method [11, 10] here because of its
robustness and wide range of applicability.

Rare-event simulation approaches concentrate on an estimation of the probability of a
rare state set A in transient or steady-state. Others derive the probability of reaching a
state or event before another state is hit again. This is however a significant restriction in
the context of embedded systems evaluation and their respective models. A much wider
applicability can be achieved if general quantitative measures are derivable, which heavily
depend (perhaps only in some of their terms) on rare events or states.

The paper shows how RESTART can be used to estimate more general reward measures.
Reward variables are functions that return some value of interest from the stochastic process
of a stochastic discrete-event model. Following the characterization given in [6], both rate
rewards and impulse rewards (which are associated to states and events of the process,
respectively) are considered. The standard probability of a rare event (or state) set is a
special case. The method is based on a variant of RESTART described in [8].

A part of the future European Train Control System (ETCS) is used as an application
example belonging to the class of distributed, safety-critical real-time systems. Its planned
operation overcomes track space splitting into fixed blocks, and is based on mobile communi-
cation. The underlying GSM-R radio communication is a crucial factor for safe and efficient
operation. ETCS (level 3) real-time behavior under inevitable link failures is modeled and
evaluated to demonstrate the proposed technique. The paper uses a recently developed [7]
stochastic Petri net model of location and movement authority data packet exchange between
trains and radio block centers. It is adapted here to capture hypothetical revenues and costs
related to train operation, allowing the derivation of an economically optimal train distance.
A prototype extension of the software tool TimeNET [14] is used for the experiments.

The paper is structured as follows. The RESTART method is briefly revisited in the
subsequent Section 2. Its standard usage for the estimation of a low probability is extended
in Section 3 to allow arbitrary reward measure types. Section 4 demonstrates the method
with an application example.

2 The RESTART Method

Recent treatments of the RESTART technique can be found in [9, 10]. In the following the
topic is only briefly touched to introduce some notation.

Assume that the goal of a simulation is to estimate the probability P{A} of being in a
set of state A in steady state, and that significant samples are generated only rarely due to
the model. Let the set of all reachable states of a model be denoted by B0, and the initial
state of the system by σ0.

A standard simulation would require a very long run time until A has been visited suffi-
ciently often to estimate P{A}. A is visited more frequently by concentrating on promising
paths in the state set.

Formally, define M subsets B1 . . . BM of the overall state space B0 such that

A = BM and BM ⊂ BM−1 ⊂ . . . ⊂ B1 ⊂ B0

The conditional probabilities P{Bi+1 | Bi} of being in an enclosed set Bi+1 under the pre-
condition of being in Bi are much easier to estimate than P{A}, because every one of them
is not rare if the Bi are chosen properly. The measure of interest can then be obtained from
the product of the conditionals (obviously P{B0} = 1).

P{A} =

M−1∏

i=0

P{Bi+1 | Bi}
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States visited during a simulation must be mapped to the respective sets Bi. An impor-
tance function fI returns a real value for each state σ ∈ B0.

fI : B0 → R

A set of thresholds (denoted by Thr i ∈ R, i = 1 . . . M) divides the range of importance values
such that the state set Bi can be obtained for a state1.

∀i ∈ {0 . . . M} : Thr i+1 > Thr i

σ ∈ Bi ⇐⇒ fI(σ) ≥ Thr i

We say that the simulation is in a level i if the current state σ belongs to Bi \ Bi+1.
An importance splitting simulation measures the conditional probability of reaching a

state out of set Bi+1 after starting in Bi by a Bernoulli trial. If Bi+1 is hit, the entering
state is stored and the simulation trial is split into Ri+1 trials. The simulation follows each
of the trials to see whether Bi+2 is hit and so on. A trial starting at Bi is canceled after
leaving Bi if it did not hit Bi+1. Simulation of paths inside B0 and BM = A is not changed.

An estimator of P{A} using R0 independent replications is then [8]

P̂{A} =
1

R0R1 . . .RM−1

R0∑

i0=1

. . .

RM−1∑

iM−1=1

1i01i0i1 . . .1i0i1...iM−1

if we denote by 1i0i1...ij
the result of the Bernoulli trial at stage j, which is either 1 or 0

depending on its success.
The reduction in computation time results from estimating the conditional probabilities

P{Bi+1 | Bi}, which are not rare if the sets Bi are selected properly. Experiences show that
the technique works robustly for a wide range of applications [10, 9], even if the parameters
are not chosen optimally following the rules given in the mentioned papers.

Several variants of RESTART have been considered in the literature [1]. We follow the
approach taken in [5, 8], which can be characterized as fixed splitting and global step according
to [1]. The first aspect corresponds to the number of trials into which a path is split when
it reaches a higher level. The second issue governs the sequence in which the different trials
are executed. Global step has the advantage to store fewer intermediate simulation states.

Following the presentation in [8], the steady-state value of our example measure P{A} is
for a standard simulation given by

P{A} = lim
T→∞

1

T

∫ T

0

1A(t) dt

if we denote by 1A(t) the indicator variable that is either one or zero, depending on whether
the current state of the simulation at time t is in A.

An estimator for this steady-state measure for a RESTART implementation needs correc-
tion factors that take into account the splitting. We adopt the method of [8], where weights
ω are maintained during the simulation run, which capture the relative importance of the
current path elegantly. This makes the division by R0R1 . . .RM−1 obsolete.

The weights are computed as follows: A simulation run starting from the initial state
σ0 ∈ (B0 \ B1) has an initial weight of 1, because it is similar to a “normal” simulation run
without splitting. Whenever the simulation path currently in level i crosses the border to an
upper level u, the path is split into Ru paths, which are simulated subsequently. The weight
is obviously divided by Ru upon splitting. Paths leading to a level < i are discarded except
for the last one, which is followed further using the stated rules. The weight of the last path

1We assume Thr0 = −∞ and ThrM+1 = ∞ here to simplify notation.
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is multiplied by Ri when it leaves level i downwards. The weights of the previously discarded
paths are thus taken back into consideration, to maintain an overall path probability of one.
This procedure is repeated until the required result quality is achieved. This technique
has the additional advantage of allowing “jumps of levels” over more than one threshold
compared to the original method.

Based on the weight factors, an estimator for the steady-state probability of A is

P̂{A} =
1

T

∫ T

0

ω(t)1A(t) dt (1)

for a large T . T counts in this context only the time spent in final paths, i.e. in the last path
of each split.

3 RESTART for Extended Reward Measures

Instead of estimating P{A}, the goal is to obtain an estimation of a reward variable rvar .
This extension is useful for all performance measures that significantly depend on rewards
gained in areas of the state space which are only visited rarely. For simplicity of notation,
we restrict ourself to one (possibly complex) measure which is assumed to be analyzed in
steady state.

3.1 Reward Measures

Reward variables rvar(SProc) are functions that return some value of interest from the
stochastic process SProc of a stochastic discrete-event model. This process describes the
state σ and possibly happening events E at time t, SProc = {(σ(t),E (t)), t ∈ R0+}. Reward
measures may be defined by numerical expressions containing reward measures, but in the
following we use the two terms equally to simplify presentation.

Reward variables describe combinations of a (positive) bonus or (negative) penalty as-
sociated to elements of the stochastic process. Two types of elements of such a reward
variable have been identified in the literature [6]. This was based on the basic observation
that the stochastic process of a discrete event system remains in a state for some time in-
terval and then changes to another state due to an activity execution, which takes place
instantaneously. The natural way of defining a reward variable thus includes rate rewards
rrate(σ) which are accumulated over time in a state σ, and impulse rewards rimp(e) which
are gained instantaneously at the moment of an event e ∈ E .

We first introduce an intermediate function Rinst(t). This value can be interpreted as
the instantaneous reward gained at a point in time t. It is a generalized function containing
a Dirac impulse ∆ if there is at least one impulse reward collected in t.

Rinst(t) = rrate
(
σ(t)

)

︸ ︷︷ ︸
rate rewards

+ ∆ ·
∑

e∈E(t)

rimp(e)

︸ ︷︷ ︸
impulse rewards

(2)

We define the reward variable value in steady-state

rvar(SProc) = lim
x→∞

1

x

∫ x

0

Rinst(t) dt (3)

This leads to a simulation estimator r̂var in the sense of Equation (1).

r̂var =
1

T

∫ T

0

ω(t)Rinst (t) dt (4)
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where T is the (sufficiently large) maximum simulation time spent in final paths, and Rinst(t)
denotes the instantaneous reward gained at time t which is derived by the simulation. ω(t)
denotes the weight as described in the previous section.

It should be noted that the RESTART algorithm stores states with simulation times after
a new level has been reached to restart there, which is not visible in Equation 4. Specifically,
the algorithm may visit a simulation time t several times with possibly different current
states and weights. The equation should thus be read as taking the integral over all paths
visited until the global time T (counting only final paths) is reached.

4 An Application Example — ETCS Train Control

The future European Train Control System (ETCS) will be based on mobile communication
and overcome the standard operation with fixed blocks. It is introduced in order to increase
track utilization and interoperability throughout Europe while reducing trackside equipment
cost. With level 3 of ETCS implementation, trains and control centers are connected by
mobile communication links. Classic trackside equipment will be obsolete. The safety of
passengers depends on the communication system reliability. It is subject to hard safety
requirements, but has to deal with inherent soft real-time aspects (communication delay
jitter and packet losses).

An envisioned advantage of ETCS level 3 is an increased track utilization: dropping the
standard block synchronization of trains and migrating to a virtual block system has the
potential of allowing closer distances between trains. Transmission errors in the communica-
tion system influence the minimum possible distance between trains and thus the maximum
track utilization. This dependency is addressed and evaluated in [12, 13] for the first time.
Communication system, failure behavior and safety braking of trains are modeled and ana-
lyzed using different performance evaluation techniques in the following. The results show
that with the current state of specifications, shorter distances than with today’s technology
will not be possible.

The aim of the application example analysis here is to find a driving distance for trains
that is (in a hypothetical sense) revenue-optimal. We assume for simplification a continuous
track without stops, on which trains follow each other with a maximum speed v (current
high-speed trains have a maximum speed of 300 km/h) and a distance distance. To ensure
safety of the system, worst-case assumptions are made for all timings, distances etc. Practical
values will be worse because trains have different speeds, need to follow their timetable, and
accelerate or brake due to trackside conditions.

Because there is no fixed block assigned to a train, and no physical block borders exist, the
train movement is controlled by exchanging messages with the radio block center (RBC).
Each train periodically checks its integrity and sends this information together with the
current position of the train head to the RBC. We assume the time between two message
creations to be 5 sec, because this is the minimum value in the specifications, but has a
major impact on the possible distance.

The integrity/position report is sent via GSM-R to the RBC and processed there, which
takes 0.5 sec typically. The resulting information is sent to the following train, telling it
either that everything is fine to go on driving (by sending a new movement authority packet
that extends the free track before it) or that an emergency braking is necessary immediately.
Messages may be lost on the up- or downlink with an estimated probability of 1.88% (Packets
have a typical length of 190 bit, and GSM-R bit error rate is specified as 10−4). The mean
time for a complete message transfer between train and RBC (over GSM-R and ISDN link)
is 0.45 sec.

If the second train does not receive a new movement authority message for some time,
it needs to decide on its own at what point of time emergency braking is inevitable out of
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safety reasons. There is obviously a deadline t after the last movement authority has been
received, when the train needs to be stopped. The worst-case assumption is that after the
last integrity check of train one has been completed, a part of the train’s carriages are lost
from the main train and stop where they are or there is an accident. The movement authority
therefore shall never exceed the “min safe rear end” of the preceding train in moving block

operation. The corresponding dependency for the deadline t = distance − 3000m
83m/sec

− 5 sec is

derived in detail in [12, 13], to which the interested reader is referred.

4.1 An ETCS Communication Model

A model of the position report message exchange and emergency braking due to commu-
nication problems is shown below. It represents a variant of previous models introduced
in [13, 7]. The goal of the mentioned papers was to analyze the dependency between max-
imum throughput of trains and reliability measures of the communication system. Here we
take a look at revenue-optimal train distances. However, our main goal is to demonstrate the
use of extended performance measures. Behavior and quantitative parameters of the model
may not detailed enough to obtain realistic results. The general issue of an optimal train
distance w.r.t. throughput and emergency braking should nevertheless become evident.

Model parameters are chosen based on a set of resources listed in [13], up to a big part
representing requirements of the planned ETCS setup. In the following we adopt worst-case
assumptions based on the requirements, because there would otherwise be no guarantee of
a working integrated system.

Reset

Send MsgUpOK

20

LossUp

MsgUpLost

ChannelUp

ReceiveUp

RBC

RBCsend

LossDown

MsgDownOK

MsgDownLoss

ChannelDown

MsgReceived

ReceiveDown

Recover

TrainStoppedTick Counter

#Counter
Deadline

20

Figure 1: Communication model during moving block operation

Figure 1 shows a deterministic and stochastic Petri net (DSPN) model for the ETCS
movement authority data exchange. The upper part models the generation of the posi-
tion/integrity report and its transmission to the following train via the RCB. Transition
Send models the generation of a new message that assures train integrity and contains the
current position. The message transfer to the RBC is modeled by ChannelUp and ReceiveUp

with exponentially distributed firing time, while a packet is lost when immediate transition
MsgUpLost fires. Processing at the RBC corresponds to the deterministic transition RCBsend

with delay 0.5 sec, and the transmission to the following train in the same way as the uplink.
For the application of the RESTART simulation method, place Counter is introduced in

which the number of tokens corresponds to possible thresholds. Every time a new movement
authority message arrives at the second train (place MsgReceived), the current elapsed time
is set to zero: transition Reset fires and removes all tokens from place Counter. The train
stops after an exceeded deadline (i.e. 20 tokens in place Counter, followed by a firing of

6



Deadline), and we assume an exponentially distributed Recover time of 30 minutes before
the train can move on.

We define a performance measure to calculate the hypothetical revenue of train operation
per second and track kilometer, depending on the train’s head-to-head distance.

• In normal operation, 7BC are gained per train and second from passenger fares

• Whenever an emergency braking occurs, singular costs of 200.000BC are assumed

• In addition to that, a stopped train leads to a cost of 600BC per second, which also
includes stopping of following trains

• Assuming a volume-based cost structure of the communication channel, one cent
(0.01BC) per transferred message in a channel is paid per second

• To take track utilization into account, the above influences have to be multiplied by
1000m/distance (the number of trains per km)

Applied to the model, the resulting performance measure can be informally expressed as

(
7 ∗ (1 − #TrainStopped) − 600 ∗ (#TrainStopped) − 200000 ∗ (#Deadline)

−0.01 ∗ (#ChannelUp + #ChannelDown)
)
∗ 1000/distance

where #P means a rate reward equaling the number of tokens in place P, and #T an impulse
reward of one for the firing of transition T. As we are interested in the average value per
model time unit, the performance measure is computed by accumulating the reward over the
simulation run and dividing it by the simulation time.

4.2 Numerical Results

Acceptable stop probabilities are naturally very small (e.g. 10−12 for distance = 8000m),
and thus a rare-event simulation technique is necessary to successfully derive the measure.

The model of the moving block operation has been evaluated using a prototype imple-
mentation that is planned to be included in TimeNET [5, 14]. Thresholds are defined based
on the number of tokens in place Counter. The number of thresholds is manually selected
in the prototype2, based on the formulas in [11] and an estimation of the probability of the
rare event.

Figure 2 shows the resulting revenue per track kilometer and second, depending on the
train head-to-head distance. The optimal distance is 5800m, but the results in the range from
5600 to 5900 do not differ significantly. The two main influences are the rare event of train
stops and the reciprocal linear effect of train distance on track utilization. All simulation
runs were executed until the rare event was hit at least 1000 times, which required 68 billion
events to be simulated in the hardest case of distance = 8400m. This took only a few minutes
run time on a Pentium Mobile with 1.86 MHz under Windows XP. The same prototype with
the RESTART technique switched off is not able to generate any rare event for interesting
settings of distance in an acceptable time.

The analysis shows a significant impact of communication delays and packet losses on an
economical train operation under ETCS level 3.

2TimeNET calculates them based on a prior standard simulation run with limited computation time
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Figure 2: Train revenue versus train distance

5 Conclusion

In this paper we have shown how the RESTART method for rare-event simulation can be
applied to stochastic discrete-event systems containing more general performance measures
than only the probability of one rare event. We extend the technique to general reward
measures containing impulse and rate rewards. The method is demonstrated using the
European Train Control System as an application example. A hypothetical revenue-optimal
train distance is derived.
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